Skip to main content
Erschienen in: Diabetologia 6/2005

01.06.2005 | Article

Enhanced insulin-stimulated glycogen synthesis in response to insulin, metformin or rosiglitazone is associated with increased mRNA expression of GLUT4 and peroxisomal proliferator activator receptor gamma co-activator 1

verfasst von: L. Al-Khalili, M. Forsgren, K. Kannisto, J. R. Zierath, F. Lönnqvist, A. Krook

Erschienen in: Diabetologia | Ausgabe 6/2005

Einloggen, um Zugang zu erhalten

Abstract

Aims/hypothesis

The aim of this study was to determine the effect of several antidiabetic agents on insulin-stimulated glycogen synthesis, as well as on mRNA expression.

Methods

Cultured primary human skeletal myotubes obtained from six healthy subjects were treated for 4 or 8 days without or with glucose (25 mmol/l), insulin (400 pmol/l), rosiglitazone (10 μmol/l), metformin (20 μmol/l) or the AMP-activated kinase activator 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) (200 μmol/l). After this, insulin-stimulated glycogen synthesis was determined. mRNA levels of the glucose transporters GLUT1 and GLUT4, the peroxisomal proliferator activator receptor gamma (PPAR gamma) co-activator 1 (PGC1) and the myocyte-specific enhancer factors (MEF2), MEF2A, MEF2C and MEF2D were determined using real-time PCR analysis after 8 days exposure to the various antidiabetic agents.

Results

Insulin-stimulated glycogen synthesis was significantly increased in cultured human myotubes treated with insulin, rosiglitazone or metformin for 8 days, compared with non-treated cells. Furthermore, an 8-day exposure of myotubes to 25 mmol/l glucose impaired insulin-stimulated glycogen synthesis. In contrast, treatment with AICAR was without effect on insulin-mediated glycogen synthesis. Exposure to insulin, rosiglitazone or metformin increased mRNA expression of PGC1 and GLUT4, while AICAR or 25 mmol/l glucose treatment increased GLUT1 mRNA expression. Metformin also increased mRNA expression of the MEF2 isoforms.

Conclusions/interpretation

Enhanced insulin-stimulated glycogen synthesis in human skeletal muscle cell culture coincides with increased GLUT4 and PGC1 mRNA expression following treatment with various antidiabetic agents. These data show that chronic treatment of human myotubes with insulin, metformin or rosiglitazone has a direct positive effect on insulin action and mRNA expression.
Literatur
1.
Zurück zum Zitat McGarry JD (1998) Glucose–fatty acid interactions in health and disease. Am J Clin Nutr 67:500S–504SPubMed McGarry JD (1998) Glucose–fatty acid interactions in health and disease. Am J Clin Nutr 67:500S–504SPubMed
2.
Zurück zum Zitat Boden G (1997) Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes 46:3–10PubMed Boden G (1997) Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes 46:3–10PubMed
3.
Zurück zum Zitat Ciaraldi TP, Abrams L, Nikoulina S, Mudaliar S, Henry RR (1995) Glucose transport in cultured human skeletal muscle cells. Regulation by insulin and glucose in nondiabetic and non-insulin-dependent diabetes mellitus subjects. J Clin Invest 96:2820–2827PubMed Ciaraldi TP, Abrams L, Nikoulina S, Mudaliar S, Henry RR (1995) Glucose transport in cultured human skeletal muscle cells. Regulation by insulin and glucose in nondiabetic and non-insulin-dependent diabetes mellitus subjects. J Clin Invest 96:2820–2827PubMed
4.
Zurück zum Zitat Kelley DE, Goodpaster BH (2001) Effects of exercise on glucose homeostasis in type 2 diabetes mellitus. Med Sci Sports Exerc 33:S495–S501PubMed Kelley DE, Goodpaster BH (2001) Effects of exercise on glucose homeostasis in type 2 diabetes mellitus. Med Sci Sports Exerc 33:S495–S501PubMed
5.
Zurück zum Zitat Lewis GF, Carpentier A, Adeli K, Giacca A (2002) Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr Rev 23:201–229CrossRefPubMed Lewis GF, Carpentier A, Adeli K, Giacca A (2002) Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr Rev 23:201–229CrossRefPubMed
6.
Zurück zum Zitat Zierath JR, Krook A, Wallberg-Henriksson H (2000) Insulin action and insulin resistance in human skeletal muscle. Diabetologia 43:821–835CrossRefPubMed Zierath JR, Krook A, Wallberg-Henriksson H (2000) Insulin action and insulin resistance in human skeletal muscle. Diabetologia 43:821–835CrossRefPubMed
7.
Zurück zum Zitat Charron MJ, Brosius FC III, Alper SL, Lodish HF (1989) A glucose transport protein expressed predominately in insulin-responsive tissues. Proc Natl Acad Sci U S A 86:2535–2539PubMed Charron MJ, Brosius FC III, Alper SL, Lodish HF (1989) A glucose transport protein expressed predominately in insulin-responsive tissues. Proc Natl Acad Sci U S A 86:2535–2539PubMed
8.
Zurück zum Zitat James DE, Strube MM, Mueckler MM (1989) Molecular cloning and characterization of an insulin-regulatable glucose transporter. Nature 338:83–87CrossRefPubMed James DE, Strube MM, Mueckler MM (1989) Molecular cloning and characterization of an insulin-regulatable glucose transporter. Nature 338:83–87CrossRefPubMed
9.
Zurück zum Zitat Tsao T-S, Stenbit A, Li J et al (1997) Muscle-specific transgenic complementation of GLUT4-deficient mice: preferential effects of glucose but not lipid metabolism. J Clin Invest 100:671–677PubMed Tsao T-S, Stenbit A, Li J et al (1997) Muscle-specific transgenic complementation of GLUT4-deficient mice: preferential effects of glucose but not lipid metabolism. J Clin Invest 100:671–677PubMed
10.
Zurück zum Zitat Shepherd PR, Gnudi L, Tozzo E et al (1993) Adipose cell hyperplasia and enhanced glucose disposal in transgenic mice overexpressing GLUT4 selectively in adipose tissue. J Biol Chem 268:22243–22246PubMed Shepherd PR, Gnudi L, Tozzo E et al (1993) Adipose cell hyperplasia and enhanced glucose disposal in transgenic mice overexpressing GLUT4 selectively in adipose tissue. J Biol Chem 268:22243–22246PubMed
11.
Zurück zum Zitat Torrance CJ, Devente JE, Jones JP, Dohm GL (1997) Effects of thyroid hormone on GLUT4 glucose transporter gene expression and NIDDM in rats. Endocrinology 138:1204–1214CrossRefPubMed Torrance CJ, Devente JE, Jones JP, Dohm GL (1997) Effects of thyroid hormone on GLUT4 glucose transporter gene expression and NIDDM in rats. Endocrinology 138:1204–1214CrossRefPubMed
12.
Zurück zum Zitat Gibbs EM, Stock JL, McCoid SC et al (1995) Glycemic improvement in diabetic db/db mice by overexpression of the human insulin-regulatable glucose transporter (GLUT4). J Clin Invest 95:1512–1518PubMed Gibbs EM, Stock JL, McCoid SC et al (1995) Glycemic improvement in diabetic db/db mice by overexpression of the human insulin-regulatable glucose transporter (GLUT4). J Clin Invest 95:1512–1518PubMed
13.
Zurück zum Zitat Mora S, Pessin JE (2000) The MEF2A isoform is required for striated muscle-specific expression of the insulin-responsive GLUT4 glucose transporter. J Biol Chem 275:16323–16328CrossRefPubMed Mora S, Pessin JE (2000) The MEF2A isoform is required for striated muscle-specific expression of the insulin-responsive GLUT4 glucose transporter. J Biol Chem 275:16323–16328CrossRefPubMed
14.
Zurück zum Zitat Thai MV, Guruswamy S, Cao KT, Pessin JE, Olson AL (1998) Myocyte enhancer factor 2 (MEF2)-binding site is required for GLUT4 gene expression in transgenic mice: regulation of MEF2 DNA binding activity in insulin-deficient diabetes. J Biol Chem 273:14285–14292CrossRefPubMed Thai MV, Guruswamy S, Cao KT, Pessin JE, Olson AL (1998) Myocyte enhancer factor 2 (MEF2)-binding site is required for GLUT4 gene expression in transgenic mice: regulation of MEF2 DNA binding activity in insulin-deficient diabetes. J Biol Chem 273:14285–14292CrossRefPubMed
15.
Zurück zum Zitat Tsunoda N, Cooke DW, Ikemoto S et al (1997) Regulated expression of 5′-deleted mouse GLUT4 minigenes in transgenic mice: effects of exercise training and high-fat diet. Biochem Biophys Res Commun 239:503–509CrossRefPubMed Tsunoda N, Cooke DW, Ikemoto S et al (1997) Regulated expression of 5′-deleted mouse GLUT4 minigenes in transgenic mice: effects of exercise training and high-fat diet. Biochem Biophys Res Commun 239:503–509CrossRefPubMed
16.
Zurück zum Zitat McKinsey TA, Zhang CL, Olson EN (2002) MEF2: a calcium-dependent regulator of cell division, differentiation and death. Trends Biochem Sci 27:40–47CrossRefPubMed McKinsey TA, Zhang CL, Olson EN (2002) MEF2: a calcium-dependent regulator of cell division, differentiation and death. Trends Biochem Sci 27:40–47CrossRefPubMed
17.
Zurück zum Zitat Mora S, Yang C, Ryder JW, Boeglin D, Pessin JE (2001) The MEF2A and MEF2D isoforms are differentially regulated in muscle and adipose tissue during states of insulin deficiency. Endocrinology 142:1999–2004CrossRefPubMed Mora S, Yang C, Ryder JW, Boeglin D, Pessin JE (2001) The MEF2A and MEF2D isoforms are differentially regulated in muscle and adipose tissue during states of insulin deficiency. Endocrinology 142:1999–2004CrossRefPubMed
18.
Zurück zum Zitat Al-Khalili L, Chibalin AV, Yu M et al (2004) MEF2 activation in differentiated primary human skeletal muscle cultures requires coordinated involvement of parallel pathways. Am J Physiol Cell Physiol 286:C1410–C1416CrossRefPubMed Al-Khalili L, Chibalin AV, Yu M et al (2004) MEF2 activation in differentiated primary human skeletal muscle cultures requires coordinated involvement of parallel pathways. Am J Physiol Cell Physiol 286:C1410–C1416CrossRefPubMed
19.
Zurück zum Zitat Handschin C, Rhee J, Lin J, Tarr PT, Spiegelman BM (2003) An autoregulatory loop controls peroxisome proliferator-activated receptor γ coactivator 1 α expression in muscle. Proc Natl Acad Sci U S A 100:7111–7116CrossRefPubMed Handschin C, Rhee J, Lin J, Tarr PT, Spiegelman BM (2003) An autoregulatory loop controls peroxisome proliferator-activated receptor γ coactivator 1 α expression in muscle. Proc Natl Acad Sci U S A 100:7111–7116CrossRefPubMed
20.
Zurück zum Zitat Puigserver P, Wu Z, Park WC et al (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829–839CrossRefPubMed Puigserver P, Wu Z, Park WC et al (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829–839CrossRefPubMed
21.
Zurück zum Zitat Patti ME, Butte AJ, Crunkhorn S et al (2003) Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc Natl Acad Sci U S A 100:8466–8471CrossRefPubMed Patti ME, Butte AJ, Crunkhorn S et al (2003) Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc Natl Acad Sci U S A 100:8466–8471CrossRefPubMed
22.
Zurück zum Zitat Sood V, Colleran K, Burge MR (2000) Thiazolidinediones: a comparative review of approved uses. Diabetes Technol Ther 2:429–440CrossRefPubMed Sood V, Colleran K, Burge MR (2000) Thiazolidinediones: a comparative review of approved uses. Diabetes Technol Ther 2:429–440CrossRefPubMed
24.
Zurück zum Zitat Mauvais-Jarvis F, Andreelli F, Hanaire-Broutin H, Charbonnel B, Girard J (2001) Therapeutic perspectives for type 2 diabetes mellitus: molecular and clinical insights. Diabetes Metab 27:415–423PubMed Mauvais-Jarvis F, Andreelli F, Hanaire-Broutin H, Charbonnel B, Girard J (2001) Therapeutic perspectives for type 2 diabetes mellitus: molecular and clinical insights. Diabetes Metab 27:415–423PubMed
25.
Zurück zum Zitat Nambi V, Hoogwerf RJ, Sprecher DL (2002) A truly deadly quartet: obesity, hypertension, hypertriglyceridemia, and hyperinsulinemia. Cleve Clin J Med 69:985–989PubMed Nambi V, Hoogwerf RJ, Sprecher DL (2002) A truly deadly quartet: obesity, hypertension, hypertriglyceridemia, and hyperinsulinemia. Cleve Clin J Med 69:985–989PubMed
26.
Zurück zum Zitat Ciaraldi TP, Kolterman OG, Scarlett JA, Kao M, Olefsky JM (1982) Role of glucose transport in the postreceptor defect of non-insulin-dependent diabetes mellitus. Diabetes 31:1016–1022PubMed Ciaraldi TP, Kolterman OG, Scarlett JA, Kao M, Olefsky JM (1982) Role of glucose transport in the postreceptor defect of non-insulin-dependent diabetes mellitus. Diabetes 31:1016–1022PubMed
27.
Zurück zum Zitat Garg R, Tripathy D, Dandona P (2003) Insulin resistance as a proinflammatory state: mechanisms, mediators, and therapeutic interventions. Curr Drug Targets 4:487–492CrossRefPubMed Garg R, Tripathy D, Dandona P (2003) Insulin resistance as a proinflammatory state: mechanisms, mediators, and therapeutic interventions. Curr Drug Targets 4:487–492CrossRefPubMed
28.
Zurück zum Zitat Mayerson AB, Hundal RS, Dufour S et al (2002) The effects of rosiglitazone on insulin sensitivity, lipolysis, and hepatic and skeletal muscle triglyceride content in patients with type 2 diabetes. Diabetes 51:797–802PubMed Mayerson AB, Hundal RS, Dufour S et al (2002) The effects of rosiglitazone on insulin sensitivity, lipolysis, and hepatic and skeletal muscle triglyceride content in patients with type 2 diabetes. Diabetes 51:797–802PubMed
29.
Zurück zum Zitat Ruderman NB, Cacicedo JM, Itani S et al (2003) Malonyl–CoA and AMP-activated protein kinase (AMPK): possible links between insulin resistance in muscle and early endothelial cell damage in diabetes. Biochem Soc Trans 31:202–206PubMed Ruderman NB, Cacicedo JM, Itani S et al (2003) Malonyl–CoA and AMP-activated protein kinase (AMPK): possible links between insulin resistance in muscle and early endothelial cell damage in diabetes. Biochem Soc Trans 31:202–206PubMed
30.
Zurück zum Zitat Musi N, Hirshman MF, Nygren J et al (2002) Metformin increases AMP–activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes. Diabetes 51:2074–2081PubMed Musi N, Hirshman MF, Nygren J et al (2002) Metformin increases AMP–activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes. Diabetes 51:2074–2081PubMed
31.
Zurück zum Zitat Song XM, Fiedler M, Galuska D et al (2002) 5-Aminoimidazole-4-carboxamide ribonucleoside treatment improves glucose homeostasis in insulin-resistant diabetic (ob/ob) mice. Diabetologia 45:56–65CrossRefPubMed Song XM, Fiedler M, Galuska D et al (2002) 5-Aminoimidazole-4-carboxamide ribonucleoside treatment improves glucose homeostasis in insulin-resistant diabetic (ob/ob) mice. Diabetologia 45:56–65CrossRefPubMed
32.
Zurück zum Zitat Al-Khalili L, Krämer D, Wretenberg P, Krook A (2004) Enhanced insulin-mediated ERK1/2 MAPK and Akt/PKB phosphorylation in cultured human myocytes post differentiation. Acta Physiol Scand 180:395–403CrossRefPubMed Al-Khalili L, Krämer D, Wretenberg P, Krook A (2004) Enhanced insulin-mediated ERK1/2 MAPK and Akt/PKB phosphorylation in cultured human myocytes post differentiation. Acta Physiol Scand 180:395–403CrossRefPubMed
33.
Zurück zum Zitat Al-Khalili L, Chibalin AV, Kannisto K et al (2003) Insulin action in cultured human skeletal muscle cells during differentiation: assessment of cell surface GLUT4 and GLUT1 content. Cell Mol Life Sci 60:991–998PubMed Al-Khalili L, Chibalin AV, Kannisto K et al (2003) Insulin action in cultured human skeletal muscle cells during differentiation: assessment of cell surface GLUT4 and GLUT1 content. Cell Mol Life Sci 60:991–998PubMed
34.
Zurück zum Zitat Cline GW, Petersen KF, Krssak M et al (1999) Impaired glucose transport as a cause of decreased insulin-stimulated muscle glycogen synthesis in type 2 diabetes. N Engl J Med 341:240–246CrossRefPubMed Cline GW, Petersen KF, Krssak M et al (1999) Impaired glucose transport as a cause of decreased insulin-stimulated muscle glycogen synthesis in type 2 diabetes. N Engl J Med 341:240–246CrossRefPubMed
35.
Zurück zum Zitat Park KS, Ciaraldi TP, Carter L et al (2000) Induction of insulin resistance in human skeletal muscle cells by downregulation of glycogen synthase protein expression. Metabolism 49:962–968CrossRefPubMed Park KS, Ciaraldi TP, Carter L et al (2000) Induction of insulin resistance in human skeletal muscle cells by downregulation of glycogen synthase protein expression. Metabolism 49:962–968CrossRefPubMed
36.
Zurück zum Zitat Gaster M, Petersen I, Hojlund K, Poulsen P, Beck-Nielsen H (2002) The diabetic phenotype is conserved in myotubes established from diabetic subjects: evidence for primary defects in glucose transport and glycogen synthase activity. Diabetes 51:921–927PubMed Gaster M, Petersen I, Hojlund K, Poulsen P, Beck-Nielsen H (2002) The diabetic phenotype is conserved in myotubes established from diabetic subjects: evidence for primary defects in glucose transport and glycogen synthase activity. Diabetes 51:921–927PubMed
37.
Zurück zum Zitat Gaster M, Schroder HD, Handberg A, Beck-Nielsen H (2001) The basal kinetic parameters of glycogen synthase in human myotube cultures are not affected by chronic high insulin exposure. Biochim Biophys Acta 1537:211–221PubMed Gaster M, Schroder HD, Handberg A, Beck-Nielsen H (2001) The basal kinetic parameters of glycogen synthase in human myotube cultures are not affected by chronic high insulin exposure. Biochim Biophys Acta 1537:211–221PubMed
38.
Zurück zum Zitat Henry RR, Ciaraldi TP, Mudaliar S, Abrams L, Nikoulina SE (1996) Acquired defects of glycogen synthase activity in cultured human skeletal muscle cells: influence of high glucose and insulin levels. Diabetes 45:400–407PubMed Henry RR, Ciaraldi TP, Mudaliar S, Abrams L, Nikoulina SE (1996) Acquired defects of glycogen synthase activity in cultured human skeletal muscle cells: influence of high glucose and insulin levels. Diabetes 45:400–407PubMed
39.
Zurück zum Zitat Kausch C, Krutzfeldt J, Witke A et al (2001) Effects of troglitazone on cellular differentiation, insulin signaling, and glucose metabolism in cultured human skeletal muscle cells. Biochem Biophys Res Commun 280:664–674CrossRefPubMed Kausch C, Krutzfeldt J, Witke A et al (2001) Effects of troglitazone on cellular differentiation, insulin signaling, and glucose metabolism in cultured human skeletal muscle cells. Biochem Biophys Res Commun 280:664–674CrossRefPubMed
40.
Zurück zum Zitat Wahl HG, Kausch C, Machicao F et al (2002) Troglitazone downregulates δ 6 desaturase gene expression in human skeletal muscle cell cultures. Diabetes 51:1060–1065PubMed Wahl HG, Kausch C, Machicao F et al (2002) Troglitazone downregulates δ 6 desaturase gene expression in human skeletal muscle cell cultures. Diabetes 51:1060–1065PubMed
41.
Zurück zum Zitat Park KS, Ciaraldi TP, Lindgren K et al (1998) Troglitazone effects on gene expression in human skeletal muscle of type II diabetes involve up-regulation of peroxisome proliferator-activated receptor-γ. J Clin Endocrinol Metab 83:2830–2835CrossRefPubMed Park KS, Ciaraldi TP, Lindgren K et al (1998) Troglitazone effects on gene expression in human skeletal muscle of type II diabetes involve up-regulation of peroxisome proliferator-activated receptor-γ. J Clin Endocrinol Metab 83:2830–2835CrossRefPubMed
42.
Zurück zum Zitat Park KS, Ciaraldi TP, Abrams-Carter L et al (1998) Troglitazone regulation of glucose metabolism in human skeletal muscle cultures from obese type II diabetic subjects. J Clin Endocrinol Metab 83:1636–1643CrossRefPubMed Park KS, Ciaraldi TP, Abrams-Carter L et al (1998) Troglitazone regulation of glucose metabolism in human skeletal muscle cultures from obese type II diabetic subjects. J Clin Endocrinol Metab 83:1636–1643CrossRefPubMed
43.
Zurück zum Zitat Yonemitsu S, Nishimura H, Shintani M et al (2001) Troglitazone induces GLUT4 translocation in L6 myotubes. Diabetes 50:1093–1101PubMed Yonemitsu S, Nishimura H, Shintani M et al (2001) Troglitazone induces GLUT4 translocation in L6 myotubes. Diabetes 50:1093–1101PubMed
44.
Zurück zum Zitat Seda O, Kazdova L, Krenova D, Kren V (2002) Rosiglitazone improves insulin resistance, lipid profile and promotes adiposity in a genetic model of metabolic syndrome X. Folia Biol (Praha) 48:237–241 Seda O, Kazdova L, Krenova D, Kren V (2002) Rosiglitazone improves insulin resistance, lipid profile and promotes adiposity in a genetic model of metabolic syndrome X. Folia Biol (Praha) 48:237–241
45.
Zurück zum Zitat Musi N, Goodyear LJ (2003) AMP-activated protein kinase and muscle glucose uptake. Acta Physiol Scand 178:337–345CrossRefPubMed Musi N, Goodyear LJ (2003) AMP-activated protein kinase and muscle glucose uptake. Acta Physiol Scand 178:337–345CrossRefPubMed
46.
Zurück zum Zitat Jessen N, Pold R, Buhl ES et al (2003) Effects of AICAR and exercise on insulin-stimulated glucose uptake, signaling, and GLUT-4 content in rat muscles. J Appl Physiol 94:1373–1379PubMed Jessen N, Pold R, Buhl ES et al (2003) Effects of AICAR and exercise on insulin-stimulated glucose uptake, signaling, and GLUT-4 content in rat muscles. J Appl Physiol 94:1373–1379PubMed
47.
Zurück zum Zitat Kurth-Kraczek EJ, Hirshman MF, Goodyear LJ, Winder WW (1999) 5′ AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle. Diabetes 48:1667–1671PubMed Kurth-Kraczek EJ, Hirshman MF, Goodyear LJ, Winder WW (1999) 5′ AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle. Diabetes 48:1667–1671PubMed
48.
Zurück zum Zitat Abbud W, Habinowski S, Zhang J-Z et al (2000) Stimulation of AMP-activated protein kinase (AMPK) is associated with enhancement of GLUT1-mediated glucose transport. Arch Biochem Biophys 380:347–352CrossRefPubMed Abbud W, Habinowski S, Zhang J-Z et al (2000) Stimulation of AMP-activated protein kinase (AMPK) is associated with enhancement of GLUT1-mediated glucose transport. Arch Biochem Biophys 380:347–352CrossRefPubMed
49.
Zurück zum Zitat Giannarelli R, Aragona M, Coppelli A, Del Prato S (2003) Reducing insulin resistance with metformin: the evidence today. Diabetes Metab 29:6S28–6S35PubMed Giannarelli R, Aragona M, Coppelli A, Del Prato S (2003) Reducing insulin resistance with metformin: the evidence today. Diabetes Metab 29:6S28–6S35PubMed
Metadaten
Titel
Enhanced insulin-stimulated glycogen synthesis in response to insulin, metformin or rosiglitazone is associated with increased mRNA expression of GLUT4 and peroxisomal proliferator activator receptor gamma co-activator 1
verfasst von
L. Al-Khalili
M. Forsgren
K. Kannisto
J. R. Zierath
F. Lönnqvist
A. Krook
Publikationsdatum
01.06.2005
Erschienen in
Diabetologia / Ausgabe 6/2005
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-005-1741-3

Weitere Artikel der Ausgabe 6/2005

Diabetologia 6/2005 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

RAS-Blocker bei Hyperkaliämie möglichst nicht sofort absetzen

14.05.2024 Hyperkaliämie Nachrichten

Bei ausgeprägter Nierenfunktionsstörung steigen unter der Einnahme von Renin-Angiotensin-System(RAS)-Hemmstoffen nicht selten die Serumkaliumspiegel. Was in diesem Fall zu tun ist, erklärte Prof. Jürgen Floege beim diesjährigen Allgemeinmedizin-Update-Seminar.

Gestationsdiabetes: In der zweiten Schwangerschaft folgenreicher als in der ersten

13.05.2024 Gestationsdiabetes Nachrichten

Das Risiko, nach einem Gestationsdiabetes einen Typ-2-Diabetes zu entwickeln, hängt nicht nur von der Zahl, sondern auch von der Reihenfolge der betroffenen Schwangerschaften ab.

Labor, CT-Anthropometrie zeigen Risiko für Pankreaskrebs

13.05.2024 Pankreaskarzinom Nachrichten

Gerade bei aggressiven Malignomen wie dem duktalen Adenokarzinom des Pankreas könnte Früherkennung die Therapiechancen verbessern. Noch jedoch klafft hier eine Lücke. Ein Studienteam hat einen Weg gesucht, sie zu schließen.

Battle of Experts: Sport vs. Spritze bei Adipositas und Typ-2-Diabetes

11.05.2024 DDG-Jahrestagung 2024 Kongressbericht

Im Battle of Experts traten zwei Experten auf dem Diabeteskongress gegeneinander an: Die eine vertrat die Auffassung „Sport statt Spritze“ bei Adipositas und Typ-2-Diabetes, der andere forderte „Spritze statt Sport!“ Am Ende waren sie sich aber einig: Die Kombination aus beidem erzielt die besten Ergebnisse.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.