Skip to main content
Erschienen in: Experimental Brain Research 2/2003

01.09.2003 | Research Article

Chunking during human visuomotor sequence learning

verfasst von: Katsuyuki Sakai, Katsuya Kitaguchi, Okihide Hikosaka

Erschienen in: Experimental Brain Research | Ausgabe 2/2003

Einloggen, um Zugang zu erhalten

Abstract

Motor sequence learning is a process whereby a series of elementary movements is re-coded into an efficient representation for the entire sequence. Here we show that human subjects learn a visuomotor sequence by spontaneously chunking the elementary movements, while each chunk acts as a single memory unit. The subjects learned to press a sequence of 10 sets of two buttons through trial and error. By examining the temporal patterns with which subjects performed a visuomotor sequence, we found that the subjects performed the 10 sets as several clusters of sets, which were separated by long time gaps. While the overall performance time decreased by repeating the same sequence, the clusters became clearer and more consistent. The cluster pattern was uncorrelated with the distance of hand movements and was different across subjects who learned the same sequence. We then split a learned sequence into three segments, while preserving or destroying the clusters in the learned sequence, and shuffled the segments. The performance on the shuffled sequence was more accurate and quicker when the clusters in the original sequence were preserved than when they were destroyed. The results suggest that each cluster is processed as a single memory unit, a chunk, and is necessary for efficient sequence processing. A learned visuomotor sequence is hierarchically represented as chunks that contain several elementary movements. We also found that the temporal patterns of sequence performance transferred from the nondominant to dominant hand, but not vice versa. This may suggest a role of the dominant hemisphere in storage of learned chunks. Together with our previous unit-recording and imaging studies that used the same learning paradigm, we predict specific roles of the dominant parietal area, basal ganglia, and presupplementary motor area in the chunking.
Literatur
Zurück zum Zitat Bapi RS, Doya K, Harner AM (2000) Evidence for effector independent and dependent representations and their differential time course of acquisition during motor sequence learning. Exp Brain Res 132:149–162PubMed Bapi RS, Doya K, Harner AM (2000) Evidence for effector independent and dependent representations and their differential time course of acquisition during motor sequence learning. Exp Brain Res 132:149–162PubMed
Zurück zum Zitat Catalan MJ, Honda M, Weeks RA, Cohen LG, Hallett M (1998) The functional neuroanatomy of simple and complex sequential finger movements: a PET study. Brain 121:253–264PubMed Catalan MJ, Honda M, Weeks RA, Cohen LG, Hallett M (1998) The functional neuroanatomy of simple and complex sequential finger movements: a PET study. Brain 121:253–264PubMed
Zurück zum Zitat Cohen A, Ivry RI, Keele SW (1990) Attention and structure in sequence learning. J Exp Psychol Learn Mem Cognit 16:17–30CrossRef Cohen A, Ivry RI, Keele SW (1990) Attention and structure in sequence learning. J Exp Psychol Learn Mem Cognit 16:17–30CrossRef
Zurück zum Zitat Curran T, Keele SW (1993) Attentional and nonattentional forms of sequence learning. J Exp Psychol Learn Mem Cognit 19:189–202CrossRef Curran T, Keele SW (1993) Attentional and nonattentional forms of sequence learning. J Exp Psychol Learn Mem Cognit 19:189–202CrossRef
Zurück zum Zitat Dallal NL, Meck WH (1990) Hierarchical structures: chunking by food type facilitates spatial memory. J Exp Psychol Anim Behav Process 16:69–84CrossRefPubMed Dallal NL, Meck WH (1990) Hierarchical structures: chunking by food type facilitates spatial memory. J Exp Psychol Anim Behav Process 16:69–84CrossRefPubMed
Zurück zum Zitat Ericsson KA, Chase WG, Faloon S (1980) Acquisition of a memory skill. Science 208:1181–1182PubMed Ericsson KA, Chase WG, Faloon S (1980) Acquisition of a memory skill. Science 208:1181–1182PubMed
Zurück zum Zitat Fountain SB (1990) Rule abstraction, item memory, and chunking in rat serial-pattern tracking. J Exp Psychol Anim Behav Process 16:96–105CrossRefPubMed Fountain SB (1990) Rule abstraction, item memory, and chunking in rat serial-pattern tracking. J Exp Psychol Anim Behav Process 16:96–105CrossRefPubMed
Zurück zum Zitat Gordon PC, Meyer DE (1984) Perceptual-motor processing of phonetic features in speech. J Exp Psychol Hum Percept Perform 10:153–178CrossRefPubMed Gordon PC, Meyer DE (1984) Perceptual-motor processing of phonetic features in speech. J Exp Psychol Hum Percept Perform 10:153–178CrossRefPubMed
Zurück zum Zitat Graybiel AM (1998) The basal ganglia and chunking of action repertoires. Neurobiol Learn Mem 70:119–136CrossRefPubMed Graybiel AM (1998) The basal ganglia and chunking of action repertoires. Neurobiol Learn Mem 70:119–136CrossRefPubMed
Zurück zum Zitat Harrington DL, Haaland KY (1991a) Hemispheric specialisation for motor sequencing: abnormalities in levels of programming. Neuropsychologia 29:147–163CrossRefPubMed Harrington DL, Haaland KY (1991a) Hemispheric specialisation for motor sequencing: abnormalities in levels of programming. Neuropsychologia 29:147–163CrossRefPubMed
Zurück zum Zitat Harrington DL, Haaland KY (1991b) Sequencing in Parkinson's disease. Abnormalities in programming and controlling movement. Brain 114:99–115PubMed Harrington DL, Haaland KY (1991b) Sequencing in Parkinson's disease. Abnormalities in programming and controlling movement. Brain 114:99–115PubMed
Zurück zum Zitat Harrington DL, Haaland KY (1992) Motor sequencing with left hemisphere damage: are some cognitive deficits specific to limb apraxia? Brain 115:857–874 Harrington DL, Haaland KY (1992) Motor sequencing with left hemisphere damage: are some cognitive deficits specific to limb apraxia? Brain 115:857–874
Zurück zum Zitat Hikosaka O, Rand MK, Miyachi S, Miyashita K (1995) Learning of sequential movements in the monkey: process of learning and retention of memory. J Neurophysiol 74: 1652–1661PubMed Hikosaka O, Rand MK, Miyachi S, Miyashita K (1995) Learning of sequential movements in the monkey: process of learning and retention of memory. J Neurophysiol 74: 1652–1661PubMed
Zurück zum Zitat Hikosaka O, Sakai K, Miyauchi S, Takino R, Sasaki Y, Putz B (1996) Activation of human presupplementary motor area in learning of sequential procedures: a functional MRI study. J Neurophysiol 76:617–621PubMed Hikosaka O, Sakai K, Miyauchi S, Takino R, Sasaki Y, Putz B (1996) Activation of human presupplementary motor area in learning of sequential procedures: a functional MRI study. J Neurophysiol 76:617–621PubMed
Zurück zum Zitat Hikosaka O, Nakahara H, Rand MK, Sakai K, Lu X, Nakamura K, Miyachi S, Doya K (1999a) Parallel neural networks for learning sequential procedures. Trends Neurosci 22:464–471PubMed Hikosaka O, Nakahara H, Rand MK, Sakai K, Lu X, Nakamura K, Miyachi S, Doya K (1999a) Parallel neural networks for learning sequential procedures. Trends Neurosci 22:464–471PubMed
Zurück zum Zitat Hikosaka O, Sakai K, Nakahara H, Lu X, Miyachi S, Nakamura K, Rand MK (1999b) Neural mechanisms for learning of sequential procedures. In: Gazzaniga MS (ed) The new cognitive neurosciences. MIT Press, Cambridge, MA, pp 553–572 Hikosaka O, Sakai K, Nakahara H, Lu X, Miyachi S, Nakamura K, Rand MK (1999b) Neural mechanisms for learning of sequential procedures. In: Gazzaniga MS (ed) The new cognitive neurosciences. MIT Press, Cambridge, MA, pp 553–572
Zurück zum Zitat Hikosaka O, Nakamura K, Sakai K, Nakahara H (2002a) Central mechanisms of motor skill learning. Curr Opin Neurobiol 12:217–222CrossRefPubMed Hikosaka O, Nakamura K, Sakai K, Nakahara H (2002a) Central mechanisms of motor skill learning. Curr Opin Neurobiol 12:217–222CrossRefPubMed
Zurück zum Zitat Hikosaka O, Rand MK, Nakamura K, Miyachi S, Kitaguchi K, Sakai K, Lu X, Shimo Y (2002b) Long-term retention of motor skill in macaque monkeys and humans. Exp Brain Res 147:494–504CrossRefPubMed Hikosaka O, Rand MK, Nakamura K, Miyachi S, Kitaguchi K, Sakai K, Lu X, Shimo Y (2002b) Long-term retention of motor skill in macaque monkeys and humans. Exp Brain Res 147:494–504CrossRefPubMed
Zurück zum Zitat Jog MS, Kubota Y, Connolly CI, Hillegaart V, Graybiel AM (1999) Building neural representations of habits. Science 286:1745–1749CrossRefPubMed Jog MS, Kubota Y, Connolly CI, Hillegaart V, Graybiel AM (1999) Building neural representations of habits. Science 286:1745–1749CrossRefPubMed
Zurück zum Zitat Keele SW, Jennings PJ (1992) Attention in the representation of sequence: experiment and theory. Hum Mov Sci 11:125–138CrossRef Keele SW, Jennings PJ (1992) Attention in the representation of sequence: experiment and theory. Hum Mov Sci 11:125–138CrossRef
Zurück zum Zitat Kennerley SW, Sakai K, Rushworth MFS (2002) The pre-SMA and sequential organization of actions: a TMS study. Abstr Soc Neurosci 163.8 Kennerley SW, Sakai K, Rushworth MFS (2002) The pre-SMA and sequential organization of actions: a TMS study. Abstr Soc Neurosci 163.8
Zurück zum Zitat Knowlton BJ, Mangels JA, Squire LR (1996) A neostriatal habit learning system in humans. Science 273:1399–1402PubMed Knowlton BJ, Mangels JA, Squire LR (1996) A neostriatal habit learning system in humans. Science 273:1399–1402PubMed
Zurück zum Zitat Koch I, Hoffmann J (2000) Patterns, chunks, and hierarchies in serial reaction-time tasks. Psychol Res 63:22–35PubMed Koch I, Hoffmann J (2000) Patterns, chunks, and hierarchies in serial reaction-time tasks. Psychol Res 63:22–35PubMed
Zurück zum Zitat Lu X, Hikosaka O, Miyachi S (1998) Role of monkey cerebellar nuclei in skill for sequential movement. J Neurophysiol 79:2245–2254PubMed Lu X, Hikosaka O, Miyachi S (1998) Role of monkey cerebellar nuclei in skill for sequential movement. J Neurophysiol 79:2245–2254PubMed
Zurück zum Zitat Macuda T, Roberts WA (1995) Further evidence for hierarchical chunking in rat spatial memory. J Exp Psychol Anim Behav Process 21:20–32CrossRefPubMed Macuda T, Roberts WA (1995) Further evidence for hierarchical chunking in rat spatial memory. J Exp Psychol Anim Behav Process 21:20–32CrossRefPubMed
Zurück zum Zitat Miller GA (1956) The magic number seven, plus or minus two: Some limits on our capacity for processing information. Psychol Rev 63:81–97 Miller GA (1956) The magic number seven, plus or minus two: Some limits on our capacity for processing information. Psychol Rev 63:81–97
Zurück zum Zitat Miyachi S, Hikosaka O, Miyashita K, Karadi Z, Rand MK (1997) Differential roles of monkey striatum in learning of sequential hand movement. Exp Brain Res 115:1-5PubMed Miyachi S, Hikosaka O, Miyashita K, Karadi Z, Rand MK (1997) Differential roles of monkey striatum in learning of sequential hand movement. Exp Brain Res 115:1-5PubMed
Zurück zum Zitat Nakahara H, Doya K, Hikosaka O (2001) Parallel cortico-basal ganglia mechanisms for acquisition and execution of visuomotor sequences: a computational approach. J Cognit Neurosci 13:626–647CrossRef Nakahara H, Doya K, Hikosaka O (2001) Parallel cortico-basal ganglia mechanisms for acquisition and execution of visuomotor sequences: a computational approach. J Cognit Neurosci 13:626–647CrossRef
Zurück zum Zitat Nakamura K, Sakai K, Hikosaka O (1998) Neuronal activity in medial frontal cortex during learning of sequential procedures. J Neurophysiol 80:2671–2687PubMed Nakamura K, Sakai K, Hikosaka O (1998) Neuronal activity in medial frontal cortex during learning of sequential procedures. J Neurophysiol 80:2671–2687PubMed
Zurück zum Zitat Nakamura K, Sakai K, Hikosaka O (1999) Effects of local inactivation of monkey medial frontal cortex in learning of sequential procedures. J Neurophysiol 82:1063–1068PubMed Nakamura K, Sakai K, Hikosaka O (1999) Effects of local inactivation of monkey medial frontal cortex in learning of sequential procedures. J Neurophysiol 82:1063–1068PubMed
Zurück zum Zitat Nissen MJ, Bullemer P (1987) Attentional requirements of learning: evidence from performance measures. Cognit Psychol 19:1-32 Nissen MJ, Bullemer P (1987) Attentional requirements of learning: evidence from performance measures. Cognit Psychol 19:1-32
Zurück zum Zitat Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113PubMed Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113PubMed
Zurück zum Zitat Povel DJ, Collard R (1982) Structural factors in patterned finger tapping. Acta Psychologia 52:107–123CrossRef Povel DJ, Collard R (1982) Structural factors in patterned finger tapping. Acta Psychologia 52:107–123CrossRef
Zurück zum Zitat Rand MK, Hikosaka O, Miyachi S, Lu X, Miyashita K (1998) Characteristics of a long-term procedural skill in the monkey. Exp Brain Res 118:293–297PubMed Rand MK, Hikosaka O, Miyachi S, Lu X, Miyashita K (1998) Characteristics of a long-term procedural skill in the monkey. Exp Brain Res 118:293–297PubMed
Zurück zum Zitat Rand MK, Hikosaka O, Miyachi S, Lu X, Nakamura K, Kitaguchi K, Shimo Y (2000) Characteristics of sequential movements during early learning period in monkeys. Exp Brain Res, 131:293–304 Rand MK, Hikosaka O, Miyachi S, Lu X, Nakamura K, Kitaguchi K, Shimo Y (2000) Characteristics of sequential movements during early learning period in monkeys. Exp Brain Res, 131:293–304
Zurück zum Zitat Restle F, Burnside BL (1972) Tracking of serial patterns. J Exp Psychol 95:299–307PubMed Restle F, Burnside BL (1972) Tracking of serial patterns. J Exp Psychol 95:299–307PubMed
Zurück zum Zitat Rushworth MFS, Nixon PD, Wade DT, Renowden S, Passingham RE (1998) The left hemisphere and the selection of learned actions. Neuropsychologia 36:11–24PubMed Rushworth MFS, Nixon PD, Wade DT, Renowden S, Passingham RE (1998) The left hemisphere and the selection of learned actions. Neuropsychologia 36:11–24PubMed
Zurück zum Zitat Rosenbaum DA, Kenny SB, Derr MA (1983) Hierarchical control of rapid movement sequences. J Exp Psychol Hum Percept Perform 9:86–102CrossRefPubMed Rosenbaum DA, Kenny SB, Derr MA (1983) Hierarchical control of rapid movement sequences. J Exp Psychol Hum Percept Perform 9:86–102CrossRefPubMed
Zurück zum Zitat Sadato N, Campbell G, Ibanez V, Deiber M, Hallett M (1996) Complexity affects regional cerebral blood flow change during sequential finger movements. J Neurosci 16:2691–2700PubMed Sadato N, Campbell G, Ibanez V, Deiber M, Hallett M (1996) Complexity affects regional cerebral blood flow change during sequential finger movements. J Neurosci 16:2691–2700PubMed
Zurück zum Zitat Sakai K, Hikosaka O, Miyauchi S, Takino R, Sasaki Y, Putz B (1998) Transition of brain activation from frontal to parietal areas in visuomotor sequence learning. J Neurosci 18:1827–1840PubMed Sakai K, Hikosaka O, Miyauchi S, Takino R, Sasaki Y, Putz B (1998) Transition of brain activation from frontal to parietal areas in visuomotor sequence learning. J Neurosci 18:1827–1840PubMed
Zurück zum Zitat Sakai K, Hikosaka O, Miyauchi S, Sasaki Y, Fujimaki N, Putz B (1999) Presupplementary motor area activation during sequence learning reflects visuomotor association. J Neurosci 19: RC1–5PubMed Sakai K, Hikosaka O, Miyauchi S, Sasaki Y, Fujimaki N, Putz B (1999) Presupplementary motor area activation during sequence learning reflects visuomotor association. J Neurosci 19: RC1–5PubMed
Zurück zum Zitat Shima K, Mushiake H, Saito N, Tanji J (1996) Role for cells in the presupplementary motor area in updating motor plans. Proc Natl Acad Sci USA 93:8694–8698PubMed Shima K, Mushiake H, Saito N, Tanji J (1996) Role for cells in the presupplementary motor area in updating motor plans. Proc Natl Acad Sci USA 93:8694–8698PubMed
Zurück zum Zitat Stadler MA (1989) On learning complex procedural knowledge. J Exp Psychol Learn Mem Cognit 15:1061–1069CrossRef Stadler MA (1989) On learning complex procedural knowledge. J Exp Psychol Learn Mem Cognit 15:1061–1069CrossRef
Zurück zum Zitat Stadler MA (1993) Implicit serial learning: questions inspired by Hebb (1961) Mem Cognit 21:819–827 Stadler MA (1993) Implicit serial learning: questions inspired by Hebb (1961) Mem Cognit 21:819–827
Zurück zum Zitat Terrace HS (1987) Chunking by a pigeon in a serial learning task. Nature 325:149–151PubMed Terrace HS (1987) Chunking by a pigeon in a serial learning task. Nature 325:149–151PubMed
Zurück zum Zitat Terrace HS (1991) Chunking during serial learning by a pigeon. I. Basic evidence. J Exp Psychol Anim Behav Process 17:81–93CrossRefPubMed Terrace HS (1991) Chunking during serial learning by a pigeon. I. Basic evidence. J Exp Psychol Anim Behav Process 17:81–93CrossRefPubMed
Zurück zum Zitat Terrace HS, Chen S (1991a) Chunking during serial learning by a pigeon. II. Integrity of a chunk on a new list. J Exp Psychol Anim Behav Process 17:94–106CrossRefPubMed Terrace HS, Chen S (1991a) Chunking during serial learning by a pigeon. II. Integrity of a chunk on a new list. J Exp Psychol Anim Behav Process 17:94–106CrossRefPubMed
Zurück zum Zitat Terrace HS, Chen S (1991b) Chunking during serial learning by a pigeon. III. What are the necessary conditions for establishing a chunk? J Exp Psychol Anim Behav Process 17:107–118 Terrace HS, Chen S (1991b) Chunking during serial learning by a pigeon. III. What are the necessary conditions for establishing a chunk? J Exp Psychol Anim Behav Process 17:107–118
Metadaten
Titel
Chunking during human visuomotor sequence learning
verfasst von
Katsuyuki Sakai
Katsuya Kitaguchi
Okihide Hikosaka
Publikationsdatum
01.09.2003
Verlag
Springer-Verlag
Erschienen in
Experimental Brain Research / Ausgabe 2/2003
Print ISSN: 0014-4819
Elektronische ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-003-1548-8

Weitere Artikel der Ausgabe 2/2003

Experimental Brain Research 2/2003 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Schwindelursache: Massagepistole lässt Otholiten tanzen

14.05.2024 Benigner Lagerungsschwindel Nachrichten

Wenn jüngere Menschen über ständig rezidivierenden Lagerungsschwindel klagen, könnte eine Massagepistole der Auslöser sein. In JAMA Otolaryngology warnt ein Team vor der Anwendung hochpotenter Geräte im Bereich des Nackens.

Schützt Olivenöl vor dem Tod durch Demenz?

10.05.2024 Morbus Alzheimer Nachrichten

Konsumieren Menschen täglich 7 Gramm Olivenöl, ist ihr Risiko, an einer Demenz zu sterben, um mehr als ein Viertel reduziert – und dies weitgehend unabhängig von ihrer sonstigen Ernährung. Dafür sprechen Auswertungen zweier großer US-Studien.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.