Skip to main content
Erschienen in: Urolithiasis 1/2017

28.11.2016 | Invited Review

Histological aspects of the “fixed-particle” model of stone formation: animal studies

verfasst von: Saeed R. Khan

Erschienen in: Urolithiasis | Ausgabe 1/2017

Einloggen, um Zugang zu erhalten

Abstract

Crystallization by itself is not harmful as long as the crystals are not retained in the kidneys and are allowed to pass freely down the renal tubules to be excreted in the urine. A number of theories have been proposed, and studies performed, to determine the mechanisms involved in crystal retention within the kidneys. It has been suggested that urinary transit through the nephron is too fast for crystals to grow large enough to be retained. Thus, free particle mechanism alone cannot lead to stone formation, and there must be a mechanism for crystal fixation within the kidneys. Animal model studies suggest that crystal retention is possible through both the free- and fixed-particle mechanisms. Crystal–cell interaction leads to pathological changes which promote crystal attachment to either epithelial cells or their basement membrane. Alternatively, crystals aggregate and produce large enough particles to block the tubules particularly at sites, where urinary flow is affected because of changes in the luminal diameter of the tubule. Crystal deposits plugging the openings of the ducts of Bellini may be the result of such a phenomenon. Intratubular crystals translocating to renal interstitium may produce osteogenic changes in the epithelial or endothelial cells resulting in the formation of the Randall’s plaques. Thus, fixation appears to be either through the formation of Randall’s plugs, crystal plugs clogging the openings of the ducts of Bellini or sub-epithelial crystal deposits, and the Randall’s plaques.
Literatur
1.
Zurück zum Zitat Finlayson B, Reid F (1978) The expectation of free and fixed particles in urinary stone disease. Invest Urol 15:442–448PubMed Finlayson B, Reid F (1978) The expectation of free and fixed particles in urinary stone disease. Invest Urol 15:442–448PubMed
2.
3.
Zurück zum Zitat Hallson PC, Rose GA (1976) Crystalluria in normal subjects and in stone formers with and without thiazide and cellulose phosphate treatment. Br J Urol 48:515–524PubMedCrossRef Hallson PC, Rose GA (1976) Crystalluria in normal subjects and in stone formers with and without thiazide and cellulose phosphate treatment. Br J Urol 48:515–524PubMedCrossRef
4.
Zurück zum Zitat Khan SR, Pearle MS, Robertson WG, Gambaro G, Canales BK et al (2016) Kidney stones. Nat Rev Dis Primers 2:16008PubMedCrossRef Khan SR, Pearle MS, Robertson WG, Gambaro G, Canales BK et al (2016) Kidney stones. Nat Rev Dis Primers 2:16008PubMedCrossRef
5.
Zurück zum Zitat Khan SR, Canales BK (2015) Unified theory on the pathogenesis of Randall’s plaques and plugs. Urolithiasis 43(Suppl 1):109–123PubMedCrossRef Khan SR, Canales BK (2015) Unified theory on the pathogenesis of Randall’s plaques and plugs. Urolithiasis 43(Suppl 1):109–123PubMedCrossRef
6.
Zurück zum Zitat Randall A (1940) Papillary pathology as a precursor of primary renal calculus. J Urol 44:580–589 Randall A (1940) Papillary pathology as a precursor of primary renal calculus. J Urol 44:580–589
8.
Zurück zum Zitat Khan SR, Finlayson B, Hackett R (1984) Renal papillary changes in patient with calcium oxalate lithiasis. Urology 23:194–199PubMedCrossRef Khan SR, Finlayson B, Hackett R (1984) Renal papillary changes in patient with calcium oxalate lithiasis. Urology 23:194–199PubMedCrossRef
9.
Zurück zum Zitat Stoller ML, Meng MV, Abrahams HM, Kane JP (2004) The primary stone event: a new hypothesis involving a vascular etiology. J Urol 171:1920–1924PubMedCrossRef Stoller ML, Meng MV, Abrahams HM, Kane JP (2004) The primary stone event: a new hypothesis involving a vascular etiology. J Urol 171:1920–1924PubMedCrossRef
10.
Zurück zum Zitat Taylor ER, Stoller ML (2014) Vascular theory of the formation of Randall plaques. Urolithiasis 43(Suppl 1):41–45PubMed Taylor ER, Stoller ML (2014) Vascular theory of the formation of Randall plaques. Urolithiasis 43(Suppl 1):41–45PubMed
11.
Zurück zum Zitat Haggit RC, Pitcock JA (1971) Renal medullary calcification: a light and electron microscopic study. J Urol 106:342–347 Haggit RC, Pitcock JA (1971) Renal medullary calcification: a light and electron microscopic study. J Urol 106:342–347
12.
Zurück zum Zitat Weller RO, Nester B, Cooke SAR (1971) Calcification in the human renal papilla: an electron microscope study. J Pathol 107:211–216CrossRef Weller RO, Nester B, Cooke SAR (1971) Calcification in the human renal papilla: an electron microscope study. J Pathol 107:211–216CrossRef
13.
Zurück zum Zitat Evan AP, Lingeman JE, Coe FL, Parks JH, Bledsoe SB et al (2003) Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Invest 111:607–616PubMedPubMedCentralCrossRef Evan AP, Lingeman JE, Coe FL, Parks JH, Bledsoe SB et al (2003) Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Invest 111:607–616PubMedPubMedCentralCrossRef
14.
16.
Zurück zum Zitat Linnes MP, Krambeck AE, Cornell L, Williams JC Jr, Korinek M et al (2013) Phenotypic characterization of kidney stone formers by endoscopic and histological quantification of intrarenal calcification. Kidney Int 84:818–825PubMedPubMedCentralCrossRef Linnes MP, Krambeck AE, Cornell L, Williams JC Jr, Korinek M et al (2013) Phenotypic characterization of kidney stone formers by endoscopic and histological quantification of intrarenal calcification. Kidney Int 84:818–825PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Williams JC Jr, McAteer JA, Evan AP, Lingeman JE (2010) Micro-computed tomography for analysis of urinary calculi. Urol Res 38:477–484PubMedCrossRef Williams JC Jr, McAteer JA, Evan AP, Lingeman JE (2010) Micro-computed tomography for analysis of urinary calculi. Urol Res 38:477–484PubMedCrossRef
18.
Zurück zum Zitat Cifuentes Delatte L, Minon-Cifuentes J, Medina JA (1987) New studies on papillary calculi. J Urol 137:1024–1029PubMed Cifuentes Delatte L, Minon-Cifuentes J, Medina JA (1987) New studies on papillary calculi. J Urol 137:1024–1029PubMed
20.
Zurück zum Zitat Gabriels G, Lambert M, Smith P, Wiesner L, Hiss D (2015) Melamine contamination in nutritional supplements—is it an alarm bell for the general consumer, athletes, and ‘Weekend Warriors?’. Nutr J 14:69PubMedPubMedCentralCrossRef Gabriels G, Lambert M, Smith P, Wiesner L, Hiss D (2015) Melamine contamination in nutritional supplements—is it an alarm bell for the general consumer, athletes, and ‘Weekend Warriors?’. Nutr J 14:69PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Vermeulen CW, Lyon ES (1968) Mechanisms of genesis and growth of calculi. Am J Med 45:684–692PubMedCrossRef Vermeulen CW, Lyon ES (1968) Mechanisms of genesis and growth of calculi. Am J Med 45:684–692PubMedCrossRef
22.
Zurück zum Zitat Kok DJ, Khan SR (1994) Calcium oxalate nephrolithiasis, a free or fixed particle disease. Kidney Int 46:847–854PubMedCrossRef Kok DJ, Khan SR (1994) Calcium oxalate nephrolithiasis, a free or fixed particle disease. Kidney Int 46:847–854PubMedCrossRef
23.
Zurück zum Zitat Finlayson B (1972) The concept of a continuous crystallizer. Its theory and application to in vivo and in vitro urinary tract models. Invest Urol 9:258–263PubMed Finlayson B (1972) The concept of a continuous crystallizer. Its theory and application to in vivo and in vitro urinary tract models. Invest Urol 9:258–263PubMed
24.
Zurück zum Zitat Robertson WG, Peacock M, Nordin BE (1971) Calcium oxalate crystalluria and urine saturation in recurrent renal stone-formers. Clin Sci 40:365–374PubMedCrossRef Robertson WG, Peacock M, Nordin BE (1971) Calcium oxalate crystalluria and urine saturation in recurrent renal stone-formers. Clin Sci 40:365–374PubMedCrossRef
25.
Zurück zum Zitat Schulz E, Hengst E, Brundig P, Haerting R, Pirlich W et al (1987) Disturbed urinary transport in the pelvi-calyceal system in calcium-oxalate stone patients. Urol Res 15:109–113PubMed Schulz E, Hengst E, Brundig P, Haerting R, Pirlich W et al (1987) Disturbed urinary transport in the pelvi-calyceal system in calcium-oxalate stone patients. Urol Res 15:109–113PubMed
26.
Zurück zum Zitat Robertson WG (2004) Kidney models of calcium oxalate stone formation. Nephron Physiol 98:21–30CrossRef Robertson WG (2004) Kidney models of calcium oxalate stone formation. Nephron Physiol 98:21–30CrossRef
28.
Zurück zum Zitat Khan SR, Finlayson B, Hackett RL (1979) Histologic study of the early events in oxalate induced intranephronic calculosis. Invest Urol 17:199–202PubMed Khan SR, Finlayson B, Hackett RL (1979) Histologic study of the early events in oxalate induced intranephronic calculosis. Invest Urol 17:199–202PubMed
29.
Zurück zum Zitat Khan SR, Finlayson B, Hackett RL (1979) Scanning electron microscopy of calcium oxalate crystal formation in experimental nephrolithiasis. Lab Invest 41:504–510PubMed Khan SR, Finlayson B, Hackett RL (1979) Scanning electron microscopy of calcium oxalate crystal formation in experimental nephrolithiasis. Lab Invest 41:504–510PubMed
30.
Zurück zum Zitat Khan SR, Finlayson B, Hackett RL (1982) Experimental calcium oxalate nephrolithiasis in the rat. Role of the renal papilla. Am J Pathol 107:59–69PubMedPubMedCentral Khan SR, Finlayson B, Hackett RL (1982) Experimental calcium oxalate nephrolithiasis in the rat. Role of the renal papilla. Am J Pathol 107:59–69PubMedPubMedCentral
31.
Zurück zum Zitat Khan SR, Johnson JM, Peck AB, Cornelius JG, Glenton PA (2002) Expression of osteopontin in rat kidneys: induction during ethylene glycol induced calcium oxalate nephrolithiasis. J Urol 168:1173–1181PubMedCrossRef Khan SR, Johnson JM, Peck AB, Cornelius JG, Glenton PA (2002) Expression of osteopontin in rat kidneys: induction during ethylene glycol induced calcium oxalate nephrolithiasis. J Urol 168:1173–1181PubMedCrossRef
32.
Zurück zum Zitat Khan SR (1995) Calcium oxalate crystal interaction with renal tubular epithelium, mechanism of crystal adhesion and its impact on stone development. Urol Res 23:71–79PubMedCrossRef Khan SR (1995) Calcium oxalate crystal interaction with renal tubular epithelium, mechanism of crystal adhesion and its impact on stone development. Urol Res 23:71–79PubMedCrossRef
33.
Zurück zum Zitat Khan SR (1995) Experimental calcium oxalate nephrolithiasis and the formation of human urinary stones. Scanning Microsc 9:89–100 (discussion 100–101) PubMed Khan SR (1995) Experimental calcium oxalate nephrolithiasis and the formation of human urinary stones. Scanning Microsc 9:89–100 (discussion 100–101) PubMed
34.
Zurück zum Zitat Khan SR, Glenton PA, Byer KJ (2006) Modeling of hyperoxaluric calcium oxalate nephrolithiasis: experimental induction of hyperoxaluria by hydroxy-l-proline. Kidney Int 70:914–923PubMedCrossRef Khan SR, Glenton PA, Byer KJ (2006) Modeling of hyperoxaluric calcium oxalate nephrolithiasis: experimental induction of hyperoxaluria by hydroxy-l-proline. Kidney Int 70:914–923PubMedCrossRef
35.
Zurück zum Zitat Khan SR, Hackett RL (1991) Retention of calcium oxalate crystals in renal tubules. Scanning Microsc 5:707–711 (discussion 711–702) PubMed Khan SR, Hackett RL (1991) Retention of calcium oxalate crystals in renal tubules. Scanning Microsc 5:707–711 (discussion 711–702) PubMed
36.
Zurück zum Zitat Graves FT (1982) An experimental study of the anatomy of the tubules of the human kidney and its relation to calculus formation. Br J Urol 54:569–574PubMedCrossRef Graves FT (1982) An experimental study of the anatomy of the tubules of the human kidney and its relation to calculus formation. Br J Urol 54:569–574PubMedCrossRef
37.
Zurück zum Zitat Verlander JW (1998) Normal ultrastructure of the kidney and lower urinary tract. Toxicol Pathol 26:1–17PubMedCrossRef Verlander JW (1998) Normal ultrastructure of the kidney and lower urinary tract. Toxicol Pathol 26:1–17PubMedCrossRef
38.
Zurück zum Zitat Vervaet BA, Verhulst A, Dauwe SE, De Broe ME, D’Haese PC (2009) An active renal crystal clearance mechanism in rat and man. Kidney Int 75:41–51PubMedCrossRef Vervaet BA, Verhulst A, Dauwe SE, De Broe ME, D’Haese PC (2009) An active renal crystal clearance mechanism in rat and man. Kidney Int 75:41–51PubMedCrossRef
39.
Zurück zum Zitat Khan SR, Shevock PN, Hackett RL (1992) Acute hyperoxaluria, renal injury and calcium oxalate urolithiasis. J Urol 147:226–230PubMed Khan SR, Shevock PN, Hackett RL (1992) Acute hyperoxaluria, renal injury and calcium oxalate urolithiasis. J Urol 147:226–230PubMed
40.
Zurück zum Zitat Grover PK, Dogra SC, Davidson BP, Stapleton AM, Ryall RL (2000) The prothrombin gene is expressed in the rat kidney: implications for urolithiasis research. Eur J Biochem 267:61–67PubMedCrossRef Grover PK, Dogra SC, Davidson BP, Stapleton AM, Ryall RL (2000) The prothrombin gene is expressed in the rat kidney: implications for urolithiasis research. Eur J Biochem 267:61–67PubMedCrossRef
41.
Zurück zum Zitat Okada A, Yasui T, Hamamoto S, Hirose M, Kubota Y et al (2009) Genome-wide analysis of genes related to kidney stone formation and elimination in the calcium oxalate nephrolithiasis model mouse: detection of stone-preventive factors and involvement of macrophage activity. J Bone Miner Res 24:908–924PubMedCrossRef Okada A, Yasui T, Hamamoto S, Hirose M, Kubota Y et al (2009) Genome-wide analysis of genes related to kidney stone formation and elimination in the calcium oxalate nephrolithiasis model mouse: detection of stone-preventive factors and involvement of macrophage activity. J Bone Miner Res 24:908–924PubMedCrossRef
42.
Zurück zum Zitat Lu X, Gao B, Yasui T, Li Y, Liu T et al (2013) Matrix Gla protein is involved in crystal formation in kidney of hyperoxaluric rats. Kidney Blood Press Res 37:15–23PubMedCrossRef Lu X, Gao B, Yasui T, Li Y, Liu T et al (2013) Matrix Gla protein is involved in crystal formation in kidney of hyperoxaluric rats. Kidney Blood Press Res 37:15–23PubMedCrossRef
43.
Zurück zum Zitat Umekawa T, Hatanaka Y, Kurita T, Khan SR (2004) Effect of angiotensin II receptor blockage on osteopontin expression and calcium oxalate crystal deposition in rat kidneys. J Am Soc Nephrol 15:635–644PubMedCrossRef Umekawa T, Hatanaka Y, Kurita T, Khan SR (2004) Effect of angiotensin II receptor blockage on osteopontin expression and calcium oxalate crystal deposition in rat kidneys. J Am Soc Nephrol 15:635–644PubMedCrossRef
44.
Zurück zum Zitat Tsuji H, Shimizu N, Nozawa M, Umekawa T, Yoshimura K et al (2014) Osteopontin knockdown in the kidneys of hyperoxaluric rats leads to reduction in renal calcium oxalate crystal deposition. Urolithiasis 42:195–202PubMedPubMedCentral Tsuji H, Shimizu N, Nozawa M, Umekawa T, Yoshimura K et al (2014) Osteopontin knockdown in the kidneys of hyperoxaluric rats leads to reduction in renal calcium oxalate crystal deposition. Urolithiasis 42:195–202PubMedPubMedCentral
45.
Zurück zum Zitat Moriyama MT, Glenton PA, Khan SR (2001) Expression of inter-alpha inhibitor related proteins in kidneys and urine of hyperoxaluric rats. J Urol 165:1687–1692PubMedCrossRef Moriyama MT, Glenton PA, Khan SR (2001) Expression of inter-alpha inhibitor related proteins in kidneys and urine of hyperoxaluric rats. J Urol 165:1687–1692PubMedCrossRef
46.
Zurück zum Zitat Khan SR, Glenton PA (2011) Experimentally induced hyperoxaluria in MCP-1 null mice. Urol Res 39:253–258PubMedCrossRef Khan SR, Glenton PA (2011) Experimentally induced hyperoxaluria in MCP-1 null mice. Urol Res 39:253–258PubMedCrossRef
47.
Zurück zum Zitat Khan A, Wang W, Khan SR (2014) Calcium oxalate nephrolithiasis and expression of matrix GLA protein in the kidneys. World J Urol 32:123–130PubMedCrossRef Khan A, Wang W, Khan SR (2014) Calcium oxalate nephrolithiasis and expression of matrix GLA protein in the kidneys. World J Urol 32:123–130PubMedCrossRef
48.
Zurück zum Zitat Iida S, Peck AB, Johnson-Tardieu J, Moriyama M, Glenton PA et al (1999) Temporal changes in mRNA expression for bikunin in the kidneys of rats during calcium oxalate nephrolithiasis. J Am Soc Nephrol 10:986–996PubMed Iida S, Peck AB, Johnson-Tardieu J, Moriyama M, Glenton PA et al (1999) Temporal changes in mRNA expression for bikunin in the kidneys of rats during calcium oxalate nephrolithiasis. J Am Soc Nephrol 10:986–996PubMed
49.
Zurück zum Zitat Gokhale JA, McKee MD, Khan SR (1996) Immunocytochemical localization of Tamm–Horsfall protein in the kidneys of normal and nephrolithic rats. Urol Res 24:201–209PubMedCrossRef Gokhale JA, McKee MD, Khan SR (1996) Immunocytochemical localization of Tamm–Horsfall protein in the kidneys of normal and nephrolithic rats. Urol Res 24:201–209PubMedCrossRef
50.
Zurück zum Zitat Gokhale JA, Glenton PA, Khan SR (2001) Characterization of Tamm–Horsfall protein in a rat nephrolithiasis model. J Urol 166:1492–1497PubMedCrossRef Gokhale JA, Glenton PA, Khan SR (2001) Characterization of Tamm–Horsfall protein in a rat nephrolithiasis model. J Urol 166:1492–1497PubMedCrossRef
51.
Zurück zum Zitat Khan SR, Joshi S, Wang W, Peck AB (2014) Regulation of macromolecular modulators of urinary stone formation by reactive oxygen species: transcriptional study in an animal model of hyperoxaluria. Am J Physiol Renal Physiol 306:F1285–F1295PubMedPubMedCentralCrossRef Khan SR, Joshi S, Wang W, Peck AB (2014) Regulation of macromolecular modulators of urinary stone formation by reactive oxygen species: transcriptional study in an animal model of hyperoxaluria. Am J Physiol Renal Physiol 306:F1285–F1295PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Riese RJ, Mandel NS, Wiessner JH, Mandel GS, Becker CG et al (1992) Cell polarity and calcium oxalate crystal adherence to cultured collecting duct cells. Am J Physiol 262:F177–F184PubMed Riese RJ, Mandel NS, Wiessner JH, Mandel GS, Becker CG et al (1992) Cell polarity and calcium oxalate crystal adherence to cultured collecting duct cells. Am J Physiol 262:F177–F184PubMed
53.
Zurück zum Zitat Verkoelen CF, Verhulst A (2007) Proposed mechanisms in renal tubular crystal retention. Kidney Int 72:13–18PubMedCrossRef Verkoelen CF, Verhulst A (2007) Proposed mechanisms in renal tubular crystal retention. Kidney Int 72:13–18PubMedCrossRef
54.
Zurück zum Zitat Verkoelen CF, van der Boom BG, Houtsmuller AB, Schröder FH, Romijn JC (1998) Increased calcium oxalate monohydrate crystal binding to injured renal tubular epithelial cells in culture. Am J Physiol 274:F958–F965PubMed Verkoelen CF, van der Boom BG, Houtsmuller AB, Schröder FH, Romijn JC (1998) Increased calcium oxalate monohydrate crystal binding to injured renal tubular epithelial cells in culture. Am J Physiol 274:F958–F965PubMed
55.
Zurück zum Zitat Yasui T, Fujita K, Tozawa K, Asai K, Soji T et al (2001) Calcium oxalate crystal attachment to cultured rat kidney epithelial cell, NRK-52E. Urol Int 67:73–76PubMedCrossRef Yasui T, Fujita K, Tozawa K, Asai K, Soji T et al (2001) Calcium oxalate crystal attachment to cultured rat kidney epithelial cell, NRK-52E. Urol Int 67:73–76PubMedCrossRef
56.
Zurück zum Zitat Yasui T, Fujita K, Asai K, Kohri K (2002) Osteopontin regulates adhesion of calcium oxalate crystals to renal epithelial cells. Int J Urol 9:100–108PubMedCrossRef Yasui T, Fujita K, Asai K, Kohri K (2002) Osteopontin regulates adhesion of calcium oxalate crystals to renal epithelial cells. Int J Urol 9:100–108PubMedCrossRef
57.
Zurück zum Zitat Bigelow MW, Wiessner JH, Kleinman JG, Mandel NS (1997) Surface exposure of phosphatidylserine increases calcium oxalate crystal attachment to IMCD cells. Am J Physiol 272:F55–F62PubMed Bigelow MW, Wiessner JH, Kleinman JG, Mandel NS (1997) Surface exposure of phosphatidylserine increases calcium oxalate crystal attachment to IMCD cells. Am J Physiol 272:F55–F62PubMed
58.
Zurück zum Zitat Lieske JC, Leonard R, Swift H, Toback FG (1996) Adhesion of calcium oxalate monohydrate crystals to anionic sites on the surface of renal epithelial cells. Am J Physiol 270:F192–F199PubMed Lieske JC, Leonard R, Swift H, Toback FG (1996) Adhesion of calcium oxalate monohydrate crystals to anionic sites on the surface of renal epithelial cells. Am J Physiol 270:F192–F199PubMed
59.
Zurück zum Zitat Cao LC, Jonassen J, Honeyman TW, Scheid C (2001) Oxalate-induced redistribution of phosphatidylserine in renal epithelial cells: implications for kidney stone disease. Am J Nephrol 21:69–77PubMedCrossRef Cao LC, Jonassen J, Honeyman TW, Scheid C (2001) Oxalate-induced redistribution of phosphatidylserine in renal epithelial cells: implications for kidney stone disease. Am J Nephrol 21:69–77PubMedCrossRef
60.
Zurück zum Zitat Wiessner JH, Hasegawa AT, Hung LY, Mandel GS, Mandel NS (2001) Mechanisms of calcium oxalate crystal attachment to injured renal collecting duct cells. Kidney Int 59:637–644PubMedCrossRef Wiessner JH, Hasegawa AT, Hung LY, Mandel GS, Mandel NS (2001) Mechanisms of calcium oxalate crystal attachment to injured renal collecting duct cells. Kidney Int 59:637–644PubMedCrossRef
61.
Zurück zum Zitat Verkoelen CF, Van Der Boom BG, Romijn JC (2000) Identification of hyaluronan as a crystal-binding molecule at the surface of migrating and proliferating MDCK cells. Kidney Int 58:1045–1054PubMedCrossRef Verkoelen CF, Van Der Boom BG, Romijn JC (2000) Identification of hyaluronan as a crystal-binding molecule at the surface of migrating and proliferating MDCK cells. Kidney Int 58:1045–1054PubMedCrossRef
62.
Zurück zum Zitat Ebisuno S, Nishihata M, Inagaki T, Umehara M, Kohjimoto Y (1999) Bikunin prevents adhesion of calcium oxalate crystal to renal tubular cells in human urine. J Am Soc Nephrol 10(Suppl 14):436–440 Ebisuno S, Nishihata M, Inagaki T, Umehara M, Kohjimoto Y (1999) Bikunin prevents adhesion of calcium oxalate crystal to renal tubular cells in human urine. J Am Soc Nephrol 10(Suppl 14):436–440
63.
Zurück zum Zitat Verkoelen CF, van der Boom BG, Kok DJ, Houtsmuller AB, Visser P et al (1999) Cell type-specific acquired protection from crystal adherence by renal tubule cells in culture. Kidney Int 55:1426–1433PubMedCrossRef Verkoelen CF, van der Boom BG, Kok DJ, Houtsmuller AB, Visser P et al (1999) Cell type-specific acquired protection from crystal adherence by renal tubule cells in culture. Kidney Int 55:1426–1433PubMedCrossRef
64.
Zurück zum Zitat Verkoelen CF, Romijn JC, Cao LC, Boeve ER, De Bruijn WC et al (1996) Crystal-cell interaction inhibition by polysaccharides. J Urol 155:749–752PubMedCrossRef Verkoelen CF, Romijn JC, Cao LC, Boeve ER, De Bruijn WC et al (1996) Crystal-cell interaction inhibition by polysaccharides. J Urol 155:749–752PubMedCrossRef
65.
Zurück zum Zitat Verkoelen CF, van der Boom BG, Kok DJ, Romijn JC (2000) Sialic acid and crystal binding. Kidney Int 57:1072–1082PubMedCrossRef Verkoelen CF, van der Boom BG, Kok DJ, Romijn JC (2000) Sialic acid and crystal binding. Kidney Int 57:1072–1082PubMedCrossRef
66.
Zurück zum Zitat Yamate T, Kohri K, Umekawa T, Iguchi M, Kurita T (1998) Osteopontin antisense oligonucleotide inhibits adhesion of calcium oxalate crystals in Madin-Darby canine kidney cell. J Urol 160:1506–1512PubMedCrossRef Yamate T, Kohri K, Umekawa T, Iguchi M, Kurita T (1998) Osteopontin antisense oligonucleotide inhibits adhesion of calcium oxalate crystals in Madin-Darby canine kidney cell. J Urol 160:1506–1512PubMedCrossRef
67.
Zurück zum Zitat Wang T, Thurgood LA, Grover PK, Ryall RL (2010) A comparison of the binding of urinary calcium oxalate monohydrate and dihydrate crystals to human kidney cells in urine. BJU Int 106:1768–1774PubMedPubMedCentralCrossRef Wang T, Thurgood LA, Grover PK, Ryall RL (2010) A comparison of the binding of urinary calcium oxalate monohydrate and dihydrate crystals to human kidney cells in urine. BJU Int 106:1768–1774PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Thurgood LA, Sorensen ES, Ryall RL (2012) The effect of intracrystalline and surface-bound osteopontin on the attachment of calcium oxalate dihydrate crystals to Madin-Darby canine kidney (MDCK) cells in ultrafiltered human urine. BJU Int 109:1100–1109PubMedCrossRef Thurgood LA, Sorensen ES, Ryall RL (2012) The effect of intracrystalline and surface-bound osteopontin on the attachment of calcium oxalate dihydrate crystals to Madin-Darby canine kidney (MDCK) cells in ultrafiltered human urine. BJU Int 109:1100–1109PubMedCrossRef
69.
Zurück zum Zitat Grover PK, Thurgood LA, Wang T, Ryall RL (2010) The effects of intracrystalline and surface-bound proteins on the attachment of calcium oxalate monohydrate crystals to renal cells in undiluted human urine. BJU Int 105:708–715PubMedCrossRef Grover PK, Thurgood LA, Wang T, Ryall RL (2010) The effects of intracrystalline and surface-bound proteins on the attachment of calcium oxalate monohydrate crystals to renal cells in undiluted human urine. BJU Int 105:708–715PubMedCrossRef
70.
Zurück zum Zitat Kumar V, Pena de la Vega L, Farell G, Lieske JC (2005) Urinary macromolecular inhibition of crystal adhesion to renal epithelial cells is impaired in male stone formers. Kidney Int 68:1784–1792PubMedCrossRef Kumar V, Pena de la Vega L, Farell G, Lieske JC (2005) Urinary macromolecular inhibition of crystal adhesion to renal epithelial cells is impaired in male stone formers. Kidney Int 68:1784–1792PubMedCrossRef
71.
Zurück zum Zitat Grover PK, Thurgood LA, Ryall RL (2007) Effect of urine fractionation on attachment of calcium oxalate crystals to renal epithelial cells: implications for studying renal calculogenesis. Am J Physiol Renal Physiol 292:F1396–F1403PubMedCrossRef Grover PK, Thurgood LA, Ryall RL (2007) Effect of urine fractionation on attachment of calcium oxalate crystals to renal epithelial cells: implications for studying renal calculogenesis. Am J Physiol Renal Physiol 292:F1396–F1403PubMedCrossRef
72.
Zurück zum Zitat Kohri K, Yasui T, Okada A, Hirose M, Hamamoto S et al (2012) Biomolecular mechanism of urinary stone formation involving osteopontin. Urol Res 40:623–637PubMedCrossRef Kohri K, Yasui T, Okada A, Hirose M, Hamamoto S et al (2012) Biomolecular mechanism of urinary stone formation involving osteopontin. Urol Res 40:623–637PubMedCrossRef
73.
Zurück zum Zitat Kleinman JG, Alatalo LJ, Beshensky AM, Wesson JA (2008) Acidic polyanion poly(acrylic acid) prevents calcium oxalate crystal deposition. Kidney Int 74:919–924PubMedPubMedCentralCrossRef Kleinman JG, Alatalo LJ, Beshensky AM, Wesson JA (2008) Acidic polyanion poly(acrylic acid) prevents calcium oxalate crystal deposition. Kidney Int 74:919–924PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat An Z, Lee S, Oppenheimer H, Wesson JA, Ward MD (2010) Attachment of calcium oxalate monohydrate crystals on patterned surfaces of proteins and lipid bilayers. J Am Chem Soc 132:13188–13190PubMedCrossRef An Z, Lee S, Oppenheimer H, Wesson JA, Ward MD (2010) Attachment of calcium oxalate monohydrate crystals on patterned surfaces of proteins and lipid bilayers. J Am Chem Soc 132:13188–13190PubMedCrossRef
75.
Zurück zum Zitat Sorokina EA, Wesson JA, Kleinman JG (2004) An acidic peptide sequence of nucleolin-related protein can mediate the attachment of calcium oxalate to renal tubule cells. J Am Soc Nephrol 15:2057–2065PubMedCrossRef Sorokina EA, Wesson JA, Kleinman JG (2004) An acidic peptide sequence of nucleolin-related protein can mediate the attachment of calcium oxalate to renal tubule cells. J Am Soc Nephrol 15:2057–2065PubMedCrossRef
76.
Zurück zum Zitat Rabinovich YI, Esayanur M, Daosukho S, Byer KJ, El-Shall HE et al (2006) Adhesion force between calcium oxalate monohydrate crystal and kidney epithelial cells and possible relevance for kidney stone formation. J Colloid Interface Sci 300:131–140PubMedCrossRef Rabinovich YI, Esayanur M, Daosukho S, Byer KJ, El-Shall HE et al (2006) Adhesion force between calcium oxalate monohydrate crystal and kidney epithelial cells and possible relevance for kidney stone formation. J Colloid Interface Sci 300:131–140PubMedCrossRef
77.
Zurück zum Zitat Rabinovich YI, Daosukho S, Byer KJ, El-Shall HE, Khan SR (2008) Direct AFM measurements of adhesion forces between calcium oxalate monohydrate and kidney epithelial cells in the presence of Ca2+ and Mg2+ ions. J Colloid Interface Sci 325:594–601PubMedCrossRef Rabinovich YI, Daosukho S, Byer KJ, El-Shall HE, Khan SR (2008) Direct AFM measurements of adhesion forces between calcium oxalate monohydrate and kidney epithelial cells in the presence of Ca2+ and Mg2+ ions. J Colloid Interface Sci 325:594–601PubMedCrossRef
78.
Zurück zum Zitat Okamoto N, Aruga S, Tomita K, Takeuchi T, Kitamura T (2007) Chronic acid ingestion promotes renal stone formation in rats treated with vitamin D3. Int J Urol 14:60–66PubMedCrossRef Okamoto N, Aruga S, Tomita K, Takeuchi T, Kitamura T (2007) Chronic acid ingestion promotes renal stone formation in rats treated with vitamin D3. Int J Urol 14:60–66PubMedCrossRef
79.
Zurück zum Zitat Khan SR, Glenton PA (1995) Deposition of calcium phosphate and calcium oxalate crystals in the kidneys. J Urol 153:811–817PubMedCrossRef Khan SR, Glenton PA (1995) Deposition of calcium phosphate and calcium oxalate crystals in the kidneys. J Urol 153:811–817PubMedCrossRef
80.
Zurück zum Zitat Bushinsky DA, Asplin JR, Grynpas MD, Evan AP, Parker WR et al (2002) Calcium oxalate stone formation in genetic hypercalciuric stone-forming rats. Kidney Int 61:975–987PubMedCrossRef Bushinsky DA, Asplin JR, Grynpas MD, Evan AP, Parker WR et al (2002) Calcium oxalate stone formation in genetic hypercalciuric stone-forming rats. Kidney Int 61:975–987PubMedCrossRef
81.
Zurück zum Zitat Beck L, Karaplis AC, Amizuka N, Hewson AS, Ozawa H et al (1998) Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities. Proc Natl Acad Sci USA 95:5372–5377PubMedPubMedCentralCrossRef Beck L, Karaplis AC, Amizuka N, Hewson AS, Ozawa H et al (1998) Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities. Proc Natl Acad Sci USA 95:5372–5377PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Khan SR, Glenton PA (2008) Calcium oxalate crystal deposition in kidneys of hypercalciuric mice with disrupted type IIa sodium-phosphate cotransporter. Am J Physiol Renal Physiol 294:F1109–F1115PubMedPubMedCentralCrossRef Khan SR, Glenton PA (2008) Calcium oxalate crystal deposition in kidneys of hypercalciuric mice with disrupted type IIa sodium-phosphate cotransporter. Am J Physiol Renal Physiol 294:F1109–F1115PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Khan SR, Canales BK (2011) Ultrastructural investigation of crystal deposits in Npt2a knockout mice: are they similar to human Randall’s plaques? J Urol 186:1107–1113PubMedPubMedCentralCrossRef Khan SR, Canales BK (2011) Ultrastructural investigation of crystal deposits in Npt2a knockout mice: are they similar to human Randall’s plaques? J Urol 186:1107–1113PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Weinman EJ, Mohanlal V, Stoycheff N, Wang F, Steplock D et al (2006) Longitudinal study of urinary excretion of phosphate, calcium, and uric acid in mutant NHERF-1 null mice. Am J Physiol Renal Physiol 290:F838–F843PubMedCrossRef Weinman EJ, Mohanlal V, Stoycheff N, Wang F, Steplock D et al (2006) Longitudinal study of urinary excretion of phosphate, calcium, and uric acid in mutant NHERF-1 null mice. Am J Physiol Renal Physiol 290:F838–F843PubMedCrossRef
85.
Zurück zum Zitat Liu Y, Mo L, Goldfarb DS, Evan AP, Liang F et al (2010) Progressive renal papillary calcification and ureteral stone formation in mice deficient for Tamm–Horsfall protein. Am J Physiol Renal Physiol 299:F469–F478PubMedPubMedCentralCrossRef Liu Y, Mo L, Goldfarb DS, Evan AP, Liang F et al (2010) Progressive renal papillary calcification and ureteral stone formation in mice deficient for Tamm–Horsfall protein. Am J Physiol Renal Physiol 299:F469–F478PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Borden TA, Vermeulen CW (1966) The renal papilla in calculogenesis of oxamide stones. Invest Urol 4:125–132PubMed Borden TA, Vermeulen CW (1966) The renal papilla in calculogenesis of oxamide stones. Invest Urol 4:125–132PubMed
87.
Zurück zum Zitat Gill WB, Vermeulen CW (1964) Oxamide crystalluria and urolithiasis, rat and in vitro observations. Invest Urol 1:339–349PubMed Gill WB, Vermeulen CW (1964) Oxamide crystalluria and urolithiasis, rat and in vitro observations. Invest Urol 1:339–349PubMed
88.
Zurück zum Zitat Khan SR, Hackett RL, Finlayson B, Konicek JR (1981) Light and scanning electron microscopic studies of oxamide urolithiasis in rats. Scan Electron Microsc 3:155–162 Khan SR, Hackett RL, Finlayson B, Konicek JR (1981) Light and scanning electron microscopic studies of oxamide urolithiasis in rats. Scan Electron Microsc 3:155–162
89.
Zurück zum Zitat Cianciolo RE, Bischoff K, Ebel JG, Van Winkle TJ, Goldstein RE et al (2008) Clinicopathologic, histologic, and toxicologic findings in 70 cats inadvertently exposed to pet food contaminated with melamine and cyanuric acid. J Am Vet Med Assoc 233:729–737PubMedCrossRef Cianciolo RE, Bischoff K, Ebel JG, Van Winkle TJ, Goldstein RE et al (2008) Clinicopathologic, histologic, and toxicologic findings in 70 cats inadvertently exposed to pet food contaminated with melamine and cyanuric acid. J Am Vet Med Assoc 233:729–737PubMedCrossRef
90.
Zurück zum Zitat Bischoff K, Rumbeiha WK (2012) Pet food recalls and pet food contaminants in small animals. Vet Clin North Am Small Anim Pract 42:237–250, v Bischoff K, Rumbeiha WK (2012) Pet food recalls and pet food contaminants in small animals. Vet Clin North Am Small Anim Pract 42:237–250, v
91.
Zurück zum Zitat Kobayashi T, Okada A, Fujii Y, Niimi K, Hamamoto S et al (2010) The mechanism of renal stone formation and renal failure induced by administration of melamine and cyanuric acid. Urol Res 38:117–125PubMedCrossRef Kobayashi T, Okada A, Fujii Y, Niimi K, Hamamoto S et al (2010) The mechanism of renal stone formation and renal failure induced by administration of melamine and cyanuric acid. Urol Res 38:117–125PubMedCrossRef
92.
Zurück zum Zitat Lu X, Gao B, Wang Y, Liu Z, Yasui T et al (2012) Renal tubular epithelial cell injury, apoptosis and inflammation are involved in melamine-related kidney stone formation. Urol Res 40:717–723PubMedCrossRef Lu X, Gao B, Wang Y, Liu Z, Yasui T et al (2012) Renal tubular epithelial cell injury, apoptosis and inflammation are involved in melamine-related kidney stone formation. Urol Res 40:717–723PubMedCrossRef
93.
94.
Zurück zum Zitat Randall A (1940) The etiology of primary renal calculus. Int Abstr Surg 71:209–240 Randall A (1940) The etiology of primary renal calculus. Int Abstr Surg 71:209–240
96.
Zurück zum Zitat Kumar V, Farell G, Yu S, Harrington S, Fitzpatrick L et al (2006) Cell biology of pathologic renal calcification: contribution of crystal transcytosis, cell-mediated calcification, and nanoparticles. J Investig Med 54:412–424PubMedCrossRef Kumar V, Farell G, Yu S, Harrington S, Fitzpatrick L et al (2006) Cell biology of pathologic renal calcification: contribution of crystal transcytosis, cell-mediated calcification, and nanoparticles. J Investig Med 54:412–424PubMedCrossRef
98.
99.
Zurück zum Zitat Moe SM, Chen NX (2008) Mechanisms of vascular calcification in chronic kidney disease. J Am Soc Nephrol 19:213–216PubMedCrossRef Moe SM, Chen NX (2008) Mechanisms of vascular calcification in chronic kidney disease. J Am Soc Nephrol 19:213–216PubMedCrossRef
100.
Zurück zum Zitat Rule AD, Roger VL, Melton LJ 3rd, Bergstralh EJ, Li X et al (2010) Kidney stones associate with increased risk for myocardial infarction. J Am Soc Nephrol 21:1641–1644PubMedPubMedCentralCrossRef Rule AD, Roger VL, Melton LJ 3rd, Bergstralh EJ, Li X et al (2010) Kidney stones associate with increased risk for myocardial infarction. J Am Soc Nephrol 21:1641–1644PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Khan SR (2012) Is oxidative stress, a link between nephrolithiasis and obesity, hypertension, diabetes, chronic kidney disease, metabolic syndrome? Urol Res 40:95–112PubMedCrossRef Khan SR (2012) Is oxidative stress, a link between nephrolithiasis and obesity, hypertension, diabetes, chronic kidney disease, metabolic syndrome? Urol Res 40:95–112PubMedCrossRef
102.
Zurück zum Zitat Ando R, Nagaya T, Suzuki S, Takahashi H, Kawai M et al (2013) Kidney stone formation is positively associated with conventional risk factors for coronary heart disease in Japanese men. J Urol 189:1340–1346PubMedCrossRef Ando R, Nagaya T, Suzuki S, Takahashi H, Kawai M et al (2013) Kidney stone formation is positively associated with conventional risk factors for coronary heart disease in Japanese men. J Urol 189:1340–1346PubMedCrossRef
103.
Zurück zum Zitat Bagga HS, Chi T, Miller J, Stoller ML (2013) New insights into the pathogenesis of renal calculi. Urol Clin North Am 40:1–12PubMedCrossRef Bagga HS, Chi T, Miller J, Stoller ML (2013) New insights into the pathogenesis of renal calculi. Urol Clin North Am 40:1–12PubMedCrossRef
104.
Zurück zum Zitat Jia Z, Wang S, Tang J, He D, Cui L et al (2014) Does crystal deposition in genetic hypercalciuric rat kidney tissue share similarities with bone formation? Urology 83(509):e507–e514 Jia Z, Wang S, Tang J, He D, Cui L et al (2014) Does crystal deposition in genetic hypercalciuric rat kidney tissue share similarities with bone formation? Urology 83(509):e507–e514
Metadaten
Titel
Histological aspects of the “fixed-particle” model of stone formation: animal studies
verfasst von
Saeed R. Khan
Publikationsdatum
28.11.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Urolithiasis / Ausgabe 1/2017
Print ISSN: 2194-7228
Elektronische ISSN: 2194-7236
DOI
https://doi.org/10.1007/s00240-016-0949-7

Weitere Artikel der Ausgabe 1/2017

Urolithiasis 1/2017 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

Stufenschema weist Prostatakarzinom zuverlässig nach

22.04.2024 Prostatakarzinom Nachrichten

Erst PSA-Test, dann Kallikrein-Score, schließlich MRT und Biopsie – ein vierstufiges Screening-Schema kann die Zahl der unnötigen Prostatabiopsien erheblich reduzieren: Die Hälfte der Männer, die in einer finnischen Studie eine Biopsie benötigten, hatte einen hochgradigen Tumor.

Harnwegsinfektprophylaxe: Es geht auch ohne Antibiotika

20.04.2024 EAU 2024 Kongressbericht

Beim chronischen Harnwegsinfekt bei Frauen wird bisher meist eine Antibiotikaprophylaxe eingesetzt. Angesichts der zunehmenden Antibiotikaresistenz erweist sich das Antiseptikum Methenamin-Hippurat als vielversprechende Alternative, so die Auswertung einer randomisierten kontrollierten Studie.

Update Urologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.