Skip to main content
Erschienen in: Skeletal Radiology 7/2008

01.07.2008 | Review Article

Application of stem cells in bone repair

verfasst von: Elaine Y. L. Waese, Rita R. Kandel, William L. Stanford

Erschienen in: Skeletal Radiology | Ausgabe 7/2008

Einloggen, um Zugang zu erhalten

Abstract

Bone has the ability to repair minor injuries through remodeling. However, when the host source of osteoprogenitors is compromised at the defect site, one effective treatment may be cell-based therapy, as it replenishes the area of bone loss with cells possessing osteogenic potential. This review is a concise comparison of different types of stem cells that have the potential to be used in tissue-engineered scaffolds for bone repair. The clinical use of mesenchymal stem or stromal cells isolated from the bone marrow for treating various diseases has been well documented. However, the scarcity of these cells prompts the search for alternative sources of multipotential cells such as amniotic fluid stem cells and umbilical cord perivascular cells. Embryonic stem cells are another controversial source of cells with osteogenic potential. These cells have the ability to differentiate into all cell types of the adult body. Issues such as the use of human embryos and the risk of contamination from animal-derived culture components continue to prevent the therapeutic use of ESCs. As a result, abundant research has been carried out to design defined culture conditions for culturing ESCs, and alternative strategies such as the generation of induced pluripotent stem cells are being developed to eliminate the need for using embryos for cell derivation. In addition to the cell source, the ability to control stem cell differentiation into functional bone and the choice of biomaterial are also paramount objectives that are being examined in research and clinical trials.
Literatur
1.
Zurück zum Zitat Perry CR. Bone repair techniques, bone grafts, and bone graft substitutes. Clin Orthop Relat Res 1999;360:71–86.CrossRef Perry CR. Bone repair techniques, bone grafts, and bone graft substitutes. Clin Orthop Relat Res 1999;360:71–86.CrossRef
2.
Zurück zum Zitat Bruder SP, Fox BS. Tissue engineering of bone—cell based strategies. Clin Orthop Relat Res 1999;367S: S68–S83.CrossRef Bruder SP, Fox BS. Tissue engineering of bone—cell based strategies. Clin Orthop Relat Res 1999;367S: S68–S83.CrossRef
3.
Zurück zum Zitat Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284(5411): 143–147.PubMedCrossRef Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284(5411): 143–147.PubMedCrossRef
4.
Zurück zum Zitat Horwitz EM, Le Blanc K, Dominici M, et al. Clarification of the nomenclature for MSC: The International Society of Cellular Therapy position statement. Cytotherapy 2005;7: 393–395.PubMedCrossRef Horwitz EM, Le Blanc K, Dominici M, et al. Clarification of the nomenclature for MSC: The International Society of Cellular Therapy position statement. Cytotherapy 2005;7: 393–395.PubMedCrossRef
5.
Zurück zum Zitat Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006;8: 315–317.PubMedCrossRef Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006;8: 315–317.PubMedCrossRef
6.
7.
Zurück zum Zitat Baksh D, Song L, Tuan RS. Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med 2004;8(3): 301–316.PubMedPubMedCentralCrossRef Baksh D, Song L, Tuan RS. Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med 2004;8(3): 301–316.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Friedenstein AJP-SI, Petrakova KV. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 1966;16: 381–390.PubMed Friedenstein AJP-SI, Petrakova KV. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 1966;16: 381–390.PubMed
9.
Zurück zum Zitat Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 2001;7: 211–228.PubMedCrossRef Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 2001;7: 211–228.PubMedCrossRef
10.
Zurück zum Zitat Nakahara J, Bruder SP, Haynesworth SE, et al. Bone and cartilage formation in diffusion chambers by subcultured cells derived from the periosteum. Bone 1990;11: 181–188.PubMedCrossRef Nakahara J, Bruder SP, Haynesworth SE, et al. Bone and cartilage formation in diffusion chambers by subcultured cells derived from the periosteum. Bone 1990;11: 181–188.PubMedCrossRef
11.
Zurück zum Zitat De Bari C, Dell’Accio F, Tylzanowski P, Luyten FP. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 2001;44: 1928–1942.PubMedCrossRef De Bari C, Dell’Accio F, Tylzanowski P, Luyten FP. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 2001;44: 1928–1942.PubMedCrossRef
12.
13.
Zurück zum Zitat Stenderup K, Justesen J, Clausen C, Kassem M. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 2003;33: 919–926.PubMedCrossRef Stenderup K, Justesen J, Clausen C, Kassem M. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 2003;33: 919–926.PubMedCrossRef
14.
Zurück zum Zitat D’Ippolito G, Schiller PC, Ricordi C, Roos BA, Howard GA. Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. J Bone Miner Res 1999;14: 1115–1122.PubMedCrossRef D’Ippolito G, Schiller PC, Ricordi C, Roos BA, Howard GA. Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. J Bone Miner Res 1999;14: 1115–1122.PubMedCrossRef
15.
Zurück zum Zitat Bonyadi M, Waldman SD, Liu D, Aubin JE, Grynpas MD, Stanford WL. Mesenchymal precursor self-renewal deficiency leads to age-dependent osteoporosis in Sca-1/Ly-6A null mice. Proc Natl Acad Sci USA 2003;100(10): 5840–5845.PubMedCrossRefPubMedCentral Bonyadi M, Waldman SD, Liu D, Aubin JE, Grynpas MD, Stanford WL. Mesenchymal precursor self-renewal deficiency leads to age-dependent osteoporosis in Sca-1/Ly-6A null mice. Proc Natl Acad Sci USA 2003;100(10): 5840–5845.PubMedCrossRefPubMedCentral
16.
Zurück zum Zitat Rodriguez JP, Montecinos L, Rios S, Reyes P, Martinez J. Mesenchymal stem cells from osteoporotic patients produce a type I collagen-deficient extracellular matrix favoring adipogenic differentiation. J Biol Chem 2000;79(4): 557–565. Rodriguez JP, Montecinos L, Rios S, Reyes P, Martinez J. Mesenchymal stem cells from osteoporotic patients produce a type I collagen-deficient extracellular matrix favoring adipogenic differentiation. J Biol Chem 2000;79(4): 557–565.
17.
Zurück zum Zitat Rodriguez JP, Rios S, Fernandez M, Santibanez JF. Differential activation of ERK1,2 MAP kinase signaling pathway in mesenchymal stem cell from control and osteoporotic postmenopausal women. J Biol Chem 2004;92(4): 745–754. Rodriguez JP, Rios S, Fernandez M, Santibanez JF. Differential activation of ERK1,2 MAP kinase signaling pathway in mesenchymal stem cell from control and osteoporotic postmenopausal women. J Biol Chem 2004;92(4): 745–754.
18.
Zurück zum Zitat Oreffo RO, Bennett A, Carr AJ, Triffitt JT. Patients with primary osteoarthritis show no change with ageing in the number of osteogenic precursors. Scand J Rheumatol 1998;27(6): 415–424.PubMedCrossRef Oreffo RO, Bennett A, Carr AJ, Triffitt JT. Patients with primary osteoarthritis show no change with ageing in the number of osteogenic precursors. Scand J Rheumatol 1998;27(6): 415–424.PubMedCrossRef
19.
Zurück zum Zitat Prusa AR, Hengstschlager M. Amniotic fluid cells and human stem cell research: a new connection. Med Sci Monit 2002;8(11): RA253–257.PubMed Prusa AR, Hengstschlager M. Amniotic fluid cells and human stem cell research: a new connection. Med Sci Monit 2002;8(11): RA253–257.PubMed
20.
Zurück zum Zitat De Coppi P, Bartsch Jr G, Siddiqui MM, et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 2007;25(1): 100–106.PubMedCrossRef De Coppi P, Bartsch Jr G, Siddiqui MM, et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 2007;25(1): 100–106.PubMedCrossRef
21.
Zurück zum Zitat Chiavegato A, Bollini S, Pozzobon M, et al. Human amniotic fluid-derived stem cells are rejected after transplantation in the myocardium of normal, ischemic, immuno-suppressed or immuno-deficient rat. J Mol Cell Cardiol 2007;42(4): 746–759.PubMedCrossRef Chiavegato A, Bollini S, Pozzobon M, et al. Human amniotic fluid-derived stem cells are rejected after transplantation in the myocardium of normal, ischemic, immuno-suppressed or immuno-deficient rat. J Mol Cell Cardiol 2007;42(4): 746–759.PubMedCrossRef
22.
Zurück zum Zitat Sarugaser R, Lickorish D, Baksh D, Hosseini MM, Davies JE. Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells 2005;23(2): 220–229.PubMedCrossRef Sarugaser R, Lickorish D, Baksh D, Hosseini MM, Davies JE. Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells 2005;23(2): 220–229.PubMedCrossRef
23.
Zurück zum Zitat Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 2000; 109(1): 235–242.PubMedCrossRef Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 2000; 109(1): 235–242.PubMedCrossRef
24.
Zurück zum Zitat Bonab MM, Alimoghaddam K, Talebian F, Ghaffari SH, Ghavamzadeh A, Nikbin B. Aging of mesenchymal stem cells in vitro. BMC Cell Biol 2006;7: 14–20.PubMedPubMedCentralCrossRef Bonab MM, Alimoghaddam K, Talebian F, Ghaffari SH, Ghavamzadeh A, Nikbin B. Aging of mesenchymal stem cells in vitro. BMC Cell Biol 2006;7: 14–20.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998;282(5391): 1145–1147.PubMedCrossRef Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998;282(5391): 1145–1147.PubMedCrossRef
26.
Zurück zum Zitat Hyslop LA, Armstrong L, Stojkovic M, Lako M. Human embryonic stem cells: biology and clinical implications. Expert Rev Mol Med 2005;7(19): 1–21.PubMedCrossRef Hyslop LA, Armstrong L, Stojkovic M, Lako M. Human embryonic stem cells: biology and clinical implications. Expert Rev Mol Med 2005;7(19): 1–21.PubMedCrossRef
27.
28.
Zurück zum Zitat Cao T, Heng BC, Ye CP, et al. Osteogenic differentiation within intact human embryoid bodies result in a marked increase in osteocalcin secretion after 12 days of in vitro culture, and formation of morphologically distinct nodule-like structures. Tissue Cell 2005;37(4): 325–334.PubMedCrossRef Cao T, Heng BC, Ye CP, et al. Osteogenic differentiation within intact human embryoid bodies result in a marked increase in osteocalcin secretion after 12 days of in vitro culture, and formation of morphologically distinct nodule-like structures. Tissue Cell 2005;37(4): 325–334.PubMedCrossRef
29.
Zurück zum Zitat Karp JM, Ferreira LS, Khademhosseini A, Kwon AH, Yeh J, Langer RS. Cultivation of human embryonic stem cells without the embryoid body step enhances osteogenesis in vitro. Stem Cells 2006;24(4): 835–843.PubMedCrossRef Karp JM, Ferreira LS, Khademhosseini A, Kwon AH, Yeh J, Langer RS. Cultivation of human embryonic stem cells without the embryoid body step enhances osteogenesis in vitro. Stem Cells 2006;24(4): 835–843.PubMedCrossRef
30.
Zurück zum Zitat Ahn SE, Kim S, Park KH, et al. Primary bone-derived cells induce osteogenic differentiation without exogenous factors in human embryonic stem cells. Biochem Biophys Res Commun 2006;340(2): 403–408.PubMedCrossRef Ahn SE, Kim S, Park KH, et al. Primary bone-derived cells induce osteogenic differentiation without exogenous factors in human embryonic stem cells. Biochem Biophys Res Commun 2006;340(2): 403–408.PubMedCrossRef
31.
Zurück zum Zitat Maniatopoulos C, Sodek J, Melcher AH. Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats. Cell Tissue Res 1988;254(2): 317–330.PubMedCrossRef Maniatopoulos C, Sodek J, Melcher AH. Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats. Cell Tissue Res 1988;254(2): 317–330.PubMedCrossRef
32.
Zurück zum Zitat Schnutgen F, Stewart AF, von Melchner H, Anastassiadis K. Engineering embryonic stem cells with recombinase system. Methods Enzymol 2006;420: 100–136.PubMedCrossRef Schnutgen F, Stewart AF, von Melchner H, Anastassiadis K. Engineering embryonic stem cells with recombinase system. Methods Enzymol 2006;420: 100–136.PubMedCrossRef
33.
Zurück zum Zitat Martin MJ, Muotri A, Gage F, Varki A. Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med 2005;11(2): 228–232.PubMedCrossRef Martin MJ, Muotri A, Gage F, Varki A. Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med 2005;11(2): 228–232.PubMedCrossRef
34.
Zurück zum Zitat Richards M, Fong CY, Chan WK, Wong PC, Bongso A. Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat Biotechnol 2002;20(9): 933–936.PubMedCrossRef Richards M, Fong CY, Chan WK, Wong PC, Bongso A. Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat Biotechnol 2002;20(9): 933–936.PubMedCrossRef
35.
Zurück zum Zitat Ludwig TE, Levenstein ME, Jones JM, et al. Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 2006;24: 185–187.PubMedCrossRef Ludwig TE, Levenstein ME, Jones JM, et al. Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 2006;24: 185–187.PubMedCrossRef
36.
Zurück zum Zitat Chin ACP, Fong WJ, Goh LT, Philp R, Oh SKW, Choo ABH. Identification of proteins from feeder conditioned medium that support human embryonic stem cells. J Biotechnol 2007;130: 320–328.PubMedCrossRef Chin ACP, Fong WJ, Goh LT, Philp R, Oh SKW, Choo ABH. Identification of proteins from feeder conditioned medium that support human embryonic stem cells. J Biotechnol 2007;130: 320–328.PubMedCrossRef
37.
Zurück zum Zitat Gertow K, Wolbank S, Rozell B, et al. Organized development from human embryonic stem cells after injection into immunodeficient mice. Stem Cells Dev 2004;13(4): 421–435.PubMedCrossRef Gertow K, Wolbank S, Rozell B, et al. Organized development from human embryonic stem cells after injection into immunodeficient mice. Stem Cells Dev 2004;13(4): 421–435.PubMedCrossRef
38.
Zurück zum Zitat Kim K, Lerou P, Yabuuchi A, et al. Histocompatible embryonic stem cells by parthenogenesis. Science 2007;315: 482–486.PubMedCrossRef Kim K, Lerou P, Yabuuchi A, et al. Histocompatible embryonic stem cells by parthenogenesis. Science 2007;315: 482–486.PubMedCrossRef
39.
Zurück zum Zitat Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126(4): 663–676.PubMedCrossRef Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126(4): 663–676.PubMedCrossRef
40.
Zurück zum Zitat Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131(5): 861–872.PubMedCrossRef Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131(5): 861–872.PubMedCrossRef
41.
Zurück zum Zitat Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007;318(5858): 1917–1920.PubMedCrossRef Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007;318(5858): 1917–1920.PubMedCrossRef
42.
Zurück zum Zitat Bielby RC, Boccaccini AR, Polak JM, Buttery LD. In vitro differentiation and in vivo mineralization of osteogenic cells derived from human embryonic stem cells. Tissue Eng 2004;10(9–10): 1518–1525.PubMedCrossRef Bielby RC, Boccaccini AR, Polak JM, Buttery LD. In vitro differentiation and in vivo mineralization of osteogenic cells derived from human embryonic stem cells. Tissue Eng 2004;10(9–10): 1518–1525.PubMedCrossRef
43.
Zurück zum Zitat O’Flaherty E, Sparrow R, Szer J. Bone marrow stromal function from patients after bone marrow transplantation. Bone Marrow Transplant 1995;15: 207–212.PubMed O’Flaherty E, Sparrow R, Szer J. Bone marrow stromal function from patients after bone marrow transplantation. Bone Marrow Transplant 1995;15: 207–212.PubMed
44.
Zurück zum Zitat Galotto M, Berisso G, Delfino L, et al. Stromal damage as consequence of high-dose chemo/radiotherapy in bone marrow transplant recipients. Exp Hematol 1999;27: 1460–1466.PubMedCrossRef Galotto M, Berisso G, Delfino L, et al. Stromal damage as consequence of high-dose chemo/radiotherapy in bone marrow transplant recipients. Exp Hematol 1999;27: 1460–1466.PubMedCrossRef
45.
Zurück zum Zitat Muschler GF, Nitto H, Matsukura Y, et al. Spine fusion using cell matrix composites enriched in bone marrow-derived cells. Clin Orthop Relat Res 2003;407: 102–118.CrossRef Muschler GF, Nitto H, Matsukura Y, et al. Spine fusion using cell matrix composites enriched in bone marrow-derived cells. Clin Orthop Relat Res 2003;407: 102–118.CrossRef
46.
Zurück zum Zitat Bruder SP, Kraus KH, Goldberg VM, Kadiyala S. The effect of implants loaded with autologous mesenchymal stem cells on healing of canine segmental bone defects. J Bone Joint Surg Am 1998;80: 985–996.PubMedCrossRef Bruder SP, Kraus KH, Goldberg VM, Kadiyala S. The effect of implants loaded with autologous mesenchymal stem cells on healing of canine segmental bone defects. J Bone Joint Surg Am 1998;80: 985–996.PubMedCrossRef
47.
Zurück zum Zitat Bruder SP, Kurth AA, Shea M, Hayes WC, Jaiswal N, Kadiyala S. Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells. J Orthop Res 1998;16: 155–162.PubMedCrossRef Bruder SP, Kurth AA, Shea M, Hayes WC, Jaiswal N, Kadiyala S. Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells. J Orthop Res 1998;16: 155–162.PubMedCrossRef
48.
Zurück zum Zitat Den Boer FC, Wippermann BW, Blokhuis TJ, Patka P, Bakker FC, Haarman HJ. Healing of segmental bone defects with granular porous hydroxyapatite augmented with recombinant human osteogenic protein-1 or autologous bone marrow. J Orthop Res 2003;21(3): 521–528.CrossRef Den Boer FC, Wippermann BW, Blokhuis TJ, Patka P, Bakker FC, Haarman HJ. Healing of segmental bone defects with granular porous hydroxyapatite augmented with recombinant human osteogenic protein-1 or autologous bone marrow. J Orthop Res 2003;21(3): 521–528.CrossRef
49.
Zurück zum Zitat Takigami H, Kumagai K, Latson L, et al. Bone formation following OP-1 implantation is improved by addition of autogenous bone marrow cells in a canine femur defect model. J Orthop Res 2007;25(10): 1333–1342.PubMedCrossRef Takigami H, Kumagai K, Latson L, et al. Bone formation following OP-1 implantation is improved by addition of autogenous bone marrow cells in a canine femur defect model. J Orthop Res 2007;25(10): 1333–1342.PubMedCrossRef
50.
Zurück zum Zitat Horwitz EM, Prockop DJ, Fitzpatrick LA, et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 1999;5: 309–313.PubMedCrossRef Horwitz EM, Prockop DJ, Fitzpatrick LA, et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 1999;5: 309–313.PubMedCrossRef
51.
Zurück zum Zitat Horwitz EM, Gordon PL, Koo WK, et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci USA 2002;99(13): 8932–8937.PubMedCrossRefPubMedCentral Horwitz EM, Gordon PL, Koo WK, et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci USA 2002;99(13): 8932–8937.PubMedCrossRefPubMedCentral
52.
Zurück zum Zitat Le Blanc K, Gotherstrom C, Ringden O, et al. Fetal mesenchymal stem-cell engraftment in bone after in utero transplantation in a patient with severe osteogenesis imperfecta. Transplantation 2005;79(11): 1607–1614.PubMedCrossRef Le Blanc K, Gotherstrom C, Ringden O, et al. Fetal mesenchymal stem-cell engraftment in bone after in utero transplantation in a patient with severe osteogenesis imperfecta. Transplantation 2005;79(11): 1607–1614.PubMedCrossRef
53.
Zurück zum Zitat Dallari D, Savarino L, Stagni C, et al. Enhanced tibial osteotomy healing with use of bone grafts supplemented with platelet gel or platelet gel and bone marrow stromal cells. J Bone Joint Surg Am 2007;89: 2413–2420.PubMed Dallari D, Savarino L, Stagni C, et al. Enhanced tibial osteotomy healing with use of bone grafts supplemented with platelet gel or platelet gel and bone marrow stromal cells. J Bone Joint Surg Am 2007;89: 2413–2420.PubMed
54.
Zurück zum Zitat Quarto R, Mastrogiacomo M, Cancedda R, et al. Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 2001;344(5): 385–386.PubMedCrossRef Quarto R, Mastrogiacomo M, Cancedda R, et al. Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 2001;344(5): 385–386.PubMedCrossRef
55.
Zurück zum Zitat Kneser U, Schaefer DJ, Polykandriotis E, Horch RE. Tissue engineering of bone: the reconstructive surgeon’s point of view. J Cell Mol Med 2006;10(1): 7–19.PubMedCrossRef Kneser U, Schaefer DJ, Polykandriotis E, Horch RE. Tissue engineering of bone: the reconstructive surgeon’s point of view. J Cell Mol Med 2006;10(1): 7–19.PubMedCrossRef
57.
Zurück zum Zitat Gazit D, Turgeman G, Kelley P, et al. Engineered pluripotent mesenchymal cells integrate and differentiate in regenerating bone: a novel cell-mediated gene therapy. J Gen Med 1999;1(2): 121–133.CrossRef Gazit D, Turgeman G, Kelley P, et al. Engineered pluripotent mesenchymal cells integrate and differentiate in regenerating bone: a novel cell-mediated gene therapy. J Gen Med 1999;1(2): 121–133.CrossRef
58.
Zurück zum Zitat Lieberman JR, Daluiski A, Stevenson S, et al. The effect of regional gene therapy with bone morphogenetic protein-2-producing bone-marrow cells on the repair of segmental femoral defects in rats. J Bone Joint Surg Am 1999;81(7): 905–917.PubMedCrossRef Lieberman JR, Daluiski A, Stevenson S, et al. The effect of regional gene therapy with bone morphogenetic protein-2-producing bone-marrow cells on the repair of segmental femoral defects in rats. J Bone Joint Surg Am 1999;81(7): 905–917.PubMedCrossRef
59.
Zurück zum Zitat Wang JC, Kanim LE, Yoo S, Campbell PA, Berk AJ, Lieberman JR. Effect of regional gene therapy with bone morphogenetic protein-2-producing bone marrow cells on spinal fusion in rats. J Bone Joint Surg Am 2003;85-A(5): 905–911.PubMedCrossRef Wang JC, Kanim LE, Yoo S, Campbell PA, Berk AJ, Lieberman JR. Effect of regional gene therapy with bone morphogenetic protein-2-producing bone marrow cells on spinal fusion in rats. J Bone Joint Surg Am 2003;85-A(5): 905–911.PubMedCrossRef
60.
Zurück zum Zitat Dragoo JL, Choi JY, Lieberman JR, et al. Bone induction by BMP-2 transduced stem cells derived from human fat. J Orthop Res 2003;21(4): 622–629.PubMedCrossRef Dragoo JL, Choi JY, Lieberman JR, et al. Bone induction by BMP-2 transduced stem cells derived from human fat. J Orthop Res 2003;21(4): 622–629.PubMedCrossRef
61.
Zurück zum Zitat Dragoo JL, Lieberman JR, Lee RS, et al. Tissue-engineered bone from BMP-2 transduced stem cells derived from human fat. Plast Reconstr Surg 2005;115(6): 1665–1673.PubMedCrossRef Dragoo JL, Lieberman JR, Lee RS, et al. Tissue-engineered bone from BMP-2 transduced stem cells derived from human fat. Plast Reconstr Surg 2005;115(6): 1665–1673.PubMedCrossRef
62.
Zurück zum Zitat Tu Q, Valverde P, Chen J. Osterix enhances proliferation and osteogenic potential of bone marrow stromal cells. Biochem Biophys Res Commun 2006;341(4): 1257–1265.PubMedPubMedCentralCrossRef Tu Q, Valverde P, Chen J. Osterix enhances proliferation and osteogenic potential of bone marrow stromal cells. Biochem Biophys Res Commun 2006;341(4): 1257–1265.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Wu L, Wu Y, Lin Y, et al. Osteogenic differentiation of adipose derived stem cells promoted by overexpression of osterix. Mol Cell Biochem 2007;301(1–2): 83–92.PubMedCrossRef Wu L, Wu Y, Lin Y, et al. Osteogenic differentiation of adipose derived stem cells promoted by overexpression of osterix. Mol Cell Biochem 2007;301(1–2): 83–92.PubMedCrossRef
64.
Zurück zum Zitat Tu Q, Valverde P, Li S, Zhang J, Yang P, Chen J. Osterix overexpression in mesenchymal stem cells stimulates healing of critical-sized defects in murine calvarial bone. Tissue Eng 2007;13(10): 2431–2440.PubMedPubMedCentralCrossRef Tu Q, Valverde P, Li S, Zhang J, Yang P, Chen J. Osterix overexpression in mesenchymal stem cells stimulates healing of critical-sized defects in murine calvarial bone. Tissue Eng 2007;13(10): 2431–2440.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Zhang X, Yang M, Lin L, et al. Runx2 overexpression enhances osteoblastic differentiation and mineralization in adipose-derived stem cells in vitro and in vivo. Calcif Tissue Int 2006;79(3): 169–178.PubMedCrossRef Zhang X, Yang M, Lin L, et al. Runx2 overexpression enhances osteoblastic differentiation and mineralization in adipose-derived stem cells in vitro and in vivo. Calcif Tissue Int 2006;79(3): 169–178.PubMedCrossRef
66.
Zurück zum Zitat Temenoff JS, Mikos AG. Review: tissue engineering for regeneration of articular cartilage. Biomaterials 2000;21: 431–440.PubMedCrossRef Temenoff JS, Mikos AG. Review: tissue engineering for regeneration of articular cartilage. Biomaterials 2000;21: 431–440.PubMedCrossRef
67.
Zurück zum Zitat Shapiro F, Koide S, Glimcher MJ. Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg Am 1993;75: 532–553.PubMedCrossRef Shapiro F, Koide S, Glimcher MJ. Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg Am 1993;75: 532–553.PubMedCrossRef
68.
Zurück zum Zitat Redman SN, Oldfield SF, Archer CW. Current strategies for articular cartilage repair. Eur Cells Mater 2005;9: 23–32.CrossRef Redman SN, Oldfield SF, Archer CW. Current strategies for articular cartilage repair. Eur Cells Mater 2005;9: 23–32.CrossRef
69.
Zurück zum Zitat Mano JF, Reis RL. Osteochondral defects: present situation and tissue engineering approaches. J Tissue Eng Regen Med 2007;1: 261–273.PubMedCrossRef Mano JF, Reis RL. Osteochondral defects: present situation and tissue engineering approaches. J Tissue Eng Regen Med 2007;1: 261–273.PubMedCrossRef
70.
Zurück zum Zitat Ahmed N, Stanford WL, Kandel RR. Mesenchymal stem and progenitor cells for cartilage repair. Skeletal Radiol 2007;36(10): 909–912.PubMedCrossRef Ahmed N, Stanford WL, Kandel RR. Mesenchymal stem and progenitor cells for cartilage repair. Skeletal Radiol 2007;36(10): 909–912.PubMedCrossRef
71.
Zurück zum Zitat Horwitz EM, Prockop DJ, Gordon PL, et al. Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood 2001;97(5): 1227–1231.PubMedCrossRef Horwitz EM, Prockop DJ, Gordon PL, et al. Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood 2001;97(5): 1227–1231.PubMedCrossRef
72.
Zurück zum Zitat Kitoh H, Kitakoji T, Tsuchiya H, Mitsuyama H, Nakamura H, Katoh M, Ishiguro N. Transplantation of marrow-derived mesenchymal stem cells and platelet-rich plasma during distraction osteogenesis—a preliminary result of three cases. Bone 2004;35(4): 892–898.PubMedCrossRef Kitoh H, Kitakoji T, Tsuchiya H, Mitsuyama H, Nakamura H, Katoh M, Ishiguro N. Transplantation of marrow-derived mesenchymal stem cells and platelet-rich plasma during distraction osteogenesis—a preliminary result of three cases. Bone 2004;35(4): 892–898.PubMedCrossRef
73.
Zurück zum Zitat Marcacci M, Kon E, Moukhachev V, Lavroukov A, Kutepov S, Quarto R, Mastrogiacomo M, Cancedda R. Tissue engineeringstem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng 2007;13(5): 947–955.PubMedCrossRef Marcacci M, Kon E, Moukhachev V, Lavroukov A, Kutepov S, Quarto R, Mastrogiacomo M, Cancedda R. Tissue engineeringstem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng 2007;13(5): 947–955.PubMedCrossRef
Metadaten
Titel
Application of stem cells in bone repair
verfasst von
Elaine Y. L. Waese
Rita R. Kandel
William L. Stanford
Publikationsdatum
01.07.2008
Verlag
Springer Berlin Heidelberg
Erschienen in
Skeletal Radiology / Ausgabe 7/2008
Print ISSN: 0364-2348
Elektronische ISSN: 1432-2161
DOI
https://doi.org/10.1007/s00256-007-0438-8

Weitere Artikel der Ausgabe 7/2008

Skeletal Radiology 7/2008 Zur Ausgabe

Browser's Notes

Browser’s Notes

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.