Skip to main content
Erschienen in: Annals of Hematology 11/2016

28.05.2016 | Review Article

Bone marrow niche in immune thrombocytopenia: a focus on megakaryopoiesis

verfasst von: Elaheh Khodadi, Ali Amin Asnafi, Saeid Shahrabi, Mohammad Shahjahani, Najmaldin Saki

Erschienen in: Annals of Hematology | Ausgabe 11/2016

Einloggen, um Zugang zu erhalten

Abstract

Immune thrombocytopenia (ITP) is an autoimmune disorder characterized by increased bleeding tendency and thrombocytopenia. In fact, the precise pathogenesis of this disease is still not clear. Megakaryopoiesis involves complete differentiation of megakaryocyte (MK) progenitors to functional platelets. This complex process occurs in specific bone marrow (BM) niches composed of several hematopoietic and non-hematopoietic cell types, soluble factors, and extracellular matrix proteins. These specialized microenvironments sustain MK maturation and localization to sinusoids as well as platelet release into circulation. However, MKs in ITP patients show impaired maturation and signs of degradation. Intrinsic defects in MKs and their extrinsic environment have been implicated in altered megakaryopoiesis in this disease. In particular, aberrant expression of miRNAs directing MK proliferation, differentiation, and platelet production; defective MK apoptosis; and reduced proliferation and differentiation rate of the MSC compartment observed in these patients may account for BM defects in ITP. Furthermore, insufficient production of thrombopoietin is another likely reason for ITP development. Therefore, identifying the signaling pathways and transcription factors influencing the interaction between MKs and BM niche in ITP patients will contribute to increased platelet production in order to prevent incomplete MK maturation and destruction as well as BM fibrosis and apoptosis in ITP. In this review, we will examine the interaction and role of BM niches in orchestrating megakaryopoiesis in ITP patients and discuss how these factors can be exploited to improve the quality of patient treatment and prognosis.
Literatur
1.
Zurück zum Zitat Ku FC, Tsai CR, Wang J et al (2013) Stromal‐derived factor‐1 gene variations in pediatric patients with primary immune thrombocytopenia. Eur J Haematol 90(1):25–30CrossRefPubMed Ku FC, Tsai CR, Wang J et al (2013) Stromal‐derived factor‐1 gene variations in pediatric patients with primary immune thrombocytopenia. Eur J Haematol 90(1):25–30CrossRefPubMed
2.
Zurück zum Zitat Rank A, Weigert O, Ostermann H et al (2010) Management of chronic immune thrombocytopenic purpura: targeting insufficient megakaryopoiesis as a novel therapeutic principle. Biol Targets Ther 4:139CrossRef Rank A, Weigert O, Ostermann H et al (2010) Management of chronic immune thrombocytopenic purpura: targeting insufficient megakaryopoiesis as a novel therapeutic principle. Biol Targets Ther 4:139CrossRef
3.
Zurück zum Zitat Olsson B, Andersson P-O, Jernås M et al (2003) T-cell mediated cytotoxicity toward platelets in chronic idiopathic thrombocytopenic purpura. Nat Med 9(9):1123–4CrossRefPubMed Olsson B, Andersson P-O, Jernås M et al (2003) T-cell mediated cytotoxicity toward platelets in chronic idiopathic thrombocytopenic purpura. Nat Med 9(9):1123–4CrossRefPubMed
4.
Zurück zum Zitat Badenhorst P, Lotter M, Pieters H et al (1986) Platelet turnover and kinetics in immune thrombocytopenic purpura: results with autologous 111In-labeled platelets and homologous 51Cr-labeled platelets differ. Blood 67(1):86–92PubMed Badenhorst P, Lotter M, Pieters H et al (1986) Platelet turnover and kinetics in immune thrombocytopenic purpura: results with autologous 111In-labeled platelets and homologous 51Cr-labeled platelets differ. Blood 67(1):86–92PubMed
5.
Zurück zum Zitat Malara A, Currao M, Gruppi C et al (2014) Megakaryocytes contribute to the bonemarrow-matrix environment by expressing fibronectin, type IVcollagen, and laminin. Stem Cells 32(4):926–937CrossRefPubMedPubMedCentral Malara A, Currao M, Gruppi C et al (2014) Megakaryocytes contribute to the bonemarrow-matrix environment by expressing fibronectin, type IVcollagen, and laminin. Stem Cells 32(4):926–937CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Blau O, Baldus CD, Hofmann WK et al (2011) Mesenchymal stromal cells of myelodysplastic syndrome and acute myeloid leukemia patients have distinct genetic abnormalities compared with leukemic blasts. Blood 118:5583–92CrossRefPubMedPubMedCentral Blau O, Baldus CD, Hofmann WK et al (2011) Mesenchymal stromal cells of myelodysplastic syndrome and acute myeloid leukemia patients have distinct genetic abnormalities compared with leukemic blasts. Blood 118:5583–92CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Zhang D, Li H, Ma L, Zhang X, Xue F, Zhou Z, Chi Y, Liu X, Huang Y, Yang Y, Yang R (2014) The defective bone marrow-derived mesenchymal stem cells in patients with chronic immune thrombocytopenia. Autoimmunity 47(8):519–29 Zhang D, Li H, Ma L, Zhang X, Xue F, Zhou Z, Chi Y, Liu X, Huang Y, Yang Y, Yang R (2014) The defective bone marrow-derived mesenchymal stem cells in patients with chronic immune thrombocytopenia. Autoimmunity 47(8):519–29
8.
Zurück zum Zitat Shiozawa Y, Havens AM, Pienta KJ et al (2008) The bone marrow niche: habitat to hematopoietic and mesenchymal stem cells, and unwitting host to molecular parasites. Leukemia 22:941–50CrossRefPubMed Shiozawa Y, Havens AM, Pienta KJ et al (2008) The bone marrow niche: habitat to hematopoietic and mesenchymal stem cells, and unwitting host to molecular parasites. Leukemia 22:941–50CrossRefPubMed
9.
Zurück zum Zitat Taichman RS, Emerson SG (1994) Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor. J Exp Med 179:1677–82CrossRefPubMed Taichman RS, Emerson SG (1994) Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor. J Exp Med 179:1677–82CrossRefPubMed
10.
Zurück zum Zitat Deutsch VR, Tomer A (2013) Advances in megakaryocytopoiesis and thrombopoiesis: from bench to bedside. Br J Haematol 161(6):778–93 Deutsch VR, Tomer A (2013) Advances in megakaryocytopoiesis and thrombopoiesis: from bench to bedside. Br J Haematol 161(6):778–93
11.
Zurück zum Zitat Avecilla ST, Hattori K, Heissig B et al (2004) Chemokine-mediated interaction of progenitors with the bone marrow vascular hematopoietic niche is required for thrombopoiesis. Nat Med 10:64–71CrossRefPubMed Avecilla ST, Hattori K, Heissig B et al (2004) Chemokine-mediated interaction of progenitors with the bone marrow vascular hematopoietic niche is required for thrombopoiesis. Nat Med 10:64–71CrossRefPubMed
12.
Zurück zum Zitat Malara A, Abbonante V, Di Buduo CA, Tozzi L, Currao M, Balduini A (2015) The secret life of a megakaryocyte: emerging roles in bone marrow homeostasis control. Cell Mol Life Sci 72(8):1517–36 Malara A, Abbonante V, Di Buduo CA, Tozzi L, Currao M, Balduini A (2015) The secret life of a megakaryocyte: emerging roles in bone marrow homeostasis control. Cell Mol Life Sci 72(8):1517–36
13.
Zurück zum Zitat Wang L, Li Y, Houa M (2007) Idiopathic thrombocytopenic purpura and dysmegakaryocytopoiesis. Crit Rev Oncol Hematol 64:83–9CrossRefPubMed Wang L, Li Y, Houa M (2007) Idiopathic thrombocytopenic purpura and dysmegakaryocytopoiesis. Crit Rev Oncol Hematol 64:83–9CrossRefPubMed
15.
Zurück zum Zitat Baya A, Coskunb E, Oztuzcuc S et al (2014) Plasma microRNA profiling of pediatric patients with immune thrombocytopenic purpura. Blood Coagul Fibrinolysis 25:379–83CrossRef Baya A, Coskunb E, Oztuzcuc S et al (2014) Plasma microRNA profiling of pediatric patients with immune thrombocytopenic purpura. Blood Coagul Fibrinolysis 25:379–83CrossRef
16.
Zurück zum Zitat Son B, Shin KS, Bae SY et al (2004) Bone marrow expression and plasma concentration of basic fibroblast growth factor in patients with idiopathic thrombocytopenic purpura. IJH 80:193–6 Son B, Shin KS, Bae SY et al (2004) Bone marrow expression and plasma concentration of basic fibroblast growth factor in patients with idiopathic thrombocytopenic purpura. IJH 80:193–6
17.
Zurück zum Zitat Deutsch VR, Tomer A (2006) Megakaryocyte development and platelet production. BJH 134:453–66CrossRefPubMed Deutsch VR, Tomer A (2006) Megakaryocyte development and platelet production. BJH 134:453–66CrossRefPubMed
18.
Zurück zum Zitat Pasquet JM, Gross BS, Gratacap MP et al (2000) Thrombopoietin potentiates collagen receptor signaling in platelets through a phosphatidylinositol 3-kinase-dependent pathway. Blood 95:3429–34PubMed Pasquet JM, Gross BS, Gratacap MP et al (2000) Thrombopoietin potentiates collagen receptor signaling in platelets through a phosphatidylinositol 3-kinase-dependent pathway. Blood 95:3429–34PubMed
19.
Zurück zum Zitat Nutt SL, Metcalf D, D’Amico A et al (2005) Dynamic regulation of PU.1 expression in multipotent hematopoietic progenitors. J Exp Med 201:221–31CrossRefPubMedPubMedCentral Nutt SL, Metcalf D, D’Amico A et al (2005) Dynamic regulation of PU.1 expression in multipotent hematopoietic progenitors. J Exp Med 201:221–31CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Arinobu Y, Mizuno S, Chong Y et al (2007) Reciprocal activation of GATA-1 and PU.1 marks initial specification of hematopoietic stem cells into myeloerythroid and myelolymphoid lineages. Cell Stem Cell 1:416–27CrossRefPubMed Arinobu Y, Mizuno S, Chong Y et al (2007) Reciprocal activation of GATA-1 and PU.1 marks initial specification of hematopoietic stem cells into myeloerythroid and myelolymphoid lineages. Cell Stem Cell 1:416–27CrossRefPubMed
21.
Zurück zum Zitat Kobayashi M, Laver JH, Kato T et al (1996) Thrombopoietin supports proliferation of human primitive hematopoietic cells in synergy with steel factor and/or interleukin-3. Blood 88:429–36PubMed Kobayashi M, Laver JH, Kato T et al (1996) Thrombopoietin supports proliferation of human primitive hematopoietic cells in synergy with steel factor and/or interleukin-3. Blood 88:429–36PubMed
22.
Zurück zum Zitat Norol F, Vitrat N, Cramer E et al (1998) Effects of cytokines on platelet production from blood and marrow CD34+ cells. Blood 91:830–43PubMed Norol F, Vitrat N, Cramer E et al (1998) Effects of cytokines on platelet production from blood and marrow CD34+ cells. Blood 91:830–43PubMed
23.
Zurück zum Zitat Hou M, Andersson PO, Stockelberg D et al (1998) Plasma thrombopoietin levels in thrombocytopenic states: implication for a regulatory role of bone marrow megakaryocytes. Br J Haematol 101:420–4CrossRefPubMed Hou M, Andersson PO, Stockelberg D et al (1998) Plasma thrombopoietin levels in thrombocytopenic states: implication for a regulatory role of bone marrow megakaryocytes. Br J Haematol 101:420–4CrossRefPubMed
24.
Zurück zum Zitat Craddock CG Jr, Adams WS, Perry S et al (1955) The dynamics of platelet production as studied by a depletion technique in normal and irradiated dogs. J Lab Clin Med 45:906–19PubMed Craddock CG Jr, Adams WS, Perry S et al (1955) The dynamics of platelet production as studied by a depletion technique in normal and irradiated dogs. J Lab Clin Med 45:906–19PubMed
25.
Zurück zum Zitat Pisciotta AV, Stefanini M, Dameshek W et al (1953) Studies on platelets. X. Morphologic characteristics of megakaryocytes by phase contrast microscopy in normals and in patients with idiopathic thrombocytopenic purpura. Blood 8:703–23PubMed Pisciotta AV, Stefanini M, Dameshek W et al (1953) Studies on platelets. X. Morphologic characteristics of megakaryocytes by phase contrast microscopy in normals and in patients with idiopathic thrombocytopenic purpura. Blood 8:703–23PubMed
26.
Zurück zum Zitat Houwerzijl EJ, Blom NR, van der Want JJL et al (2006) Megakaryocytic dysfunction in myelodys- plastic syndromes and idiopathic thrombocytopenic purpura is in part due to different forms of cell death. Leukemia 20:1937–42CrossRefPubMed Houwerzijl EJ, Blom NR, van der Want JJL et al (2006) Megakaryocytic dysfunction in myelodys- plastic syndromes and idiopathic thrombocytopenic purpura is in part due to different forms of cell death. Leukemia 20:1937–42CrossRefPubMed
27.
Zurück zum Zitat Houwerzijl EJ, Blom NR, van der Want JJL et al (2004) Ultrastructural study shows morphologic features of apoptosis and para-apoptosis in megakaryocytes from patients with idiopathic thrombocytopenic purpura. Blood 103:500–6CrossRefPubMed Houwerzijl EJ, Blom NR, van der Want JJL et al (2004) Ultrastructural study shows morphologic features of apoptosis and para-apoptosis in megakaryocytes from patients with idiopathic thrombocytopenic purpura. Blood 103:500–6CrossRefPubMed
28.
Zurück zum Zitat Gunten SV, Wehrli M, Simon HU et al (2013) Cell death in immune thrombocytopenia: novel insights and perspectives. Semin Hematol 50:109–15CrossRef Gunten SV, Wehrli M, Simon HU et al (2013) Cell death in immune thrombocytopenia: novel insights and perspectives. Semin Hematol 50:109–15CrossRef
29.
Zurück zum Zitat Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–7CrossRefPubMed Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–7CrossRefPubMed
30.
Zurück zum Zitat Broudy VC, Lin NL, Kaushansky K et al (1995) Thrombopoietin (cmpl ligand) acts synergistically with erythropoietin, stem cell factor, and interleukin-11 to enhance murine megakaryocyte colony growth and increases megakaryocyte ploidy in vitro. Blood 85(7):1719–26PubMed Broudy VC, Lin NL, Kaushansky K et al (1995) Thrombopoietin (cmpl ligand) acts synergistically with erythropoietin, stem cell factor, and interleukin-11 to enhance murine megakaryocyte colony growth and increases megakaryocyte ploidy in vitro. Blood 85(7):1719–26PubMed
31.
Zurück zum Zitat Pallotta I, Lovett M, Rice W et al (2009) Bone marrow osteoblastic niche: a new model to study physiological regulation of megakaryopoiesis. PLoS One 4(12):e8359CrossRefPubMedPubMedCentral Pallotta I, Lovett M, Rice W et al (2009) Bone marrow osteoblastic niche: a new model to study physiological regulation of megakaryopoiesis. PLoS One 4(12):e8359CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Majumdar MK, Keane-Moore M, Buyaner D et al (2003) Characterization and functionality of cell surface molecules on human mesenchymal stem cells. J Biomed Sci 10(2):228–41CrossRefPubMed Majumdar MK, Keane-Moore M, Buyaner D et al (2003) Characterization and functionality of cell surface molecules on human mesenchymal stem cells. J Biomed Sci 10(2):228–41CrossRefPubMed
33.
Zurück zum Zitat Dimitriou HE, Linardakis G, Martimianaki et al (2008) Properties and potential of bone marrow mesenchymal stromal cells from children with hematologic diseases. Cytotherapy 10:125–133CrossRefPubMed Dimitriou HE, Linardakis G, Martimianaki et al (2008) Properties and potential of bone marrow mesenchymal stromal cells from children with hematologic diseases. Cytotherapy 10:125–133CrossRefPubMed
34.
Zurück zum Zitat Sun LY, Zhang HY, Feng XB et al (2007) Abnormality of bone marrow-derived mesenchymal stem cells in patients with systemic lupus erythematosus. Lupus 16:121–8CrossRefPubMed Sun LY, Zhang HY, Feng XB et al (2007) Abnormality of bone marrow-derived mesenchymal stem cells in patients with systemic lupus erythematosus. Lupus 16:121–8CrossRefPubMed
35.
Zurück zum Zitat Stasi R (2012) Immune thrombocytopenia: pathophysiologic and clinical update. Semin Thromb Hemost 38:454–62CrossRefPubMed Stasi R (2012) Immune thrombocytopenia: pathophysiologic and clinical update. Semin Thromb Hemost 38:454–62CrossRefPubMed
36.
Zurück zum Zitat Uccelli A, Moretta L, Pistoia V (2006) Immunoregulatory function of mesenchymal stem cells. Eur J Immunol 36:2566–73CrossRefPubMed Uccelli A, Moretta L, Pistoia V (2006) Immunoregulatory function of mesenchymal stem cells. Eur J Immunol 36:2566–73CrossRefPubMed
37.
Zurück zum Zitat Liu B, Zhao H, Poon MC et al (2007) Abnormality of CD4+CD25+ regulatory T cells in idiopathic thrombocytopenic purpura. Eur J Haematol 78:139–43PubMed Liu B, Zhao H, Poon MC et al (2007) Abnormality of CD4+CD25+ regulatory T cells in idiopathic thrombocytopenic purpura. Eur J Haematol 78:139–43PubMed
38.
Zurück zum Zitat Perez-Simon JA, Tabera S, Sarasquete ME et al (2009) Mesenchymal stem cells are functionally abnormal in patients with immune thrombocytopenic purpura. Cytotherapy 11:698–705CrossRefPubMed Perez-Simon JA, Tabera S, Sarasquete ME et al (2009) Mesenchymal stem cells are functionally abnormal in patients with immune thrombocytopenic purpura. Cytotherapy 11:698–705CrossRefPubMed
39.
Zurück zum Zitat Carvalho JF, Blank M, Shoenfeld Y et al (2007) Vascular endothelial growth factor (VEGF) in autoimmune diseases. J Clin Immunol 27:246–56CrossRefPubMed Carvalho JF, Blank M, Shoenfeld Y et al (2007) Vascular endothelial growth factor (VEGF) in autoimmune diseases. J Clin Immunol 27:246–56CrossRefPubMed
40.
Zurück zum Zitat Skibinski G (2003) The role of hepatocyte growth factor/c-met interactions in the immune system. Arch Immunol Ther Exp 51:277–82 Skibinski G (2003) The role of hepatocyte growth factor/c-met interactions in the immune system. Arch Immunol Ther Exp 51:277–82
41.
Zurück zum Zitat Roncarolo MG, Gregori S, Battaglia M et al (2006) Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol Rev 212:28–50CrossRefPubMed Roncarolo MG, Gregori S, Battaglia M et al (2006) Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol Rev 212:28–50CrossRefPubMed
42.
Zurück zum Zitat Kastrinaki MC, Pavlaki K, Batsali AK et al (2013) Mesenchymal stem cells in immune-mediated bone marrow failure syndromes. Clin Dev Immunol 10:1–10CrossRef Kastrinaki MC, Pavlaki K, Batsali AK et al (2013) Mesenchymal stem cells in immune-mediated bone marrow failure syndromes. Clin Dev Immunol 10:1–10CrossRef
43.
Zurück zum Zitat Kacena MA, Nelson T, Clough ME et al (2006) Megakaryocyte-mediated inhibition of osteoclast development. Bone 39(5):991–99CrossRefPubMed Kacena MA, Nelson T, Clough ME et al (2006) Megakaryocyte-mediated inhibition of osteoclast development. Bone 39(5):991–99CrossRefPubMed
44.
Zurück zum Zitat Ciovacco WA, Goldberg CG, Tayloret AF et al (2009) The role of gap junctions in megakaryocyte-mediated osteoblast proliferation and differentiation. Bone 44(1):80–86CrossRefPubMed Ciovacco WA, Goldberg CG, Tayloret AF et al (2009) The role of gap junctions in megakaryocyte-mediated osteoblast proliferation and differentiation. Bone 44(1):80–86CrossRefPubMed
45.
Zurück zum Zitat Lemieux JM, Horowitz MC, Kacena MA et al (2010) Involvement of integrins alpha(3)beta(1) and alpha(5)beta(1) and glycoprotein IIb in megakaryocyte-induced osteoblast proliferation. J Cell Biochem 109(5):927–32PubMedPubMedCentral Lemieux JM, Horowitz MC, Kacena MA et al (2010) Involvement of integrins alpha(3)beta(1) and alpha(5)beta(1) and glycoprotein IIb in megakaryocyte-induced osteoblast proliferation. J Cell Biochem 109(5):927–32PubMedPubMedCentral
46.
Zurück zum Zitat Azizdoost S, Fakher R, Saki N (2013) Bone marrow neoplastic niche in leukemia. ISH 10:1–8 Azizdoost S, Fakher R, Saki N (2013) Bone marrow neoplastic niche in leukemia. ISH 10:1–8
47.
Zurück zum Zitat Ciovacco WA, Cheng YH, Horowitz MC et al (2010) Immature and mature megakaryocytes enhance osteoblast proliferation and inhibit osteoclast formation. J Cell Biochem 109(4):774–81PubMedPubMedCentral Ciovacco WA, Cheng YH, Horowitz MC et al (2010) Immature and mature megakaryocytes enhance osteoblast proliferation and inhibit osteoclast formation. J Cell Biochem 109(4):774–81PubMedPubMedCentral
48.
Zurück zum Zitat Hamada T, Mohle R, Hesselgesser J et al (1998) Transendothelial migration of megakaryocytes in response to stromal cell-derived factor 1 (SDF-1) enhances platelet formation. J Exp Med 188:539–548CrossRefPubMedPubMedCentral Hamada T, Mohle R, Hesselgesser J et al (1998) Transendothelial migration of megakaryocytes in response to stromal cell-derived factor 1 (SDF-1) enhances platelet formation. J Exp Med 188:539–548CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Pitchford SC, Lodie T, Rankin SM et al (2012) VEGFR1 stimulates a CXCR4-dependent translocation of megakaryocytes to the vascular niche, enhancing platelet production in mice. Blood 120:2787–95CrossRefPubMed Pitchford SC, Lodie T, Rankin SM et al (2012) VEGFR1 stimulates a CXCR4-dependent translocation of megakaryocytes to the vascular niche, enhancing platelet production in mice. Blood 120:2787–95CrossRefPubMed
50.
Zurück zum Zitat Dominici M, Rasini V, Bussolari R et al (2009) Restoration and reversible expansion of the osteoblastic hematopoietic stem cell niche after marrow radioablation. Blood 114:2333–43CrossRefPubMedPubMedCentral Dominici M, Rasini V, Bussolari R et al (2009) Restoration and reversible expansion of the osteoblastic hematopoietic stem cell niche after marrow radioablation. Blood 114:2333–43CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Kostyak JC, Naik MU, Naik UP et al (2012) Calcium- and integrin-binding protein 1 regulates megakaryocyte ploidy, adhesion, and migration. Blood 119:838–46CrossRefPubMedPubMedCentral Kostyak JC, Naik MU, Naik UP et al (2012) Calcium- and integrin-binding protein 1 regulates megakaryocyte ploidy, adhesion, and migration. Blood 119:838–46CrossRefPubMedPubMedCentral
52.
Zurück zum Zitat Mo¨hle R, Green D, Moore MA et al (1997) Constitutive production and thrombin-induced release of vascularendothelial growth factor by human megakaryocytes and platelets. Proc Natl Acad Sci U S A 94(2):663–68CrossRef Mo¨hle R, Green D, Moore MA et al (1997) Constitutive production and thrombin-induced release of vascularendothelial growth factor by human megakaryocytes and platelets. Proc Natl Acad Sci U S A 94(2):663–68CrossRef
53.
Zurück zum Zitat Kwon SM, Lee JH, Lee SH et al (2014) Cross talk with hematopoietic cells regulates the endothelial progenitor cell differentiation of cd34 positive cells. PLoS One 9(8):e106310CrossRefPubMedPubMedCentral Kwon SM, Lee JH, Lee SH et al (2014) Cross talk with hematopoietic cells regulates the endothelial progenitor cell differentiation of cd34 positive cells. PLoS One 9(8):e106310CrossRefPubMedPubMedCentral
54.
Zurück zum Zitat Kong Y, Hu Y, Wang YZ et al (2014) Association between an impaired bone marrow vascular microenvironment and prolonged isolated thrombocytopenia after allogeneic hematopoietic stem cell transplantation. BB & MT 20(8):1190–97 Kong Y, Hu Y, Wang YZ et al (2014) Association between an impaired bone marrow vascular microenvironment and prolonged isolated thrombocytopenia after allogeneic hematopoietic stem cell transplantation. BB & MT 20(8):1190–97
55.
Zurück zum Zitat Mazharian A (2012) Assessment of megakaryocyte migration and chemotaxis. Methods Mol Biol 788:275–88CrossRefPubMed Mazharian A (2012) Assessment of megakaryocyte migration and chemotaxis. Methods Mol Biol 788:275–88CrossRefPubMed
56.
Zurück zum Zitat Tew JG, Dilosa RM, Burton G et al (1992) Germinal centers and antibody production in bone marrow. Immunol Rev 126:99–112CrossRefPubMed Tew JG, Dilosa RM, Burton G et al (1992) Germinal centers and antibody production in bone marrow. Immunol Rev 126:99–112CrossRefPubMed
57.
Zurück zum Zitat Belnoue E, Pihlgren M, McGaha T et al (2008) APRIL is critical for plasmablast survival in the bone marrow and poorly expressed by early-life bone marrow stromal cells. Blood 11(5):2755–64CrossRef Belnoue E, Pihlgren M, McGaha T et al (2008) APRIL is critical for plasmablast survival in the bone marrow and poorly expressed by early-life bone marrow stromal cells. Blood 11(5):2755–64CrossRef
58.
Zurück zum Zitat Winter O, Moser K, Mohr E et al (2010) Megakaryocytes constitute a functional component of a plasma cell niche in the bone marrow. Blood 116(11):1867–75CrossRefPubMed Winter O, Moser K, Mohr E et al (2010) Megakaryocytes constitute a functional component of a plasma cell niche in the bone marrow. Blood 116(11):1867–75CrossRefPubMed
59.
Zurück zum Zitat Psaila B, Lyden D, Roberts I et al (2012) Megakaryocytes, malignancy and bone marrow vascular niches. Thromb Haemost 10(2):177–188CrossRef Psaila B, Lyden D, Roberts I et al (2012) Megakaryocytes, malignancy and bone marrow vascular niches. Thromb Haemost 10(2):177–188CrossRef
60.
Zurück zum Zitat Kimura R, Nishioka T, Soemantri A et al (2005) Allele-specific transcript quantification detects haplotypic variation in the levels of the SDF-1 transcripts. Hum Mol Genet 14:1579–85CrossRefPubMed Kimura R, Nishioka T, Soemantri A et al (2005) Allele-specific transcript quantification detects haplotypic variation in the levels of the SDF-1 transcripts. Hum Mol Genet 14:1579–85CrossRefPubMed
61.
Zurück zum Zitat Lima G, Soto-Vega E, Atisha-Fregoso Y et al (2007) MCP-1, RANTES, and SDF-1 polymorphisms in Mexican patients with systemic lupus erythematosus. Hum Immunol 68:980–5CrossRefPubMed Lima G, Soto-Vega E, Atisha-Fregoso Y et al (2007) MCP-1, RANTES, and SDF-1 polymorphisms in Mexican patients with systemic lupus erythematosus. Hum Immunol 68:980–5CrossRefPubMed
62.
Zurück zum Zitat McMillan R (2007) The pathogenesis of chronic immune thrombocytopenic purpura. Semin Hematol 44:3–11CrossRef McMillan R (2007) The pathogenesis of chronic immune thrombocytopenic purpura. Semin Hematol 44:3–11CrossRef
63.
Zurück zum Zitat Cheng G, Saleh MN, Marcher C et al (2011) Eltrombopag for management of chronic immune thrombocytopenia (RAISE): a 6-month, randomized, phase 3 study. Lancet 377:393–402CrossRefPubMed Cheng G, Saleh MN, Marcher C et al (2011) Eltrombopag for management of chronic immune thrombocytopenia (RAISE): a 6-month, randomized, phase 3 study. Lancet 377:393–402CrossRefPubMed
64.
Zurück zum Zitat Sheng GY, Huang XL, Bai ST et al (2004) Expression levels of CXCR4 on megakaryocytes and its ligand in bone marrow in children with acute idiopathic thrombocytopenic purpura. ZhonghuaErKeZaZhi 42:499–501 Sheng GY, Huang XL, Bai ST et al (2004) Expression levels of CXCR4 on megakaryocytes and its ligand in bone marrow in children with acute idiopathic thrombocytopenic purpura. ZhonghuaErKeZaZhi 42:499–501
65.
Zurück zum Zitat Apostolidis PA, Woulfe DS, Chavez M et al (2012) Role of tumor suppressor P53 in megakaryopoiesis and platelet function. Exp Hematol 40(2):131–42CrossRefPubMed Apostolidis PA, Woulfe DS, Chavez M et al (2012) Role of tumor suppressor P53 in megakaryopoiesis and platelet function. Exp Hematol 40(2):131–42CrossRefPubMed
66.
Zurück zum Zitat Smith MJ, Koch GL (1989) Multiple zones in the sequence of calreticulin (CRP55, calregulin, HACBP), a major calcium binding ER/SR protein. EMBO J 8(12):3581–86PubMedPubMedCentral Smith MJ, Koch GL (1989) Multiple zones in the sequence of calreticulin (CRP55, calregulin, HACBP), a major calcium binding ER/SR protein. EMBO J 8(12):3581–86PubMedPubMedCentral
67.
Zurück zum Zitat Anindo MIK, Yaqinuddin A (2012) Insights into the potential use of microRNAs as biomarker in cancer. Int J Surg 10:443–49CrossRefPubMed Anindo MIK, Yaqinuddin A (2012) Insights into the potential use of microRNAs as biomarker in cancer. Int J Surg 10:443–49CrossRefPubMed
68.
Zurück zum Zitat Li H, Zhao H, Wang D et al (2011) MicroRNA regulation in megakaryocytopoiesis. BJH 155:298–07CrossRefPubMed Li H, Zhao H, Wang D et al (2011) MicroRNA regulation in megakaryocytopoiesis. BJH 155:298–07CrossRefPubMed
69.
Zurück zum Zitat Ishibashi T, Kimura H, Uchida T et al (1989) Human interleukin 6 is a direct promoter of maturation of megakaryocytes in vitro. Proc Natl Acad Sci U S A 86(15):5953–57CrossRefPubMedPubMedCentral Ishibashi T, Kimura H, Uchida T et al (1989) Human interleukin 6 is a direct promoter of maturation of megakaryocytes in vitro. Proc Natl Acad Sci U S A 86(15):5953–57CrossRefPubMedPubMedCentral
70.
Zurück zum Zitat Garzon R, Pichiorri F, Palumbo T et al (2006) MicroRNA fingerprints during human megakaryocytopoiesis. Proc Natl Acad Sci U S A 103(13):5078–83CrossRefPubMedPubMedCentral Garzon R, Pichiorri F, Palumbo T et al (2006) MicroRNA fingerprints during human megakaryocytopoiesis. Proc Natl Acad Sci U S A 103(13):5078–83CrossRefPubMedPubMedCentral
71.
Zurück zum Zitat Li J, Wan Y, Guo Q et al (2010) Altered microRNA expression profile with miR-146a upregulation in CD4þ T cells from patients with rheumatoid arthritis. Arthritis Res Ther 12:81–8CrossRef Li J, Wan Y, Guo Q et al (2010) Altered microRNA expression profile with miR-146a upregulation in CD4þ T cells from patients with rheumatoid arthritis. Arthritis Res Ther 12:81–8CrossRef
72.
Zurück zum Zitat Paul AB, James B, Zeeshan H et al (2013) The beta 1 tubulin R307H single nucleotide polymorphism is associated with treatment failures in immune thrombocytopenia (ITP). Br J Haematol 160:237–243CrossRef Paul AB, James B, Zeeshan H et al (2013) The beta 1 tubulin R307H single nucleotide polymorphism is associated with treatment failures in immune thrombocytopenia (ITP). Br J Haematol 160:237–243CrossRef
73.
Zurück zum Zitat Maia MH, PeixotoRde L, de Lima CP et al (2009) Predisposition to idiopathic thrombocytopenic purpura maps close to the major histocompatibility complex class I chain-related gene A. Hum Immunol 70:179–83CrossRefPubMed Maia MH, PeixotoRde L, de Lima CP et al (2009) Predisposition to idiopathic thrombocytopenic purpura maps close to the major histocompatibility complex class I chain-related gene A. Hum Immunol 70:179–83CrossRefPubMed
74.
Zurück zum Zitat Saıtoh T, Kasamatsu T, Inoue M et al (2011) Interleukin-10 gene polymorphism reflects the severity of chronic immune thrombocytopenia in Japanese patients. Int J Lab Hematol 33:526–32PubMed Saıtoh T, Kasamatsu T, Inoue M et al (2011) Interleukin-10 gene polymorphism reflects the severity of chronic immune thrombocytopenia in Japanese patients. Int J Lab Hematol 33:526–32PubMed
75.
Zurück zum Zitat Tesse R, Del Vecchio GC, De Mattia D et al (2012) Association of interleukin-(IL-10) haplotypes and serum IL-10 levels in the progression of childhood immune thrombocytopenic purpura. Gene 505:53–56CrossRefPubMed Tesse R, Del Vecchio GC, De Mattia D et al (2012) Association of interleukin-(IL-10) haplotypes and serum IL-10 levels in the progression of childhood immune thrombocytopenic purpura. Gene 505:53–56CrossRefPubMed
76.
Zurück zum Zitat Abuzenadah AM, Zaher GF, Dallol A et al (2013) Identification of a novel SBF2 missense mutationassociated with a rare case of thrombocytopenia using whole-exome sequencing. J Thromb Thrombolysis 36:501–06CrossRefPubMed Abuzenadah AM, Zaher GF, Dallol A et al (2013) Identification of a novel SBF2 missense mutationassociated with a rare case of thrombocytopenia using whole-exome sequencing. J Thromb Thrombolysis 36:501–06CrossRefPubMed
77.
Zurück zum Zitat Li H, Zhao H, Xue F et al (2013) Reduced expression of mIR409-3p in primary immune thrombocytopenia. Br J Haematol 161:128–135CrossRefPubMed Li H, Zhao H, Xue F et al (2013) Reduced expression of mIR409-3p in primary immune thrombocytopenia. Br J Haematol 161:128–135CrossRefPubMed
78.
Zurück zum Zitat Martyre MC, Le Bousse-Kerdiles MC, Romquin N et al (1997) Elevated levels of basic fibroblast growth factor in megakaryocytes and platelets from patients with idiopathic myelofibrosis. Br J Haematol 97:441–48CrossRefPubMed Martyre MC, Le Bousse-Kerdiles MC, Romquin N et al (1997) Elevated levels of basic fibroblast growth factor in megakaryocytes and platelets from patients with idiopathic myelofibrosis. Br J Haematol 97:441–48CrossRefPubMed
79.
Zurück zum Zitat Avraham H, Banu N, Scadden DT et al (1994) Modulation of megakaryocytopoiesis by human basic fibroblastgrowth factor. Blood 83:2126–2132PubMed Avraham H, Banu N, Scadden DT et al (1994) Modulation of megakaryocytopoiesis by human basic fibroblastgrowth factor. Blood 83:2126–2132PubMed
80.
Zurück zum Zitat Allouche M (1995) Basic fibroblast growth factor and hematopoiesis. Leukemia 9:937–942PubMed Allouche M (1995) Basic fibroblast growth factor and hematopoiesis. Leukemia 9:937–942PubMed
81.
Zurück zum Zitat Yoon SY, Tefferi A, Li CY et al (2001) Bone marrow stromal cell distribution of basic fibroblast growth factor in chronic myeloid disorders. Haematologica 86:52–57PubMed Yoon SY, Tefferi A, Li CY et al (2001) Bone marrow stromal cell distribution of basic fibroblast growth factor in chronic myeloid disorders. Haematologica 86:52–57PubMed
82.
Zurück zum Zitat Basciano PA, Bussel JB (2012) Thrombopoietin-receptor agonists. Curr Opin Hematol 19:392–398CrossRefPubMed Basciano PA, Bussel JB (2012) Thrombopoietin-receptor agonists. Curr Opin Hematol 19:392–398CrossRefPubMed
Metadaten
Titel
Bone marrow niche in immune thrombocytopenia: a focus on megakaryopoiesis
verfasst von
Elaheh Khodadi
Ali Amin Asnafi
Saeid Shahrabi
Mohammad Shahjahani
Najmaldin Saki
Publikationsdatum
28.05.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Annals of Hematology / Ausgabe 11/2016
Print ISSN: 0939-5555
Elektronische ISSN: 1432-0584
DOI
https://doi.org/10.1007/s00277-016-2703-1

Weitere Artikel der Ausgabe 11/2016

Annals of Hematology 11/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Reizdarmsyndrom: Diäten wirksamer als Medikamente

29.04.2024 Reizdarmsyndrom Nachrichten

Bei Reizdarmsyndrom scheinen Diäten, wie etwa die FODMAP-arme oder die kohlenhydratreduzierte Ernährung, effektiver als eine medikamentöse Therapie zu sein. Das hat eine Studie aus Schweden ergeben, die die drei Therapieoptionen im direkten Vergleich analysierte.

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.