Skip to main content
Erschienen in: European Radiology 1/2018

14.07.2017 | Urogenital

Assessment of acute kidney injury with T1 mapping MRI following solid organ transplantation

verfasst von: Matti Peperhove, Van Dai Vo Chieu, Mi-Sun Jang, Marcel Gutberlet, Dagmar Hartung, Susanne Tewes, Gregor Warnecke, Christiane Fegbeutel, Axel Haverich, Wilfried Gwinner, Frank Lehner, Jan Hinrich Bräsen, Hermann Haller, Frank Wacker, Faikah Gueler, Katja Hueper

Erschienen in: European Radiology | Ausgabe 1/2018

Einloggen, um Zugang zu erhalten

Abstract

Objectives

To evaluate T1 mapping as a non-invasive, functional MRI biomarker in patients shortly after solid organ transplantation to detect acute postsurgical kidney damage and to correlate T1 times with renal function.

Methods

101 patients within 2 weeks after solid organ transplantation (49 kidney transplantation, 52 lung transplantation) and 14 healthy volunteers were examined by MRI between July 2012 and April 2015 using the modified Look–Locker inversion recovery (MOLLI) sequence. T1 times in renal cortex and medulla and the corticomedullary difference were compared between groups using one-way ANOVA adjusted for multiple comparison with the Tukey test, and T1 times were correlated with renal function using Pearson’s correlation.

Results

Compared to healthy volunteers T1 times were significantly increased after solid organ transplantation in the renal cortex (healthy volunteers 987 ± 102 ms; kidney transplantation 1299 ± 101 ms, p < 0.001; lung transplantation 1058 ± 96 ms, p < 0.05) and to a lesser extent in the renal medulla. Accordingly, the corticomedullary difference was diminished shortly after solid organ transplantation. T1 changes were more pronounced following kidney compared to lung transplantation, were associated with the stage of renal impairment and significantly correlated with renal function.

Conclusions

T1 mapping may be helpful for early non-invasive assessment of acute kidney injury and renal pathology following major surgery such as solid organ transplantation.

Key Points

Renal cortical T1 relaxation times are prolonged after solid organ transplantation.
Cortical T1 values increase with higher stages of renal function impairment.
Corticomedullary difference decreases with higher stages of renal function impairment.
Renal cortical T1 relaxation time and corticomedullary difference correlate with renal function.
T1 mapping may be helpful for non-invasive assessment of post-operative renal pathology.
Literatur
1.
Zurück zum Zitat Rocha PN, Rocha AT, Palmer SM, Davis RD, Smith SR (2005) Acute renal failure after lung transplantation: incidence, predictors and impact on perioperative morbidity and mortality. Am J Transplant 5:1469–1476CrossRefPubMed Rocha PN, Rocha AT, Palmer SM, Davis RD, Smith SR (2005) Acute renal failure after lung transplantation: incidence, predictors and impact on perioperative morbidity and mortality. Am J Transplant 5:1469–1476CrossRefPubMed
2.
Zurück zum Zitat Arnaoutakis GJ, George TJ, Robinson CW et al (2011) Severe acute kidney injury according to the RIFLE (risk, injury, failure, loss, end stage) criteria affects mortality in lung transplantation. J Heart Lung Transplant 30:1161–1168CrossRefPubMedPubMedCentral Arnaoutakis GJ, George TJ, Robinson CW et al (2011) Severe acute kidney injury according to the RIFLE (risk, injury, failure, loss, end stage) criteria affects mortality in lung transplantation. J Heart Lung Transplant 30:1161–1168CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Wehbe E, Brock R, Budev M et al (2012) Short-term and long-term outcomes of acute kidney injury after lung transplantation. J Heart Lung Transplant 31:244–251CrossRefPubMed Wehbe E, Brock R, Budev M et al (2012) Short-term and long-term outcomes of acute kidney injury after lung transplantation. J Heart Lung Transplant 31:244–251CrossRefPubMed
4.
Zurück zum Zitat Li X, Hassoun HT, Santora R, Rabb H (2009) Organ crosstalk: the role of the kidney. Curr Opin Crit Care 15:481–487CrossRefPubMed Li X, Hassoun HT, Santora R, Rabb H (2009) Organ crosstalk: the role of the kidney. Curr Opin Crit Care 15:481–487CrossRefPubMed
5.
Zurück zum Zitat Basile DP (2007) The endothelial cell in ischemic acute kidney injury: implications for acute and chronic function. Kidney Int 72:151–156CrossRefPubMed Basile DP (2007) The endothelial cell in ischemic acute kidney injury: implications for acute and chronic function. Kidney Int 72:151–156CrossRefPubMed
6.
Zurück zum Zitat Sutton TA, Molitoris BA (1998) Mechanisms of cellular injury in ischemic acute renal failure. Semin Nephrol 18:490–497PubMed Sutton TA, Molitoris BA (1998) Mechanisms of cellular injury in ischemic acute renal failure. Semin Nephrol 18:490–497PubMed
7.
Zurück zum Zitat Leung KC, Tonelli M, James MT (2013) Chronic kidney disease following acute kidney injury-risk and outcomes. Nat Rev Nephrol 9:77–85CrossRefPubMed Leung KC, Tonelli M, James MT (2013) Chronic kidney disease following acute kidney injury-risk and outcomes. Nat Rev Nephrol 9:77–85CrossRefPubMed
9.
Zurück zum Zitat Chawla LS, Eggers PW, Star RA, Kimmel PL (2014) Acute kidney injury and chronic kidney disease as interconnected syndromes. N Engl J Med 371:58–66CrossRefPubMed Chawla LS, Eggers PW, Star RA, Kimmel PL (2014) Acute kidney injury and chronic kidney disease as interconnected syndromes. N Engl J Med 371:58–66CrossRefPubMed
10.
Zurück zum Zitat Cavaille-Coll M, Bala S, Velidedeoglu E et al (2013) Summary of FDA workshop on ischemia reperfusion injury in kidney transplantation. Am J Transplant 13:1134–1148CrossRefPubMed Cavaille-Coll M, Bala S, Velidedeoglu E et al (2013) Summary of FDA workshop on ischemia reperfusion injury in kidney transplantation. Am J Transplant 13:1134–1148CrossRefPubMed
11.
Zurück zum Zitat McCullough PA, Shaw AD, Haase M et al (2013) Diagnosis of acute kidney injury using functional and injury biomarkers: workgroup statements from the tenth Acute Dialysis Quality Initiative Consensus Conference. Contrib Nephrol 182:13–29CrossRefPubMed McCullough PA, Shaw AD, Haase M et al (2013) Diagnosis of acute kidney injury using functional and injury biomarkers: workgroup statements from the tenth Acute Dialysis Quality Initiative Consensus Conference. Contrib Nephrol 182:13–29CrossRefPubMed
12.
Zurück zum Zitat Hueper K, Peperhove M, Rong S et al (2014) T1-mapping for assessment of ischemia-induced acute kidney injury and prediction of chronic kidney disease in mice. Eur Radiol 24:2252–2260CrossRefPubMed Hueper K, Peperhove M, Rong S et al (2014) T1-mapping for assessment of ischemia-induced acute kidney injury and prediction of chronic kidney disease in mice. Eur Radiol 24:2252–2260CrossRefPubMed
13.
Zurück zum Zitat de Miguel MH, Yeung HN, Goyal M et al (1994) Evaluation of quantitative magnetic resonance imaging as a noninvasive technique for measuring renal scarring in a rabbit model of antiglomerular basement membrane disease. J Am Soc Nephrol 4:1861–1868PubMed de Miguel MH, Yeung HN, Goyal M et al (1994) Evaluation of quantitative magnetic resonance imaging as a noninvasive technique for measuring renal scarring in a rabbit model of antiglomerular basement membrane disease. J Am Soc Nephrol 4:1861–1868PubMed
14.
Zurück zum Zitat Lee VS, Kaur M, Bokacheva L et al (2007) What causes diminished corticomedullary differentiation in renal insufficiency? J Magn Reson Imaging 25:790–795CrossRefPubMed Lee VS, Kaur M, Bokacheva L et al (2007) What causes diminished corticomedullary differentiation in renal insufficiency? J Magn Reson Imaging 25:790–795CrossRefPubMed
15.
Zurück zum Zitat Huang Y, Sadowski EA, Artz NS et al (2011) Measurement and comparison of T1 relaxation times in native and transplanted kidney cortex and medulla. J Magn Reson Imaging 33:1241–1247CrossRefPubMedPubMedCentral Huang Y, Sadowski EA, Artz NS et al (2011) Measurement and comparison of T1 relaxation times in native and transplanted kidney cortex and medulla. J Magn Reson Imaging 33:1241–1247CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Hueper K, Khalifa AA, Brasen JH et al (2016) Diffusion-Weighted imaging and diffusion tensor imaging detect delayed graft function and correlate with allograft fibrosis in patients early after kidney transplantation. J Magn Reson Imaging 44:112–121CrossRefPubMed Hueper K, Khalifa AA, Brasen JH et al (2016) Diffusion-Weighted imaging and diffusion tensor imaging detect delayed graft function and correlate with allograft fibrosis in patients early after kidney transplantation. J Magn Reson Imaging 44:112–121CrossRefPubMed
17.
Zurück zum Zitat Levin A, Stevens PE (2014) Summary of KDIGO 2012 CKD Guideline: behind the scenes, need for guidance, and a framework for moving forward. Kidney Int 85:49–61CrossRefPubMed Levin A, Stevens PE (2014) Summary of KDIGO 2012 CKD Guideline: behind the scenes, need for guidance, and a framework for moving forward. Kidney Int 85:49–61CrossRefPubMed
18.
Zurück zum Zitat Hueper K, Gueler F, Brasen JH et al (2015) Functional MRI detects perfusion impairment in renal allografts with delayed graft function. Am J Physiol Ren Physiol 308:F1444–F1451CrossRef Hueper K, Gueler F, Brasen JH et al (2015) Functional MRI detects perfusion impairment in renal allografts with delayed graft function. Am J Physiol Ren Physiol 308:F1444–F1451CrossRef
19.
Zurück zum Zitat Kiricuta IC Jr, Simplaceanu V (1975) Tissue water content and nuclear magnetic resonance in normal and tumor tissues. Cancer Res 35:1164–1167PubMed Kiricuta IC Jr, Simplaceanu V (1975) Tissue water content and nuclear magnetic resonance in normal and tumor tissues. Cancer Res 35:1164–1167PubMed
20.
Zurück zum Zitat Kundel HL, Schlakman B, Joseph PM, Fishman JE, Summers R (1986) Water content and NMR relaxation time gradients in the rabbit kidney. Investig Radiol 21:12–17CrossRef Kundel HL, Schlakman B, Joseph PM, Fishman JE, Summers R (1986) Water content and NMR relaxation time gradients in the rabbit kidney. Investig Radiol 21:12–17CrossRef
21.
Zurück zum Zitat de Bazelaire CM, Duhamel GD, Rofsky NM, Alsop DC (2004) MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology 230:652–659CrossRefPubMed de Bazelaire CM, Duhamel GD, Rofsky NM, Alsop DC (2004) MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology 230:652–659CrossRefPubMed
22.
Zurück zum Zitat Hueper K, Hensen B, Gutberlet M et al (2016) Kidney transplantation: multiparametric functional magnetic resonance imaging for assessment of renal allograft pathophysiology in mice. Investig Radiol 51:58–65CrossRef Hueper K, Hensen B, Gutberlet M et al (2016) Kidney transplantation: multiparametric functional magnetic resonance imaging for assessment of renal allograft pathophysiology in mice. Investig Radiol 51:58–65CrossRef
23.
Zurück zum Zitat Breidthardt T, Cox EF, Squire I et al (2015) The pathophysiology of the chronic cardiorenal syndrome: a magnetic resonance imaging study. Eur Radiol 25:1684–1691CrossRefPubMed Breidthardt T, Cox EF, Squire I et al (2015) The pathophysiology of the chronic cardiorenal syndrome: a magnetic resonance imaging study. Eur Radiol 25:1684–1691CrossRefPubMed
24.
Zurück zum Zitat Semelka RC, Corrigan K, Ascher SM, Brown JJ, Colindres RE (1994) Renal corticomedullary differentiation: observation in patients with differing serum creatinine levels. Radiology 190:149–152CrossRefPubMed Semelka RC, Corrigan K, Ascher SM, Brown JJ, Colindres RE (1994) Renal corticomedullary differentiation: observation in patients with differing serum creatinine levels. Radiology 190:149–152CrossRefPubMed
25.
Zurück zum Zitat Lee KS, Munoz A, Baez AB, Ngo L, Rofsky NM, Pedrosa I (2012) Corticomedullary differentiation on T1-Weighted MRI: comparison between cirrhotic and noncirrhotic patients. J Magn Reson Imaging 35:644–649CrossRefPubMed Lee KS, Munoz A, Baez AB, Ngo L, Rofsky NM, Pedrosa I (2012) Corticomedullary differentiation on T1-Weighted MRI: comparison between cirrhotic and noncirrhotic patients. J Magn Reson Imaging 35:644–649CrossRefPubMed
26.
Zurück zum Zitat Kanki A, Ito K, Tamada T et al (2013) Corticomedullary differentiation of the kidney: evaluation with noncontrast-enhanced steady-state free precession (SSFP) MRI with time-spatial labeling inversion pulse (time-SLIP). J Magn Reson Imaging 37:1178–1181CrossRefPubMed Kanki A, Ito K, Tamada T et al (2013) Corticomedullary differentiation of the kidney: evaluation with noncontrast-enhanced steady-state free precession (SSFP) MRI with time-spatial labeling inversion pulse (time-SLIP). J Magn Reson Imaging 37:1178–1181CrossRefPubMed
27.
Zurück zum Zitat Hricak H, Terrier F, Demas BE (1986) Renal allografts: evaluation by MR imaging. Radiology 159:435–441CrossRefPubMed Hricak H, Terrier F, Demas BE (1986) Renal allografts: evaluation by MR imaging. Radiology 159:435–441CrossRefPubMed
Metadaten
Titel
Assessment of acute kidney injury with T1 mapping MRI following solid organ transplantation
verfasst von
Matti Peperhove
Van Dai Vo Chieu
Mi-Sun Jang
Marcel Gutberlet
Dagmar Hartung
Susanne Tewes
Gregor Warnecke
Christiane Fegbeutel
Axel Haverich
Wilfried Gwinner
Frank Lehner
Jan Hinrich Bräsen
Hermann Haller
Frank Wacker
Faikah Gueler
Katja Hueper
Publikationsdatum
14.07.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 1/2018
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-017-4943-4

Weitere Artikel der Ausgabe 1/2018

European Radiology 1/2018 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.