Skip to main content
Erschienen in: European Archives of Oto-Rhino-Laryngology 8/2017

25.05.2017 | Rhinology

New CFD tools to evaluate nasal airflow

verfasst von: M. A. Burgos, E. Sanmiguel-Rojas, C. del Pino, M. A. Sevilla-García, F. Esteban-Ortega

Erschienen in: European Archives of Oto-Rhino-Laryngology | Ausgabe 8/2017

Einloggen, um Zugang zu erhalten

Abstract

Computational fluid dynamics (CFD) is a mathematical tool to analyse airflow. As currently CFD is not a usual tool for rhinologists, a group of engineers in collaboration with experts in Rhinology have developed a very intuitive CFD software. The program MECOMLAND® only required snapshots from the patient’s cross-sectional (tomographic) images, being the output those results originated by CFD, such as airflow distributions, velocity profiles, pressure, temperature, or wall shear stress. This is useful complementary information to cover diagnosis, prognosis, or follow-up of nasal pathologies based on quantitative magnitudes linked to airflow. In addition, the user-friendly environment NOSELAND® helps the medical assessment significantly in the post-processing phase with dynamic reports using a 3D endoscopic view. Specialists in Rhinology have been asked for a more intuitive, simple, powerful CFD software to offer more quality and precision in their work to evaluate the nasal airflow. We present MECOMLAND® and NOSELAND® which have all the expected characteristics to fulfil this demand and offer a proper assessment with the maximum of quality plus safety for the patient. These programs represent a non-invasive, low-cost (as the CT scan is already performed in every patient) alternative for the functional study of the difficult rhinologic case. To validate the software, we studied two groups of patients from the Ear Nose Throat clinic, a first group with normal noses and a second group presenting septal deviations. Wall shear stresses are lower in the cases of normal noses in comparison with those for septal deviation. Besides, velocity field distributions, pressure drop between nasopharynx and the ambient, and flow rates in each nostril were different among the nasal cavities in the two groups. These software modules open up a promising future to simulate the nasal airflow behaviour in virtual surgery intervention scenarios under different pressure or temperature conditions to understand the effects on nasal airflow.
Literatur
1.
Zurück zum Zitat André R, Vuyk H, Ahmed A, Graamans K, Nolst-Trenité G (2009) Correlation between subjective and objective evaluation of the nasal airway. a systematic review of the highest level of evidence. Clin Otolaryngol 34:518–525CrossRefPubMed André R, Vuyk H, Ahmed A, Graamans K, Nolst-Trenité G (2009) Correlation between subjective and objective evaluation of the nasal airway. a systematic review of the highest level of evidence. Clin Otolaryngol 34:518–525CrossRefPubMed
2.
Zurück zum Zitat Bailie N, Hanna B, Watterson J, Gallagher G (2006) An overview of numerical modelling of nasal airflow. Rhinology 44:53–57PubMed Bailie N, Hanna B, Watterson J, Gallagher G (2006) An overview of numerical modelling of nasal airflow. Rhinology 44:53–57PubMed
3.
Zurück zum Zitat Burgos M, Sanmiguel-Rojas E, Martín-Alcántara A, Hidalgo-Martínez M (2014) Effects of the ambient temperature on the airflow across a caucasian nasal cavity. Int J Numer Method Biomed Eng 30:430–445CrossRefPubMed Burgos M, Sanmiguel-Rojas E, Martín-Alcántara A, Hidalgo-Martínez M (2014) Effects of the ambient temperature on the airflow across a caucasian nasal cavity. Int J Numer Method Biomed Eng 30:430–445CrossRefPubMed
4.
Zurück zum Zitat Chen X, Lee H, Chong VH, Wang D (2009) Assessment of septal deviation effects on nasal air flow: a computational fluid dynamics model. Laryngoscope 119:1730–1736CrossRefPubMed Chen X, Lee H, Chong VH, Wang D (2009) Assessment of septal deviation effects on nasal air flow: a computational fluid dynamics model. Laryngoscope 119:1730–1736CrossRefPubMed
6.
Zurück zum Zitat Elad D, Naftali S, Rosenfeld M, Wolf M (2006) Physical stresses at the air-wall interface of the human nasal cavity during breathing. J Appl Physiol 100:1003–1010CrossRefPubMed Elad D, Naftali S, Rosenfeld M, Wolf M (2006) Physical stresses at the air-wall interface of the human nasal cavity during breathing. J Appl Physiol 100:1003–1010CrossRefPubMed
7.
Zurück zum Zitat Farmer S, Eccles R (2007) Chronic inferior turbinate enlargement and the implications for surgical intervention. Rhinology 4:234–238 Farmer S, Eccles R (2007) Chronic inferior turbinate enlargement and the implications for surgical intervention. Rhinology 4:234–238
8.
Zurück zum Zitat Fokkens W, Hellings P (2014) Objective measurements of nasal function: necessary before nasal surgery? Rhinology 52:289PubMed Fokkens W, Hellings P (2014) Objective measurements of nasal function: necessary before nasal surgery? Rhinology 52:289PubMed
9.
Zurück zum Zitat Frank-Ito D, Kimbell J, Laud P, Garcia G, Rhee J (2014) Predicting post-surgery nasal physiology with computational modeling: current challenges and limitations. Otolaryngol Head Neck Surg 151:751–759CrossRefPubMedPubMedCentral Frank-Ito D, Kimbell J, Laud P, Garcia G, Rhee J (2014) Predicting post-surgery nasal physiology with computational modeling: current challenges and limitations. Otolaryngol Head Neck Surg 151:751–759CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Grant O, Bailie N, Watterson J, Cole J, Gallagher G, Hanna B (2004) Numerical model of a nasal septal perforation. Stud Health Technol Inform 107:1352–1356PubMed Grant O, Bailie N, Watterson J, Cole J, Gallagher G, Hanna B (2004) Numerical model of a nasal septal perforation. Stud Health Technol Inform 107:1352–1356PubMed
11.
Zurück zum Zitat Hahn I, Scherer P, Mozell M (1993) Velocity profiles measured for airflow through a large-scale model of the human nasal cavity. J App Physiol 75:2273–2287 Hahn I, Scherer P, Mozell M (1993) Velocity profiles measured for airflow through a large-scale model of the human nasal cavity. J App Physiol 75:2273–2287
12.
Zurück zum Zitat Ishikawa S, Nakayama T, Watanabe M, Matsuzawa T (2006) Visualization of flow resistance in physiological nasal respiration: analysis of velocity and vorticities using numerical simulation. Arch Otolaryngol Head Neck Surg 132:1203–1209CrossRefPubMed Ishikawa S, Nakayama T, Watanabe M, Matsuzawa T (2006) Visualization of flow resistance in physiological nasal respiration: analysis of velocity and vorticities using numerical simulation. Arch Otolaryngol Head Neck Surg 132:1203–1209CrossRefPubMed
13.
Zurück zum Zitat Leong S, Chen X, Lee H, Wang D (2010) A review of the implications of computational fluid dynamic studies on nasal airflow and physiology. Rhinology 48:139–145PubMed Leong S, Chen X, Lee H, Wang D (2010) A review of the implications of computational fluid dynamic studies on nasal airflow and physiology. Rhinology 48:139–145PubMed
14.
Zurück zum Zitat Lorensen W, Cline H (1987) Marching cubes: a high resolution 3d surface construction algorithm. ACM Comput Graph 21:163–169CrossRef Lorensen W, Cline H (1987) Marching cubes: a high resolution 3d surface construction algorithm. ACM Comput Graph 21:163–169CrossRef
15.
Zurück zum Zitat Quadrio M, Pipolo C, Corti S, Lenzi R, Messina F, Pesci C, Felisati G (2014) Review of computational fluid dynamics in the assessment of nasal air flow and analysis of its limitations. Eur Arch Otorhinolaryngol 271:2349–2354CrossRefPubMed Quadrio M, Pipolo C, Corti S, Lenzi R, Messina F, Pesci C, Felisati G (2014) Review of computational fluid dynamics in the assessment of nasal air flow and analysis of its limitations. Eur Arch Otorhinolaryngol 271:2349–2354CrossRefPubMed
16.
Zurück zum Zitat Taylor D, Doorly D, Schroter R (2010) Inflow boundary profile prescription for numerical simulation of nasal airflow. J R Soc Interface 151:751–759 Taylor D, Doorly D, Schroter R (2010) Inflow boundary profile prescription for numerical simulation of nasal airflow. J R Soc Interface 151:751–759
17.
Zurück zum Zitat Wang D, Lee H, Gordon B (2012) Impacts of fluid dynamics simulation in study of nasal airflow physiology and pathophysiology in realistic human three-dimensional nose models. Clin Exp Otorhinolaryngol 5:181–187CrossRefPubMedCentral Wang D, Lee H, Gordon B (2012) Impacts of fluid dynamics simulation in study of nasal airflow physiology and pathophysiology in realistic human three-dimensional nose models. Clin Exp Otorhinolaryngol 5:181–187CrossRefPubMedCentral
18.
Zurück zum Zitat Wang Y, Liu Y, Sun X, Yu S, Gao Y (2009) Numerical analysis of respiratory flow patterns within human upper airway. Acta Mech Sin 25:737–746CrossRef Wang Y, Liu Y, Sun X, Yu S, Gao Y (2009) Numerical analysis of respiratory flow patterns within human upper airway. Acta Mech Sin 25:737–746CrossRef
19.
Zurück zum Zitat Weinhold I, Mlynski G (2004) Numerical simulation of airflow in the human nose. Eur Arch Otorhinolaryngol 261:452–455CrossRefPubMed Weinhold I, Mlynski G (2004) Numerical simulation of airflow in the human nose. Eur Arch Otorhinolaryngol 261:452–455CrossRefPubMed
20.
Zurück zum Zitat Wen J, Inthavong K, Tu J (2008) Numerical simulations for detailed airflow dynamics in a human nasal cavity. Respir Physiol Neurobiol 161:125–135CrossRefPubMed Wen J, Inthavong K, Tu J (2008) Numerical simulations for detailed airflow dynamics in a human nasal cavity. Respir Physiol Neurobiol 161:125–135CrossRefPubMed
21.
Zurück zum Zitat Xiong G, Zhan J, Jiang H, Li J, Rong L, Xu G (2008) Computational fluid dynamics simulation of airflow in the normal nasal cavity and paranasal sinuses. Am J Rhinol 22:477–482CrossRefPubMed Xiong G, Zhan J, Jiang H, Li J, Rong L, Xu G (2008) Computational fluid dynamics simulation of airflow in the normal nasal cavity and paranasal sinuses. Am J Rhinol 22:477–482CrossRefPubMed
22.
Zurück zum Zitat Zachow S, Muigg P, Hildebrandt T, Doleisch H, Hege H (2009) Visual exploration of nasal airflow. IEEE Trans Vis Comput Graph 15:1407–1414CrossRefPubMed Zachow S, Muigg P, Hildebrandt T, Doleisch H, Hege H (2009) Visual exploration of nasal airflow. IEEE Trans Vis Comput Graph 15:1407–1414CrossRefPubMed
23.
24.
Zurück zum Zitat Zhao K, Pribitkin E, Cowart B, Rosen D, Scherer P, Dalton P (2006) Numerical modeling of nasal obstruction and endoscopic surgical intervention: outcome to airflow and olfaction. Am J Rhinol 20:308–316CrossRefPubMed Zhao K, Pribitkin E, Cowart B, Rosen D, Scherer P, Dalton P (2006) Numerical modeling of nasal obstruction and endoscopic surgical intervention: outcome to airflow and olfaction. Am J Rhinol 20:308–316CrossRefPubMed
25.
Zurück zum Zitat Zubair M, Abdullah M, Ismail R, Shuaib I, Hamid S, Ahmad K (2011) Review: a critical overview of limitations of CFD modeling in nasal airflow. J Med Biol Eng 32:77–84CrossRef Zubair M, Abdullah M, Ismail R, Shuaib I, Hamid S, Ahmad K (2011) Review: a critical overview of limitations of CFD modeling in nasal airflow. J Med Biol Eng 32:77–84CrossRef
Metadaten
Titel
New CFD tools to evaluate nasal airflow
verfasst von
M. A. Burgos
E. Sanmiguel-Rojas
C. del Pino
M. A. Sevilla-García
F. Esteban-Ortega
Publikationsdatum
25.05.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
European Archives of Oto-Rhino-Laryngology / Ausgabe 8/2017
Print ISSN: 0937-4477
Elektronische ISSN: 1434-4726
DOI
https://doi.org/10.1007/s00405-017-4611-y

Weitere Artikel der Ausgabe 8/2017

European Archives of Oto-Rhino-Laryngology 8/2017 Zur Ausgabe

Betalaktam-Allergie: praxisnahes Vorgehen beim Delabeling

16.05.2024 Pädiatrische Allergologie Nachrichten

Die große Mehrheit der vermeintlichen Penicillinallergien sind keine. Da das „Etikett“ Betalaktam-Allergie oft schon in der Kindheit erworben wird, kann ein frühzeitiges Delabeling lebenslange Vorteile bringen. Ein Team von Pädiaterinnen und Pädiatern aus Kanada stellt vor, wie sie dabei vorgehen.

Eingreifen von Umstehenden rettet vor Erstickungstod

15.05.2024 Fremdkörperaspiration Nachrichten

Wer sich an einem Essensrest verschluckt und um Luft ringt, benötigt vor allem rasche Hilfe. Dass Umstehende nur in jedem zweiten Erstickungsnotfall bereit waren, diese zu leisten, ist das ernüchternde Ergebnis einer Beobachtungsstudie aus Japan. Doch es gibt auch eine gute Nachricht.

Real-World-Daten sprechen eher für Dupilumab als für Op.

14.05.2024 Rhinosinusitis Nachrichten

Zur Behandlung schwerer Formen der chronischen Rhinosinusitis mit Nasenpolypen (CRSwNP) stehen seit Kurzem verschiedene Behandlungsmethoden zur Verfügung, darunter Biologika, wie Dupilumab, und die endoskopische Sinuschirurgie (ESS). Beim Vergleich der beiden Therapieoptionen war Dupilumab leicht im Vorteil.

Schwindelursache: Massagepistole lässt Otholiten tanzen

14.05.2024 Benigner Lagerungsschwindel Nachrichten

Wenn jüngere Menschen über ständig rezidivierenden Lagerungsschwindel klagen, könnte eine Massagepistole der Auslöser sein. In JAMA Otolaryngology warnt ein Team vor der Anwendung hochpotenter Geräte im Bereich des Nackens.

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.