Skip to main content
Erschienen in: Virchows Archiv 2/2019

20.06.2019 | Review and Perspectives

Machine learning approaches for pathologic diagnosis

verfasst von: Daisuke Komura, Shumpei Ishikawa

Erschienen in: Virchows Archiv | Ausgabe 2/2019

Einloggen, um Zugang zu erhalten

Abstract

Machine learning techniques, especially deep learning techniques such as convolutional neural networks, have been successfully applied to general image recognitions since their overwhelming performance at the 2012 ImageNet Large Scale Visual Recognition Challenge. Recently, such techniques have also been applied to various medical, including histopathological, images to assist the process of medical diagnosis. In some cases, deep learning–based algorithms have already outperformed experienced pathologists for recognition of histopathological images. However, pathological images differ from general images in some aspects, and thus, machine learning of histopathological images requires specialized learning methods. Moreover, many pathologists are skeptical about the ability of deep learning technology to accurately recognize histopathological images because what the learned neural network recognizes is often indecipherable to humans. In this review, we first introduce various applications incorporating machine learning developed to assist the process of pathologic diagnosis, and then describe machine learning problems related to histopathological image analysis, and review potential ways to solve these problems.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
4.
Zurück zum Zitat Ciompi F, Geessink O, Bejnordi BE, et al (2017) The importance of stain normalization in colorectal tissue classification with convolutional networks. arXiv:170205931 [cs]CrossRef Ciompi F, Geessink O, Bejnordi BE, et al (2017) The importance of stain normalization in colorectal tissue classification with convolutional networks. arXiv:170205931 [cs]CrossRef
9.
Zurück zum Zitat Selvaraju RR, Cogswell M, Das A, et al (2016) Grad-CAM: visual explanations from deep networks via gradient-based localization. arXiv:161002391 [cs] Selvaraju RR, Cogswell M, Das A, et al (2016) Grad-CAM: visual explanations from deep networks via gradient-based localization. arXiv:161002391 [cs]
10.
Zurück zum Zitat Koh PW, Liang P (2017) Understanding black-box predictions via influence functions. arXiv:170304730 [cs, stat] Koh PW, Liang P (2017) Understanding black-box predictions via influence functions. arXiv:170304730 [cs, stat]
11.
Zurück zum Zitat Springenberg JT, Dosovitskiy A, Brox T, Riedmiller M (2014) Striving for simplicity: the all convolutional net. arXiv:14126806 [cs] Springenberg JT, Dosovitskiy A, Brox T, Riedmiller M (2014) Striving for simplicity: the all convolutional net. arXiv:14126806 [cs]
12.
Zurück zum Zitat Bayramoglu N, Kannala J, Heikkilä J (2016) Deep learning for magnification independent breast cancer histopathology image classification. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp 2440–2445CrossRef Bayramoglu N, Kannala J, Heikkilä J (2016) Deep learning for magnification independent breast cancer histopathology image classification. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp 2440–2445CrossRef
13.
Zurück zum Zitat Hou L, Nguyen V, Samaras D, et al (2017) Sparse autoencoder for unsupervised nucleus detection and representation in histopathology images. arXiv:170400406 [cs] Hou L, Nguyen V, Samaras D, et al (2017) Sparse autoencoder for unsupervised nucleus detection and representation in histopathology images. arXiv:170400406 [cs]
18.
Zurück zum Zitat Veta M, van Diest PJ, Willems SM, Wang H, Madabhushi A, Cruz-Roa A, Gonzalez F, Larsen ABL, Vestergaard JS, Dahl AB, Cireşan DC, Schmidhuber J, Giusti A, Gambardella LM, Tek FB, Walter T, Wang CW, Kondo S, Matuszewski BJ, Precioso F, Snell V, Kittler J, de Campos TE, Khan AM, Rajpoot NM, Arkoumani E, Lacle MM, Viergever MA, Pluim JPW (2015) Assessment of algorithms for mitosis detection in breast cancer histopathology images. Med Image Anal 20:237–248. https://doi.org/10.1016/j.media.2014.11.010 CrossRefPubMed Veta M, van Diest PJ, Willems SM, Wang H, Madabhushi A, Cruz-Roa A, Gonzalez F, Larsen ABL, Vestergaard JS, Dahl AB, Cireşan DC, Schmidhuber J, Giusti A, Gambardella LM, Tek FB, Walter T, Wang CW, Kondo S, Matuszewski BJ, Precioso F, Snell V, Kittler J, de Campos TE, Khan AM, Rajpoot NM, Arkoumani E, Lacle MM, Viergever MA, Pluim JPW (2015) Assessment of algorithms for mitosis detection in breast cancer histopathology images. Med Image Anal 20:237–248. https://​doi.​org/​10.​1016/​j.​media.​2014.​11.​010 CrossRefPubMed
19.
Zurück zum Zitat Chen H, Qi X, Yu L, Heng PA (2016) DCAN: deep contour-aware networks for accurate gland segmentation. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 2487–2496CrossRef Chen H, Qi X, Yu L, Heng PA (2016) DCAN: deep contour-aware networks for accurate gland segmentation. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 2487–2496CrossRef
20.
Zurück zum Zitat Sirinukunwattana K, Pluim JPW, Chen H, Qi X, Heng PA, Guo YB, Wang LY, Matuszewski BJ, Bruni E, Sanchez U, Böhm A, Ronneberger O, Cheikh BB, Racoceanu D, Kainz P, Pfeiffer M, Urschler M, Snead DRJ, Rajpoot NM (2017) Gland segmentation in colon histology images: the glas challenge contest. Med Image Anal 35:489–502. https://doi.org/10.1016/j.media.2016.08.008 CrossRefPubMed Sirinukunwattana K, Pluim JPW, Chen H, Qi X, Heng PA, Guo YB, Wang LY, Matuszewski BJ, Bruni E, Sanchez U, Böhm A, Ronneberger O, Cheikh BB, Racoceanu D, Kainz P, Pfeiffer M, Urschler M, Snead DRJ, Rajpoot NM (2017) Gland segmentation in colon histology images: the glas challenge contest. Med Image Anal 35:489–502. https://​doi.​org/​10.​1016/​j.​media.​2016.​08.​008 CrossRefPubMed
21.
Zurück zum Zitat Kather JN, Weis C-A (2016) Validation data set for automatic blood vessel segmentation in colorectal cancer histology (IHC) Kather JN, Weis C-A (2016) Validation data set for automatic blood vessel segmentation in colorectal cancer histology (IHC)
22.
Zurück zum Zitat Gupta V, Bhavsar A (2017) Breast cancer histopathological image classification: is magnification important? In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 769–776CrossRef Gupta V, Bhavsar A (2017) Breast cancer histopathological image classification: is magnification important? In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 769–776CrossRef
25.
Zurück zum Zitat Liu J, Xu B, Zheng C, et al (2018) An end-to-end deep learning histochemical scoring system for breast cancer tissue microarray. arXiv:180106288 [cs] Liu J, Xu B, Zheng C, et al (2018) An end-to-end deep learning histochemical scoring system for breast cancer tissue microarray. arXiv:180106288 [cs]
33.
Zurück zum Zitat Mehta N, Raja’S A, Chaudhary V (2009) Content based sub-image retrieval system for high resolution pathology images using salient interest points. In: Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE. IEEE, pp 3719–3722 Mehta N, Raja’S A, Chaudhary V (2009) Content based sub-image retrieval system for high resolution pathology images using salient interest points. In: Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE. IEEE, pp 3719–3722
34.
Zurück zum Zitat Qi X, Wang D, Rodero I, Diaz-Montes J, Gensure RH, Xing F, Zhong H, Goodell L, Parashar M, Foran DJ, Yang L (2014) Content-based histopathology image retrieval using CometCloud. BMC Bioinform 15:287CrossRef Qi X, Wang D, Rodero I, Diaz-Montes J, Gensure RH, Xing F, Zhong H, Goodell L, Parashar M, Foran DJ, Yang L (2014) Content-based histopathology image retrieval using CometCloud. BMC Bioinform 15:287CrossRef
36.
Zurück zum Zitat Lafarge MW, Pluim JPW, Eppenhof KAJ, et al (2017) Domain-adversarial neural networks to address the appearance variability of histopathology images. arXiv:170706183 [cs] Lafarge MW, Pluim JPW, Eppenhof KAJ, et al (2017) Domain-adversarial neural networks to address the appearance variability of histopathology images. arXiv:170706183 [cs]
37.
Zurück zum Zitat ScanNet: a fast and dense scanning framework for metastatic breast cancer detection from whole-slide images - semantic scholar. /paper/ScanNet-A-Fast-and-Dense-Scanning-Framework-for-Me-Lin-Chen/9484287f4d5d52d10b5d362c462d4d6955655f8e. Accessed 22 Nov 2017 ScanNet: a fast and dense scanning framework for metastatic breast cancer detection from whole-slide images - semantic scholar. /paper/ScanNet-A-Fast-and-Dense-Scanning-Framework-for-Me-Lin-Chen/9484287f4d5d52d10b5d362c462d4d6955655f8e. Accessed 22 Nov 2017
39.
Zurück zum Zitat Goodfellow IJ, Pouget-Abadie J, Mirza M, et al (2014) Generative adversarial networks Goodfellow IJ, Pouget-Abadie J, Mirza M, et al (2014) Generative adversarial networks
40.
Zurück zum Zitat Shaban MT, Baur C, Navab N, Albarqouni S (2018) StainGAN: stain style transfer for digital histological images. arXiv:180401601 [cs] Shaban MT, Baur C, Navab N, Albarqouni S (2018) StainGAN: stain style transfer for digital histological images. arXiv:180401601 [cs]
41.
Zurück zum Zitat Zanjani FG, Zinger S, Bejnordi BE, et al (2018) Histopathology stain-color normalization using deep generative models Zanjani FG, Zinger S, Bejnordi BE, et al (2018) Histopathology stain-color normalization using deep generative models
42.
Zurück zum Zitat Mariani G, Scheidegger F, Istrate R, et al (2018) BAGAN: data augmentation with balancing GAN Mariani G, Scheidegger F, Istrate R, et al (2018) BAGAN: data augmentation with balancing GAN
45.
Zurück zum Zitat Peikari M, Zubovits J, Clarke G, Martel AL (2015) Clustering analysis for semi-supervised learning improves classification performance of digital pathology. In: Machine learning in medical imaging. Springer, Cham, pp 263–270CrossRef Peikari M, Zubovits J, Clarke G, Martel AL (2015) Clustering analysis for semi-supervised learning improves classification performance of digital pathology. In: Machine learning in medical imaging. Springer, Cham, pp 263–270CrossRef
49.
Zurück zum Zitat Li Z, Wang C, Han M, et al (2017) Thoracic disease identification and localization with limited supervision. arXiv:171106373 [cs, stat] Li Z, Wang C, Han M, et al (2017) Thoracic disease identification and localization with limited supervision. arXiv:171106373 [cs, stat]
50.
Zurück zum Zitat Gal Y, Ghahramani Z (2015) Bayesian convolutional neural networks with Bernoulli approximate variational inference. arXiv:150602158 [cs, stat] Gal Y, Ghahramani Z (2015) Bayesian convolutional neural networks with Bernoulli approximate variational inference. arXiv:150602158 [cs, stat]
51.
Zurück zum Zitat Novak R, Xiao L, Lee J, et al (2018) Bayesian convolutional neural networks with many channels are Gaussian processes. arXiv:181005148 [cs, stat] Novak R, Xiao L, Lee J, et al (2018) Bayesian convolutional neural networks with many channels are Gaussian processes. arXiv:181005148 [cs, stat]
52.
Zurück zum Zitat Shridhar K, Laumann F, Maurin AL, et al (2018) Bayesian convolutional neural networks with variational inference. arXiv:180605978 [cs, stat] Shridhar K, Laumann F, Maurin AL, et al (2018) Bayesian convolutional neural networks with variational inference. arXiv:180605978 [cs, stat]
58.
Zurück zum Zitat Hou L, Agarwal A, Samaras D, et al (2017) Unsupervised histopathology image synthesis. arXiv:171205021 [cs] Hou L, Agarwal A, Samaras D, et al (2017) Unsupervised histopathology image synthesis. arXiv:171205021 [cs]
59.
Zurück zum Zitat Sayres R, Taly A, Rahimy E, Blumer K, Coz D, Hammel N, Krause J, Narayanaswamy A, Rastegar Z, Wu D, Xu S, Barb S, Joseph A, Shumski M, Smith J, Sood AB, Corrado GS, Peng L, Webster DR (2018) Using a deep learning algorithm and integrated gradients explanation to assist grading for diabetic retinopathy. Ophthalmology 0:552–564. https://doi.org/10.1016/j.ophtha.2018.11.016 CrossRef Sayres R, Taly A, Rahimy E, Blumer K, Coz D, Hammel N, Krause J, Narayanaswamy A, Rastegar Z, Wu D, Xu S, Barb S, Joseph A, Shumski M, Smith J, Sood AB, Corrado GS, Peng L, Webster DR (2018) Using a deep learning algorithm and integrated gradients explanation to assist grading for diabetic retinopathy. Ophthalmology 0:552–564. https://​doi.​org/​10.​1016/​j.​ophtha.​2018.​11.​016 CrossRef
Metadaten
Titel
Machine learning approaches for pathologic diagnosis
verfasst von
Daisuke Komura
Shumpei Ishikawa
Publikationsdatum
20.06.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Virchows Archiv / Ausgabe 2/2019
Print ISSN: 0945-6317
Elektronische ISSN: 1432-2307
DOI
https://doi.org/10.1007/s00428-019-02594-w

Weitere Artikel der Ausgabe 2/2019

Virchows Archiv 2/2019 Zur Ausgabe

Neu im Fachgebiet Pathologie

Molekularpathologische Untersuchungen im Wandel der Zeit

Open Access Biomarker Leitthema

Um auch an kleinen Gewebeproben zuverlässige und reproduzierbare Ergebnisse zu gewährleisten ist eine strenge Qualitätskontrolle in jedem Schritt des Arbeitsablaufs erforderlich. Eine nicht ordnungsgemäße Prüfung oder Behandlung des …

Vergleichende Pathologie in der onkologischen Forschung

Pathologie Leitthema

Die vergleichende experimentelle Pathologie („comparative experimental pathology“) ist ein Fachbereich an der Schnittstelle von Human- und Veterinärmedizin. Sie widmet sich der vergleichenden Erforschung von Gemeinsamkeiten und Unterschieden von …

Gastrointestinale Stromatumoren

Open Access GIST CME-Artikel

Gastrointestinale Stromatumoren (GIST) stellen seit über 20 Jahren ein Paradigma für die zielgerichtete Therapie mit Tyrosinkinaseinhibitoren dar. Eine elementare Voraussetzung für eine mögliche neoadjuvante oder adjuvante Behandlung bei …

Personalisierte Medizin in der Onkologie

Aufgrund des erheblichen technologischen Fortschritts in der molekularen und genetischen Diagnostik sowie zunehmender Erkenntnisse über die molekulare Pathogenese von Krankheiten hat in den letzten zwei Jahrzehnten ein grundlegender …