Skip to main content
Erschienen in: Pediatric Nephrology 4/2014

01.04.2014 | Review

Mechanisms of gene activation and repression by Pax proteins in the developing kidney

verfasst von: Sanjeevkumar R. Patel, Egon Ranghini, Gregory R. Dressler

Erschienen in: Pediatric Nephrology | Ausgabe 4/2014

Einloggen, um Zugang zu erhalten

Abstract

During embryonic development, DNA binding proteins help specify and restrict the fates of pluripotent stem cells. In the developing kidney, Pax2 proteins are among the earliest markers for the renal epithelial cell lineage, with expression in the mesenchyme and in proliferating epithelia. The Pax2 protein is essential for interpreting inductive signals emanating from the ureteric bud such that the kidney mesenchyme can convert to epithelia. The biochemistry of Pax protein function is being studied in a variety of model systems. Through interactions with the adaptor Pax transactivation-domain interacting protein (PTIP), Pax proteins can recruit members of the Trithorax family of histone methyltransferases to imprint activating epigenetic marks on chromatin. However, interactions with the corepressor Groucho-related gene-4 (Grg4) protein can inhibit activation and instead recruit Polycomb repressor complexes to promote target-gene silencing. We present a model whereby the regulated interactions of Pax proteins with available cofactor-mediated activation or gene silencing at different stages of development. The implications for establishing and maintaining the epigenome are discussed.
Literatur
1.
Zurück zum Zitat Fisher CL, Fisher AG (2011) Chromatin states in pluripotent, differentiated, and reprogrammed cells. Curr Opin Genet Dev 21:140–146CrossRefPubMed Fisher CL, Fisher AG (2011) Chromatin states in pluripotent, differentiated, and reprogrammed cells. Curr Opin Genet Dev 21:140–146CrossRefPubMed
2.
Zurück zum Zitat Ringrose L, Paro R (2007) Polycomb/Trithorax response elements and epigenetic memory of cell identity. Development 134:223–232CrossRefPubMed Ringrose L, Paro R (2007) Polycomb/Trithorax response elements and epigenetic memory of cell identity. Development 134:223–232CrossRefPubMed
3.
Zurück zum Zitat Schuettengruber B, Chourrout D, Vervoort M, Leblanc B, Cavalli G (2007) Genome regulation by polycomb and trithorax proteins. Cell 128:735–745CrossRefPubMed Schuettengruber B, Chourrout D, Vervoort M, Leblanc B, Cavalli G (2007) Genome regulation by polycomb and trithorax proteins. Cell 128:735–745CrossRefPubMed
4.
Zurück zum Zitat Mugford JW, Sipila P, McMahon JA, McMahon AP (2008) Osr1 expression demarcates a multi-potent population of intermediate mesoderm that undergoes progressive restriction to an Osr1-dependent nephron progenitor compartment within the mammalian kidney. Dev Biol 324:88–98PubMedCentralCrossRefPubMed Mugford JW, Sipila P, McMahon JA, McMahon AP (2008) Osr1 expression demarcates a multi-potent population of intermediate mesoderm that undergoes progressive restriction to an Osr1-dependent nephron progenitor compartment within the mammalian kidney. Dev Biol 324:88–98PubMedCentralCrossRefPubMed
5.
Zurück zum Zitat Dressler GR (2009) Advances in early kidney specification, development and patterning. Development 136:3863–3874CrossRefPubMed Dressler GR (2009) Advances in early kidney specification, development and patterning. Development 136:3863–3874CrossRefPubMed
6.
Zurück zum Zitat Dressler GR (2006) The cellular basis of kidney development. Annu Rev Cell Dev Biol 22:509–529CrossRefPubMed Dressler GR (2006) The cellular basis of kidney development. Annu Rev Cell Dev Biol 22:509–529CrossRefPubMed
7.
Zurück zum Zitat Saxen L (1987) Organogenesis of the Kidney. In: Barlow PW, Green PB, White CC (eds) Developmental and cell biology series 19. Cambridge University Press, Cambridge Saxen L (1987) Organogenesis of the Kidney. In: Barlow PW, Green PB, White CC (eds) Developmental and cell biology series 19. Cambridge University Press, Cambridge
8.
Zurück zum Zitat Costantini F, Kopan R (2010) Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development. Dev Cell 18:698–712PubMedCentralCrossRefPubMed Costantini F, Kopan R (2010) Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development. Dev Cell 18:698–712PubMedCentralCrossRefPubMed
9.
Zurück zum Zitat Boyle S, Misfeldt A, Chandler KJ, Deal KK, Southard-Smith EM, Mortlock DP, Baldwin HS, de Caestecker M (2008) Fate mapping using Cited1-CreERT2 mice demonstrates that the cap mesenchyme contains self-renewing progenitor cells and gives rise exclusively to nephronic epithelia. Dev Biol 313:234–245PubMedCentralCrossRefPubMed Boyle S, Misfeldt A, Chandler KJ, Deal KK, Southard-Smith EM, Mortlock DP, Baldwin HS, de Caestecker M (2008) Fate mapping using Cited1-CreERT2 mice demonstrates that the cap mesenchyme contains self-renewing progenitor cells and gives rise exclusively to nephronic epithelia. Dev Biol 313:234–245PubMedCentralCrossRefPubMed
10.
Zurück zum Zitat Kobayashi A, Valerius MT, Mugford JW, Carroll TJ, Self M, Oliver G, McMahon AP (2008) Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell 3:169–181PubMedCentralCrossRefPubMed Kobayashi A, Valerius MT, Mugford JW, Carroll TJ, Self M, Oliver G, McMahon AP (2008) Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell 3:169–181PubMedCentralCrossRefPubMed
11.
Zurück zum Zitat Tsang TE, Shawlot W, Kinder SJ, Kobayashi A, Kwan KM, Schughart K, Kania A, Jessell TM, Behringer RR, Tam PP (2000) Lim1 activity is required for intermediate mesoderm differentiation in the mouse embryo. Dev Biol 223:77–90CrossRefPubMed Tsang TE, Shawlot W, Kinder SJ, Kobayashi A, Kwan KM, Schughart K, Kania A, Jessell TM, Behringer RR, Tam PP (2000) Lim1 activity is required for intermediate mesoderm differentiation in the mouse embryo. Dev Biol 223:77–90CrossRefPubMed
12.
Zurück zum Zitat Soofi A, Levitan I, Dressler GR (2012) Two novel EGFP insertion alleles reveal unique aspects of Pax2 function in embryonic and adult kidneys. Dev Biol 365:241–250PubMedCentralCrossRefPubMed Soofi A, Levitan I, Dressler GR (2012) Two novel EGFP insertion alleles reveal unique aspects of Pax2 function in embryonic and adult kidneys. Dev Biol 365:241–250PubMedCentralCrossRefPubMed
13.
Zurück zum Zitat Bouchard M, Souabni A, Mandler M, Neubuser A, Busslinger M (2002) Nephric lineage specification by Pax2 and Pax8. Genes Dev 16:2958–2970CrossRefPubMed Bouchard M, Souabni A, Mandler M, Neubuser A, Busslinger M (2002) Nephric lineage specification by Pax2 and Pax8. Genes Dev 16:2958–2970CrossRefPubMed
14.
Zurück zum Zitat James RG, Kamei CN, Wang Q, Jiang R, Schultheiss TM (2006) Odd-skipped related 1 is required for development of the metanephric kidney and regulates formation and differentiation of kidney precursor cells. Development 133:2995–3004CrossRefPubMed James RG, Kamei CN, Wang Q, Jiang R, Schultheiss TM (2006) Odd-skipped related 1 is required for development of the metanephric kidney and regulates formation and differentiation of kidney precursor cells. Development 133:2995–3004CrossRefPubMed
15.
Zurück zum Zitat Wang Q, Lan Y, Cho ES, Maltby KM, Jiang R (2005) Odd-skipped related 1 (Odd 1) is an essential regulator of heart and urogenital development. Dev Biol 288:582–594CrossRefPubMed Wang Q, Lan Y, Cho ES, Maltby KM, Jiang R (2005) Odd-skipped related 1 (Odd 1) is an essential regulator of heart and urogenital development. Dev Biol 288:582–594CrossRefPubMed
16.
Zurück zum Zitat Brophy PD, Ostrom L, Lang KM, Dressler GR (2001) Regulation of ureteric bud outgrowth by Pax2-dependent activation of the glial derived neurotrophic factor gene. Development 128:4747–4756PubMed Brophy PD, Ostrom L, Lang KM, Dressler GR (2001) Regulation of ureteric bud outgrowth by Pax2-dependent activation of the glial derived neurotrophic factor gene. Development 128:4747–4756PubMed
17.
Zurück zum Zitat Carroll TJ, Park JS, Hayashi S, Majumdar A, McMahon AP (2005) Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev Cell 9:283–292CrossRefPubMed Carroll TJ, Park JS, Hayashi S, Majumdar A, McMahon AP (2005) Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev Cell 9:283–292CrossRefPubMed
18.
Zurück zum Zitat Grote D, Souabni A, Busslinger M, Bouchard M (2006) Pax 2/8-regulated Gata 3 expression is necessary for morphogenesis and guidance of the nephric duct in the developing kidney. Development 133:53–61CrossRefPubMed Grote D, Souabni A, Busslinger M, Bouchard M (2006) Pax 2/8-regulated Gata 3 expression is necessary for morphogenesis and guidance of the nephric duct in the developing kidney. Development 133:53–61CrossRefPubMed
19.
Zurück zum Zitat Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260CrossRefPubMed Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260CrossRefPubMed
20.
Zurück zum Zitat Schuettengruber B, Martinez AM, Iovino N, Cavalli G (2011) Trithorax group proteins: switching genes on and keeping them active. Nat Rev Mol Cell Biol 12:799–814CrossRefPubMed Schuettengruber B, Martinez AM, Iovino N, Cavalli G (2011) Trithorax group proteins: switching genes on and keeping them active. Nat Rev Mol Cell Biol 12:799–814CrossRefPubMed
21.
Zurück zum Zitat Lanzuolo C, Orlando V (2012) Memories from the polycomb group proteins. Annu Rev Genet 46:561–589CrossRefPubMed Lanzuolo C, Orlando V (2012) Memories from the polycomb group proteins. Annu Rev Genet 46:561–589CrossRefPubMed
22.
Zurück zum Zitat Azuara V, Perry P, Sauer S, Spivakov M, Jorgensen HF, John RM, Gouti M, Casanova M, Warnes G, Merkenschlager M, Fisher AG (2006) Chromatin signatures of pluripotent cell lines. Nat Cell Biol 8:532–538CrossRefPubMed Azuara V, Perry P, Sauer S, Spivakov M, Jorgensen HF, John RM, Gouti M, Casanova M, Warnes G, Merkenschlager M, Fisher AG (2006) Chromatin signatures of pluripotent cell lines. Nat Cell Biol 8:532–538CrossRefPubMed
23.
Zurück zum Zitat Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326CrossRefPubMed Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326CrossRefPubMed
24.
Zurück zum Zitat Patel SR, Kim D, Levitan I, Dressler GR (2007) The BRCT-domain containing protein PTIP links PAX2 to a histone H3, lysine 4 methyltransferase complex. Dev Cell 13:580–592PubMedCentralCrossRefPubMed Patel SR, Kim D, Levitan I, Dressler GR (2007) The BRCT-domain containing protein PTIP links PAX2 to a histone H3, lysine 4 methyltransferase complex. Dev Cell 13:580–592PubMedCentralCrossRefPubMed
25.
Zurück zum Zitat Cho EA, Prindle MJ, Dressler GR (2003) BRCT domain-containing protein PTIP is essential for progression through mitosis. Mol Cell Biol 23:1666–1673PubMedCentralCrossRefPubMed Cho EA, Prindle MJ, Dressler GR (2003) BRCT domain-containing protein PTIP is essential for progression through mitosis. Mol Cell Biol 23:1666–1673PubMedCentralCrossRefPubMed
26.
Zurück zum Zitat Fang M, Ren H, Liu J, Cadigan KM, Patel SR, Dressler GR (2009) Drosophila ptip is essential for anterior/posterior patterning in development and interacts with the PcG and trxG pathways. Development 136:1929–1938CrossRefPubMed Fang M, Ren H, Liu J, Cadigan KM, Patel SR, Dressler GR (2009) Drosophila ptip is essential for anterior/posterior patterning in development and interacts with the PcG and trxG pathways. Development 136:1929–1938CrossRefPubMed
27.
Zurück zum Zitat Manke IA, Lowery DM, Nguyen A, Yaffe MB (2003) BRCT repeats as phosphopeptide-binding modules involved in protein targeting. Science 302:636–639CrossRefPubMed Manke IA, Lowery DM, Nguyen A, Yaffe MB (2003) BRCT repeats as phosphopeptide-binding modules involved in protein targeting. Science 302:636–639CrossRefPubMed
28.
Zurück zum Zitat Daniel JA, Santos MA, Wang Z, Zang C, Schwab KR, Jankovic M, Filsuf D, Chen HT, Gazumyan A, Yamane A, Cho YW, Sun HW, Ge K, Peng W, Nussenzweig MC, Casellas R, Dressler GR, Zhao K, Nussenzweig A (2010) PTIP promotes chromatin changes critical for immunoglobulin class switch recombination. Science 329:917–923PubMedCentralCrossRefPubMed Daniel JA, Santos MA, Wang Z, Zang C, Schwab KR, Jankovic M, Filsuf D, Chen HT, Gazumyan A, Yamane A, Cho YW, Sun HW, Ge K, Peng W, Nussenzweig MC, Casellas R, Dressler GR, Zhao K, Nussenzweig A (2010) PTIP promotes chromatin changes critical for immunoglobulin class switch recombination. Science 329:917–923PubMedCentralCrossRefPubMed
29.
Zurück zum Zitat Schwab KR, Patel SR, Dressler GR (2011) Role of PTIP in class switch recombination and long-range chromatin interactions at the immunoglobulin heavy chain locus. Mol Cell Biol 31:1503–1511PubMedCentralCrossRefPubMed Schwab KR, Patel SR, Dressler GR (2011) Role of PTIP in class switch recombination and long-range chromatin interactions at the immunoglobulin heavy chain locus. Mol Cell Biol 31:1503–1511PubMedCentralCrossRefPubMed
30.
Zurück zum Zitat Rudnicki MA, Le Grand F, McKinnell I, Kuang S (2008) The molecular regulation of muscle stem cell function. Cold Spring Harb Symp Quant Biol 73:323–331CrossRefPubMed Rudnicki MA, Le Grand F, McKinnell I, Kuang S (2008) The molecular regulation of muscle stem cell function. Cold Spring Harb Symp Quant Biol 73:323–331CrossRefPubMed
31.
Zurück zum Zitat McKinnell IW, Ishibashi J, Le Grand F, Punch VG, Addicks GC, Greenblatt JF, Dilworth FJ, Rudnicki MA (2008) Pax7 activates myogenic genes by recruitment of a histone methyltransferase complex. Nat Cell Bbiol 10:77–84CrossRef McKinnell IW, Ishibashi J, Le Grand F, Punch VG, Addicks GC, Greenblatt JF, Dilworth FJ, Rudnicki MA (2008) Pax7 activates myogenic genes by recruitment of a histone methyltransferase complex. Nat Cell Bbiol 10:77–84CrossRef
32.
Zurück zum Zitat Diao Y, Guo X, Li Y, Sun K, Lu L, Jiang L, Fu X, Zhu H, Sun H, Wang H, Wu Z (2012) Pax3/7BP is a Pax7- and Pax3-binding protein that regulates the proliferation of muscle precursor cells by an epigenetic mechanism. Cell Stem Cell 11:231–241CrossRefPubMed Diao Y, Guo X, Li Y, Sun K, Lu L, Jiang L, Fu X, Zhu H, Sun H, Wang H, Wu Z (2012) Pax3/7BP is a Pax7- and Pax3-binding protein that regulates the proliferation of muscle precursor cells by an epigenetic mechanism. Cell Stem Cell 11:231–241CrossRefPubMed
33.
Zurück zum Zitat John S, Sabo PJ, Thurman RE, Sung MH, Biddie SC, Johnson TA, Hager GL, Stamatoyannopoulos JA (2011) Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. Nat Genet 43:264–268CrossRefPubMed John S, Sabo PJ, Thurman RE, Sung MH, Biddie SC, Johnson TA, Hager GL, Stamatoyannopoulos JA (2011) Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. Nat Genet 43:264–268CrossRefPubMed
34.
Zurück zum Zitat Cai Y, Brophy PD, Levitan I, Stifani S, Dressler GR (2003) Groucho suppresses Pax2 transactivation by inhibition of JNK-mediated phosphorylation. EMBO J 22:5522–5529CrossRefPubMed Cai Y, Brophy PD, Levitan I, Stifani S, Dressler GR (2003) Groucho suppresses Pax2 transactivation by inhibition of JNK-mediated phosphorylation. EMBO J 22:5522–5529CrossRefPubMed
35.
Zurück zum Zitat Eberhard D, Jimenez G, Heavey B, Busslinger M (2000) Transcriptional repression by Pax5 (BSAP) through interaction with corepressors of the Groucho family. EMBO J 19:2292–2303CrossRefPubMed Eberhard D, Jimenez G, Heavey B, Busslinger M (2000) Transcriptional repression by Pax5 (BSAP) through interaction with corepressors of the Groucho family. EMBO J 19:2292–2303CrossRefPubMed
36.
Zurück zum Zitat Patel SR, Bhumbra SS, Paknikar RS, Dressler GR (2012) Epigenetic mechanisms of Groucho/Grg/TLE mediated transcriptional repression. Mol Cell 45:185–195PubMedCentralCrossRefPubMed Patel SR, Bhumbra SS, Paknikar RS, Dressler GR (2012) Epigenetic mechanisms of Groucho/Grg/TLE mediated transcriptional repression. Mol Cell 45:185–195PubMedCentralCrossRefPubMed
37.
Zurück zum Zitat Xu X, Hoang S, Mayo MW, Bekiranov S (2011) Application of machine learning methods to histone methylation ChIP-Seq data reveals H4R3me2 globally represses gene expression. BMC Bioinforma 11:396 Xu X, Hoang S, Mayo MW, Bekiranov S (2011) Application of machine learning methods to histone methylation ChIP-Seq data reveals H4R3me2 globally represses gene expression. BMC Bioinforma 11:396
38.
Zurück zum Zitat Sekiya T, Zaret KS (2007) Repression by Groucho/TLE/Grg proteins: genomic site recruitment generates compacted chromatin in vitro and impairs activator binding in vivo. Mol Cell 28:291–303PubMedCentralCrossRefPubMed Sekiya T, Zaret KS (2007) Repression by Groucho/TLE/Grg proteins: genomic site recruitment generates compacted chromatin in vitro and impairs activator binding in vivo. Mol Cell 28:291–303PubMedCentralCrossRefPubMed
39.
Zurück zum Zitat Lefevre GM, Patel SR, Kim D, Tessarollo L, Dressler GR (2010) Altering a histone H3K4 methylation pathway in glomerular podocytes promotes a chronic disease phenotype. PLoS Genet 6:e1001142PubMedCentralCrossRefPubMed Lefevre GM, Patel SR, Kim D, Tessarollo L, Dressler GR (2010) Altering a histone H3K4 methylation pathway in glomerular podocytes promotes a chronic disease phenotype. PLoS Genet 6:e1001142PubMedCentralCrossRefPubMed
40.
Zurück zum Zitat Stein AB, Jones TA, Herron TJ, Patel SR, Day SM, Noujaim SF, Milstein ML, Klos M, Furspan PB, Jalife J, Dressler GR (2011) Loss of H3K4 methylation destabilizes gene expression patterns and physiological functions in adult murine cardiomyocytes. J Clin Invest 121:2641–2650PubMedCentralCrossRefPubMed Stein AB, Jones TA, Herron TJ, Patel SR, Day SM, Noujaim SF, Milstein ML, Klos M, Furspan PB, Jalife J, Dressler GR (2011) Loss of H3K4 methylation destabilizes gene expression patterns and physiological functions in adult murine cardiomyocytes. J Clin Invest 121:2641–2650PubMedCentralCrossRefPubMed
41.
Zurück zum Zitat Humphreys BD, Czerniak S, DiRocco DP, Hasnain W, Cheema R, Bonventre JV (2011) Repair of injured proximal tubule does not involve specialized progenitors. Proc Natl Acad Sci U S A 108:9226–9231PubMedCentralCrossRefPubMed Humphreys BD, Czerniak S, DiRocco DP, Hasnain W, Cheema R, Bonventre JV (2011) Repair of injured proximal tubule does not involve specialized progenitors. Proc Natl Acad Sci U S A 108:9226–9231PubMedCentralCrossRefPubMed
42.
Zurück zum Zitat Imgrund M, Grone E, Grone HJ, Kretzler M, Holzman L, Schlondorff D, Rothenpieler UW (1999) Re-expression of the developmental gene Pax-2 during experimental acute tubular necrosis in mice 1. Kidney Int 56:1423–1431CrossRefPubMed Imgrund M, Grone E, Grone HJ, Kretzler M, Holzman L, Schlondorff D, Rothenpieler UW (1999) Re-expression of the developmental gene Pax-2 during experimental acute tubular necrosis in mice 1. Kidney Int 56:1423–1431CrossRefPubMed
43.
Zurück zum Zitat Verdeguer F, Le Corre S, Fischer E, Callens C, Garbay S, Doyen A, Igarashi P, Terzi F, Pontoglio M (2010) A mitotic transcriptional switch in polycystic kidney disease. Nat Med 16:106–110PubMedCentralCrossRefPubMed Verdeguer F, Le Corre S, Fischer E, Callens C, Garbay S, Doyen A, Igarashi P, Terzi F, Pontoglio M (2010) A mitotic transcriptional switch in polycystic kidney disease. Nat Med 16:106–110PubMedCentralCrossRefPubMed
Metadaten
Titel
Mechanisms of gene activation and repression by Pax proteins in the developing kidney
verfasst von
Sanjeevkumar R. Patel
Egon Ranghini
Gregory R. Dressler
Publikationsdatum
01.04.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Pediatric Nephrology / Ausgabe 4/2014
Print ISSN: 0931-041X
Elektronische ISSN: 1432-198X
DOI
https://doi.org/10.1007/s00467-013-2603-8

Weitere Artikel der Ausgabe 4/2014

Pediatric Nephrology 4/2014 Zur Ausgabe

Kinder mit anhaltender Sinusitis profitieren häufig von Antibiotika

30.04.2024 Rhinitis und Sinusitis Nachrichten

Persistieren Sinusitisbeschwerden bei Kindern länger als zehn Tage, ist eine Antibiotikatherapie häufig gut wirksam: Ein Therapieversagen ist damit zu über 40% seltener zu beobachten als unter Placebo.

Neuer Typ-1-Diabetes bei Kindern am Wochenende eher übersehen

23.04.2024 Typ-1-Diabetes Nachrichten

Wenn Kinder an Werktagen zum Arzt gehen, werden neu auftretender Typ-1-Diabetes und diabetische Ketoazidosen häufiger erkannt als bei Arztbesuchen an Wochenenden oder Feiertagen.

Neue Studienergebnisse zur Myopiekontrolle mit Atropin

22.04.2024 Fehlsichtigkeit Nachrichten

Augentropfen mit niedrig dosiertem Atropin können helfen, das Fortschreiten einer Kurzsichtigkeit bei Kindern zumindest zu verlangsamen, wie die Ergebnisse einer aktuellen Studie mit verschiedenen Dosierungen zeigen.

Spinale Muskelatrophie: Neugeborenen-Screening lohnt sich

18.04.2024 Spinale Muskelatrophien Nachrichten

Seit 2021 ist die Untersuchung auf spinale Muskelatrophie Teil des Neugeborenen-Screenings in Deutschland. Eine Studie liefert weitere Evidenz für den Nutzen der Maßnahme.

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.