Skip to main content
Erschienen in: Acta Neurochirurgica 3/2016

01.03.2016 | Experimental research - Spine

Biomechanical evaluation of fixation strength among different sizes of pedicle screws using the cortical bone trajectory: what is the ideal screw size for optimal fixation?

verfasst von: Keitaro Matsukawa, Yoshiyuki Yato, Hideaki Imabayashi, Naobumi Hosogane, Yuichiro Abe, Takashi Asazuma, Kazuhiro Chiba

Erschienen in: Acta Neurochirurgica | Ausgabe 3/2016

Einloggen, um Zugang zu erhalten

Abstract

Background

The cortical bone trajectory (CBT) has attracted attention as a new minimally invasive technique for lumbar instrumentation by minimizing soft-tissue dissection. Biomechanical studies have demonstrated the superior fixation capacity of CBT; however, there is little consensus on the selection of screw size, and no biomechanical study has elucidated the most suitable screw size for CBT. The purpose of the present study was to evaluate the effect of screw size on fixation strength and to clarify the ideal size for optimal fixation using CBT.

Method

A total of 720 analyses on CBT screws with various diameters (4.5–6.5 mm) and lengths (25–40 mm) in simulations of 20 different lumbar vertebrae (mean age: 62.1 ± 20.0 years, 8 males and 12 females) were performed using a finite element method. First, the fixation strength of a single screw was evaluated by measuring the axial pullout strength. Next, the vertebral fixation strength of a paired-screw construct was examined by applying forces simulating flexion, extension, lateral bending, and axial rotation to the vertebra. Lastly, the equivalent stress value of the bone-screw interface was calculated.

Results

Larger-diameter screws increased the pullout strength and vertebral fixation strength and decreased the equivalent stress around the screws; however, there were no statistically significant differences between 5.5-mm and 6.5-mm screws. The screw diameter was a factor more strongly affecting the fixation strength of CBT than the screw fit within the pedicle (%fill). Longer screws significantly increased the pullout strength and vertebral fixation strength in axial rotation. The amount of screw length within the vertebral body (%length) was more important than the actual screw length, contributing to the vertebral fixation strength and distribution of stress loaded to the vertebra.

Conclusions

The fixation strength of CBT screws varied depending on screw size. The ideal screw size for CBT is a diameter larger than 5.5 mm and length longer than 35 mm, and the screw should be placed sufficiently deep into the vertebral body.
Literatur
1.
Zurück zum Zitat Baluch DA, Patel AA, Lullo B, Havey RM, Voronov LI, Nguyen NL, Carandang G, Ghanayem AJ, Patwardhan AG (2014) Effect of physiological loads on cortical and traditional pedicle screw fixation. Spine 39:E1297–E1302CrossRefPubMed Baluch DA, Patel AA, Lullo B, Havey RM, Voronov LI, Nguyen NL, Carandang G, Ghanayem AJ, Patwardhan AG (2014) Effect of physiological loads on cortical and traditional pedicle screw fixation. Spine 39:E1297–E1302CrossRefPubMed
2.
3.
Zurück zum Zitat Brantley AG, Mayfield JK, Koeneman JB, Clark KR (1994) The effects of pedicle screw fit: an in vitro study. Spine 19:1752–1758CrossRefPubMed Brantley AG, Mayfield JK, Koeneman JB, Clark KR (1994) The effects of pedicle screw fit: an in vitro study. Spine 19:1752–1758CrossRefPubMed
4.
Zurück zum Zitat Chen SI, Lin RM, Chang CH (2003) Biomechanical investigation of pedicle screw-vertebrae complex: a finite element approach using bonded and contact interface conditions. Med Eng Phys 25:275–282CrossRefPubMed Chen SI, Lin RM, Chang CH (2003) Biomechanical investigation of pedicle screw-vertebrae complex: a finite element approach using bonded and contact interface conditions. Med Eng Phys 25:275–282CrossRefPubMed
5.
Zurück zum Zitat Cheung KMC, Ruan D, Chan FL, Fang D (1994) Computed tomographic osteometry of asian lumbar pedicle. Spine 19:1495–1498CrossRefPubMed Cheung KMC, Ruan D, Chan FL, Fang D (1994) Computed tomographic osteometry of asian lumbar pedicle. Spine 19:1495–1498CrossRefPubMed
6.
Zurück zum Zitat Halvorson TL, Kelly LA, Thomas KA, Whitecloud TS III, Cook SD (1994) Effects of bone mineral density on pedicle screw fixation. Spine 19:2415–2420CrossRefPubMed Halvorson TL, Kelly LA, Thomas KA, Whitecloud TS III, Cook SD (1994) Effects of bone mineral density on pedicle screw fixation. Spine 19:2415–2420CrossRefPubMed
7.
Zurück zum Zitat Hirano T, Hasegawa K, Takahashi HE, Uchiyama S, Hara T, Washio T, Sugiura T, Yokaichi M, Ikeda M (1997) Structural characteristics of the pedicle and its role in screw stability. Spine 22:2504–2510CrossRefPubMed Hirano T, Hasegawa K, Takahashi HE, Uchiyama S, Hara T, Washio T, Sugiura T, Yokaichi M, Ikeda M (1997) Structural characteristics of the pedicle and its role in screw stability. Spine 22:2504–2510CrossRefPubMed
8.
Zurück zum Zitat Hsu CC, Chao CK, Wang JL, Hou SM, Tsai YT, Lin J (2005) Increase of pullout strength of spinal pedicle screws with conical core: biomechanical tests and finite element analyses. J Orthop Res 23:788–794CrossRefPubMed Hsu CC, Chao CK, Wang JL, Hou SM, Tsai YT, Lin J (2005) Increase of pullout strength of spinal pedicle screws with conical core: biomechanical tests and finite element analyses. J Orthop Res 23:788–794CrossRefPubMed
9.
Zurück zum Zitat Imai K, Ohnishi I, Bessho M, Nakamura K (2006) Nonlinear finite element model predicts vertebral bone strength and fracture site. Spine 31:1789–1794CrossRefPubMed Imai K, Ohnishi I, Bessho M, Nakamura K (2006) Nonlinear finite element model predicts vertebral bone strength and fracture site. Spine 31:1789–1794CrossRefPubMed
10.
Zurück zum Zitat Karami KJ, Buckenmeyer LE, Kiapour AM, Kelkar PS, Goel VK, Demetropoulos CK, Soo TM (2014) Biomechanical evaluation of the pedicle screw insertion depth effect on screw stability under cyclic loading and subsequent pullout. J Spinal Disord Tech. doi:10.1097/BSD.0000000000000178 Karami KJ, Buckenmeyer LE, Kiapour AM, Kelkar PS, Goel VK, Demetropoulos CK, Soo TM (2014) Biomechanical evaluation of the pedicle screw insertion depth effect on screw stability under cyclic loading and subsequent pullout. J Spinal Disord Tech. doi:10.​1097/​BSD.​0000000000000178​
11.
Zurück zum Zitat Keyak JH, Rossi SA, Jones KA, Skinner HB (1998) Prediction of femoral fracture load using automated finite element modeling. J Biomech 31:125–133CrossRefPubMed Keyak JH, Rossi SA, Jones KA, Skinner HB (1998) Prediction of femoral fracture load using automated finite element modeling. J Biomech 31:125–133CrossRefPubMed
12.
Zurück zum Zitat Krag MH, Beynnon BD, Pope MH, DeCoster TA (1989) Depth of insertion of transpedicular vertebral screws into human vertebrae: effect upon screw-vertebra interface strength. J Spinal Disord 1:287–294 Krag MH, Beynnon BD, Pope MH, DeCoster TA (1989) Depth of insertion of transpedicular vertebral screws into human vertebrae: effect upon screw-vertebra interface strength. J Spinal Disord 1:287–294
13.
Zurück zum Zitat Law M, Tencer AF, Anderson PA (1993) Caudo-cephalad loading of pedicle screws: biomechanisms of loosening and methods of augmentation. Spine 18:2438–2443CrossRefPubMed Law M, Tencer AF, Anderson PA (1993) Caudo-cephalad loading of pedicle screws: biomechanisms of loosening and methods of augmentation. Spine 18:2438–2443CrossRefPubMed
14.
Zurück zum Zitat Lee GW, Son JH, Ahn MW, Kim HJ, Yeom JS (2015) The comparison of pedicle screw and cortical screw in posterior lumbar inter-boy fusion: a prospective randomized non-inferiority trial. Spine J. doi:10.1016/j.spinee.2015.02.038 Lee GW, Son JH, Ahn MW, Kim HJ, Yeom JS (2015) The comparison of pedicle screw and cortical screw in posterior lumbar inter-boy fusion: a prospective randomized non-inferiority trial. Spine J. doi:10.​1016/​j.​spinee.​2015.​02.​038
15.
Zurück zum Zitat Li B, Jiang B, Fu Z, Zhang D, Wang T (2004) Accurate determination of isthmus of lumbar pedicle: a morphometric study using reformatted computed tomographic imaging. Spine 29:2438–2444CrossRefPubMed Li B, Jiang B, Fu Z, Zhang D, Wang T (2004) Accurate determination of isthmus of lumbar pedicle: a morphometric study using reformatted computed tomographic imaging. Spine 29:2438–2444CrossRefPubMed
16.
Zurück zum Zitat Mahmoud A, Wakabayashi N, Takahashi H, Ohyama T (2005) Deflection fatigue of Ti-6Al-‘Nb, Co-Cr, and gold alloy cast clasps. J Prosthet Dent 93:183–188CrossRefPubMed Mahmoud A, Wakabayashi N, Takahashi H, Ohyama T (2005) Deflection fatigue of Ti-6Al-‘Nb, Co-Cr, and gold alloy cast clasps. J Prosthet Dent 93:183–188CrossRefPubMed
17.
Zurück zum Zitat Matsukawa K, Taguchi E, Yato Y, Imabayashi H, Hosogane N, Asazuma T, Nemoto K (2015) Evaluation of the fixation strength of pedicle screws using cortical bone trajectory: what is the ideal trajectory for optimal fixation? Spine 40:E873–E878CrossRefPubMed Matsukawa K, Taguchi E, Yato Y, Imabayashi H, Hosogane N, Asazuma T, Nemoto K (2015) Evaluation of the fixation strength of pedicle screws using cortical bone trajectory: what is the ideal trajectory for optimal fixation? Spine 40:E873–E878CrossRefPubMed
18.
Zurück zum Zitat Matsukawa K, Yato Y, Imabayashi H, Hosogane N, Asazuma T, Nemoto K (2015) Biomechanical evaluation of fixation strength of lumbar pedicle screw using cortical bone trajectory: a finite element study. J Neurosurg Spine 23:471–478CrossRefPubMed Matsukawa K, Yato Y, Imabayashi H, Hosogane N, Asazuma T, Nemoto K (2015) Biomechanical evaluation of fixation strength of lumbar pedicle screw using cortical bone trajectory: a finite element study. J Neurosurg Spine 23:471–478CrossRefPubMed
19.
Zurück zum Zitat Matsukawa K, Yato Y, Kato T, Imabayashi H, Asazuma T, Nemoto K (2014) In vivo analysis of insertional torque during pedicle screwing using cortical bone trajectory technique. Spine 39:E240–E245CrossRefPubMed Matsukawa K, Yato Y, Kato T, Imabayashi H, Asazuma T, Nemoto K (2014) In vivo analysis of insertional torque during pedicle screwing using cortical bone trajectory technique. Spine 39:E240–E245CrossRefPubMed
20.
Zurück zum Zitat Matsukawa K, Yato Y, Nemoto O, Imabayashi H, Asazuma T, Nemoto K (2013) Morphometric measurement of cortical bone trajectory for lumbar pedicle screw insertion using computed tomography. J Spinal Disord Tech 26:E248–E253CrossRefPubMed Matsukawa K, Yato Y, Nemoto O, Imabayashi H, Asazuma T, Nemoto K (2013) Morphometric measurement of cortical bone trajectory for lumbar pedicle screw insertion using computed tomography. J Spinal Disord Tech 26:E248–E253CrossRefPubMed
21.
Zurück zum Zitat Matsuura Y, Giambini H, Ogawa Y, Fang Z, Thoreson AR, Yaszemski MJ, Lu L, An KN (2014) Specimen-specific nonlinear finite element modeling to predict vertebrae fracture loads after vertebroplasty. Spine 39:E1291–E1296PubMedCentralCrossRefPubMed Matsuura Y, Giambini H, Ogawa Y, Fang Z, Thoreson AR, Yaszemski MJ, Lu L, An KN (2014) Specimen-specific nonlinear finite element modeling to predict vertebrae fracture loads after vertebroplasty. Spine 39:E1291–E1296PubMedCentralCrossRefPubMed
22.
Zurück zum Zitat McKinley TO, McLain RF, Yerby SA, Sharkey NA, Sarigul-Klijn N, Smith TS (1999) Characteristics of pedicle screw loading: effect of surgical technique on intravertebral and intrapedicular bending moments. Spine 24:18–25CrossRefPubMed McKinley TO, McLain RF, Yerby SA, Sharkey NA, Sarigul-Klijn N, Smith TS (1999) Characteristics of pedicle screw loading: effect of surgical technique on intravertebral and intrapedicular bending moments. Spine 24:18–25CrossRefPubMed
23.
Zurück zum Zitat Mobbs RJ (2013) The “medio-latero-superior trajectory technique”: an alternative cortical trajectory for pedicle fixation. Orthop Surg 5:56–59CrossRefPubMed Mobbs RJ (2013) The “medio-latero-superior trajectory technique”: an alternative cortical trajectory for pedicle fixation. Orthop Surg 5:56–59CrossRefPubMed
24.
Zurück zum Zitat Perez-Orribo L, Kalb S, Reyes PM, Chang SW, Crawford NR (2013) Biomechanics of lumbar cortical screw-rod fixation versus pedicle screw-rod fixation with and without interbody support. Spine 38:635–641CrossRefPubMed Perez-Orribo L, Kalb S, Reyes PM, Chang SW, Crawford NR (2013) Biomechanics of lumbar cortical screw-rod fixation versus pedicle screw-rod fixation with and without interbody support. Spine 38:635–641CrossRefPubMed
25.
Zurück zum Zitat Rodriguez A, Neal MT, Liu A, Somasundaram A, Hsu W, Branch CL Jr (2014) Novel placement of cortical bone trajectory screws in previously instrumented pedicles for adjacent-segment lumbar disease using CT image-guided navigation. Neurosurg Focus 36:E9CrossRefPubMed Rodriguez A, Neal MT, Liu A, Somasundaram A, Hsu W, Branch CL Jr (2014) Novel placement of cortical bone trajectory screws in previously instrumented pedicles for adjacent-segment lumbar disease using CT image-guided navigation. Neurosurg Focus 36:E9CrossRefPubMed
26.
Zurück zum Zitat Santoni BG, Hynes RA, McGilvary KC, Rodriguez-Canessa G, Lyon AS, Henson MAW, Womack WJ, Puttlitz CM (2009) Cortical bone trajectory for lumbar pedicle screws. Spine J 9:366–373CrossRefPubMed Santoni BG, Hynes RA, McGilvary KC, Rodriguez-Canessa G, Lyon AS, Henson MAW, Womack WJ, Puttlitz CM (2009) Cortical bone trajectory for lumbar pedicle screws. Spine J 9:366–373CrossRefPubMed
27.
Zurück zum Zitat Soshi S, Shiba R, Kondo H, Murota K (1991) An experimental study on transpedicular screw fixation in relation to osteoporosis of the lumbar spine. Spine 16:1335–1341CrossRefPubMed Soshi S, Shiba R, Kondo H, Murota K (1991) An experimental study on transpedicular screw fixation in relation to osteoporosis of the lumbar spine. Spine 16:1335–1341CrossRefPubMed
28.
Zurück zum Zitat Ueno M, Sakai R, Tanaka K, Inoue G, Uchida K, Imura T, Saito W, Nakazawa T, Takahira N, Mabuchi K, Takaso M (2015) Should we use cortical bone screws for cortical bone trajectory? J Neurosurg Spine 22:416–421CrossRefPubMed Ueno M, Sakai R, Tanaka K, Inoue G, Uchida K, Imura T, Saito W, Nakazawa T, Takahira N, Mabuchi K, Takaso M (2015) Should we use cortical bone screws for cortical bone trajectory? J Neurosurg Spine 22:416–421CrossRefPubMed
29.
Zurück zum Zitat Wu SS, Edwards WT, Yuan HA (1998) Stiffness between different directions of transpedicular screws and vertebra. Clin Biomech 13:S1–S8CrossRef Wu SS, Edwards WT, Yuan HA (1998) Stiffness between different directions of transpedicular screws and vertebra. Clin Biomech 13:S1–S8CrossRef
30.
Zurück zum Zitat Zindrick MR, Wiltse LL, Widell EH, Thomas JC, Holland WR, Field BT, Spencer CW (1986) A biomechanical study of intrapeduncular screw fixation in the lumbosacral spine. Clin Orthop 203:99–112PubMed Zindrick MR, Wiltse LL, Widell EH, Thomas JC, Holland WR, Field BT, Spencer CW (1986) A biomechanical study of intrapeduncular screw fixation in the lumbosacral spine. Clin Orthop 203:99–112PubMed
Metadaten
Titel
Biomechanical evaluation of fixation strength among different sizes of pedicle screws using the cortical bone trajectory: what is the ideal screw size for optimal fixation?
verfasst von
Keitaro Matsukawa
Yoshiyuki Yato
Hideaki Imabayashi
Naobumi Hosogane
Yuichiro Abe
Takashi Asazuma
Kazuhiro Chiba
Publikationsdatum
01.03.2016
Verlag
Springer Vienna
Erschienen in
Acta Neurochirurgica / Ausgabe 3/2016
Print ISSN: 0001-6268
Elektronische ISSN: 0942-0940
DOI
https://doi.org/10.1007/s00701-016-2705-8

Weitere Artikel der Ausgabe 3/2016

Acta Neurochirurgica 3/2016 Zur Ausgabe

Letter to the editor - Neurosurgical Techniques

Distal catheter migration of a direct ventriculo-auricular shunt

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.