Skip to main content
Erschienen in: Journal of Neural Transmission 11/2009

01.11.2009 | Basic Neurosciences, Genetics and Immunology - Review Article

Role of Reelin in the development and maintenance of cortical lamination

verfasst von: Michael Frotscher, Xuejun Chai, Hans H. Bock, Carola A. Haas, Eckart Förster, Shanting Zhao

Erschienen in: Journal of Neural Transmission | Ausgabe 11/2009

Einloggen, um Zugang zu erhalten

Abstract

Reelin is a large extracellular matrix molecule, synthesized by early generated Cajal–Retzius cells in the marginal zone of the cortex. It plays an important role in the migration of cortical neurons and the development of cortical lamination. We recently discovered that Reelin is required not only for the formation of cortical layers during development but also for their maintenance in adulthood. Thus, decreased Reelin expression in a mouse model of epilepsy and in epileptic patients was accompanied by a loss of granule cell lamination, called granule cell dispersion, in the dentate gyrus of the hippocampal formation. Moreover, antibody blockade of Reelin in normal, adult mice resulted in granule cell dispersion. Collectively these findings point to a role for Reelin in the formation and maintenance of a laminated cortical structure. How does Reelin act on the cytoskeleton in the migration process of cortical neurons? It has been shown that Reelin signalling involves the lipoprotein receptors apolipoprotein E receptor 2 and very low density lipoprotein receptor, the adapter protein Disabled1, and phosphatidylinositol-3-kinase, but it has remained unclear how activation of the Reelin signalling cascade controls cytoskeletal reorganization. Here, we provide evidence that Reelin signalling leads to serine3 phosphorylation of cofilin, an actin-depolymerizing protein that promotes the disassembly of F-actin. Phosphorylation at serine3 renders cofilin unable to depolymerize F-actin, thereby stabilizing the cytoskeleton. Phosphorylation of cofilin in the leading processes of migrating neurons anchors them to the marginal zone containing Reelin. Our results indicate that Reelin-induced stabilization of the neuronal cytoskeleton is an important component of Reelin’s function in the development and maintenance of cortical architecture.
Literatur
Zurück zum Zitat Arber S, Barbayannis FA, Hanster H, Schneider C, Stanyon CA, Bernard O, Caroni P (1998) Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393:805–809CrossRefPubMed Arber S, Barbayannis FA, Hanster H, Schneider C, Stanyon CA, Bernard O, Caroni P (1998) Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393:805–809CrossRefPubMed
Zurück zum Zitat Arnaud L, Ballif BA, Förster E, Cooper JA (2003) Fyn tyrosine kinase is a critical regulator of disabled-1 during brain development. Curr Biol 13:9–17CrossRefPubMed Arnaud L, Ballif BA, Förster E, Cooper JA (2003) Fyn tyrosine kinase is a critical regulator of disabled-1 during brain development. Curr Biol 13:9–17CrossRefPubMed
Zurück zum Zitat Bellenchi GC, Gurniak CB, Perlas E, Middei S, Ammassari-Teule M, Witke W (2007) N-cofilin is associated with neuronal migration disorders and cell cycle control in the cerebral cortex. Genes Dev 21:2347–2357CrossRefPubMed Bellenchi GC, Gurniak CB, Perlas E, Middei S, Ammassari-Teule M, Witke W (2007) N-cofilin is associated with neuronal migration disorders and cell cycle control in the cerebral cortex. Genes Dev 21:2347–2357CrossRefPubMed
Zurück zum Zitat Bock HH, Herz J (2003) Reelin activates SRC family tyrosine kinases in neurons. Curr Biol 13:18–26CrossRefPubMed Bock HH, Herz J (2003) Reelin activates SRC family tyrosine kinases in neurons. Curr Biol 13:18–26CrossRefPubMed
Zurück zum Zitat Bock HH, Jossin Y, Liu P, Förster E, May P, Goffinet AM, Herz J (2003) Phosphatidylinositol 3-kinase interacts with the adaptor protein Dab1 in response to Reelin signaling and is required for normal cortical lamination. J Biol Chem 278:38772–38779CrossRefPubMed Bock HH, Jossin Y, Liu P, Förster E, May P, Goffinet AM, Herz J (2003) Phosphatidylinositol 3-kinase interacts with the adaptor protein Dab1 in response to Reelin signaling and is required for normal cortical lamination. J Biol Chem 278:38772–38779CrossRefPubMed
Zurück zum Zitat Chai X, Förster E, Zhao S, Bock HH, Frotscher M (2009) Reelin stabilizes the actin cytoskeleton of neuronal processes by inducing n-cofilin phosphorylation at serine3. J Neurosci 29:288–299CrossRefPubMed Chai X, Förster E, Zhao S, Bock HH, Frotscher M (2009) Reelin stabilizes the actin cytoskeleton of neuronal processes by inducing n-cofilin phosphorylation at serine3. J Neurosci 29:288–299CrossRefPubMed
Zurück zum Zitat Cooper JA (2008) A mechanism for inside-out lamination in the neocortex. Trends Neurosci 31:113–119CrossRefPubMed Cooper JA (2008) A mechanism for inside-out lamination in the neocortex. Trends Neurosci 31:113–119CrossRefPubMed
Zurück zum Zitat D’Arcangelo G, Miao GG, Chen SC, Soares HD, Morgan JI, Curran T (1995) A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374:719–723CrossRefPubMed D’Arcangelo G, Miao GG, Chen SC, Soares HD, Morgan JI, Curran T (1995) A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374:719–723CrossRefPubMed
Zurück zum Zitat D’Arcangelo G, Nakajima K, Miyata T, Ogawa M, Mikoshiba K, Curran T (1997) Reelin is a secreted glycoprotein recognized by the CR-50 monoclonal antibody. J Neurosci 17:23–31PubMed D’Arcangelo G, Nakajima K, Miyata T, Ogawa M, Mikoshiba K, Curran T (1997) Reelin is a secreted glycoprotein recognized by the CR-50 monoclonal antibody. J Neurosci 17:23–31PubMed
Zurück zum Zitat Dawe HR, Minamide LS, Bamburg JR, Cramer LP (2003) ADF/cofilin controls cell polarity during fibroblast migration. Curr Biol 13:252–257CrossRefPubMed Dawe HR, Minamide LS, Bamburg JR, Cramer LP (2003) ADF/cofilin controls cell polarity during fibroblast migration. Curr Biol 13:252–257CrossRefPubMed
Zurück zum Zitat Drakew A, Deller T, Heimrich B, Gebhardt C, Del Turco D, Tielsch A, Förster E, Herz J, Frotscher M (2002) Dentate granule cells in reeler mutants and VLDLR and ApoER2 knockout mice. Exp Neurol 176:12–24CrossRefPubMed Drakew A, Deller T, Heimrich B, Gebhardt C, Del Turco D, Tielsch A, Förster E, Herz J, Frotscher M (2002) Dentate granule cells in reeler mutants and VLDLR and ApoER2 knockout mice. Exp Neurol 176:12–24CrossRefPubMed
Zurück zum Zitat Fatemi SH, Stary JM, Araghi-Niknam M, Egan E (2005) GABAergic dysfunction in schizophrenia and mood disorders as reflected by decreased levels of reelin and GAD 65 and 67 kDa proteins in cerebellum. Schizophr Res 72:109–122CrossRefPubMed Fatemi SH, Stary JM, Araghi-Niknam M, Egan E (2005) GABAergic dysfunction in schizophrenia and mood disorders as reflected by decreased levels of reelin and GAD 65 and 67 kDa proteins in cerebellum. Schizophr Res 72:109–122CrossRefPubMed
Zurück zum Zitat Förster E, Zhao S, Frotscher M (2006) Laminating the hippocampus. Nat Rev Neurosci 7:259–267CrossRefPubMed Förster E, Zhao S, Frotscher M (2006) Laminating the hippocampus. Nat Rev Neurosci 7:259–267CrossRefPubMed
Zurück zum Zitat Frotscher M (1998) Cajal–Retzius cells, Reelin, and the formation of layers. Curr Opin Neurobiol 8:570–575CrossRefPubMed Frotscher M (1998) Cajal–Retzius cells, Reelin, and the formation of layers. Curr Opin Neurobiol 8:570–575CrossRefPubMed
Zurück zum Zitat Ghosh M, Song X, Mouneimne G, Sidani M, Lawrence DS, Condeelis JS (2004) Cofliln promotes actin polymerization and defines the direction of cell motility. Science 304:743–746CrossRefPubMed Ghosh M, Song X, Mouneimne G, Sidani M, Lawrence DS, Condeelis JS (2004) Cofliln promotes actin polymerization and defines the direction of cell motility. Science 304:743–746CrossRefPubMed
Zurück zum Zitat Haas CA, Dudeck O, Kirsch M, Huszka C, Kann G, Pollak S, Zentner J, Frotscher M (2002) Role for reelin in the development of granule cell dispersion in temporal lobe epilepsy. J Neurosci 22:5797–5802PubMed Haas CA, Dudeck O, Kirsch M, Huszka C, Kann G, Pollak S, Zentner J, Frotscher M (2002) Role for reelin in the development of granule cell dispersion in temporal lobe epilepsy. J Neurosci 22:5797–5802PubMed
Zurück zum Zitat Heinrich C, Nitta N, Flubacher A, Müller M, Fahrner A, Kirsch M, Freiman T, Suzuki F, Depaulis A, Frotscher M, Haas CA (2006) Reelin deficiency and displacement of mature neurons, but not neurogenesis, underlie the formation of granule cell dispersion in the epileptic hippocampus. J Neurosci 26:4701–4713CrossRefPubMed Heinrich C, Nitta N, Flubacher A, Müller M, Fahrner A, Kirsch M, Freiman T, Suzuki F, Depaulis A, Frotscher M, Haas CA (2006) Reelin deficiency and displacement of mature neurons, but not neurogenesis, underlie the formation of granule cell dispersion in the epileptic hippocampus. J Neurosci 26:4701–4713CrossRefPubMed
Zurück zum Zitat Howell BW, Herrick TM, Cooper JA (1999) Reelin-induced tyrosine phosphorylation of disabled 1 during neuronal positioning. Genes Dev 13:643–648. Erratum in: Genes Dev (1999) 13:1642 Howell BW, Herrick TM, Cooper JA (1999) Reelin-induced tyrosine phosphorylation of disabled 1 during neuronal positioning. Genes Dev 13:643–648. Erratum in: Genes Dev (1999) 13:1642
Zurück zum Zitat Impagnatiello F, Guidotti AR, Pesold C, Dwivedi Y, Caruncho H, Pisu MG, Uzuniv DP, Smalheiser NR, Davis JM, Pandey GN, Pappas GD, Tueting P, Sharma RP, Costa E (1998) A decrease of reelin expression as a putative vulnerability factor in schizophrenia. Proc Natl Acad Sci USA 95:15718–15723CrossRefPubMed Impagnatiello F, Guidotti AR, Pesold C, Dwivedi Y, Caruncho H, Pisu MG, Uzuniv DP, Smalheiser NR, Davis JM, Pandey GN, Pappas GD, Tueting P, Sharma RP, Costa E (1998) A decrease of reelin expression as a putative vulnerability factor in schizophrenia. Proc Natl Acad Sci USA 95:15718–15723CrossRefPubMed
Zurück zum Zitat Jovceva E, Larsen MR, Waterfield MD, Baum B, Timms JF (2007) Dynamic cofilin phosphorylation in the control of lamellipodial actin homeostasis. J Cell Science 120:1888–1897CrossRefPubMed Jovceva E, Larsen MR, Waterfield MD, Baum B, Timms JF (2007) Dynamic cofilin phosphorylation in the control of lamellipodial actin homeostasis. J Cell Science 120:1888–1897CrossRefPubMed
Zurück zum Zitat Kiuchi T, Ohashi K, Kurita S, Mizuno K (2007) Cofilin promotes stimulus-induced lamellipodium formation by generating an abundant supply of actin monomers. J Cell Biol 177:465–476CrossRefPubMed Kiuchi T, Ohashi K, Kurita S, Mizuno K (2007) Cofilin promotes stimulus-induced lamellipodium formation by generating an abundant supply of actin monomers. J Cell Biol 177:465–476CrossRefPubMed
Zurück zum Zitat Moriyama K, Lida K, Yahara I (1996) Phosphorylation of Ser-3 of cofilin regulates its essential function on actin. Genes Cells 1:73–86CrossRefPubMed Moriyama K, Lida K, Yahara I (1996) Phosphorylation of Ser-3 of cofilin regulates its essential function on actin. Genes Cells 1:73–86CrossRefPubMed
Zurück zum Zitat Müller MC, Osswald M, Tinnes S, Häussler U, Jacobi A, Förster E, Frotscher M, Haas CA (2009) Exogenous reelin prevents granule cell dispersion in experimental epilepsy. Exp Neurol 216:390–397CrossRefPubMed Müller MC, Osswald M, Tinnes S, Häussler U, Jacobi A, Förster E, Frotscher M, Haas CA (2009) Exogenous reelin prevents granule cell dispersion in experimental epilepsy. Exp Neurol 216:390–397CrossRefPubMed
Zurück zum Zitat Nadarajah B, Parnavelas J (2002) Modes of neuronal migration in the developing cerebral cortex. Nat Rev Neurosci 3:423–432CrossRefPubMed Nadarajah B, Parnavelas J (2002) Modes of neuronal migration in the developing cerebral cortex. Nat Rev Neurosci 3:423–432CrossRefPubMed
Zurück zum Zitat Nagaoka R, Abe H, Obinata T (1996) Site-directed mutagenesis of the phosphorylation site of cofilin; its role in cofilin-actin interaction and cytoplasmic localization. Cell Motil Cytoskeleton 35:200–209CrossRefPubMed Nagaoka R, Abe H, Obinata T (1996) Site-directed mutagenesis of the phosphorylation site of cofilin; its role in cofilin-actin interaction and cytoplasmic localization. Cell Motil Cytoskeleton 35:200–209CrossRefPubMed
Zurück zum Zitat Rakic P, Caviness VS Jr (1995) Cortical development: view from neurological mutants two decades later. Neuron 14:1101–1104CrossRefPubMed Rakic P, Caviness VS Jr (1995) Cortical development: view from neurological mutants two decades later. Neuron 14:1101–1104CrossRefPubMed
Zurück zum Zitat Rice DS, Curran T (2001) Role of the reelin signaling pathway in central nervous system development. Annu Rev Neurosci 24:1005–1039CrossRefPubMed Rice DS, Curran T (2001) Role of the reelin signaling pathway in central nervous system development. Annu Rev Neurosci 24:1005–1039CrossRefPubMed
Zurück zum Zitat Soriano E, Del Rio JA (2005) The cells of Cajal–Retzius: still a mystery one century after. Neuron 46:389–394CrossRefPubMed Soriano E, Del Rio JA (2005) The cells of Cajal–Retzius: still a mystery one century after. Neuron 46:389–394CrossRefPubMed
Zurück zum Zitat Stanfield BB, Cowan WM (1979a) The development of the hippocampus and dentate gyrus in normal and reeler mice. J Comp Neurol 185:423–460CrossRefPubMed Stanfield BB, Cowan WM (1979a) The development of the hippocampus and dentate gyrus in normal and reeler mice. J Comp Neurol 185:423–460CrossRefPubMed
Zurück zum Zitat Stanfield BB, Cowan WM (1979b) The morphology of the hippocampus and dentate gyrus in normal and reeler mice. J Comp Neurol 185:393–422CrossRefPubMed Stanfield BB, Cowan WM (1979b) The morphology of the hippocampus and dentate gyrus in normal and reeler mice. J Comp Neurol 185:393–422CrossRefPubMed
Zurück zum Zitat Terashima T, Inoue K, Inoue Y, Mikoshiba K, Tsukada Y (1985) Distribution and morphology of callosal commissural neurons within the motor cortex of normal and reeler mice. J Comp Neurol 232:83–98CrossRefPubMed Terashima T, Inoue K, Inoue Y, Mikoshiba K, Tsukada Y (1985) Distribution and morphology of callosal commissural neurons within the motor cortex of normal and reeler mice. J Comp Neurol 232:83–98CrossRefPubMed
Zurück zum Zitat Terashima T, Takayama C, Ichikawa R, Inoue Y (1992) Dendritic arborization of large pyramidal neurons in the motor cortex of normal and reeler mutant mouse. Okajimas Folia Anat Jpn 68:351–363PubMed Terashima T, Takayama C, Ichikawa R, Inoue Y (1992) Dendritic arborization of large pyramidal neurons in the motor cortex of normal and reeler mutant mouse. Okajimas Folia Anat Jpn 68:351–363PubMed
Zurück zum Zitat Trommsdorff M, Gotthardt M, Hiesberger T, Shelton J, Stockinger W, Nimpf J, Hammer RE, Richardson JA, Herz J (1999) Reeler/disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97:689–701CrossRefPubMed Trommsdorff M, Gotthardt M, Hiesberger T, Shelton J, Stockinger W, Nimpf J, Hammer RE, Richardson JA, Herz J (1999) Reeler/disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97:689–701CrossRefPubMed
Zurück zum Zitat Yang N, Higuchi O, Ohashi K, Nagata K, Wada A, Kangawa K, Nishida E, Mizuno K (1998) Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 393:809–812CrossRefPubMed Yang N, Higuchi O, Ohashi K, Nagata K, Wada A, Kangawa K, Nishida E, Mizuno K (1998) Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 393:809–812CrossRefPubMed
Zurück zum Zitat Zebda N, Bernard O, Bailly M, Welti S, Lawrence D (2000) Phosphorylation of ADF/cofilin abolishes EGF-induced actin nucleation at the leading edge and subsequent lamellipod extension J Cell Biol 151:1119–1127 Zebda N, Bernard O, Bailly M, Welti S, Lawrence D (2000) Phosphorylation of ADF/cofilin abolishes EGF-induced actin nucleation at the leading edge and subsequent lamellipod extension J Cell Biol 151:1119–1127
Metadaten
Titel
Role of Reelin in the development and maintenance of cortical lamination
verfasst von
Michael Frotscher
Xuejun Chai
Hans H. Bock
Carola A. Haas
Eckart Förster
Shanting Zhao
Publikationsdatum
01.11.2009
Verlag
Springer Vienna
Erschienen in
Journal of Neural Transmission / Ausgabe 11/2009
Print ISSN: 0300-9564
Elektronische ISSN: 1435-1463
DOI
https://doi.org/10.1007/s00702-009-0228-7

Weitere Artikel der Ausgabe 11/2009

Journal of Neural Transmission 11/2009 Zur Ausgabe

Basic Neurosciences, Genetics and Immunology - Review Article

NAP protects against cyanide-related microtubule destruction

Editorial

Editorial

Basic Neurosciences, Genetics and Immunology - Review Article

Growth factors improve neurogenesis and outcome after focal cerebral ischemia

Basic Neurosciences, Genetics and Immunology - Original Article

Prediction of Alzheimer dementia with short neuropsychological instruments

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.