Skip to main content
Erschienen in: Archives of Virology 2/2011

01.02.2011 | Original Article

Infectious bronchitis viruses with naturally occurring genomic rearrangement and gene deletion

verfasst von: Kylie A. Hewson, Jagoda Ignjatovic, Glenn F. Browning, Joanne M. Devlin, Amir H. Noormohammadi

Erschienen in: Archives of Virology | Ausgabe 2/2011

Einloggen, um Zugang zu erhalten

Abstract

Infectious bronchitis viruses (IBVs) are group III coronaviruses that infect poultry worldwide. Genetic variations, including whole-gene deletions, are key to IBV evolution. Australian subgroup 2 IBVs contain sequence insertions and multiple gene deletions that have resulted in a substantial genomic divergence from international IBVs. The genomic variations present in Australian IBVs were investigated and compared to those of another group III coronavirus, turkey coronavirus (TCoV). Open reading frames (ORFs) found throughout the genome of Australian IBVs were analogous in sequence and position to TCoV ORFs, except for ORF 4b, which appeared to be translocated to a different position in the subgroup 2 strains. Subgroup 2 strains were previously reported to lack genes 3a, 3b and 5a, with some also lacking 5b. Of these, however, genes 3b and 5b were found to be present but contained various mutations that may affect transcription. In this study, it was found that subgroup 2 IBVs have undergone a more substantial genomic rearrangements than previously thought.
Literatur
1.
Zurück zum Zitat Cavanagh D, Davis PJ, Cook JKA et al (1992) Location of the amino acid differences in the S1 spike glycoprotein subunit of closely related serotypes of infectious bronchitis virus. Avian Pathol 21:33–43CrossRefPubMed Cavanagh D, Davis PJ, Cook JKA et al (1992) Location of the amino acid differences in the S1 spike glycoprotein subunit of closely related serotypes of infectious bronchitis virus. Avian Pathol 21:33–43CrossRefPubMed
2.
Zurück zum Zitat Cavanagh D, Davis PJ, Mockett APA (1988) Amino acids within hypervariable region 1 of avian coronavirus IBV (Massachusetts serotype) spike glycoprotein are associated with neutralization epitopes. Virus Res 11:141–150CrossRefPubMed Cavanagh D, Davis PJ, Mockett APA (1988) Amino acids within hypervariable region 1 of avian coronavirus IBV (Massachusetts serotype) spike glycoprotein are associated with neutralization epitopes. Virus Res 11:141–150CrossRefPubMed
3.
Zurück zum Zitat Dolz R, Pujols J, Ordóñez G et al (2006) Antigenic and molecular characterization of isolates of the Italy 02 infectious bronchitis virus genotype. Avian Pathol 35:77–85CrossRefPubMed Dolz R, Pujols J, Ordóñez G et al (2006) Antigenic and molecular characterization of isolates of the Italy 02 infectious bronchitis virus genotype. Avian Pathol 35:77–85CrossRefPubMed
4.
Zurück zum Zitat Farsang A, Ros C, Renström LHM et al (2002) Molecular epizootiology of infectious bronchitis virus in Sweden indicating the involvement of a vaccine strain. Avian Pathol 31:229–236CrossRefPubMed Farsang A, Ros C, Renström LHM et al (2002) Molecular epizootiology of infectious bronchitis virus in Sweden indicating the involvement of a vaccine strain. Avian Pathol 31:229–236CrossRefPubMed
5.
Zurück zum Zitat Gelb J Jr, Wolff JB, Moran CA (1991) Variant Serotypes of Infectious Bronchitis Virus Isolated from Commercial Layer and Broiler Chickens. Avian Dis 35:82–87CrossRefPubMed Gelb J Jr, Wolff JB, Moran CA (1991) Variant Serotypes of Infectious Bronchitis Virus Isolated from Commercial Layer and Broiler Chickens. Avian Dis 35:82–87CrossRefPubMed
6.
Zurück zum Zitat Wang CH, Huang YC (2000) Relationship between serotypes and genotypes based on the hypervariable region of the S1 gene of infectious bronchitis virus. Arch Virol 145:291–300CrossRefPubMed Wang CH, Huang YC (2000) Relationship between serotypes and genotypes based on the hypervariable region of the S1 gene of infectious bronchitis virus. Arch Virol 145:291–300CrossRefPubMed
7.
Zurück zum Zitat Ammayappan A, Upadhyay C, Gelb J et al (2008) Complete genomic sequence analysis of infectious bronchitis virus Ark DPI strain and its evolution by recombination. Virol J 5:157–163CrossRefPubMed Ammayappan A, Upadhyay C, Gelb J et al (2008) Complete genomic sequence analysis of infectious bronchitis virus Ark DPI strain and its evolution by recombination. Virol J 5:157–163CrossRefPubMed
8.
Zurück zum Zitat Bochkov YA, Tosi G, Massi P et al (2007) Phylogenetic analysis of partial S1 and N gene sequences of infectious bronchitis virus isolates from Italy revealed genetic diversity and recombination. Virus Genes 35:65–71CrossRefPubMed Bochkov YA, Tosi G, Massi P et al (2007) Phylogenetic analysis of partial S1 and N gene sequences of infectious bronchitis virus isolates from Italy revealed genetic diversity and recombination. Virus Genes 35:65–71CrossRefPubMed
9.
Zurück zum Zitat Chen HW, Huang YP, Wang CH (2009) Identification of Taiwan and China-like recombinant avian infectious bronchitis viruses in Taiwan. Virus Res 140:121–129CrossRefPubMed Chen HW, Huang YP, Wang CH (2009) Identification of Taiwan and China-like recombinant avian infectious bronchitis viruses in Taiwan. Virus Res 140:121–129CrossRefPubMed
10.
Zurück zum Zitat Dolz R, Pujols J, Ordóñez G et al (2008) Molecular epidemiology and evolution of avian infectious bronchitis virus in Spain over a fourteen-year period. Virology 374:50–59CrossRefPubMed Dolz R, Pujols J, Ordóñez G et al (2008) Molecular epidemiology and evolution of avian infectious bronchitis virus in Spain over a fourteen-year period. Virology 374:50–59CrossRefPubMed
11.
Zurück zum Zitat Liu S, Zhang Q, Chen J et al (2008) Identification of the avian infectious bronchitis coronaviruses with mutations in gene 3. Gene 412:12–25CrossRefPubMed Liu S, Zhang Q, Chen J et al (2008) Identification of the avian infectious bronchitis coronaviruses with mutations in gene 3. Gene 412:12–25CrossRefPubMed
12.
Zurück zum Zitat Wang L, Junker D, Collisson EW (1993) Evidence of natural recombination within the S1 genes of infectious bronchitis virus. Virology 192:710–716CrossRefPubMed Wang L, Junker D, Collisson EW (1993) Evidence of natural recombination within the S1 genes of infectious bronchitis virus. Virology 192:710–716CrossRefPubMed
13.
Zurück zum Zitat Vijgen L, Keyaerts E, Van Ranst M (2007) Molecular evolution of group 2 coronaviruses. In: Thiel V (ed) Coronaviruses: Molecular and Cellular Biology. Caister Academic Press, Norfolk, pp 143–158 Vijgen L, Keyaerts E, Van Ranst M (2007) Molecular evolution of group 2 coronaviruses. In: Thiel V (ed) Coronaviruses: Molecular and Cellular Biology. Caister Academic Press, Norfolk, pp 143–158
14.
Zurück zum Zitat Snijder EJ, Bredenbeek PJ, Dobbe JC et al (2003) Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol 331:991–1004CrossRefPubMed Snijder EJ, Bredenbeek PJ, Dobbe JC et al (2003) Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol 331:991–1004CrossRefPubMed
15.
Zurück zum Zitat Wadey CN, Faragher JT (1981) Australian infectious bronchitis viruses: identification of nine subtypes by a neutralisation test. Res Vet Sci 30:70–74PubMed Wadey CN, Faragher JT (1981) Australian infectious bronchitis viruses: identification of nine subtypes by a neutralisation test. Res Vet Sci 30:70–74PubMed
16.
Zurück zum Zitat Ignjatovic J, Sapats SI, Ashton F (1997) A long-term study of Australian infectious bronchitis viruses indicates a major antigenic change. Avian Pathol 26:535–553CrossRefPubMed Ignjatovic J, Sapats SI, Ashton F (1997) A long-term study of Australian infectious bronchitis viruses indicates a major antigenic change. Avian Pathol 26:535–553CrossRefPubMed
17.
Zurück zum Zitat Sapats SI, Ashton F, Wright PJ et al (1996) Sequence analysis of the S1 glycoprotein of infectious bronchitis viruses: identification of a novel genotypic group in Australia. J Gen Virol 77:413–418CrossRefPubMed Sapats SI, Ashton F, Wright PJ et al (1996) Sequence analysis of the S1 glycoprotein of infectious bronchitis viruses: identification of a novel genotypic group in Australia. J Gen Virol 77:413–418CrossRefPubMed
18.
Zurück zum Zitat Ignjatovic J, Gould G, Sapats S (2006) Isolation of a variant infectious bronchitis virus in Australia that further illustrates diversity among emerging strains. Arch Virol 151:1567–1585CrossRefPubMed Ignjatovic J, Gould G, Sapats S (2006) Isolation of a variant infectious bronchitis virus in Australia that further illustrates diversity among emerging strains. Arch Virol 151:1567–1585CrossRefPubMed
19.
Zurück zum Zitat Hewson K, Noormohammadi A, Devlin J et al (2009) Rapid detection and non-subjective characterisation of infectious bronchitis virus isolates using high-resolution melt curve analysis and a mathematical model. Arch Virol 154:649–660CrossRefPubMed Hewson K, Noormohammadi A, Devlin J et al (2009) Rapid detection and non-subjective characterisation of infectious bronchitis virus isolates using high-resolution melt curve analysis and a mathematical model. Arch Virol 154:649–660CrossRefPubMed
20.
Zurück zum Zitat Mardani K, Noormohammadi A, Ignjatovic J et al (2010) Naturally occurring recombination between distant strains of infectious bronchitis virus. Arch Virol Mardani K, Noormohammadi A, Ignjatovic J et al (2010) Naturally occurring recombination between distant strains of infectious bronchitis virus. Arch Virol
21.
Zurück zum Zitat Britton P, Casais R, Hodgson T et al (2006) Genes 3 and 5 of Infectious Bronchitis Virus are Accessory Protein Genes. In: Perlman S and Holmes K V (ed) The Nidoviruses, Springer US363-368 Britton P, Casais R, Hodgson T et al (2006) Genes 3 and 5 of Infectious Bronchitis Virus are Accessory Protein Genes. In: Perlman S and Holmes K V (ed) The Nidoviruses, Springer US363-368
22.
Zurück zum Zitat Hodgson T, Britton P, Cavanagh D (2006) Neither the RNA nor the Proteins of Open Reading Frames 3a and 3b of the Coronavirus Infectious Bronchitis Virus Are Essential for Replication. J Virol 80:296–305CrossRefPubMed Hodgson T, Britton P, Cavanagh D (2006) Neither the RNA nor the Proteins of Open Reading Frames 3a and 3b of the Coronavirus Infectious Bronchitis Virus Are Essential for Replication. J Virol 80:296–305CrossRefPubMed
23.
Zurück zum Zitat Boursnell MEG, Brown TDK, Foulds IJ et al (1987) Completion of the Sequence of the Genome of the Coronavirus Avian Infectious Bronchitis Virus. J Gen Virol 68:57–77CrossRefPubMed Boursnell MEG, Brown TDK, Foulds IJ et al (1987) Completion of the Sequence of the Genome of the Coronavirus Avian Infectious Bronchitis Virus. J Gen Virol 68:57–77CrossRefPubMed
24.
Zurück zum Zitat Cavanagh D, Casais R, Armesto M et al (2007) Manipulation of the infectious bronchitis coronavirus genome for vaccine development and analysis of the accessory proteins. Vaccine 25:5558–5562CrossRefPubMed Cavanagh D, Casais R, Armesto M et al (2007) Manipulation of the infectious bronchitis coronavirus genome for vaccine development and analysis of the accessory proteins. Vaccine 25:5558–5562CrossRefPubMed
25.
Zurück zum Zitat Mardani K, Noormohammadi AH, Hooper P et al (2008) Infectious bronchitis viruses with a novel genomic organization. J Virol 82:2013–2024CrossRefPubMed Mardani K, Noormohammadi AH, Hooper P et al (2008) Infectious bronchitis viruses with a novel genomic organization. J Virol 82:2013–2024CrossRefPubMed
26.
Zurück zum Zitat de Haan CAM, Volders H, Koetzner CA et al (2002) Coronaviruses Maintain Viability despite Dramatic Rearrangements of the Strictly Conserved Genome Organization. J Virol 76:12491–12502CrossRefPubMed de Haan CAM, Volders H, Koetzner CA et al (2002) Coronaviruses Maintain Viability despite Dramatic Rearrangements of the Strictly Conserved Genome Organization. J Virol 76:12491–12502CrossRefPubMed
27.
Zurück zum Zitat Brooks JE, Rainer AC, Parr RL et al (2004) Comparisons of envelope through 5B sequences of infectious bronchitis coronaviruses indicates recombination occurs in the envelope and membrane genes. Virus Res 100:191–198CrossRefPubMed Brooks JE, Rainer AC, Parr RL et al (2004) Comparisons of envelope through 5B sequences of infectious bronchitis coronaviruses indicates recombination occurs in the envelope and membrane genes. Virus Res 100:191–198CrossRefPubMed
28.
Zurück zum Zitat Cavanagh D, Davis PJ (1988) Evolution of Avian Coronavirus IBV: Sequence of the Matrix Glycoprotein Gene and Intergenic Region of Several Serotypes. J Gen Virol 69:621–629CrossRefPubMed Cavanagh D, Davis PJ (1988) Evolution of Avian Coronavirus IBV: Sequence of the Matrix Glycoprotein Gene and Intergenic Region of Several Serotypes. J Gen Virol 69:621–629CrossRefPubMed
29.
Zurück zum Zitat Cao J, Wu CC, Lin TL (2008) Complete nucleotide sequence of polyprotein gene 1 and genome organization of turkey coronavirus. Virus Res 136:43–49CrossRefPubMed Cao J, Wu CC, Lin TL (2008) Complete nucleotide sequence of polyprotein gene 1 and genome organization of turkey coronavirus. Virus Res 136:43–49CrossRefPubMed
30.
Zurück zum Zitat Gomaa MH, Barta JR, Ojkic D et al (2008) Complete genomic sequence of turkey coronavirus. Virus Res 135:237–246CrossRefPubMed Gomaa MH, Barta JR, Ojkic D et al (2008) Complete genomic sequence of turkey coronavirus. Virus Res 135:237–246CrossRefPubMed
31.
Zurück zum Zitat Sapats SI, Ashton F, Wright PJ et al (1996) Novel Variation in the N Protein of Avian Infectious Bronchitis Virus. Virology 226:412–417CrossRefPubMed Sapats SI, Ashton F, Wright PJ et al (1996) Novel Variation in the N Protein of Avian Infectious Bronchitis Virus. Virology 226:412–417CrossRefPubMed
32.
33.
Zurück zum Zitat Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefPubMed Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefPubMed
34.
Zurück zum Zitat Davidson I, Silva R (2008) Creation of diversity in the animal virus world by inter-species and intra-species recombinations: lessons learned from poultry viruses. Virus Genes 36:1–9CrossRefPubMed Davidson I, Silva R (2008) Creation of diversity in the animal virus world by inter-species and intra-species recombinations: lessons learned from poultry viruses. Virus Genes 36:1–9CrossRefPubMed
35.
Zurück zum Zitat Herrewegh AAPM, Smeenk I, Horzinek MC et al (1998) Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus. J Virol 72:4508–4514PubMed Herrewegh AAPM, Smeenk I, Horzinek MC et al (1998) Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus. J Virol 72:4508–4514PubMed
36.
Zurück zum Zitat Lee C-W, Jackwood M (2001) Spike Gene Analysis of the DE072 Strain of Infectious Bronchitis Virus: Origin and Evolution. Virus Genes 22:85–91CrossRefPubMed Lee C-W, Jackwood M (2001) Spike Gene Analysis of the DE072 Strain of Infectious Bronchitis Virus: Origin and Evolution. Virus Genes 22:85–91CrossRefPubMed
37.
Zurück zum Zitat Pantin-Jackwood M, Spackman E, Woolcock P (2006) Phylogenetic Analysis of Turkey Astroviruses Reveals Evidence of Recombination. Virus Genes 32:187–192CrossRefPubMed Pantin-Jackwood M, Spackman E, Woolcock P (2006) Phylogenetic Analysis of Turkey Astroviruses Reveals Evidence of Recombination. Virus Genes 32:187–192CrossRefPubMed
38.
Zurück zum Zitat Pyrc K, Dijkman R, Deng L et al (2006) Mosaic Structure of Human Coronavirus NL63, One Thousand Years of Evolution. J Mol Biol 364:964–973CrossRefPubMed Pyrc K, Dijkman R, Deng L et al (2006) Mosaic Structure of Human Coronavirus NL63, One Thousand Years of Evolution. J Mol Biol 364:964–973CrossRefPubMed
39.
Zurück zum Zitat Stavrinides J, Guttman DS (2004) Mosaic Evolution of the Severe Acute Respiratory Syndrome Coronavirus. J Virol 78:76–82CrossRefPubMed Stavrinides J, Guttman DS (2004) Mosaic Evolution of the Severe Acute Respiratory Syndrome Coronavirus. J Virol 78:76–82CrossRefPubMed
40.
Zurück zum Zitat Pasternak AO, Spaan WJM, Snijder EJ (2006) Nidovirus transcription: how to make sense…? J Gen Virol 87:1403–1421CrossRefPubMed Pasternak AO, Spaan WJM, Snijder EJ (2006) Nidovirus transcription: how to make sense…? J Gen Virol 87:1403–1421CrossRefPubMed
41.
Zurück zum Zitat Casais R, Davies M, Cavanagh D et al (2005) Gene 5 of the avian coronavirus infectious bronchitis virus is not essential for replication. J Virol 79:8065–8078CrossRefPubMed Casais R, Davies M, Cavanagh D et al (2005) Gene 5 of the avian coronavirus infectious bronchitis virus is not essential for replication. J Virol 79:8065–8078CrossRefPubMed
Metadaten
Titel
Infectious bronchitis viruses with naturally occurring genomic rearrangement and gene deletion
verfasst von
Kylie A. Hewson
Jagoda Ignjatovic
Glenn F. Browning
Joanne M. Devlin
Amir H. Noormohammadi
Publikationsdatum
01.02.2011
Verlag
Springer Vienna
Erschienen in
Archives of Virology / Ausgabe 2/2011
Print ISSN: 0304-8608
Elektronische ISSN: 1432-8798
DOI
https://doi.org/10.1007/s00705-010-0850-6

Weitere Artikel der Ausgabe 2/2011

Archives of Virology 2/2011 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Vorhofflimmern bei Jüngeren gefährlicher als gedacht

06.05.2024 Vorhofflimmern Nachrichten

Immer mehr jüngere Menschen leiden unter Vorhofflimmern. Betroffene unter 65 Jahren haben viele Risikofaktoren und ein signifikant erhöhtes Sterberisiko verglichen mit Gleichaltrigen ohne die Erkrankung.

Chronisches Koronarsyndrom: Gefahr von Hospitalisierung wegen Herzinsuffizienz

06.05.2024 Herzinsuffizienz Nachrichten

Obwohl ein rezidivierender Herzinfarkt bei chronischem Koronarsyndrom wahrscheinlich die Hauptsorge sowohl der Patienten als auch der Ärzte ist, sind andere Ereignisse womöglich gefährlicher. Laut einer französischen Studie stellt eine Hospitalisation wegen Herzinsuffizienz eine größere Gefahr dar.

„Restriktion auf vier Wochen Therapie bei Schlaflosigkeit ist absurd!“

06.05.2024 Insomnie Nachrichten

Chronische Insomnie als eigenständiges Krankheitsbild ernst nehmen und adäquat nach dem aktuellen Forschungsstand behandeln: Das forderte der Schlafmediziner Dr. Dieter Kunz von der Berliner Charité beim Praxis Update.

GLP-1-Rezeptoragonisten und SGLT-2-Hemmer: zusammen besser

06.05.2024 Typ-2-Diabetes Nachrichten

Immer häufiger wird ein Typ-2-Diabetes sowohl mit einem GLP-1-Rezeptor-Agonisten als auch mit einem SGLT-2-Inhibitor behandelt. Wie sich das verglichen mit den Einzeltherapien auf kardiovaskuläre und renale Komplikationen auswirkt, wurde anhand von Praxisdaten aus Großbritannien untersucht.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.