Skip to main content
Erschienen in: Virology Journal 1/2008

Open Access 01.12.2008 | Short report

Complete genomic sequence analysis of infectious bronchitis virus Ark DPI strain and its evolution by recombination

verfasst von: Arun Ammayappan, Chitra Upadhyay, Jack Gelb Jr, Vikram N Vakharia

Erschienen in: Virology Journal | Ausgabe 1/2008

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

An infectious bronchitis virus Arkansas DPI (Ark DPI) virulent strain was sequenced, analyzed and compared with many different IBV strains and coronaviruses. The genome of Ark DPI consists of 27,620 nucleotides, excluding poly (A) tail, and comprises ten open reading frames. Comparative sequence analysis of Ark DPI with other IBV strains shows striking similarity to the Conn, Gray, JMK, and Ark 99, which were circulating during that time period. Furthermore, comparison of the Ark genome with other coronaviruses demonstrates a close relationship to turkey coronavirus. Among non-structural genes, the 5'untranslated region (UTR), 3C-like proteinase (3CLpro) and the polymerase (RdRp) sequences are 100% identical to the Gray strain. Among structural genes, S1 has 97% identity with Ark 99; S2 has 100% identity with JMK and 96% to Conn; 3b 99%, and 3C to N is 100% identical to Conn strain. Possible recombination sites were found at the intergenic region of spike gene, 3'end of S1 and 3a gene. Independent recombination events may have occurred in the entire genome of Ark DPI, involving four different IBV strains, suggesting that genomic RNA recombination may occur in any part of the genome at number of sites. Hence, we speculate that the Ark DPI strain originated from the Conn strain, but diverged and evolved independently by point mutations and recombination between field strains.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1743-422X-5-157) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

VNV and JG conceived the study. AA planned the experimental design, AA and CU carried out cloning and sequencing. AA drafted the manuscript. All authors critically reviewed and approved the final manuscript.

Findings

Avian infectious bronchitis virus (IBV) is a pathogen of domestic chickens that causes acute, highly contagious respiratory disease [1]. IBV is a member of the Coronaviridae, order Nidovirales [2] and its genome consists of a 27.6 kb single stranded positive-sense RNA molecule that encodes for four structural proteins; the spike (S) glycoprotein, the small envelope (E) protein, the membrane (M) glycoprotein, and the nucleocapsid (N) protein [3, 4]. Six subgenomic mRNAs are transcribed from the IBV genome in virus-infected cells. The mRNA 1 contains two large overlapping open reading frames, encoding two polyproteins 1a and 1b [5], among which 1b is produced as 1ab polyprotein by ribosomal frame-shifting mechanism [6].
Many serotypes have been described for IBV, probably due to the frequent point mutations that occur in RNA viruses and also due to recombination events demonstrated for IBV [79]. For this reason, the characterization of virus isolates existing in the field is very important. The Ark DPI strain was first isolated from Delmarva Peninsula broiler flock [10, 11] and it is currently being used as a vaccine in the USA and Europe. In this study, we characterized the entire genome of virulent Ark DPI strain (embryo passage 11) and compared it with other IBV strains and coronaviruses from all over the world.
The Ark DPI virus was inoculated into 9-day-old SPF chicken eggs and allantoic fluid was collected 72 h post inoculation. The fluid was clarified by low speed centrifugation and clear supernatant was stored at -80°C. Genomic RNA was extracted from virus-infected allantoic fluid with Qiagen RNAeasy kit, following the manufacturer's instructions, and stored at -80°C until further use. Oligonucleotides were designed based on consensus sequence of the following IBV strains: Cal 99 [GenBank:AY514485], Mass 41 [GenBank:AY851295] and BJ [GenBank:AY319651]. Overlapping primers were designed in a manner such that each pair of primer covered approximately two kb of genome. The RT-PCR was carried out as described earlier [12] and the RT-PCR products were cloned into pCR2.1 TOPO TA vector (Invitrogen, CA). Plasmid DNA from various clones was sequenced by dideoxy chain termination method, using an automated DNA sequencer (Applied Biosystems, CA). Three independent clones were sequenced for each amplicon to exclude errors that can occur from RT and PCR reactions. The assembly of contiguous sequences and multiple sequence alignments were performed with the GeneDoc software [13]. The pair-wise nucleotide identity and comparative sequence analyses were conducted using Vector NTI Advance 10 software (Invitrogen, CA) and BLAST search, NCBI. Phylogenetic analyses were conducted using the MEGA4 program [14].
The GenBank accession number for the Ark DPI sequence is EU418976. The complete genomes of following strains are obtained from GenBank: TCoVMG10, NC_010800; Beaudette, NC_001451; M41, AY851295; CK/CH/LSD/05I, EU637854; A2, EU526388; LX4, AY338732; SAIBK, DQ288927; The accession numbers of IBV gene sequences which are used in this study are as follows: For replicase gene sequences: (a) 5'UTR; Conn, AY392049; Florida, AY392050; CU-T2, AY561724; Ark 99, AY392051; DE072, AY392054;GA98, AY392053; Gray, AY392056; (b) PLpro: Conn, AY392059; Florida, AY392060; CU-T2, AY561734; Ark 99, AY392061; DE072, AY392064; GA98, AY392063; Gray, AY392066 (c) Mpro: Conn, AY392069; Florida, AY392070; CU-T2, AY561744; Ark 99, AY392071; DE072, AY392074; GA98, AY392073; Gray, AY392076; (d) RdRp: Conn, AY392079; Florida, AY392080; CU-T2, AY561754; Ark99, AY392081; DE072, AY392084; GA98, AY392083; Gray, AY392086. For Structural genes (a) Complete structural genes: HK, AY761141; Vic, DQ490221; KB8523, M21515; TW2296/95, DQ646404 (b) S1: Jilin, AY839144; Gray, L18989; Conn, EU526403; Holte, L18988; UK/2/91, Z83976; Qu16, AF349620; JMK, L14070; H120, M21970; GAV-92, AF094817; DE072, AF274435; IS/1366, EU350550; (c) S2: JMK, AF239982; Jilin, AY839146; Holte, AF334685; DE072, AY024337; Conn, AF094818; Gray, AF394180; H120, AF239982; (d) S: Ark 99, L10384; CU-T2, U04739; (e) Gene 3: Jilin, AY846833; Conn, AY942752; CU-T2, U46036; Ark 99, AY942751; Gray, AF318282 (f) M: Jilin, AY846833; JMK, AF363608; Conn, AY942741; H120, AY028295; Gray, AF363607; (g) Gene 5: Jilin, AY839142; Gray, AF469011; Conn, AF469013; DE072, AF203000; (h) N: Jilin, AY839145; Ind/TN/92/03, EF185916; Conn, AY942746; H120, AY028296; Gray, M85245; (i) 3'UTR: H120, AJ278336.
The genome of Ark DPI consists of 27,620 nucleotides (nts), excluding poly (A) tail, and comprises ten open reading frames (ORFs) flanked by 5' (528 nts) and 3' (507 nts) untranslated regions (UTRs). The genome organization is ORF1ab (529–20360), ORF2 (20311–23820), ORF3abc [3a, (23820–23993), 3b (23993–24187), 3c (24168–24491)], ORF4 (24469–25140), ORF5ab [5a (25500–25697), 5b (25694–25942)] and ORF6 (25885–27114).
The details of genome organization of Ark DPI are shown in Fig. 1. IBV polyprotein is cleaved into 15 cleavage products, among which first two N-terminal products are cleaved by PLpro and rest of the C-terminal products are cleaved by 3CLpro [15]. The putative domains and their cleavage sites (Fig. 1) are predicted by comparison of amino acid sequences of each non-structural protein (nsp) of Ark DPI with those of IBV-Beaudette which is available in Coronavirus Database (CoVDB) [16]. The nucleotide and the amino acid identity of Ark DPI with other IBVs and coronaviruses are listed in Tables 1, 2, 3. The whole structural gene of Jilin is 100% identical to Ark DPI, which suggests that Jilin strain is actually Ark DPI, which is currently used as a vaccine in China [17]. The whole genome comparison of IBV strains reveals a close relationship of Ark DPI with Cal 99 (96% identity), as shown in Fig. 2. Earlier studies have shown that Cal 99 probably evolved from Ark DPI [18].
Table 1
Percent (%) nucleotide identity of Ark DPI non-structural genes and ORF1ab, ORF2-6 and complete genome with other IBV strainsa, b, c
IBV Strains
5'UTR
PLpro
Mpro
RdRp
ORF1
ORF2-6
Complete genome
Ark99
98
87
99
99
NA
96
NA
A2
95
83
85
99
86
85
86
Beaudette
96
85
93
93
91
91
91
BJ
96
83
88
93
86
85
86
Cal99*
100
99
97
99
96
94
96
CK/CH/LSD/05I
97
84
88
90
89
90
89
Connecticut
97
87
100
99
NA
96
NA
CU-T2*
100
94
99
99
NA
94
NA
DE072
100
100
90
90
NA
NA
NA
Florida
97
87
100
99
NA
NA
NA
GA98*
100
100
100
100
NA
NA
NA
Gray
100
87
100
100
NA
NA
NA
Jilin
NA
NA
NA
NA
NA
100
NA
LX4
94
83
85
89
87
84
86
M41
97
87
91
94
91
91
91
SAIBK
92
85
90
90
90
86
89
a Sequences with > 95% identity are in bold letters
b NA-not analyzed
c Parental strains of Ark DPI are shown in bold letters and immediate derivative of Ark DPI is indicated by asterisk (*).
Table 2
Percent (%) nucleotide identity of Ark DPI structural genes with other IBV strains a, b, c, d
BV Strains
S1
S2
3a
3b
3c
M
5a
5b
N
3'UTR
Ark99
97(96)
96(95)
92
99
96(92)
97(97)
93
97
98(98)
97
Beaudette
81(79)
95(94)
91
84
88(83)
91(93)
85
93
93(95)
97
BJ
77(75)
85(89)
88
76
87(79)
90(93)
NA
NA
89(93)
87
Cal99*
87(84)
94(93)
92
99
94(90)
97(96)
100
98
95(98)
89
CK/CH/LSD/05I
78(75)
88(91)
89
84
(87)
96(96)
99
100
100(99)
90
Conn
81(77)
96(96)
92
99
100(100)
100(100)
100
100
100(100)
NA
CU-T2*
96(94)
93(93)
88
98
92(87)
88(87)
97
99
95(96)
97
DE072
62(50)
75(76)
NA
NA
NA
NA
98
98
NA
98
Gray
83(80)
99(99)
NA
NA
96(92)
98(98)
97
99
97(97)
98
GAV-92
94(92)
NA
NA
NA
NA
NA
NA
NA
NA
NA
H120
81(78)
NA
NA
NA
NA
92(94)
NA
NA
93(96)
83
HK*
81(78)
96(96)
99
100
100(100)
100(100)
100
100
100(100)
NA
Holte
83(80)
95(95)
NA
NA
NA
NA
NA
NA
NA
NA
Ind/TN/92/03
NA
NA
NA
NA
NA
NA
NA
NA
92(94)
NA
IS/1366
78(75)
NA
NA
NA
NA
NA
NA
NA
92(95)
NA
Jilin*
100(99)
100(100)
100
100
100(100)
100(100)
100
100
100(100)
100
JMK
84(82)
100(100)
NA
NA
NA
97(98)
NA
NA
NA
NA
KB8523
81(78)
91(92)
NA
NA
NA
93(95)
NA
NA
95(96)
NA
LX4
77(76)
85(88)
86
76
88(80)
91(91)
82
90
89(93)
NA
M41
81(78)
95(94)
91
85
88(83)
91(95)
90
97
94(95)
97
Qu16
84(81)
NA
NA
NA
NA
NA
NA
NA
NA
NA
SAIBK
79(77)
87(91)
86
83
85(80)
89(93)
84
96
87(92)
88
TW2296/95
79(77)
86(90)
86
85
(83)
91(92)
82
96
89(92)
NA
UK/2/91
78(76)
NA
NA
NA
NA
NA
NA
NA
NA
NA
Vic
81(79)
89(92)
88
88
88(88)
89(95)
87
94
90(94)
NA
a Sequences with > 95% identity are indicated in bold letters
b Amino acid sequences within the parenthesis
c NA-Not Analyzed
d Parental strains of Ark DPI are shown in bold letters and immediate derivative of Ark DPI is indicated by asterisk (*).
Table 3
Percent (%) amino acid identity of Ark DPI replicase and structural proteins to other coronaviruses c, d
Coronavirusesa
3CLpro
RdRp
S
E
M
N
Complete genomeb
BatCoV
40
70
22
11
29
25
46
BCoV
41
67
21
13
30
24
47
ECoV
41
67
22
13
30
25
47
FCoV
45
62
22
16
23
23
48
HCoV 229E
40
63
23
12
26
23
49
TGEV
46
61
22
20
25
26
49
MHV A59
40
69
21
14
31
26
46
SARS CoV
46
68
21
17
29
22
45
SW1
56
79
25
28
36
35
50
TCoV
96
98
34
91
97
95
88
a BatCoV, Bat coronavirus; FCoV, feline coronavirus; HCoV, human coronavirus; BCoV, bovine coronavirus; MHV, mouse hepatitis virus; SARS-CoV, severe acute respiratory syndrome coronavirus; SW1, beluga whale coronavirus; TCoV, turkey coronavirus.
b Percent nucleotide identity of entire genome
c Sequences with > 50% identity are in bold letters
d Gene in bold letters (RdRp) is highly conserved; TCoV exhibits significant identity with IBV-Ark DPI (marked in bold letters).
The complete genome sequence analysis of Ark DPI strain shows striking similarity to the Conn, Gray, JMK, and Ark 99 IBV strains, which were circulating during that time period [1, 1921]. The 5'UTR, PLpro, Mpro and RdRp sequence analysis demonstrates that Ark DPI is 100% identical to Gray strain, except for PLpro which has 87% identity, as shown in Table 1. It was suggested that PLpro gene has high genetic variation because of selection pressure [22]. From this analysis, it appears that genetic mutation may have occurred at PLpro gene level. The modern strain GA98 maintains 100% identity with Ark DPI in replicase proteins and because of unavailability of sequence information for rest of the genome; we speculate that GA98 may be a derivative of the Ark DPI strain.
Analysis of the structural region of Ark DPI clearly demonstrates that it is a chimera of three strains. The S1 gene of Ark DPI is probably derived from Ark 99 (97% identical) and because of genetic mutations in the S1 region, Ark DPI may have evolved independently. There is an A-T rich sequence TGTGTTGATTATAAT (Fig. 3) at the 3'terminus of S1 gene (~300 nts upstream from the end of S1 gene) which is conserved among most of the IBV strains. The S1 gene of Ark 99 maintains its identity with Ark DPI up to this conserved region, but from this point onwards to the end of S2, the nucleotide sequence is 100% identical to JMK strain. The recombination between JMK and Ark 99 had taken place presumably between above mentioned conserved region and intergenic (IG) region of S gene, which is located 49 nts upstream of start codon of S gene. It is speculated that IG sequences serve as "hot spots" for recombination because of its consensus nature [23]. Gray and JMK strains share 99% homology both in the S1 and S2 genes of Ark DPI, but JMK shows greater identity than Gray strain, as shown in Table 2. It is interesting that very few residues in the S1 gene make the Gray strain nephrotropic, whereas JMK is pneumotropic [24].
Out of 174 nts of gene 3a of Ark DPI, last 74 nts are 100% identical to Conn, whereas first 100 nts are only 86% identical. Even though it is not clear whether the 5'-end of 3a was derived from Conn or JMK, but it is evident that the recombination event may have occurred between JMK and Conn at gene 3a. The 3b gene of Ark DPI and Conn differed only by two nucleotides and both share 99% identity, suggesting that 3b belongs to Conn strain. From gene 3c to N gene, Ark DPI shares 100% identity with Conn. It is obvious that the entire structural genome, except spike, belongs to Conn strain. Cross protection studies carried out by Gelb and coworkers [11] demonstrated that the birds immunized with Ark DPI showed 95%, 90% and 63% protection against Conn, Ark 99 and JMK strains, respectively. Indeed, these results suggest that major part of Ark DPI genome was derived from Conn. The level of protection for JMK is 80%, when Ark 99 was used as immunogen [25]. On the other hand, Conn and JMK immunization induces inadequate immunity against Ark-type IBV challenge, suggesting that Ark cross-immunity to JMK and Conn is a one-way relationship [10, 11, 26].
Recombination hot spots have been demonstrated for IBV isolates by many researchers. These hot spots have been detected in the IG region [23], S1 gene [27], 3' terminus of S2, N and between N gene and 3'UTR [8, 28]. Some earlier sequencing studies had provided circumstantial evidence of recombination events in field isolates of IBV [7, 29, 30]. More or less recombination sites were detected over the entire genome of coronavirus [31]. Based on these results, we speculate that the Ark DPI strain originated from the Conn strain, but diverged and evolved independently by point mutations and recombination between field strains. These findings suggest that there is high level of genetic diversity among currently circulating IBV serotypes. Most of them come from genetic changes which already exist in the IBV field strains and from IBV live vaccines. So frequent monitoring is highly essential to track the emergence of new variants and is mandatory to develop efficient vaccination strategies to control and prevent IB.

Acknowledgements

The project was supported by the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service; grant number 2004-35204-14814 to V.N.V. and J.G.
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

VNV and JG conceived the study. AA planned the experimental design, AA and CU carried out cloning and sequencing. AA drafted the manuscript. All authors critically reviewed and approved the final manuscript.
Anhänge

Authors’ original submitted files for images

Literatur
1.
Zurück zum Zitat Chomiak TW, Luginbuhl RE, Jungherr EL: The propagation and cytopathogenic effect of an egg-adapted strain of infectious bronchitis virus in tissue culture. Avian Dis 1958, 2: 456-465. 10.2307/1587486CrossRef Chomiak TW, Luginbuhl RE, Jungherr EL: The propagation and cytopathogenic effect of an egg-adapted strain of infectious bronchitis virus in tissue culture. Avian Dis 1958, 2: 456-465. 10.2307/1587486CrossRef
2.
Zurück zum Zitat Cavanagh D, Naqi S: Infectious Bronchitis. In Diseases of Poultry. 11th edition. Edited by: Saif YM, Barnes HJ, Glisson JR, Fadly AM, McDougald LR, Swayne DE. Ames: Iowa State University Press; 2003:101-120. Cavanagh D, Naqi S: Infectious Bronchitis. In Diseases of Poultry. 11th edition. Edited by: Saif YM, Barnes HJ, Glisson JR, Fadly AM, McDougald LR, Swayne DE. Ames: Iowa State University Press; 2003:101-120.
3.
Zurück zum Zitat Spaan W, Cavanagh D, Horzinek MC: Coronaviruses: structure and genome expression. J Gen Virol 1988, 69: 2939-2952. 10.1099/0022-1317-69-12-2939CrossRefPubMed Spaan W, Cavanagh D, Horzinek MC: Coronaviruses: structure and genome expression. J Gen Virol 1988, 69: 2939-2952. 10.1099/0022-1317-69-12-2939CrossRefPubMed
4.
Zurück zum Zitat Sutou S, Sato S, Okabe T, Nakai M, Sasaki N: Cloning and sequencing of genes encoding structural proteins of avian infectious bronchitis virus. Virology 1988, 165: 589-595. 10.1016/0042-6822(88)90603-4CrossRefPubMed Sutou S, Sato S, Okabe T, Nakai M, Sasaki N: Cloning and sequencing of genes encoding structural proteins of avian infectious bronchitis virus. Virology 1988, 165: 589-595. 10.1016/0042-6822(88)90603-4CrossRefPubMed
5.
Zurück zum Zitat Boursnell MEG, Brown TDK, Foulds IJ, Green PF, Tomely FM, Binns MM: Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus. J Gen Virol 1987, 68: 57-77. 10.1099/0022-1317-68-1-57CrossRefPubMed Boursnell MEG, Brown TDK, Foulds IJ, Green PF, Tomely FM, Binns MM: Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus. J Gen Virol 1987, 68: 57-77. 10.1099/0022-1317-68-1-57CrossRefPubMed
6.
Zurück zum Zitat Brierley I, Digard P, Inglis SC: Characterization of an efficient coronavirus ribosomal frameshifting signal: Requirement for an RNA pseudoknot. Cell 1989, 57: 537-547. 10.1016/0092-8674(89)90124-4CrossRefPubMed Brierley I, Digard P, Inglis SC: Characterization of an efficient coronavirus ribosomal frameshifting signal: Requirement for an RNA pseudoknot. Cell 1989, 57: 537-547. 10.1016/0092-8674(89)90124-4CrossRefPubMed
7.
Zurück zum Zitat Cavanagh D, Davis PJ, Cook J: Infectious bronchitis virus: evidence for recombination within the Massachusetts serotype. Avian Path 1992, 21: 401-408. 10.1080/03079459208418858CrossRef Cavanagh D, Davis PJ, Cook J: Infectious bronchitis virus: evidence for recombination within the Massachusetts serotype. Avian Path 1992, 21: 401-408. 10.1080/03079459208418858CrossRef
8.
Zurück zum Zitat Kottier SA, Cavanagh D, Britton P: Experimental evidence of recombination in coronavirus infectious bronchitis virus. Virology 1995, 213: 569-580. 10.1006/viro.1995.0029CrossRefPubMed Kottier SA, Cavanagh D, Britton P: Experimental evidence of recombination in coronavirus infectious bronchitis virus. Virology 1995, 213: 569-580. 10.1006/viro.1995.0029CrossRefPubMed
9.
Zurück zum Zitat Gelb J, Weisman Y, Ladman BS, Meir R: S1 gene characteristics and efficacy of vaccination against infectious bronchitis virus field isolates from the United States and Israel (1996 to 2000). Avian Pathol 2005, 34: 194-203. 10.1080/03079450500096539CrossRef Gelb J, Weisman Y, Ladman BS, Meir R: S1 gene characteristics and efficacy of vaccination against infectious bronchitis virus field isolates from the United States and Israel (1996 to 2000). Avian Pathol 2005, 34: 194-203. 10.1080/03079450500096539CrossRef
10.
Zurück zum Zitat Gelb J, Perkins BE, Rosenberger JK, Allen PH: Serologic and cross-protection studies with several infectious bronchitis virus isolates from Delmarva-reared broiler chickens. Avian Dis 1981, 25: 655-666. 10.2307/1589996CrossRefPubMed Gelb J, Perkins BE, Rosenberger JK, Allen PH: Serologic and cross-protection studies with several infectious bronchitis virus isolates from Delmarva-reared broiler chickens. Avian Dis 1981, 25: 655-666. 10.2307/1589996CrossRefPubMed
11.
Zurück zum Zitat Gelb J, Leary JH, Rosenberger JK: Prevalence of Arkansas-type infectious bronchitis virus in Delmarva Peninsula chickens. Avian Dis 1983, 27: 667-678. 10.2307/1590309CrossRefPubMed Gelb J, Leary JH, Rosenberger JK: Prevalence of Arkansas-type infectious bronchitis virus in Delmarva Peninsula chickens. Avian Dis 1983, 27: 667-678. 10.2307/1590309CrossRefPubMed
12.
Zurück zum Zitat Brandt M, Yao K, Liu M, Heckert RA, Vakharia VN: Molecular determinants of virulence, cell tropism, and pathogenic phenotype of infectious bursal disease virus. J Virol 2001, 75: 11974-11982. 10.1128/JVI.75.24.11974-11982.2001PubMedCentralCrossRefPubMed Brandt M, Yao K, Liu M, Heckert RA, Vakharia VN: Molecular determinants of virulence, cell tropism, and pathogenic phenotype of infectious bursal disease virus. J Virol 2001, 75: 11974-11982. 10.1128/JVI.75.24.11974-11982.2001PubMedCentralCrossRefPubMed
13.
Zurück zum Zitat Nicholas KB, Nicholas HBJ, Deerfield DW: GeneDoc: analysis and visualization of genetic variation. EMBNEW NEWS 1997, 4: 14. Nicholas KB, Nicholas HBJ, Deerfield DW: GeneDoc: analysis and visualization of genetic variation. EMBNEW NEWS 1997, 4: 14.
14.
Zurück zum Zitat Tamura K, Dudley J, Nei M, Kumar S: MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 2007, 24: 1596-1599. 10.1093/molbev/msm092CrossRefPubMed Tamura K, Dudley J, Nei M, Kumar S: MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 2007, 24: 1596-1599. 10.1093/molbev/msm092CrossRefPubMed
15.
Zurück zum Zitat Ziebuhr J, Snijder EJ, Gorbalenya AE: Virus-encoded proteinases and proteolytic processing in the Nidovirales. J Gen Virol 2000, 81: 853-879.CrossRefPubMed Ziebuhr J, Snijder EJ, Gorbalenya AE: Virus-encoded proteinases and proteolytic processing in the Nidovirales. J Gen Virol 2000, 81: 853-879.CrossRefPubMed
16.
Zurück zum Zitat Huang H, Lau SKP, Woo PCY, Yuen K: CoVDB: a comprehensive database for comparative analysis of coronavirus genes and genomes. Nucleic Acids Res 2007, 36: 1-8. 10.1093/nar/gkm754CrossRef Huang H, Lau SKP, Woo PCY, Yuen K: CoVDB: a comprehensive database for comparative analysis of coronavirus genes and genomes. Nucleic Acids Res 2007, 36: 1-8. 10.1093/nar/gkm754CrossRef
17.
Zurück zum Zitat Liu S, Chen J, Han Z, Zhang Q, Shao Y, Kong X, Tong G: Infectious bronchitis virus: S1 gene characteristics of vaccines used in China and efficacy of vaccination against heterologous strains from China. Avian Pathol 2006, 35: 394-399. 10.1080/03079450600920984CrossRefPubMed Liu S, Chen J, Han Z, Zhang Q, Shao Y, Kong X, Tong G: Infectious bronchitis virus: S1 gene characteristics of vaccines used in China and efficacy of vaccination against heterologous strains from China. Avian Pathol 2006, 35: 394-399. 10.1080/03079450600920984CrossRefPubMed
18.
Zurück zum Zitat Mondal SP, Cardona CJ: Genotypic and phenotypic characterization of the California 99 (Cal99) variant of infectious bronchitis virus. Virus Genes 2007, 34: 327-341. 10.1007/s11262-006-0014-7CrossRefPubMed Mondal SP, Cardona CJ: Genotypic and phenotypic characterization of the California 99 (Cal99) variant of infectious bronchitis virus. Virus Genes 2007, 34: 327-341. 10.1007/s11262-006-0014-7CrossRefPubMed
19.
Zurück zum Zitat Winterfield RW, Hitchner SB, Appleton GS: Immunological characteristics of a variant of infectious bronchitis virus isolated from chickens. Avian Dis 1964, 8: 40-47. 10.2307/1587817CrossRef Winterfield RW, Hitchner SB, Appleton GS: Immunological characteristics of a variant of infectious bronchitis virus isolated from chickens. Avian Dis 1964, 8: 40-47. 10.2307/1587817CrossRef
20.
Zurück zum Zitat Winterfield RW, Hitchner SB: Etiology of an infectious nephritis-nephrosis syndrome of chickens. Am J Vet Res 1962, 23: 1273-1279.PubMed Winterfield RW, Hitchner SB: Etiology of an infectious nephritis-nephrosis syndrome of chickens. Am J Vet Res 1962, 23: 1273-1279.PubMed
21.
Zurück zum Zitat Johnson RB, Marquardt WW, Newman JA: A new serotype of infectious bronchitis virus responsible for respiratory disease in Arkansas broiler flocks. Avian Dis 1973, 17: 518-523. 10.2307/1589149CrossRefPubMed Johnson RB, Marquardt WW, Newman JA: A new serotype of infectious bronchitis virus responsible for respiratory disease in Arkansas broiler flocks. Avian Dis 1973, 17: 518-523. 10.2307/1589149CrossRefPubMed
22.
Zurück zum Zitat Mondal SP, Cardona CJ: Comparison of four regions in the replicase gene of heterologous infectious bronchitis virus strains. Virology 2004, 324: 238-248. 10.1016/j.virol.2004.03.032CrossRefPubMed Mondal SP, Cardona CJ: Comparison of four regions in the replicase gene of heterologous infectious bronchitis virus strains. Virology 2004, 324: 238-248. 10.1016/j.virol.2004.03.032CrossRefPubMed
23.
Zurück zum Zitat Lee CW, Jackwood MW: Evidence of genetic diversity generated by recombination among avian coronavirus IBV. Arch Virol 2000, 145: 2135-2148. 10.1007/s007050070044CrossRefPubMed Lee CW, Jackwood MW: Evidence of genetic diversity generated by recombination among avian coronavirus IBV. Arch Virol 2000, 145: 2135-2148. 10.1007/s007050070044CrossRefPubMed
24.
Zurück zum Zitat Kwon HM, Jackwood MW: Molecular cloning and sequence comparison of the S1 glycoprotein of the Gray and JMK strains of avian infectious bronchitis virus. Virus Genes 1995, 9: 219-229. 10.1007/BF01702878CrossRefPubMed Kwon HM, Jackwood MW: Molecular cloning and sequence comparison of the S1 glycoprotein of the Gray and JMK strains of avian infectious bronchitis virus. Virus Genes 1995, 9: 219-229. 10.1007/BF01702878CrossRefPubMed
25.
Zurück zum Zitat Hofstad MS: Cross-immunity in chickens using seven isolates of avian infectious bronchitis virus. Avian Dis 1981, 25: 650-654. 10.2307/1589995CrossRefPubMed Hofstad MS: Cross-immunity in chickens using seven isolates of avian infectious bronchitis virus. Avian Dis 1981, 25: 650-654. 10.2307/1589995CrossRefPubMed
26.
Zurück zum Zitat Johnson RB, Marquardt WW: The neutralizing characteristics of strains of infectious bronchitis virus as measured by the constant-virus variable- serum method in chicken tracheal cultures. Avian Dis 1975, 19: 82-90. 10.2307/1588958CrossRefPubMed Johnson RB, Marquardt WW: The neutralizing characteristics of strains of infectious bronchitis virus as measured by the constant-virus variable- serum method in chicken tracheal cultures. Avian Dis 1975, 19: 82-90. 10.2307/1588958CrossRefPubMed
27.
Zurück zum Zitat Callison S, Hilt D, Jackwood M: Using DNA shuffling to create novel infectious bronchitis virus S1 genes: Implications for S1 gene recombination. Virus Genes 2005, 31: 5-11. 10.1007/s11262-004-2194-3CrossRefPubMed Callison S, Hilt D, Jackwood M: Using DNA shuffling to create novel infectious bronchitis virus S1 genes: Implications for S1 gene recombination. Virus Genes 2005, 31: 5-11. 10.1007/s11262-004-2194-3CrossRefPubMed
28.
Zurück zum Zitat Jia W, Karaca K, Parrish DR, Naqi SA: A novel variant of avian infectious bronchitis virus resulting from recombination among three different strains. Arch Virol 1995, 140: 259-271. 10.1007/BF01309861CrossRefPubMed Jia W, Karaca K, Parrish DR, Naqi SA: A novel variant of avian infectious bronchitis virus resulting from recombination among three different strains. Arch Virol 1995, 140: 259-271. 10.1007/BF01309861CrossRefPubMed
29.
Zurück zum Zitat Cavanagh D, Davis PJ: Evolution of avian coronavirus IBV: Sequence of the matrix glycoprotein gene and intergenic region of several serotypes. J Gen Virol 1988, 69: 621-629. 10.1099/0022-1317-69-3-621CrossRefPubMed Cavanagh D, Davis PJ: Evolution of avian coronavirus IBV: Sequence of the matrix glycoprotein gene and intergenic region of several serotypes. J Gen Virol 1988, 69: 621-629. 10.1099/0022-1317-69-3-621CrossRefPubMed
30.
Zurück zum Zitat Wang L, Junker D, Collisson EW: Evidence of natural recombination within the S1 gene of infectious bronchitis virus. Virology 1993, 192: 710-716. 10.1006/viro.1993.1093CrossRefPubMed Wang L, Junker D, Collisson EW: Evidence of natural recombination within the S1 gene of infectious bronchitis virus. Virology 1993, 192: 710-716. 10.1006/viro.1993.1093CrossRefPubMed
31.
Zurück zum Zitat Lai MMC: RNA recombination in animal and plant viruses. Microbiol Rev 2000,56(1):61-79. Lai MMC: RNA recombination in animal and plant viruses. Microbiol Rev 2000,56(1):61-79.
Metadaten
Titel
Complete genomic sequence analysis of infectious bronchitis virus Ark DPI strain and its evolution by recombination
verfasst von
Arun Ammayappan
Chitra Upadhyay
Jack Gelb Jr
Vikram N Vakharia
Publikationsdatum
01.12.2008
Verlag
BioMed Central
Erschienen in
Virology Journal / Ausgabe 1/2008
Elektronische ISSN: 1743-422X
DOI
https://doi.org/10.1186/1743-422X-5-157

Weitere Artikel der Ausgabe 1/2008

Virology Journal 1/2008 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

„Jeder Fall von plötzlichem Tod muss obduziert werden!“

17.05.2024 Plötzlicher Herztod Nachrichten

Ein signifikanter Anteil der Fälle von plötzlichem Herztod ist genetisch bedingt. Um ihre Verwandten vor diesem Schicksal zu bewahren, sollten jüngere Personen, die plötzlich unerwartet versterben, ausnahmslos einer Autopsie unterzogen werden.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Schlechtere Vorhofflimmern-Prognose bei kleinem linken Ventrikel

17.05.2024 Vorhofflimmern Nachrichten

Nicht nur ein vergrößerter, sondern auch ein kleiner linker Ventrikel ist bei Vorhofflimmern mit einer erhöhten Komplikationsrate assoziiert. Der Zusammenhang besteht nach Daten aus China unabhängig von anderen Risikofaktoren.

Semaglutid bei Herzinsuffizienz: Wie erklärt sich die Wirksamkeit?

17.05.2024 Herzinsuffizienz Nachrichten

Bei adipösen Patienten mit Herzinsuffizienz des HFpEF-Phänotyps ist Semaglutid von symptomatischem Nutzen. Resultiert dieser Benefit allein aus der Gewichtsreduktion oder auch aus spezifischen Effekten auf die Herzinsuffizienz-Pathogenese? Eine neue Analyse gibt Aufschluss.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.