Skip to main content
Erschienen in: Brain Topography 2/2019

19.10.2018 | Original Paper

Functional Brain Connectivity Revealed by Sparse Coding of Large-Scale Local Field Potential Dynamics

verfasst von: Han Wang, Kun Xie, Li Xie, Xiang Li, Meng Li, Cheng Lyu, Hanbo Chen, Yaowu Chen, Xuesong Liu, Joe Tsien, Tianming Liu

Erschienen in: Brain Topography | Ausgabe 2/2019

Einloggen, um Zugang zu erhalten

Abstract

Exploration of brain dynamics patterns has attracted increasing attention due to its fundamental significance in understanding the working mechanism of the brain. However, due to the lack of effective modeling methods, how the simultaneously recorded LFP can inform us about the brain dynamics remains a general challenge. In this paper, we propose a novel sparse coding based method to investigate brain dynamics of freely-behaving mice from the perspective of functional connectivity, using super-long local field potential (LFP) recordings from 13 distinct regions of the mouse brain. Compared with surrogate datasets, six and four reproducible common functional connectivities were discovered to represent the space of brain dynamics in the frequency bands of alpha and theta respectively. Modeled by a finite state machine, temporal transition framework of functional connectivities was inferred for each frequency band, and evident preference was discovered. Our results offer a novel perspective for analyzing neural recording data at such high temporal resolution and recording length, as common functional connectivities and their transition framework discovered in this work reveal the nature of the brain dynamics in freely behaving mice.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Allen EA, Damaraju E, Eichele T, Wu L, Calhoun VD (2017) EEG signatures of dynamic functional network connectivity states. Brain Topogr 2017:1–16 Allen EA, Damaraju E, Eichele T, Wu L, Calhoun VD (2017) EEG signatures of dynamic functional network connectivity states. Brain Topogr 2017:1–16
Zurück zum Zitat Belloy ME, Naeyaert M, Abbas A, Shah D, Vanreusel V, van Audekerke J, Keilholz SD, Keliris GA, Van der Linden A, Verhoye M (2018) Dynamic resting state fMRI analysis in mice reveals a set of Quasi-periodic patterns and illustrates their relationship with the global signal. NeuroImage 180:463–484CrossRefPubMed Belloy ME, Naeyaert M, Abbas A, Shah D, Vanreusel V, van Audekerke J, Keilholz SD, Keliris GA, Van der Linden A, Verhoye M (2018) Dynamic resting state fMRI analysis in mice reveals a set of Quasi-periodic patterns and illustrates their relationship with the global signal. NeuroImage 180:463–484CrossRefPubMed
Zurück zum Zitat Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, Beckmann CF, Adelstein JS, Buckner RL, Colcombe S, Dogonowski AM, Ernst M, Fair D, Hampson M, Hoptman MJ, Hyde JS, Kiviniemi VJ, Kotter R, Li SJ, Lin CP, Lowe MJ, Mackay C, Madden DJ, Madsen KH, Margulies DS, Mayberg HS, McMahon K, Monk CS, Mostofsky SH, Nagel BJ, Pekar JJ, Peltier SJ, Petersen SE, Riedl V, Rombouts SARB, Rypma B, Schlaggar BL, Schmidt S, Seidler RD, Siegle GJ, Sorg C, Teng GJ, Veijola J, Villringer A, Walter M, Wang L, Weng XC, Whitfield-Gabrieli S, Williamson P, Windischberger C, Zang YF, Zhang HY, Castellanos FX, Milham MP (2010) Toward discovery science of human brain function. Proc Natl Acad Sci USA 107:4734–4739CrossRefPubMedPubMedCentral Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, Beckmann CF, Adelstein JS, Buckner RL, Colcombe S, Dogonowski AM, Ernst M, Fair D, Hampson M, Hoptman MJ, Hyde JS, Kiviniemi VJ, Kotter R, Li SJ, Lin CP, Lowe MJ, Mackay C, Madden DJ, Madsen KH, Margulies DS, Mayberg HS, McMahon K, Monk CS, Mostofsky SH, Nagel BJ, Pekar JJ, Peltier SJ, Petersen SE, Riedl V, Rombouts SARB, Rypma B, Schlaggar BL, Schmidt S, Seidler RD, Siegle GJ, Sorg C, Teng GJ, Veijola J, Villringer A, Walter M, Wang L, Weng XC, Whitfield-Gabrieli S, Williamson P, Windischberger C, Zang YF, Zhang HY, Castellanos FX, Milham MP (2010) Toward discovery science of human brain function. Proc Natl Acad Sci USA 107:4734–4739CrossRefPubMedPubMedCentral
Zurück zum Zitat Buchthal F, Guld C, Rosenfalck P (1957) Volume conduction of the spike of the motor unit potential investigated with a new type of multielectrode. Acta Physiol Scand 38:331–354CrossRefPubMed Buchthal F, Guld C, Rosenfalck P (1957) Volume conduction of the spike of the motor unit potential investigated with a new type of multielectrode. Acta Physiol Scand 38:331–354CrossRefPubMed
Zurück zum Zitat Bush G, Luu P, Posner AMI (2000) Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci 4:215CrossRefPubMed Bush G, Luu P, Posner AMI (2000) Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci 4:215CrossRefPubMed
Zurück zum Zitat Calhoun VD, Miller R, Pearlson G, Adalı T (2014) The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron 84:262–274CrossRefPubMedPubMedCentral Calhoun VD, Miller R, Pearlson G, Adalı T (2014) The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron 84:262–274CrossRefPubMedPubMedCentral
Zurück zum Zitat Chen Y, Liu X, Li S, Wan H (2018) Decoding pigeon behavior outcomes using functional connections among local field potentials. Comput Intell Neurosci 2018:1–13 Chen Y, Liu X, Li S, Wan H (2018) Decoding pigeon behavior outcomes using functional connections among local field potentials. Comput Intell Neurosci 2018:1–13
Zurück zum Zitat Czajkowski R, Jayaprakash B, Wiltgen B, Rogerson T, Guzmankarlsson MC, Barth AL, Trachtenberg JT, Silva AJ (2014) Encoding and storage of spatial information in the retrosplenial cortex. Proc Natl Acad Sci USA 111:8661–8666CrossRefPubMedPubMedCentral Czajkowski R, Jayaprakash B, Wiltgen B, Rogerson T, Guzmankarlsson MC, Barth AL, Trachtenberg JT, Silva AJ (2014) Encoding and storage of spatial information in the retrosplenial cortex. Proc Natl Acad Sci USA 111:8661–8666CrossRefPubMedPubMedCentral
Zurück zum Zitat Da Silva FL (2013) EEG and MEG: relevance to Neuroscience. Neuron 80:1112–1128CrossRef Da Silva FL (2013) EEG and MEG: relevance to Neuroscience. Neuron 80:1112–1128CrossRef
Zurück zum Zitat Di MA, Scheres A, Margulies DS, Kelly AM, Uddin LQ, Shehzad Z, Biswal B, Walters JR, Castellanos FX, Milham MP (2008) Functional connectivity of human striatum: a resting state FMRI study. Cereb Cortex 18:2735–2747CrossRef Di MA, Scheres A, Margulies DS, Kelly AM, Uddin LQ, Shehzad Z, Biswal B, Walters JR, Castellanos FX, Milham MP (2008) Functional connectivity of human striatum: a resting state FMRI study. Cereb Cortex 18:2735–2747CrossRef
Zurück zum Zitat Donner TH, Siegel M (2011) A framework for local cortical oscillation patterns. Trends Cogn Sci 15:191–199CrossRefPubMed Donner TH, Siegel M (2011) A framework for local cortical oscillation patterns. Trends Cogn Sci 15:191–199CrossRefPubMed
Zurück zum Zitat Donoho DL, Elad M (2003) Optimally sparse representation in general (nonorthogonal) dictionaries via l(1) minimization. Proc Natl Acad Sci USA 100:2197–2202CrossRefPubMedPubMedCentral Donoho DL, Elad M (2003) Optimally sparse representation in general (nonorthogonal) dictionaries via l(1) minimization. Proc Natl Acad Sci USA 100:2197–2202CrossRefPubMedPubMedCentral
Zurück zum Zitat Eichenbaum H (2017) Memory systems. In: Learning and memory: a comprehensive reference, vol 3, Academic Press, Cambridge Eichenbaum H (2017) Memory systems. In: Learning and memory: a comprehensive reference, vol 3, Academic Press, Cambridge
Zurück zum Zitat Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711CrossRefPubMed Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711CrossRefPubMed
Zurück zum Zitat Franklin KBJ, Paxinos G (2001) The mouse brain: In: Stereotaxic coordinates. Academic Press, Cambridge Franklin KBJ, Paxinos G (2001) The mouse brain: In: Stereotaxic coordinates. Academic Press, Cambridge
Zurück zum Zitat Fröhlich F (2016) Network neuroscience. Academic Press, Cambridge Fröhlich F (2016) Network neuroscience. Academic Press, Cambridge
Zurück zum Zitat Garcia DL, Stieben J, Perez VJ, Shanker S (2013) The imaginary part of coherency in autism: differences in cortical functional connectivity in preschool children. PLoS ONE 8:e75941CrossRef Garcia DL, Stieben J, Perez VJ, Shanker S (2013) The imaginary part of coherency in autism: differences in cortical functional connectivity in preschool children. PLoS ONE 8:e75941CrossRef
Zurück zum Zitat Gigg J, Finch DM, O Mara SM (2000) Responses of rat subicular neurons to convergent stimulation of lateral entorhinal cortex and CA1 in vivo. Brain Res 884:35–50CrossRefPubMed Gigg J, Finch DM, O Mara SM (2000) Responses of rat subicular neurons to convergent stimulation of lateral entorhinal cortex and CA1 in vivo. Brain Res 884:35–50CrossRefPubMed
Zurück zum Zitat Gilbert CD, Sigman AM (2007) Brain states: top-down influences in sensory processing. Neuron 54:677–696CrossRefPubMed Gilbert CD, Sigman AM (2007) Brain states: top-down influences in sensory processing. Neuron 54:677–696CrossRefPubMed
Zurück zum Zitat Grandjean J, Preti MG, Bolton TAW, Buerge M, Seifritz E, Pryce CR, Van De Ville D, Rudin M (2017) Dynamic reorganization of intrinsic functional networks in the mouse brain. NeuroImage 152:497–508CrossRefPubMed Grandjean J, Preti MG, Bolton TAW, Buerge M, Seifritz E, Pryce CR, Van De Ville D, Rudin M (2017) Dynamic reorganization of intrinsic functional networks in the mouse brain. NeuroImage 152:497–508CrossRefPubMed
Zurück zum Zitat Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Eur J Physiol 391:85–100CrossRef Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Eur J Physiol 391:85–100CrossRef
Zurück zum Zitat He B, Yang L, Wilke C, Yuan H (2011) Electrophysiological imaging of brain activity and connectivity-challenges and opportunities. IEEE Trans Biomed Eng 58:1918–1931CrossRefPubMedPubMedCentral He B, Yang L, Wilke C, Yuan H (2011) Electrophysiological imaging of brain activity and connectivity-challenges and opportunities. IEEE Trans Biomed Eng 58:1918–1931CrossRefPubMedPubMedCentral
Zurück zum Zitat Hu M, Liang H (2013) Perceptual suppression revealed by adaptive multi-scale entropy analysis of local field potential in monkey visual cortex. Int J Neural Syst 23:1350005CrossRefPubMed Hu M, Liang H (2013) Perceptual suppression revealed by adaptive multi-scale entropy analysis of local field potential in monkey visual cortex. Int J Neural Syst 23:1350005CrossRefPubMed
Zurück zum Zitat Khadem A, Hossein-Zadeh GA (2013) Comparing the robustness of brain connectivity measures to volume conduction artifact. Biomed Eng 2013:209–214 Khadem A, Hossein-Zadeh GA (2013) Comparing the robustness of brain connectivity measures to volume conduction artifact. Biomed Eng 2013:209–214
Zurück zum Zitat Khan S, Gramfort A, Shetty NR, Kitzbichler MG, Ganesan S, Moran JM, Lee SM, Gabrieli JD, Tager-Flusberg HB, Joseph RM, Herbert MR, Hamalainen MS, Kenet T (2013) Local and long-range functional connectivity is reduced in concert in autism spectrum disorders. Proc Natl Acad Sci USA 110:3107–3112CrossRefPubMedPubMedCentral Khan S, Gramfort A, Shetty NR, Kitzbichler MG, Ganesan S, Moran JM, Lee SM, Gabrieli JD, Tager-Flusberg HB, Joseph RM, Herbert MR, Hamalainen MS, Kenet T (2013) Local and long-range functional connectivity is reduced in concert in autism spectrum disorders. Proc Natl Acad Sci USA 110:3107–3112CrossRefPubMedPubMedCentral
Zurück zum Zitat Khawaja FA, Tsui JMG, Pack CC (2009) Pattern motion selectivity of spiking outputs and local field potentials in macaque visual cortex. J Neurosci 29:13702–13709CrossRefPubMedPubMedCentral Khawaja FA, Tsui JMG, Pack CC (2009) Pattern motion selectivity of spiking outputs and local field potentials in macaque visual cortex. J Neurosci 29:13702–13709CrossRefPubMedPubMedCentral
Zurück zum Zitat Kinnavane L, Amin E, Olartesánchez CM, Aggleton JP (2016) Detecting and discriminating novel objects: the impact of perirhinal cortex disconnection on hippocampal activity patterns. Hippocampus 26:1393–1413CrossRefPubMedPubMedCentral Kinnavane L, Amin E, Olartesánchez CM, Aggleton JP (2016) Detecting and discriminating novel objects: the impact of perirhinal cortex disconnection on hippocampal activity patterns. Hippocampus 26:1393–1413CrossRefPubMedPubMedCentral
Zurück zum Zitat Koenig T, Lehmann D, Merlo MC, Kochi K, Hell D, Koukkou M (1999) A deviant EEG brain microstate in acute, neuroleptic-naive schizophrenics at rest. Eur Arch Psychiatry Clin Neurosci 249:205–211CrossRefPubMed Koenig T, Lehmann D, Merlo MC, Kochi K, Hell D, Koukkou M (1999) A deviant EEG brain microstate in acute, neuroleptic-naive schizophrenics at rest. Eur Arch Psychiatry Clin Neurosci 249:205–211CrossRefPubMed
Zurück zum Zitat Koenig T, Prichep L, Lehmann D, Sosa PV, Braeker E, Kleinlogel H, Isenhart R, John ER (2002) Millisecond by millisecond, year by year: normative EEG microstates and developmental stages. NeuroImage 16:41–48CrossRefPubMed Koenig T, Prichep L, Lehmann D, Sosa PV, Braeker E, Kleinlogel H, Isenhart R, John ER (2002) Millisecond by millisecond, year by year: normative EEG microstates and developmental stages. NeuroImage 16:41–48CrossRefPubMed
Zurück zum Zitat Koshino H, Carpenter PA, Minshew NJ, Cherkassky VL, Keller TA, Just MA (2005) Functional connectivity in an fMRI working memory task in high-functioning autism. Neuroimage 24:810–821CrossRefPubMed Koshino H, Carpenter PA, Minshew NJ, Cherkassky VL, Keller TA, Just MA (2005) Functional connectivity in an fMRI working memory task in high-functioning autism. Neuroimage 24:810–821CrossRefPubMed
Zurück zum Zitat Kuang H, Lin L, Tsien JZ (2010) Temporal dynamics of distinct CA1 cell populations during unconscious state induced by ketamine. PLoS ONE 5:e15209CrossRefPubMedPubMedCentral Kuang H, Lin L, Tsien JZ (2010) Temporal dynamics of distinct CA1 cell populations during unconscious state induced by ketamine. PLoS ONE 5:e15209CrossRefPubMedPubMedCentral
Zurück zum Zitat Lee M, Shin HS, Choi JH (2009) Simultaneous recording of brain activity and functional connectivity in the mouse brain. IEEE Eng Med Biol Soc 2009:2934–2936 Lee M, Shin HS, Choi JH (2009) Simultaneous recording of brain activity and functional connectivity in the mouse brain. IEEE Eng Med Biol Soc 2009:2934–2936
Zurück zum Zitat Li X, Lim C, Li K, Guo L, Liu T (2013) Detecting brain state changes via fiber-centered functional connectivity analysis. Neuroinformatics 11:193–210CrossRefPubMedPubMedCentral Li X, Lim C, Li K, Guo L, Liu T (2013) Detecting brain state changes via fiber-centered functional connectivity analysis. Neuroinformatics 11:193–210CrossRefPubMedPubMedCentral
Zurück zum Zitat Li X, Zhu D, Jiang X, Jin C, Zhang X, Guo L, Zhang J, Hu X, Li L, Liu T (2014) Dynamic functional connectomics signatures for characterization and differentiation of PTSD patients. Hum Brain Mapp 35:1761–1778CrossRefPubMed Li X, Zhu D, Jiang X, Jin C, Zhang X, Guo L, Zhang J, Hu X, Li L, Liu T (2014) Dynamic functional connectomics signatures for characterization and differentiation of PTSD patients. Hum Brain Mapp 35:1761–1778CrossRefPubMed
Zurück zum Zitat Lin L, Osan R, Shoham S, Jin W, Zuo W, Tsien JZ (2005) Identification of network-level coding units for real-time representation of episodic experiences in the hippocampus. Proc Natl Acad Sci USA 102:6125–6130CrossRefPubMedPubMedCentral Lin L, Osan R, Shoham S, Jin W, Zuo W, Tsien JZ (2005) Identification of network-level coding units for real-time representation of episodic experiences in the hippocampus. Proc Natl Acad Sci USA 102:6125–6130CrossRefPubMedPubMedCentral
Zurück zum Zitat Lin L, Chen G, Xie K, Zaia KA, Zhang S, Tsien JZ (2006) Large-scale neural ensemble recording in the brains of freely behaving mice. J Neurosci Methods 155:28–38CrossRefPubMed Lin L, Chen G, Xie K, Zaia KA, Zhang S, Tsien JZ (2006) Large-scale neural ensemble recording in the brains of freely behaving mice. J Neurosci Methods 155:28–38CrossRefPubMed
Zurück zum Zitat Lin B, Li Q, Sun Q, Lai MJ, Davidson I, Fan W, Ye J (2014) Stochastic coordinate coding and its application for drosophila gene expression pattern annotation. Comput Sci arXiv:1407.8147 Lin B, Li Q, Sun Q, Lai MJ, Davidson I, Fan W, Ye J (2014) Stochastic coordinate coding and its application for drosophila gene expression pattern annotation. Comput Sci arXiv:1407.8147
Zurück zum Zitat Liska A, Galbusera A, Schwarz AJ, Gozzi A (2015) Functional connectivity hubs of the mouse brain. NeuroImage 115:281–291CrossRefPubMed Liska A, Galbusera A, Schwarz AJ, Gozzi A (2015) Functional connectivity hubs of the mouse brain. NeuroImage 115:281–291CrossRefPubMed
Zurück zum Zitat Lopour BA, Staba RJ, Stern JM, Fried I, Ringach DL (2016) Characterization of long-range functional connectivity in epileptic networks by neuronal spike-triggered local field potentials. J Neural Eng 13:26031CrossRef Lopour BA, Staba RJ, Stern JM, Fried I, Ringach DL (2016) Characterization of long-range functional connectivity in epileptic networks by neuronal spike-triggered local field potentials. J Neural Eng 13:26031CrossRef
Zurück zum Zitat Lynall ME, Bassett DS, Kerwin R, McKenna PJ, Kitzbichler M, Muller U, Bullmore E (2010) Functional connectivity and brain networks in schizophrenia. J Neurosci 30:9477–9487CrossRefPubMedPubMedCentral Lynall ME, Bassett DS, Kerwin R, McKenna PJ, Kitzbichler M, Muller U, Bullmore E (2010) Functional connectivity and brain networks in schizophrenia. J Neurosci 30:9477–9487CrossRefPubMedPubMedCentral
Zurück zum Zitat Mechling AE, Hübner NS, Lee H, Hennig J, von Elverfeldt D, Harsan L (2014) Fine-grained mapping of mouse brain functional connectivity with resting-state fMRI. NeuroImage 96:203–215CrossRefPubMed Mechling AE, Hübner NS, Lee H, Hennig J, von Elverfeldt D, Harsan L (2014) Fine-grained mapping of mouse brain functional connectivity with resting-state fMRI. NeuroImage 96:203–215CrossRefPubMed
Zurück zum Zitat Mueller S, Wang D, Fox M, Yeo BTT, Sepulcre J, Sabuncu M, Shafee R, Lu J, Liu H (2013) Individual variability in functional connectivity architecture of the human brain. Neuron 77:586–595CrossRefPubMedPubMedCentral Mueller S, Wang D, Fox M, Yeo BTT, Sepulcre J, Sabuncu M, Shafee R, Lu J, Liu H (2013) Individual variability in functional connectivity architecture of the human brain. Neuron 77:586–595CrossRefPubMedPubMedCentral
Zurück zum Zitat Murray EA, Bussey TJ, Saksida LM (2007) Visual perception and memory: a new view of medial temporal lobe function in primates and rodents. Annu Rev Neurosci 30:99CrossRefPubMed Murray EA, Bussey TJ, Saksida LM (2007) Visual perception and memory: a new view of medial temporal lobe function in primates and rodents. Annu Rev Neurosci 30:99CrossRefPubMed
Zurück zum Zitat Nakashiba T, Cushman JD, Pelkey KA, Renaudineau S, Buhl DL, Mchugh TJ, Rodriguez BV, Chittajallu R, Iwamoto KS, Mcbain CJ (2012) Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell 149:188–201CrossRefPubMedPubMedCentral Nakashiba T, Cushman JD, Pelkey KA, Renaudineau S, Buhl DL, Mchugh TJ, Rodriguez BV, Chittajallu R, Iwamoto KS, Mcbain CJ (2012) Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell 149:188–201CrossRefPubMedPubMedCentral
Zurück zum Zitat Nauhaus I, Busse L, Carandini M, Ringach DL (2009) Stimulus contrast modulates functional connectivity in visual cortex. Nat Neurosci 12:70–76CrossRefPubMed Nauhaus I, Busse L, Carandini M, Ringach DL (2009) Stimulus contrast modulates functional connectivity in visual cortex. Nat Neurosci 12:70–76CrossRefPubMed
Zurück zum Zitat Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett M (2004) Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin Neurophysiol 115:2292–2307CrossRefPubMed Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett M (2004) Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin Neurophysiol 115:2292–2307CrossRefPubMed
Zurück zum Zitat O Mara S (2015) The connected hippocampus. In: Progress in brain research, vol 219. Elsevier, Amsterdam O Mara S (2015) The connected hippocampus. In: Progress in brain research, vol 219. Elsevier, Amsterdam
Zurück zum Zitat Olshausen BA, Field DJ (1996) Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381:607–609CrossRefPubMed Olshausen BA, Field DJ (1996) Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381:607–609CrossRefPubMed
Zurück zum Zitat Olshausen BA, Field DJ (2004) Sparse coding of sensory inputs. Curr Opin Neurobiol 14:481–487CrossRefPubMed Olshausen BA, Field DJ (2004) Sparse coding of sensory inputs. Curr Opin Neurobiol 14:481–487CrossRefPubMed
Zurück zum Zitat Ou J, Lian Z, Xie L, Li X, Wang P, Hao Y, Zhu D, Jiang R, Wang Y, Chen Y, Zhang J, Liu T (2014) Atomic dynamic functional interaction patterns for characterization of ADHD. Hum Brain Mapp 35:5262–5278CrossRefPubMedPubMedCentral Ou J, Lian Z, Xie L, Li X, Wang P, Hao Y, Zhu D, Jiang R, Wang Y, Chen Y, Zhang J, Liu T (2014) Atomic dynamic functional interaction patterns for characterization of ADHD. Hum Brain Mapp 35:5262–5278CrossRefPubMedPubMedCentral
Zurück zum Zitat Ou J, Xie L, Jin C, Li X, Zhu D, Jiang R, Chen Y, Zhang J, Li L, Liu T (2015a) Characterizing and differentiating brain state dynamics via hidden markov models. Brain Topogr 28:666–679CrossRefPubMed Ou J, Xie L, Jin C, Li X, Zhu D, Jiang R, Chen Y, Zhang J, Li L, Liu T (2015a) Characterizing and differentiating brain state dynamics via hidden markov models. Brain Topogr 28:666–679CrossRefPubMed
Zurück zum Zitat Ou J, Xie L, Li X, Zhu D, Terry DP, Puente AN, Jiang R, Chen Y, Wang L, Shen D, Zhang J, Miller LS, Liu T (2015b) Atomic connectomics signatures for characterization and differentiation of mild cognitive impairment. Brain Imaging Behav 9:663–677CrossRefPubMed Ou J, Xie L, Li X, Zhu D, Terry DP, Puente AN, Jiang R, Chen Y, Wang L, Shen D, Zhang J, Miller LS, Liu T (2015b) Atomic connectomics signatures for characterization and differentiation of mild cognitive impairment. Brain Imaging Behav 9:663–677CrossRefPubMed
Zurück zum Zitat Pardo JV, Pardo PJ, Janer KW, Raichle ME (1990) The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proc Natl Acad Sci USA 87:256–259CrossRefPubMedPubMedCentral Pardo JV, Pardo PJ, Janer KW, Raichle ME (1990) The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proc Natl Acad Sci USA 87:256–259CrossRefPubMedPubMedCentral
Zurück zum Zitat Pinault D (1996) A novel single-cell staining procedure performed in vivo under electrophysiological control: morpho-functional features of juxtacellularly labeled thalamic cells and other central neurons with biocytin or Neurobiotin. J Neurosci Methods 65:113–136CrossRefPubMed Pinault D (1996) A novel single-cell staining procedure performed in vivo under electrophysiological control: morpho-functional features of juxtacellularly labeled thalamic cells and other central neurons with biocytin or Neurobiotin. J Neurosci Methods 65:113–136CrossRefPubMed
Zurück zum Zitat Pothuizen HH, Davies M, Albasser MM, Aggleton JP, Vann SD (2009) Granular and dysgranular retrosplenial cortices provide qualitatively different contributions to spatial working memory: evidence from immediate-early gene imaging in rats. Eur J Neurosci 30:877–888CrossRefPubMed Pothuizen HH, Davies M, Albasser MM, Aggleton JP, Vann SD (2009) Granular and dysgranular retrosplenial cortices provide qualitatively different contributions to spatial working memory: evidence from immediate-early gene imaging in rats. Eur J Neurosci 30:877–888CrossRefPubMed
Zurück zum Zitat Qi D, Xiao Z, Liu S, Jiao Y (2017) Functional connectivity analysis from theta band of multi local field potentials on prefrontal cortex of rat during working memory task. In: International Conference on Intelligent Human-Machine Systems and Cybernetics, pp 30–34 Qi D, Xiao Z, Liu S, Jiao Y (2017) Functional connectivity analysis from theta band of multi local field potentials on prefrontal cortex of rat during working memory task. In: International Conference on Intelligent Human-Machine Systems and Cybernetics, pp 30–34
Zurück zum Zitat Ray S, Maunsell JHR (2011) Network rhythms influence the relationship between spike-triggered local field potential and functional connectivity. J Neurosci 31:12674–12682CrossRefPubMedPubMedCentral Ray S, Maunsell JHR (2011) Network rhythms influence the relationship between spike-triggered local field potential and functional connectivity. J Neurosci 31:12674–12682CrossRefPubMedPubMedCentral
Zurück zum Zitat Ryali S, Chen T, Supekar K, Menon V (2012) Estimation of functional connectivity in fMRI data using stability selection-based sparse partial correlation with elastic net penalty. Neuroimage 59:3852CrossRefPubMed Ryali S, Chen T, Supekar K, Menon V (2012) Estimation of functional connectivity in fMRI data using stability selection-based sparse partial correlation with elastic net penalty. Neuroimage 59:3852CrossRefPubMed
Zurück zum Zitat Sanchez Bornot JM, Wong-Lin K, Ahmad AL, Prasad G (2018) Robust EEG/MEG based functional connectivity with the envelope of the imaginary coherence: sensor space analysis. Brain Topogr 2018:1–22 Sanchez Bornot JM, Wong-Lin K, Ahmad AL, Prasad G (2018) Robust EEG/MEG based functional connectivity with the envelope of the imaginary coherence: sensor space analysis. Brain Topogr 2018:1–22
Zurück zum Zitat Sander TH, Bock A, Leistner S, Kuhn A, Trahms L (2010) Coherence and imaginary part of coherency identifies cortico-muscular and cortico-thalamic coupling. IEEE Eng Med Biol Soc 2010:1714–1717 Sander TH, Bock A, Leistner S, Kuhn A, Trahms L (2010) Coherence and imaginary part of coherency identifies cortico-muscular and cortico-thalamic coupling. IEEE Eng Med Biol Soc 2010:1714–1717
Zurück zum Zitat Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:15–18CrossRef Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:15–18CrossRef
Zurück zum Zitat Smith SM, Miller KL, Moeller S, Xu J, Auerbach EJ, Woolrich MW, Beckmann CF, Jenkinson M, Andersson J, Glasser MF, Van Essen DC, Feinberg DA, Yacoub ES, Ugurbil K (2012) Temporally-independent functional modes of spontaneous brain activity. Proc Natl Acad Sci USA 109:3131–3136CrossRefPubMedPubMedCentral Smith SM, Miller KL, Moeller S, Xu J, Auerbach EJ, Woolrich MW, Beckmann CF, Jenkinson M, Andersson J, Glasser MF, Van Essen DC, Feinberg DA, Yacoub ES, Ugurbil K (2012) Temporally-independent functional modes of spontaneous brain activity. Proc Natl Acad Sci USA 109:3131–3136CrossRefPubMedPubMedCentral
Zurück zum Zitat Stam CJ, Nolte G, Daffertshofer A (2007) Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum Brain Mapp 28:1178–1193CrossRefPubMedPubMedCentral Stam CJ, Nolte G, Daffertshofer A (2007) Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum Brain Mapp 28:1178–1193CrossRefPubMedPubMedCentral
Zurück zum Zitat Stitt I, Hollensteiner KJ, Galindo-Leon E, Pieper F, Fiedler E, Stieglitz T, Engler G, Nolte G, Engel AK (2017) Dynamic reconfiguration of cortical functional connectivity across brain states. Sci Rep 7:8797CrossRefPubMedPubMedCentral Stitt I, Hollensteiner KJ, Galindo-Leon E, Pieper F, Fiedler E, Stieglitz T, Engler G, Nolte G, Engel AK (2017) Dynamic reconfiguration of cortical functional connectivity across brain states. Sci Rep 7:8797CrossRefPubMedPubMedCentral
Zurück zum Zitat Tomescu MI, Rihs TA, Robert B, Juliane B, Anna C, Frédéric G, Maude S, Martin D, Stephan E, Michel CM (2014) Deviant dynamics of EEG resting state pattern in 22q11.2 deletion syndrome adolescents: a vulnerability marker of schizophrenia? Schizophr Res 157:175CrossRefPubMed Tomescu MI, Rihs TA, Robert B, Juliane B, Anna C, Frédéric G, Maude S, Martin D, Stephan E, Michel CM (2014) Deviant dynamics of EEG resting state pattern in 22q11.2 deletion syndrome adolescents: a vulnerability marker of schizophrenia? Schizophr Res 157:175CrossRefPubMed
Zurück zum Zitat Uhlhaas PJ, Roux F, Rodriguez E, Rotarska-Jagiela A, Singer W (2010) Neural synchrony and the development of cortical networks. Trends Cogn Sci 14:72–80CrossRefPubMed Uhlhaas PJ, Roux F, Rodriguez E, Rotarska-Jagiela A, Singer W (2010) Neural synchrony and the development of cortical networks. Trends Cogn Sci 14:72–80CrossRefPubMed
Zurück zum Zitat Van Mierlo P, Papadopoulou M, Carrette E, Boon P, Vandenberghe S, Vonck K, Marinazzo D (2014) Functional brain connectivity from EEG in epilepsy: seizure prediction and epileptogenic focus localization. Prog Neurobiol 121:19–35CrossRefPubMed Van Mierlo P, Papadopoulou M, Carrette E, Boon P, Vandenberghe S, Vonck K, Marinazzo D (2014) Functional brain connectivity from EEG in epilepsy: seizure prediction and epileptogenic focus localization. Prog Neurobiol 121:19–35CrossRefPubMed
Zurück zum Zitat Van De Ville D, Britz J, Michel CM (2010) EEG microstate sequences in healthy humans at rest reveal scale-free dynamics. Proc Natl Acad Sci USA 107:18179–18184CrossRefPubMed Van De Ville D, Britz J, Michel CM (2010) EEG microstate sequences in healthy humans at rest reveal scale-free dynamics. Proc Natl Acad Sci USA 107:18179–18184CrossRefPubMed
Zurück zum Zitat van den Broek SP, Reinders F, Donderwinkel M, Peters MJ (1998) Volume conduction effects in EEG and MEG. Electroencephalogr Clin Neurophysiol 106:522–534CrossRefPubMed van den Broek SP, Reinders F, Donderwinkel M, Peters MJ (1998) Volume conduction effects in EEG and MEG. Electroencephalogr Clin Neurophysiol 106:522–534CrossRefPubMed
Zurück zum Zitat Vidalgonzalez I, Vidalgonzalez B, Rauch SL, Quirk GJ (2006) Microstimulation reveals opposing influences of prelimbic and infralimbic cortex on the expression of conditioned fear. Learn Mem 13:728CrossRef Vidalgonzalez I, Vidalgonzalez B, Rauch SL, Quirk GJ (2006) Microstimulation reveals opposing influences of prelimbic and infralimbic cortex on the expression of conditioned fear. Learn Mem 13:728CrossRef
Zurück zum Zitat Wang L, Zang Y, He Y, Liang M, Zhang X, Tian L, Wu T, Jiang T, Li K (2006) Changes in hippocampal connectivity in the early stages of Alzheimer’s disease: evidence from resting state fMRI. NeuroImage 31:496–504CrossRefPubMed Wang L, Zang Y, He Y, Liang M, Zhang X, Tian L, Wu T, Jiang T, Li K (2006) Changes in hippocampal connectivity in the early stages of Alzheimer’s disease: evidence from resting state fMRI. NeuroImage 31:496–504CrossRefPubMed
Zurück zum Zitat Wei J, Bai W, Liu T, Tian X (2015) Functional connectivity changes during a working memory task in rat via NMF analysis. Front Behav Neurosci 9:2CrossRefPubMedPubMedCentral Wei J, Bai W, Liu T, Tian X (2015) Functional connectivity changes during a working memory task in rat via NMF analysis. Front Behav Neurosci 9:2CrossRefPubMedPubMedCentral
Zurück zum Zitat Wilson DIG, Langston RF, Schlesiger MI, Wagner M, Watanabe S, Ainge JA (2013) Lateral entorhinal cortex is critical for novel object-context recognition. Hippocampus 23:352–366CrossRefPubMedPubMedCentral Wilson DIG, Langston RF, Schlesiger MI, Wagner M, Watanabe S, Ainge JA (2013) Lateral entorhinal cortex is critical for novel object-context recognition. Hippocampus 23:352–366CrossRefPubMedPubMedCentral
Zurück zum Zitat Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31:210–227CrossRefPubMed Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31:210–227CrossRefPubMed
Zurück zum Zitat Xavier GF, Costa VC (2009) Dentate gyrus and spatial behaviour. Prog Neuropsychopharmacol Biol Psychiatry 33:762–773CrossRefPubMed Xavier GF, Costa VC (2009) Dentate gyrus and spatial behaviour. Prog Neuropsychopharmacol Biol Psychiatry 33:762–773CrossRefPubMed
Zurück zum Zitat Xie K, Fox GE, Liu J, Tsien JZ (2016) 512-channel and 13-region simultaneous recordings coupled with optogenetic manipulation in freely behaving mice. Front Syst Neurosci 10:48PubMedPubMedCentral Xie K, Fox GE, Liu J, Tsien JZ (2016) 512-channel and 13-region simultaneous recordings coupled with optogenetic manipulation in freely behaving mice. Front Syst Neurosci 10:48PubMedPubMedCentral
Zurück zum Zitat Ye X, Kapeller-Libermann D, Travaglia A, Inda MC, Alberini CM (2017) Direct dorsal hippocampal-prelimbic cortex connections strengthen fear memories. Nat Neurosci 20:52–61CrossRefPubMed Ye X, Kapeller-Libermann D, Travaglia A, Inda MC, Alberini CM (2017) Direct dorsal hippocampal-prelimbic cortex connections strengthen fear memories. Nat Neurosci 20:52–61CrossRefPubMed
Zurück zum Zitat Zhang H, Chen G, Kuang H, Tsien JZ (2013) Mapping and deciphering neural codes of NMDA receptor-dependent fear memory engrams in the hippocampus. PLoS ONE 8:e79454CrossRefPubMedPubMedCentral Zhang H, Chen G, Kuang H, Tsien JZ (2013) Mapping and deciphering neural codes of NMDA receptor-dependent fear memory engrams in the hippocampus. PLoS ONE 8:e79454CrossRefPubMedPubMedCentral
Metadaten
Titel
Functional Brain Connectivity Revealed by Sparse Coding of Large-Scale Local Field Potential Dynamics
verfasst von
Han Wang
Kun Xie
Li Xie
Xiang Li
Meng Li
Cheng Lyu
Hanbo Chen
Yaowu Chen
Xuesong Liu
Joe Tsien
Tianming Liu
Publikationsdatum
19.10.2018
Verlag
Springer US
Erschienen in
Brain Topography / Ausgabe 2/2019
Print ISSN: 0896-0267
Elektronische ISSN: 1573-6792
DOI
https://doi.org/10.1007/s10548-018-0682-3

Weitere Artikel der Ausgabe 2/2019

Brain Topography 2/2019 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.