Skip to main content
Erschienen in: Cancer and Metastasis Reviews 1-2/2012

Open Access 01.06.2012 | NON-THEMATIC REVIEW

Significance of vascular endothelial growth factor in growth and peritoneal dissemination of ovarian cancer

verfasst von: Samar Masoumi Moghaddam, Afshin Amini, David L. Morris, Mohammad H. Pourgholami

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 1-2/2012

Abstract

Vascular endothelial growth factor (VEGF) is a key regulator of angiogenesis which drives endothelial cell survival, proliferation, and migration while increasing vascular permeability. Playing an important role in the physiology of normal ovaries, VEGF has also been implicated in the pathogenesis of ovarian cancer. Essentially by promoting tumor angiogenesis and enhancing vascular permeability, VEGF contributes to the development of peritoneal carcinomatosis associated with malignant ascites formation, the characteristic feature of advanced ovarian cancer at diagnosis. In both experimental and clinical studies, VEGF levels have been inversely correlated with survival. Moreover, VEGF inhibition has been shown to inhibit tumor growth and ascites production and to suppress tumor invasion and metastasis. These findings have laid the basis for the clinical evaluation of agents targeting VEGF signaling pathway in patients with ovarian cancer. In this review, we will focus on VEGF involvement in the pathophysiology of ovarian cancer and its contribution to the disease progression and dissemination.

1 Introduction

Vascular endothelial growth factor (VEGF), a potent cytokine and a key regulator of physiological and pathological angiogenesis, has a major contribution to diverse pathological processes, in particular tumorigenesis [1]. In women, an exceptional role is played by VEGF through its involvement in ovarian biology. Closely linked to the normal function of ovaries, VEGF is also implicated in ovarian pathologies, including malignant neoplasms [2]. Ovarian cancer, the seventh leading cancer in women and the second cause of death from gynecologic malignancies worldwide [3], is a richly vascularized tumor that is known to be highly dependent on VEGF-mediated angiogenesis [4]. While representing a crucial, early event in ovarian carcinogenesis [5], VEGF expression is associated with tumor growth and aggression, as well as poor survival [68].
Peritoneal seeding is the most common pathway for the spread of ovarian cancer [9]. At diagnosis, about two thirds of the patients with ovarian cancer have already developed peritoneal carcinomatosis [10] and more than one third present with malignant ascites [11]. Both tumor burden and ascites are inversely associated with survival [12, 13]. Basically through promoting tumor angiogenesis and enhancing the vascular permeability, VEGF has been implicated in the peritoneal dissemination of ovarian cancer and the subsequent development of malignant ascites, further highlighting the key importance of VEGF in the pathophysiology of the disease. Here, we review different aspects of VEGF contribution to ovarian cancer, address VEGF-targeted strategies as a therapeutic approach to the disease, and present the latest clinical data on the subject.

2 Vascular endothelial growth factor

2.1 Identification

In 1983, the identification of a polypeptide from the conditioned medium of a guinea pig tumor cell line was reported by Senger et al. [14]. To reflect its role in enhancing the permeability of tumor vasculature, they designated this polypeptide “vascular permeability factor (VPF).” Later in 1989, Ferrara and Henzel [15] isolated a potent endothelial mitogen from the conditioned media of bovine pituitary follicular cells and named it vascular endothelial growth factor to show its specificity for endothelial cells. In the same year and based on the work by Senger et al., the isolation and sequencing of human VPF from U937 cells were independently reported by Connolly et al. [16]. Following cDNA cloning of VEGF and VPF, it was eventually revealed that these molecules were the same [17, 18].

2.2 VEGF and its receptors

VEGF family include VEGF-A (hereafter VEGF), VEGF-B, VEGF-C, VEGF-D, placenta growth factor (PlGF), VEGF-E (viral VEGF homologs), and VEGF-F (snake venom VEGFs) [19]. VEGF is a 45-kDa heparin-binding homodimeric glycoprotein [15]. At least 14 various isoforms of VEGF result from alternative splicing [20]. VEGF165 is the most abundant and mitogenic isoform which exists as both extracellular matrix-bound and freely diffusible protein. Plasmin and various metalloproteinases can split the bound fraction into bioactive fragments VEGF110 or VEGF113 [21]. VEGF121 is a freely diffusible protein that does not bind to heparin. VEGF189 and VEGF206 are longer, heparin-binding isoforms which might also undergo extracellular proteolysis to generate bioactive, diffusible fragments [22]. Thus, VEGF proteins may become available to endothelial cells by at least two different mechanisms: alternative splicing and proteolytic cleavage. Besides, differential ability of VEGF isoforms in binding to the extracellular matrix generates an “angiogenic gradient” that is now considered of importance in a variety of pathophysiological conditions [23].
VEGF binding sites include three receptor tyrosine kinases (RTK) called vascular endothelial growth factor receptor (VEGFR)-1, VEGFR-2, and VEGFR-3 (Fig. 1). VEGF family members show differential affinity for their receptors. VEGF, VEGF-B, and PlGF can bind and activate VEGFR-1, whereas VEGFR-2 is primarily activated by VEGF, and VEGFR-3 activation is only triggered by VEGF-C and VEGF-D [24].
Neuropilins (NRPs) have also been implicated in VEGFR activation [25]. In endothelial cells, NRP-1 is thought to act primarily as a co-receptor for VEGF-A165 by forming complexes with VEGFR-2. VEGFRs were identified initially on the cell surface of vascular endothelial cells [26, 27] and, subsequently, on bone marrow-derived cells such as monocytes [28]. VEGFR-1 expression has been observed in vascular endothelial cells and a range of non-endothelial cells including hematopoietic stem cells, monocytes, and macrophages [29]. VEGFR-2 is expressed in vascular endothelial cells and, at lower levels, in neurons, osteoblasts, pancreatic duct cells, retinal progenitor cells, and megakaryocytes [30]. VEGFR-3 expression seems to be largely restricted to lymphatic endothelial cells [31]. VEGFRs, like other RTKs, become activated when ligand–receptor binding and resultant dimerization happen. Subsequent autophosphorylation on certain tyrosine residues triggers intracellular signaling cascade mediated by several effectors. Although VEGFR-1 affinity for VEGF is tenfold higher than that of VEGFR-2, VEGF activation of VEGFR-2 is much more significant. Thus, VEGFR-2 represents the major mediator of VEGF-driven responses in endothelial cells promoting angiogenesis and vascular permeability [21].

2.3 Biological effects of VEGF

VEGF biologically affects angiogenesis, hematopoiesis, hemodynamics, and vascular homeostasis. VEGF drives endothelial cell survival, proliferation, migration, and tube formation. Anti-apoptotic activity of VEGF is in part mediated through the activation of PI3K/Akt pathway [32]. VEGF also prevents endothelial apoptosis by inducing the expression of apoptosis-regulating proteins such as Bcl-2, A1 [33], XIAP, and survivin [34]. Acting as an endothelial cell mitogen [35], VEGF promotes sprouting of vascular endothelial cells during physiological and tumor angiogenesis. In addition, VEGF controls hematopoietic stem cells’ survival during hematopoietic repopulation and plays an important role in regulating the differentiation of endothelial progenitor cells and their migration to regions of neoangiogenesis in adults [1]. Moreover, VEGF enhances vascular permeability to water and large molecular weight proteins [36], a process in which p38 MAPK pathway has been implicated as an essential mediator [37]. VEGF also stimulates nitric oxide-mediated vasodilatation [38]. VEGF, at low physiological levels, maintains vascular homeostasis in vascularized tissues, especially in fenestrated and sinusoidal vessels in endocrine and secretory organs as well as large blood vessels, skeletal muscle, and myocardium [39].

2.3.1 VEGF and physiological processes

VEGF promotes physiological angiogenesis activated in embryonic and postnatal development, skeletal growth, and endochondral bone formation [40]. Apart from its unique contribution to ovarian physiology described below, VEGF mediates other angiogenic processes in adults, such as wound healing [41, 42], tissue regeneration after injury and ischemia [43, 44], and exercise-induced angiogenesis in skeletal muscle [45].
The ovary is distinct from other endocrine organs in that it undergoes repetitive cycles of angiogenesis within its various glandular compartments [46]. VEGF expression and production within the ovary are critical for normal reproductive function [2]. Increased intrafollicular VEGF has been shown during the initial part of the ovulatory cycle, with peak concentrations just before the start of the luteal phase [47]. By driving thecal vascularization, VEGF supports the cyclic growth, development, and maturation of the follicle; ovulation; and associated endocrine changes. Consistently, VEGF inhibition in different stages of follicular phase can disrupt these normal events [46, 4852]. As a permeability factor, VEGF is proposed to modulate differential vascular permeability leading to the preferential accumulation of gonadotropins within the dominant follicle, hence its likely involvement in the process of follicular selection [2]. In addition, VEGF might mediate the preovulatory increase in follicular vascular permeability and the resulting edema, a mechanism contributing to ovulation [53]. VEGF is also essential for corpus luteum angiogenesis [54] as inhibition of VEGF has a profound inhibitory effect upon luteal function [55]. Coexpression of VEGF and its receptors by granulosa cells has attributed another potentially important function to VEGF [56]. It has been suggested that VEGF may directly modulate the function of these cells by promoting cell survival [57], proliferation [56, 58], and/or migration [59].

2.3.2 VEGF in nonmalignant disorders

VEGF has been implicated in various pathological conditions. Besides performing stabilizing functions in the developing retinal vasculature [60], VEGF has strikingly been correlated with intraocular neovascular syndromes such as retinopathy of prematurity [61], diabetic retinopathy [62], central retinal vein occlusion [63], and neovascular age-related macular degeneration [64]. It has also been shown that VEGF may be an important mediator of such inflammatory disorders as psoriasis [65], rheumatoid arthritis [66], osteoarthritis [67], human renal [68] and cardiac [69] allograft rejection, as well as blood–brain barrier breakdown and the resulting edema in acute brain injury[70]. In addition, VEGF contribution to some cardiovascular diseases has been reported, including infantile hemangiomas [71], atherosclerosis [72], ischemic heart disease [73], peripheral vascular disease [74], and focal cerebral ischemia [75]. Moreover, different investigations have implicated VEGF in the pathology of female reproductive tract, such as polycystic ovary syndrome, ovarian hyperstimulation syndrome [76], endometriosis [77], and preeclampsia [78, 79]. Besides, VEGF insufficiency might contribute to neurodegeneration, respiratory distress and, possibly, cardiac failure [80].

2.3.3 Role of VEGF in malignancies

VEGF and its receptors are expressed in the vast majority of human solid tumors, including those of the lung [81], breast [82], gastrointestinal tract [83], kidney, bladder [84], ovary, endometrium [85], brain [86], and endocrine system [87]. In addition to tumor cells as the major source of VEGF, stromal cells such as monocytes, macrophages, and fibroblasts also produce VEGF [88, 89]. VEGF contributes to tumor vascularization, progression, and invasion. To grow beyond microscopic size, tumors need to undergo an “angiogenic switch” to enter a vascular phase in which blood perfusion provides a better delivery of oxygen and nutrients and an enhanced disposal of waste products [90]. VEGF is a key mediator of this early event in tumor angiogenesis [91]. Additionally, the endothelial cells of intratumoral vasculature are more dependent on VEGF as a survival factor and mitogen than those of normal vasculature elsewhere [92]. VEGF-induced enhancement of endothelial cell survival, proliferation, and migration together with the resulting synthesis of other pro-angiogenic factors, including basic fibroblast growth factor, heparin-binding epidermal growth factor (EGF)-like growth factor, granulocyte colony-stimulating factor, insulin-like growth factor-1, interleukin (IL)-6, and IL-8, provides a sustainable angiogenesis [93, 94].
Moreover, VEGF helps tumor stroma form and mature. By augmenting the permeability of the microvasculature, VEGF promotes extravasation of plasma proteins and water into the tumor milieu and the subsequent reshaping of extracellular matrix that makes it favorable to migration and proliferation of endothelial cells, monocytes, macrophages, and fibroblasts. This allows final degradation of the provisional matrix, which will be then replaced with fibroblast-produced proteins, proteoglycans, and glycosaminoglycans [95]. VEGF activation of matrix-degrading enzymes allows unhindered development of further blood vessels [96].
VEGF is a crucial factor in tumor invasion and metastasis as well. While tumor vascularization is a prerequisite for tumor cells to spread by shedding into the circulation, the newly formed, immature capillaries with fenestrated basement membrane allow greater accessibility for tumor cells [97]. VEGF has also been shown to enhance tumor invasion through a direct, autocrine effect on tumor cells [35, 98, 99]. Besides, VEGF helps the growing tumor evade host immune responses via inhibiting functional maturation of dendritic cells [100, 101], the most potent antigen-presenting cells with a central role in antitumor cell-mediated immunity. Additionally, VEGF stimulates hematopoietic progenitor cells to initiate the pre-metastatic niche, a regulatory event in tumor metastasis abolished by VEGF inhibition [102].
VEGF contribution to malignancies is not exclusive to solid tumors. VEGF is expressed in a wide variety of cell lines derived from hematological neoplasms, including T cell lymphoma, acute lymphoblastic leukemia, Burkitt’s lymphoma, acute lymphocytic leukemia, histiocytic lymphoma, and promyelocytic leukemia [103]. Survival, proliferation, and migration of leukemia/lymphoma cells can be stimulated by autocrine and paracrine VEGF loops. VEGF/VEGFR-related pathways are thought to present a promising therapeutic target in some hematolymphoid malignancies [104].

3 VEGF and pathogenesis of ovarian cancer

The association of VEGF and ovarian cancer has been documented in several studies. Constitutive VEGF gene expression in normal and neoplastic human ovaries [105] as well as its differential expression in tumor specimens compared to benign ovarian tissue [106, 107] has been reported. Preclinical experiments have shown that overexpression of VEGF can transform normal, functional ovarian epithelium into ascites-producing, neoplastic tissue [4, 108]. Large amounts of VEGF are secreted in ovarian cancer in vitro and in vivo [109]. Overexpression of intratumoral VEGF, found to correlate with poorer prognosis [8, 110, 111] and enhanced odds of progression [112], has been suggested as an independent prognostic factor for overall survival [113]. VEGF expression within omental metastases appeared not only correlated with the extent of omental involvement but also as an independent prognostic indicator [114]. Elevated levels of VEGF were detected in fluid samples from malignant cysts generated during ovarian cancer development which may represent a useful biomarker of angiogenesis and tumor progression [106, 107]. VEGF levels in ovarian cancer-induced malignant ascites are markedly elevated compared with those in ascitic fluids of nonmalignant origin [115] being reportedly of prognostic significance [116]. VEGF has been suggested as a serological biomarker for clinical diagnosis and a predictor of prognosis in patients with ovarian cancer [117119]. In addition, overexpression of VEGF receptors [106] and co-receptors [120, 121] has been found in ovarian cancer. It has been reported that VEGF gene polymorphisms are an independent adverse prognosticator of overall survival [122].
VEGF expression and/or production in ovarian cancer is induced not only by hypoxia [123125] but also by different growth factors, mediators, and effectors, including insulin-like growth factor 1 [126], EGF [127], platelet-derived growth factor (PDGF) [128], transforming growth factor-β [129], tumor necrosis factor-α (TNF-α) [130], TNF-like weak inducer of apoptosis [131], IL-1β [132], IL-6 [133], endothelin-1 [134, 135], prostaglandine E2 [136], gonadotropins [137, 138], 4-hydroxy estradiol [139], matrix metalloproteinases (MMPs) [140], reactive oxygen species [141], and cyclooxygenase [142, 143]. Additionally, lysophosphatidic acid (LPA), a bioactive phospholipid present in high levels in the ascitic fluid and plasma from ovarian cancer patients, has proved to induce VEGF expression in ovarian cancer cells [144], a process in which NF-κB pathway has been recently implicated [145]. Moreover, oncogenes such as PIK3CA [146] and Her-2/neu [147] have been indicated to regulate VEGF production in ovarian cancer cells. Here, we review different aspects of VEGF implication in the pathogenesis of ovarian cancer.

3.1 VEGF, carcinogenesis, and tumor growth in ovarian cancer

The theory of incessant ovulation hypothesizes that repetitive wounding of the ovarian surface epithelium and cell proliferation in postovulatory repair result in a stepwise accumulation of genomic abnormalities. Ovarian epithelial inclusion cysts occur as a result and might increase risk of carcinogenesis by trapping cells in an environment of aberrant autocrine or paracrine stimulation by growth factors including VEGF which activate intracellular processes and signaling pathways [148].
Initial studies revealed that VEGF-driven angiogenesis is an early, crucial event in ovarian carcinogenesis [5, 106] and implicated VEGF-regulated angiogenesis as an important component of ovarian cancer growth [6, 149]. Schiffenbauer et al. attributed angiogenic potential of ovarian cancer to gonadotropin-induced expression of VEGF [137]. Later, Zhang et al. showed that VEGF derived from ovarian cancer cells upregulates angiopoietin 2 in host endothelial cells and induces in a paracrine manner the remodeling of host vasculature to support angiogenesis during tumor growth [150]. Besides, it has been indicated that Akt1 and Akt3, two downstream effectors of PI3K signaling pathway, have their important roles in ovarian tumorigenesis played via regulation of VEGF secretion and angiogenesis [151, 152]. Moreover, Kryczek et al. showed that tumor-derived VEGF and CXCL12 formed a synergistic angiogenesis axis critical for tumor neovascularization in human ovarian cancer [125].
Through locating VEGFR-2 on ovarian cancer cells coexpressed along with VEGF, Boocock et al. raised the possibility that an autocrine loop might directly enhance the tumor growth [153]. This has been further validated by other investigators. Mattern and colleagues showed the close correlation of VEGF expression with tumor cell proliferation [154]. Chen et al. indicated significant correlations between the expression levels of VEGF, VEGFR1, and VEGFR2 in ovarian cancer cells and the activation status of signal transducer and activator of transcription pathway (STAT3 and STAT5) in ovarian cancer cells [155]. Distinct VEGFR-2-mediated pathways promoting tumor growth by directly acting on ovarian cancer cells have been demonstrated [156158].

3.2 VEGF and ovarian cancer dissemination

Primary tumor cell with its production of a unique array of growth factors, in particular VEGF, specifically dictates the pattern of tumor spread [159]. Kaplan et al. showed that the media conditioned by a tumor type, high in both PlGF and VEGF, was able to reprogram the metastatic profile of another tumor type, high in VEGF but low in PlGF [102]. They demonstrated that VEGF activation of VEGFR-1+ progenitor cells allows them to home to tumor-specific pre-metastatic sites before the arrival of tumor cells. VEGF also stimulates the migration of monocytes or macrophages that further support the tumor stromal microenvironment [160]. In addition, tumor angiogenesis leads to the formation of structurally abnormal blood vessels with fragmented, leaky basement membranes which are easily penetrated by tumor cells [161]. Moreover, Weis et al. demonstrated that Src family kinases, playing a specific and vital role in ovarian cancer [162], can be activated by VEGF that leads to a breakdown in the endothelial barrier function which in turn hastens tumor cell extravasation at metastatic sites [163]. They observed that lung colonization of ovarian tumor cells enhanced by VEGF was alleviated by VEGF inhibitors.
VEGF contributes to ovarian cancer progression through promoting angiogenesis as well as enhancing vascular permeability leading to malignant effusion, as described below. VEGF implication in ovarian cancer invasion and metastasis has been well established by different studies. Through demonstrating VEGF expression in normal and neoplastic human ovaries and identifying the malignant ovarian epithelium as one source of ascitic VEGF, Olson et al. implicated VEGF as an important mediator of ascites formation and tumor metastasis in ovarian cancer [105]. They later showed that in vivo neutralization of VEGF inhibits ovarian cancer-associated ascites formation and tumor growth [164]. Mu and colleagues [6] indicated that growth/metastasis of ovarian cancer cells correlates with their VEGF-producing capacity and that angiogenesis inhibition hampers tumor growth and metastasis through mechanisms including the suppression of VEGF function in vivo. Ovarian cancer cells overexpressing VEGF hold a metastatic advantage over those lacking VEGF [163, 165]. Li et al. measured significantly higher levels of serum VEGF in patients with metastasis as compared to metastasis-free patients [118]. VEGF has also been implicated in ovarian cancer dissemination via interacting with tumor microenvironment. So et al. showed that LPA induction of ovarian cancer invasion and migration is mediated by VEGFR-2, leading to the secretion and activation of MMP-2 and urokinase type plasminogen activator [166]. VEGF regulation of ovarian cancer invasion and migration through VEGFR-mediated secretion and activation of MMP-2, MMP-7, and MMP-9 has been indicated in vitro [167, 168]. Matei et al. suggested a correlation between PDGF and VEGF networks in ovarian cancer cells and tumors in a way that PDGF blockade and the resultant inhibition of VEGF might affect the tumor microenvironment which is detrimental to tumor progression [128]. Belotti and colleagues implicated a complex cross talk between VEGF and MMPs in ovarian cancer progression and invasion [169]. Wang and others proposed a functionally significant role for VEGF in vasculogenic mimicry, the formation of a fluid-conducting, matrix-rich meshwork critical for a tumor blood supply associated with aggressive and metastatic features [170]. They concluded that this part is taken through VEGF upregulation of EphA2 and final activation of MMPs. VEGF might also contribute to ovarian cancer metastasis by directly stimulating proliferation, survival, and/or migration of tumor cells [171]. VEGF also allows ovarian cancer cells to evade immune response. It has been demonstrated that VEGF directly suppresses T cell activation [172] and that its levels in ascitic fluid are inversely correlated with immunologically important T cell subpopulations [116].

3.2.1 Role of VEGF in intraperitoneal dissemination of ovarian cancer

At peritoneal metastasis, primary tumors—generally confined to the ovaries—shed tumor cells into the peritoneum. Malignant cells, often forming cellular aggregates or spheroids, are then transported throughout the peritoneal cavity and subsequently implant on the peritoneal wall, gastrointestinal tract, omentum, and diaphragm. Figure 2 illustrates a proposed model for intraperitoneal dissemination of ovarian cancer [173, 174]. It has been suggested that intraperitoneal fluid and peritoneal surface motion (peristalsis) are prominent mechanisms controlling the patterns of spread [175]. This “seeding” of the peritoneum and the resultant peritoneal carcinomatosis are the most widely recognized behaviors of ovarian cancer that is frequently associated with ascites formation [4, 171]. Peritoneal carcinomatosis is a frequent cause of death in patients with primary advanced or recurrent ovarian cancers [176, 177], the extent of which is a predictor of tumor resectability and the disease prognosis [178].
Malignant ascites is a manifestation of end-stage disease in a variety of cancers, among which ovarian cancer has reportedly been the predominant cause [179182]. Malignant ascites arises from both tumor surface and tumor-free peritoneum [183]. This metastatic pattern is dependent on establishing new blood vessels at the newly seeded site [4]. VEGF contributes to intraperitoneal dissemination of ovarian cancer by promoting neovascularization and enhancing vascular permeability leading to the subsequent growth of intraperitoneal tumors, development of peritoneal carcinomatosis, and formation of malignant ascites [184, 185]. Ovarian cancer cells [105] along with peritoneal mesothelial cells have been identified as possible sources of ascitic VEGF [132]. The role of VEGF in the peritoneal metastasis of ovarian cancer has been explored by different investigators. Senger et al. initially described VEGF as a tumor-secreted vascular permeability factor which promotes accumulation of ascites fluid [14, 186]. Yeo et al. later showed that high VEGF concentrations correlate with tumor cell growth and ascites fluid accumulation in experimental guinea pig tumors [187]. Using animal models of peritoneal carcinomatosis, it has been demonstrated that overexpression of VEGF leads to an increase in tumor and peritoneal-associated neovasculature and increased peritoneal vascular permeability [188, 189]. Thus, ascites accumulation is increased not only indirectly by allowing tumor growth through stimulation of angiogenesis but also directly through its ability to increase the peritoneal vasculature permeability [190]. Byrne et al. [184] reported that enforced expression of VEGF by ovarian cancer cells dramatically reduced the time to onset of ascites formation and that even tumor-free peritoneal overexpression of VEGF was sufficient to cause ascites to accumulate. Mesiano and colleagues [149] indicated that tumor-derived VEGF played a pivotal role in the development of malignant ascites from ovarian cancer. However, they raise the possibility that intraperitoneal carcinomatosis has an angiogenesis-dependent component represented by the larger solid intraperitoneal tumors in need of neovascularization for continued growth and an angiogenesis-independent component including the thin layers of tumor and some of the smaller solid buds surviving by passive diffusion of nutrients from the underlying host vasculature and the surrounding peritoneal fluid. Moreover, VEGF inhibition hampered the formation of malignant ascites and the progressive growth of peritoneal tumors in ovarian cancer-bearing mice [191, 192]. Similarly, we have shown in a murine model of ovarian cancer with peritoneal carcinomatosis that plasma and, in particular, ascitic VEGF levels correlate well with malignant ascites formation and that VEGF inhibition dramatically halts ascites production [185]. Liao et al. have recently reported that TGF-b blockade in an experimental model of ovarian cancer inhibited ascites production via inhibition of VEGF production [129]. Dong and others proposed that elevated levels of VEGF in ascites might be useful in differentiating benign from malignant ascites [193]. In addition, an anti-apoptotic role for VEGF in protection of the ovarian cancer cells shed into ascetic fluid has been suggested by Sher et al. [157]. They implicated an autocrine VEGF/VEGFR-2 loop in protecting ovarian cancer cells from apoptosis under anchorage free growth conditions (anoikis).
Moreover, interplay between VEGF and MMPs in the peritoneal spread of ovarian cancer has been studied in different investigations. Yabushita et al. reported an association between the VEGF levels and the expression and activation of MMP-2 which they implicated in the progression of the peritoneal involvement [194]. Belotti and others indicated that MMPs, mainly MMP9, contributed to the release of biologically active VEGF and consequently to the formation of ascites [140]. Conversely, VEGF stimulated host expression of MMP-9 in an organ-specific manner, and VEGF inhibition reduced VEGF-induced MMP9 expression while halting ascitic liquid formation and intraperitoneal tumor burden [169].

3.2.2 Extraperitoneal metastasis of ovarian cancer

Upon diagnosis, metastases outside of the peritoneal cavity are rare in ovarian cancer, and the disease is usually confined to the peritoneal cavity at presentation. However, extraperitoneal dissemination through lymphatics and blood stream is increasingly recognized during treatment [195]. The pleural cavity is the most common extraperitoneal site to which stage IV epithelial ovarian cancer preferentially metastasizes [196]. The liver and lung are other common sites of metastasis. VEGF contribution to ovarian metastasis of the lymph nodes, lung, and liver has been reported [6, 163]. VEGF-C, another member of the VEGF family, has been implicated in lymphatic spread of ovarian cancer [197].

4 VEGF/VEGFR-targeted therapy in ovarian cancer

Based on the major role played by VEGF in the pathogenesis of ovarian cancer along with the promising preclinical results, agents targeting VEGF signaling pathways have been under clinical investigation for activity in ovarian cancer (Table 1).
Table 1
Therapeutic agents targeting VEGF/VEGFR in clinical development for ovarian cancer
Type
Drug
Target(s)
VEGF binders
Bevacizumab
VEGF (all isoforms)
Aflibercept
VEGF, VEGF-B, PlGF
Receptor tyrosine kinase inhibitors
VEGFR inhibitors
Ramucirumab
VEGFR2
Cediranib
VEGFR1-3, c-Kit, PDGFR-β
Semaxanib
VEGFR2
Multiple RTK inhibitors
Sunitinib
VEGFR1-3, Flt-3, PDGFR-α, PDGFR-β, c-Kit, CSF-1R, RET
Sorafenib
VEGFR1-3, PDGFR-β, Flt-3, c-Kit, Raf-1
Vatalanib
VEGFR1-3, PDGFR-β, c-Kit, c-Fms
Intedanib
VEGFR1-3, PDGFR-α, PDGFR-β, FGFR1-3
Pazopanib
VEGFR1-2, PDGFR-β, c-Kit
Motesanib
VEGFR1-3, PDGFR, c-Kit
Vandetanib
VEGFR2-3, EGFR
AEE788
VEGFR, EGFR
CSF-1 R colony-stimulating factor 1 receptor, EGFR epidermal growth factor receptor, FGFR fibroblast growth factor receptor, PDGFR platelet-derived growth factor receptor, PlGF placenta growth factor, RTK receptor tyrosine kinase, VEGF vascular endothelial growth factor, VEGFR vascular endothelial growth factor receptor

4.1 VEGF neutralization

Known as the first anti-VEGF agent approved by Food and Drug Administration in 2004 for clinical use in colorectal cancer, bevacizumab has been the first and most studied anti-VEGF agent in clinical evaluation for ovarian cancer. Bevacizumab is a recombinant humanized VEGF monoclonal antibody derived from its murine equivalent A4.6.1 that targets all active isoforms of VEGF, preventing them from binding to VEGFRs [198]. In initial reports, Mesiano et al. demonstrated that A4.6.1 inhibited subcutaneous and intraperitoneal tumor growth and completely prevented ascites production in an athymic mouse model of ovarian cancer [149]. The same group later reported additive or synergistic effects of this antibody in combination therapy as enhanced sensitivity to paclitaxel and marked reduction of tumor growth and ascites formation [199]. Using a murine ovarian cancer model, Mabuchi et al. reported significant antitumor activity of bevacizumab as a single agent or in combination with cisplatin and concluded that it might also prolong survival when used as maintenance therapy after a complete response to cisplatin-based chemotherapy [200]. Preclinical studies employing VEGF immunoneutralization laid the basis for clinical evaluation of bevacizumab in ovarian cancer. Table 2 summarizes the accessible results from some of these investigations.
Table 2
Released data of some clinical investigations evaluating bevacizumab in ovarian cancer
Single-agent therapy
Investigators
Phase
Target
No. of patients
Outcome
 Burger et al. [237]
II
Persistent or recurrent EOC, PPC
62
CR, 3%; PR, 18%; MPFS, 4.7; MOS, 17
 Cannistra et al. [238]
II
Recurrent EOC or PSC
44
CR, 0; PR, 15.9%; MPFS, 4.4; MOS, 10.7
Combined with chemotherapy
 Micha et al. [239]
II
Newly diagnosed stage III/IV
20
CR, 30%; PR, 50%
 Garcia et al. [240]
II
Recurrent platinum-sensitive
70
CR, 0; PR, 24%; MPFS, 7.2; MOS, 16.9
 Richardson et al. [241]
II
Recurrent platinum-sensitive
33
CR, 48%; PR, 30%; MPFS, 12
 Penson et al. [242]
II
Newly diagnosed stage ≥IC
62
CT CR, 56%; PR, 22%; CA-125 CR, 89%; PR, 7%
 Rose et al. [243]
II
Newly diagnosed stage IB-IV
132
CR, 32.8%; PR, 29.1%; SD, 32.7%
 Brown et al. [244]
II
Newly diagnosed stage III/IV
13
CR, 30.8%; PR, 30.8%; SD, 30.7%; MPFS, 5.8
 Tillmanns et al. [245]
II
Recurrent platinum-resistant EOC, PPC
48
MPFS, 8.3; MOS, 16.5; In 39 patients, PR, 46.1%; SD, 30.8%
 Burger et al. [246]
III
Newly diagnosed EOC, PPC, FTC
1,873
CP
CP + Bev and maintenance Bev
10.3
14.1
 McGonigle et al. [247]
II
Recurrent platinum-resistant EOC, PPC, FTC
40
PR, 25%; SD, 35%; MPFS, 7.8; MOS, 16.6
 del Carmen et al. [248]
II
Recurrent platinum-sensitive
54
ORR, 72.2%; MTTP, 14.1; MPFS, 14.1
 Horowitz et al. [249]
II
Recurrent platinum-sensitive
19
CR, 5.26%; PR, 63.15%; MPFS, 8.61; MOS, 21.1
 Wenham et al. [250]
II
Recurrent platinum-resistant
37
CR, 3%; PR, 54%; MPFS, 5.8
 Aghajanian et al. [251]
III
Recurrent platinum-resistant EOC, PPC, FTC
484
CG
Bev + CG
ORR, 57.4; MPFS, 8.4
ORR, 78.5; MPFS, 12.4
 Kristensen et al. [252]
III
Newly diagnosed EOC, PPC, FTC
1,528
Maintenance CP
CP + Bev and maintenance Bev
MPFS, 16
MPFS, 18.3
Overall trend: OS improvement
 Kudoh et al. [253]
N/A
Heavily pretreated ROC
30
ORR, 33%; CR + PD + SD, 73%; MPFS, 6
 O’Malley et al. [254]
N/A
Heavily pretreated ROC
70
P
P + Bev
MPFS, 6.2
MPFS, 13.2
 Ojeda et al. [255]
N/A
Highly pretreated, relapsed EOC
RECIST
CA-125
Response rate was higher for the combination group. However, a similar OS was observed.
66
76
CR complete response, PR partial response, SD stable disease, MPFS median progression-free survival (months), MOS median overall survival (months), MTTP median time to tumor progression (months), ORR overall response rate, OS overall survival, PD progressive disease, EOC epithelial ovarian cancer, PPC primary peritoneal cancer, FTC fallopian tube cancer, PSC peritoneal serous carcinoma, ROC recurrent ovarian cancer, RECIST Response Evaluation Criteria in Solid Tumors, Bev bevacizumab, CG carboplatin + gemcitabine, CP carboplatin + paclitaxel, P paclitaxel
Aflibercept (VEGF trap) [201] is a soluble decoy receptor that binds and inactivates some members of the VEGF family, including VEGF, VEGF-B, and PlGF. Byrne et al. found that systemic administration of aflibercept prevented ascites accumulation, inhibited the growth of disseminated cancer, and resulted in dramatic remodeling of the blood vessels in an experimental model of ovarian cancer [184]. Hu et al. later showed that aflibercept plus paclitaxel strikingly reduced tumor burden and inhibited ascites while prolonging survival [202]. Aflibercept has further been investigated in some clinical studies (Table 3).
Table 3
Released data of three phase II clinical trials evaluating aflibercept (VEGF trap) in ovarian cancer
Investigators
Phase
Target
Results
Tew et al. [256]
II
Platinum-resistant and topotecan and/or liposomal doxorubicin-resistant advanced ovarian cancer
Preliminary results showed a partial response of 11%.
Colombo et al. [257]
II
Platinum-resistant and topotecan and/or liposomal doxorubicin-resistant advanced ovarian cancer with recurrent symptomatic malignant ascites
First results demonstrated the efficacy of two weekly intravenous aflibercept in prolonging the time to repeat paracentesis in 8 out of 10 evaluable patients.
Coleman et al. [258]
II
Recurrent EOC, PPC, FTC
ORR, 54%; CR, 21.7; MPFS, 6.2; MOS, 24.3
EOC epithelial ovarian cancer, PPC primary peritoneal cancer, FTC fallopian tube cancer, VEGF vascular endothelial growth factor

4.2 Receptor tyrosine kinase inhibitors

4.2.1 VEGFR antagonists

Agents targeting VEGF receptors have been evaluated for the use in the treatment of ovarian cancer. Ramucirumab, a fully humanized monoclonal antibody specifically blocking VEGFR-2, resulted in reduced tumor growth, increased apoptosis, and decreased tumor microvessel proliferation and density in vivo [203]. Following a phase I evaluation [204], it is currently being assessed in a phase II trial (NCT00721162) as monotherapy in patients with persistent or recurrent epithelial ovarian cancer. Cediranib, a tyrosine kinase inhibitor selectively blocking VEGFR1-3, platelet-derived growth factor receptor-β (PDGFR-β), and c-Kit, has been shown to inhibit the growth of human tumor xenografts, including ovarian cancer, in a dose-dependent manner [205]. Single-agent activity of cediranib in phase II trials has been reported [206, 207]. A number of the clinical studies testing cediranib in ovarian cancer are ongoing, including a three-arm randomized placebo-controlled phase III trial set to investigate cediranib in combination with platinum-based chemotherapy and as a single agent maintenance therapy in patients with platinum-sensitive relapsed ovarian cancer (ICON6). In a study by Holtz et al. [208], semaxanib reduced tumor growth and microvessel density in ovarian cancer tumors with high VEGF expression. A phase I study of semaxanib in combination with carboplatin in patients with platinum-refractory ovarian cancer (NCT00006155) has been completed (results awaited).

4.2.2 Agents targeting multiple receptor tyrosine kinases

As a single agent, sunitinib has demonstrated efficacy in advanced ovarian cancer in both preclinical [209] and clinical [210, 211] studies. Sorafenib, in a study by Matsumura et al., was shown to have an antitumor effect against ovarian clear cell carcinoma [212]. It has shown some efficacy in phase I/II trials [213215] and is now under further clinical investigations. In an ovarian cancer mouse model, single-agent vatalanib reduced ascites and tumor growth and yielded increased survival [191]. In a phase I study of vatalanib combined with carboplatin and paclitaxel in advanced ovarian cancer, Shroder et al. showed that vatalanib was feasible and well tolerated [216]. Monotherapy with vandetanib showed a significant antitumor effect in an ovarian cancer nude mice model [217]. However, no significant clinical benefit was made by vandetanib monotherapy in patients with recurrent ovarian cancer in a phase II clinical trial [218]. Its efficacy in combination with docetaxel in persistent or recurrent ovarian cancer will be assessed in a phase II clinical trial (NCT00872989). In a study by Hilberg et al. [219], intedanib demonstrated high activity at a well-tolerated dose as decreased vessel density and vessel integrity, and profound growth inhibition in all tested tumor models. In a phase II trial, maintenance intedanib delayed disease progression in previously treated ovarian cancer patients [220]. To investigate its efficacy and safety, intedanib combined with carboplatin and paclitaxel is currently being examined in a randomized, double-blind phase III trial in patients with advanced ovarian cancer (NCT01015118). In an animal model of ovarian cancer, treatment with AEE788 plus paclitaxel significantly reduced tumor weight and increased survival of nude mice implanted with paclitaxel-sensitive cell lines compared with those treated with AEE788 alone or paclitaxel alone [221]. Also, metronomic docetaxel chemotherapy plus AEE788 was effective even in the taxane-resistant model [222]. A phase I/II randomized study of AEE788 in adult patients with advanced cancer (histologically confirmed solid tumors) has been completed (NCT00118456) and results are awaited. Pazopanib, alone or in combination with metronomic topotecan, showed anti-angiogenic and antitumor activity in a preclinical model of ovarian cancer [223]. Friedlander et al. reported pazopanib activity in a phase II trial in women with advanced epithelial ovarian cancer [224]. Other trials evaluating pazopanib efficacy as mono- or combination therapy are underway. Motesanib, that indicated antitumor activity in animal models [225], is now under clinical investigation in a phase II clinical trial (NCT00574951).

4.3 VEGF-targeted therapy: current challenges

Adverse effects such as hypertension, proteinuria, bowel perforation, impaired wound healing, hemorrhage, and arterial thrombotic events represent the most common toxicities associated with VEGF-targeted therapy [226, 227]. Inherent [228] and/or acquired resistance/refractoriness [226, 229] might complicate the treatment as well. Divergent effect of receptor tyrosine kinase blockade, including VEGFR inhibition, on primary tumor growth and metastasis leading to enhanced invasion and accelerated metastasis has been reported in preclinical studies [230, 231]. However, the clinical relevance of these findings is unclear and limited to small studies or case reports [232].
As improving overall survival while maintaining the quality of life remains the goal of all cancer treatment [233], efficacy of extended adjuvant bevacizumab in unselected populations may not be justified by the clinical benefits reported thus far [234]. Consistently, a recent analysis of GOG218 study has raised doubts about cost-effectiveness of utilizing bevacizumab in the adjuvant management and maintenance therapy of patients with advanced ovarian cancer [235, 236]. This might be in part attributed to limitations of predictive preclinical models and thus lack of appropriate preclinical testing that precedes clinical settings [232]. Besides, accurate predictors of prognosis and ideal surrogate biomarkers required for individualization of VEGF-targeted therapy are to be identified and clinically validated [227].

5 Conclusion

The role of VEGF in ovarian cancer growth and progression is well established. Through induction of tumor angiogenesis and vascular permeability, VEGF has a major contribution to the pathophysiology of ovarian cancer. VEGF promotes tumor growth and facilitates malignant cell invasion and dissemination. Peritoneal carcinomatosis with malignant ascites formation is the prominent pattern of ovarian cancer spread in which VEGF is significantly involved, further highlighting the crucial part played by VEGF in the progressive course of the disease. Preclinical data obtained over the last 15 years or so clearly demonstrate a central role of VEGF inhibitors in the management of ovarian cancer. On the other hand, the complexity of VEGF signaling cascade and the interacting pathways as well as the failure of preclinical studies in closely mimicking actual clinical settings represent major restrictions and barriers in translating preclinical promises to the clinic. However, this has not hindered the extensive evaluation of bevacizumab and other VEGF-targeted agents in phase II and III clinical trials, and VEGF still remains a target in the treatment of ovarian cancer.

Conflict of interest

The authors declare that they have no conflict of interest.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://​creativecommons.​org/​licenses/​by-nc/​2.​0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Literatur
2.
Zurück zum Zitat Geva, E., & Jaffe, R. B. (2000). Role of vascular endothelial growth factor in ovarian physiology and pathology. Fertility and Sterility, 74(3), 429–438.PubMedCrossRef Geva, E., & Jaffe, R. B. (2000). Role of vascular endothelial growth factor in ovarian physiology and pathology. Fertility and Sterility, 74(3), 429–438.PubMedCrossRef
3.
Zurück zum Zitat Ferlay, J., Shin, H. R., Bray, F., Forman, D., Mathers, C., & Parkin, D. M. (2010). Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. International Journal of Cancer, 127(12), 2893–2917. doi:10.1002/ijc.25516.CrossRef Ferlay, J., Shin, H. R., Bray, F., Forman, D., Mathers, C., & Parkin, D. M. (2010). Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. International Journal of Cancer, 127(12), 2893–2917. doi:10.​1002/​ijc.​25516.CrossRef
5.
Zurück zum Zitat Nakanishi, Y., Kodama, J., Yoshinouchi, M., Tokumo, K., Kamimura, S., Okuda, H., et al. (1997). The expression of vascular endothelial growth factor and transforming growth factor-beta associates with angiogenesis in epithelial ovarian cancer. International Journal of Gynecological Pathology, 16(3), 256–262.PubMedCrossRef Nakanishi, Y., Kodama, J., Yoshinouchi, M., Tokumo, K., Kamimura, S., Okuda, H., et al. (1997). The expression of vascular endothelial growth factor and transforming growth factor-beta associates with angiogenesis in epithelial ovarian cancer. International Journal of Gynecological Pathology, 16(3), 256–262.PubMedCrossRef
6.
Zurück zum Zitat Mu, J., Abe, Y., Tsutsui, T., Yamamoto, N., Tai, X.-G., Niwa, O., et al. (1996). Inhibition of growth and metastasis of ovarian carcinoma by administering a drug capable of interfering with vascular endothelial growth factor activity. Cancer Science, 87(9), 963–971.CrossRef Mu, J., Abe, Y., Tsutsui, T., Yamamoto, N., Tai, X.-G., Niwa, O., et al. (1996). Inhibition of growth and metastasis of ovarian carcinoma by administering a drug capable of interfering with vascular endothelial growth factor activity. Cancer Science, 87(9), 963–971.CrossRef
7.
Zurück zum Zitat Yamamoto, S., Konishi, I., Mandai, M., Kuroda, H., Komatsu, T., Nanbu, K., et al. (1997). Expression of vascular endothelial growth factor (VEGF) in epithelial ovarian neoplasms: correlation with clinicopathology and patient survival, and analysis of serum VEGF levels. British Journal of Cancer, 76(9), 1221–1227.PubMedCrossRef Yamamoto, S., Konishi, I., Mandai, M., Kuroda, H., Komatsu, T., Nanbu, K., et al. (1997). Expression of vascular endothelial growth factor (VEGF) in epithelial ovarian neoplasms: correlation with clinicopathology and patient survival, and analysis of serum VEGF levels. British Journal of Cancer, 76(9), 1221–1227.PubMedCrossRef
8.
Zurück zum Zitat Hartenbach, E. M., Olson, T. A., Goswitz, J. J., Mohanraj, D., Twiggs, L. B., Carson, L. F., et al. (1997). Vascular endothelial growth factor (VEGF) expression and survival in human epithelial ovarian carcinomas. Cancer Letters, 121(2), 169–175.PubMedCrossRef Hartenbach, E. M., Olson, T. A., Goswitz, J. J., Mohanraj, D., Twiggs, L. B., Carson, L. F., et al. (1997). Vascular endothelial growth factor (VEGF) expression and survival in human epithelial ovarian carcinomas. Cancer Letters, 121(2), 169–175.PubMedCrossRef
10.
Zurück zum Zitat Munoz-Casares, F. C., Rufian, S., Arjona-Sanchez, A., Rubio, M. J., Diaz, R., Casado, A., et al. (2011). Neoadjuvant intraperitoneal chemotherapy with paclitaxel for the radical surgical treatment of peritoneal carcinomatosis in ovarian cancer: a prospective pilot study. Cancer Chemotherapy and Pharmacology, 68(1), 267–274. doi:10.1007/s00280-011-1646-4.PubMedCrossRef Munoz-Casares, F. C., Rufian, S., Arjona-Sanchez, A., Rubio, M. J., Diaz, R., Casado, A., et al. (2011). Neoadjuvant intraperitoneal chemotherapy with paclitaxel for the radical surgical treatment of peritoneal carcinomatosis in ovarian cancer: a prospective pilot study. Cancer Chemotherapy and Pharmacology, 68(1), 267–274. doi:10.​1007/​s00280-011-1646-4.PubMedCrossRef
11.
Zurück zum Zitat Meunier, L., Puiffe, M. L., Le Page, C., Filali-Mouhim, A., Chevrette, M., Tonin, P. N., et al. (2010). Effect of ovarian cancer ascites on cell migration and gene expression in an epithelial ovarian cancer in vitro model. Transl Oncol, 3(4), 230–238.PubMed Meunier, L., Puiffe, M. L., Le Page, C., Filali-Mouhim, A., Chevrette, M., Tonin, P. N., et al. (2010). Effect of ovarian cancer ascites on cell migration and gene expression in an epithelial ovarian cancer in vitro model. Transl Oncol, 3(4), 230–238.PubMed
12.
Zurück zum Zitat Roszkowski, P., Wronkowski, Z., Szamborski, J., & Romejko, M. (1993). Evaluation of selected prognostic factors in ovarian cancer. European Journal of Gynaecological Oncology, 14(Suppl), 140–145.PubMed Roszkowski, P., Wronkowski, Z., Szamborski, J., & Romejko, M. (1993). Evaluation of selected prognostic factors in ovarian cancer. European Journal of Gynaecological Oncology, 14(Suppl), 140–145.PubMed
13.
Zurück zum Zitat Zang, R. Y., Harter, P., Chi, D. S., Sehouli, J., Jiang, R., Trope, C. G., et al. (2011). Predictors of survival in patients with recurrent ovarian cancer undergoing secondary cytoreductive surgery based on the pooled analysis of an international collaborative cohort. British Journal of Cancer, 105(7), 890–896.PubMedCrossRef Zang, R. Y., Harter, P., Chi, D. S., Sehouli, J., Jiang, R., Trope, C. G., et al. (2011). Predictors of survival in patients with recurrent ovarian cancer undergoing secondary cytoreductive surgery based on the pooled analysis of an international collaborative cohort. British Journal of Cancer, 105(7), 890–896.PubMedCrossRef
14.
Zurück zum Zitat Senger, D. R., Galli, S. J., Dvorak, A. M., Perruzzi, C. A., Harvey, V. S., & Dvorak, H. F. (1983). Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science, 219(4587), 983–985.PubMedCrossRef Senger, D. R., Galli, S. J., Dvorak, A. M., Perruzzi, C. A., Harvey, V. S., & Dvorak, H. F. (1983). Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science, 219(4587), 983–985.PubMedCrossRef
15.
Zurück zum Zitat Ferrara, N., & Henzel, W. J. (1989). Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochemical and Biophysical Research Communications, 161(2), 851–858.PubMedCrossRef Ferrara, N., & Henzel, W. J. (1989). Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochemical and Biophysical Research Communications, 161(2), 851–858.PubMedCrossRef
16.
Zurück zum Zitat Connolly, D. T., Olander, J. V., Heuvelman, D., Nelson, R., Monsell, R., Siegel, N., et al. (1989). Human vascular permeability factor. Isolation from U937 cells. Journal of Biological Chemistry, 26(33), 20017–20024. Connolly, D. T., Olander, J. V., Heuvelman, D., Nelson, R., Monsell, R., Siegel, N., et al. (1989). Human vascular permeability factor. Isolation from U937 cells. Journal of Biological Chemistry, 26(33), 20017–20024.
17.
Zurück zum Zitat Keck, P. J., Hauser, S. D., Krivi, G., Sanzo, K., Warren, T., Feder, J., et al. (1989). Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science, 246(4935), 1309–1312.PubMedCrossRef Keck, P. J., Hauser, S. D., Krivi, G., Sanzo, K., Warren, T., Feder, J., et al. (1989). Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science, 246(4935), 1309–1312.PubMedCrossRef
18.
Zurück zum Zitat Leung, D. W., Cachianes, G., Kuang, W. J., Goeddel, D. V., & Ferrara, N. (1989). Vascular endothelial growth factor is a secreted angiogenic mitogen. Science, 246(4935), 1306–1309.PubMedCrossRef Leung, D. W., Cachianes, G., Kuang, W. J., Goeddel, D. V., & Ferrara, N. (1989). Vascular endothelial growth factor is a secreted angiogenic mitogen. Science, 246(4935), 1306–1309.PubMedCrossRef
23.
Zurück zum Zitat Ferrara, N. (2010). Binding to the extracellular matrix and proteolytic processing: two key mechanisms regulating vascular endothelial growth factor action. Molecular Biology of the Cell, 21(5), 687–690. doi:10.1091/mbc.E09-07-0590.PubMedCrossRef Ferrara, N. (2010). Binding to the extracellular matrix and proteolytic processing: two key mechanisms regulating vascular endothelial growth factor action. Molecular Biology of the Cell, 21(5), 687–690. doi:10.​1091/​mbc.​E09-07-0590.PubMedCrossRef
24.
Zurück zum Zitat Olsson, A. K., Dimberg, A., Kreuger, J., & Claesson-Welsh, L. (2006). VEGF receptor signalling—in control of vascular function. Nature Reviews Molecular Cell Biology, 7(5), 359–371. doi:10.1038/nrm1911.PubMedCrossRef Olsson, A. K., Dimberg, A., Kreuger, J., & Claesson-Welsh, L. (2006). VEGF receptor signalling—in control of vascular function. Nature Reviews Molecular Cell Biology, 7(5), 359–371. doi:10.​1038/​nrm1911.PubMedCrossRef
25.
Zurück zum Zitat Robinson, C. J., & Stringer, S. E. (2001). The splice variants of vascular endothelial growth factor (VEGF) and their receptors. Journal of Cell Science, 114(Pt 5), 853–865.PubMed Robinson, C. J., & Stringer, S. E. (2001). The splice variants of vascular endothelial growth factor (VEGF) and their receptors. Journal of Cell Science, 114(Pt 5), 853–865.PubMed
26.
Zurück zum Zitat Jakeman, L. B., Winer, J., Bennett, G. L., Altar, C. A., & Ferrara, N. (1992). Binding sites for vascular endothelial growth factor are localized on endothelial cells in adult rat tissues. The Journal of Clinical Investigation, 89(1), 244–253. doi:10.1172/jci115568.PubMedCrossRef Jakeman, L. B., Winer, J., Bennett, G. L., Altar, C. A., & Ferrara, N. (1992). Binding sites for vascular endothelial growth factor are localized on endothelial cells in adult rat tissues. The Journal of Clinical Investigation, 89(1), 244–253. doi:10.​1172/​jci115568.PubMedCrossRef
27.
Zurück zum Zitat Jakeman, L. B., Armanini, M., Phillips, H. S., & Ferrara, N. (1993). Developmental expression of binding sites and messenger ribonucleic acid for vascular endothelial growth factor suggests a role for this protein in vasculogenesis and angiogenesis. Endocrinology, 133(2), 848–859.PubMedCrossRef Jakeman, L. B., Armanini, M., Phillips, H. S., & Ferrara, N. (1993). Developmental expression of binding sites and messenger ribonucleic acid for vascular endothelial growth factor suggests a role for this protein in vasculogenesis and angiogenesis. Endocrinology, 133(2), 848–859.PubMedCrossRef
28.
Zurück zum Zitat Shen, H., Clauss, M., Ryan, J., Schmidt, A. M., Tijburg, P., Borden, L., et al. (1993). Characterization of vascular permeability factor/vascular endothelial growth factor receptors on mononuclear phagocytes. Blood, 81(10), 2767–2773.PubMed Shen, H., Clauss, M., Ryan, J., Schmidt, A. M., Tijburg, P., Borden, L., et al. (1993). Characterization of vascular permeability factor/vascular endothelial growth factor receptors on mononuclear phagocytes. Blood, 81(10), 2767–2773.PubMed
29.
Zurück zum Zitat Cross, M. J., Dixelius, J., Matsumoto, T., & Claesson-Welsh, L. (2003). VEGF-receptor signal transduction. Trends in Biochemical Sciences, 28(9), 488–494.PubMedCrossRef Cross, M. J., Dixelius, J., Matsumoto, T., & Claesson-Welsh, L. (2003). VEGF-receptor signal transduction. Trends in Biochemical Sciences, 28(9), 488–494.PubMedCrossRef
31.
Zurück zum Zitat Makinen, T., Veikkola, T., Mustjoki, S., Karpanen, T., Catimel, B., Nice, E. C., et al. (2001). Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO Journal, 20(17), 4762–4773. doi:10.1093/emboj/20.17.4762.PubMedCrossRef Makinen, T., Veikkola, T., Mustjoki, S., Karpanen, T., Catimel, B., Nice, E. C., et al. (2001). Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO Journal, 20(17), 4762–4773. doi:10.​1093/​emboj/​20.​17.​4762.PubMedCrossRef
32.
Zurück zum Zitat Gerber, H. P., McMurtrey, A., Kowalski, J., Yan, M., Keyt, B. A., Dixit, V., et al. (1998). Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. Journal of Biological Chemistry, 273(46), 30336–30343.PubMedCrossRef Gerber, H. P., McMurtrey, A., Kowalski, J., Yan, M., Keyt, B. A., Dixit, V., et al. (1998). Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. Journal of Biological Chemistry, 273(46), 30336–30343.PubMedCrossRef
33.
Zurück zum Zitat Gerber, H. P., Dixit, V., & Ferrara, N. (1998). Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. Journal of Biological Chemistry, 273(21), 13313–13316.PubMedCrossRef Gerber, H. P., Dixit, V., & Ferrara, N. (1998). Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. Journal of Biological Chemistry, 273(21), 13313–13316.PubMedCrossRef
34.
Zurück zum Zitat Tran, J., Rak, J., Sheehan, C., Saibil, S. D., LaCasse, E., Korneluk, R. G., et al. (1999). Marked induction of the IAP family antiapoptotic proteins survivin and XIAP by VEGF in vascular endothelial cells. Biochemical and Biophysical Research Communications, 264(3), 781–788. doi:10.1006/bbrc.1999.1589.PubMedCrossRef Tran, J., Rak, J., Sheehan, C., Saibil, S. D., LaCasse, E., Korneluk, R. G., et al. (1999). Marked induction of the IAP family antiapoptotic proteins survivin and XIAP by VEGF in vascular endothelial cells. Biochemical and Biophysical Research Communications, 264(3), 781–788. doi:10.​1006/​bbrc.​1999.​1589.PubMedCrossRef
35.
Zurück zum Zitat Chung, A. S., Lee, J., & Ferrara, N. (2010). Targeting the tumour vasculature: insights from physiological angiogenesis. Nature Reviews. Cancer, 10(7), 505–514. doi:10.1038/nrc2868.PubMedCrossRef Chung, A. S., Lee, J., & Ferrara, N. (2010). Targeting the tumour vasculature: insights from physiological angiogenesis. Nature Reviews. Cancer, 10(7), 505–514. doi:10.​1038/​nrc2868.PubMedCrossRef
36.
Zurück zum Zitat Bates, D. O., & Harper, S. J. (2002). Regulation of vascular permeability by vascular endothelial growth factors. Vascular Pharmacology, 39(4–5), 225–237.PubMedCrossRef Bates, D. O., & Harper, S. J. (2002). Regulation of vascular permeability by vascular endothelial growth factors. Vascular Pharmacology, 39(4–5), 225–237.PubMedCrossRef
37.
Zurück zum Zitat Issbrucker, K., Marti, H. H., Hippenstiel, S., Springmann, G., Voswinckel, R., Gaumann, A., et al. (2003). p38 MAP kinase—a molecular switch between VEGF-induced angiogenesis and vascular hyperpermeability. The FASEB Journal, 17(2), 262–264. doi:10.1096/fj.02-0329fje. Issbrucker, K., Marti, H. H., Hippenstiel, S., Springmann, G., Voswinckel, R., Gaumann, A., et al. (2003). p38 MAP kinase—a molecular switch between VEGF-induced angiogenesis and vascular hyperpermeability. The FASEB Journal, 17(2), 262–264. doi:10.​1096/​fj.​02-0329fje.
38.
Zurück zum Zitat Kroll, J., & Waltenberger, J. (1999). A novel function of VEGF receptor-2 (KDR): rapid release of nitric oxide in response to VEGF-A stimulation in endothelial cells. Biochemical and Biophysical Research Communications, 265(3), 636–639. doi:10.1006/bbrc.1999.1729.PubMedCrossRef Kroll, J., & Waltenberger, J. (1999). A novel function of VEGF receptor-2 (KDR): rapid release of nitric oxide in response to VEGF-A stimulation in endothelial cells. Biochemical and Biophysical Research Communications, 265(3), 636–639. doi:10.​1006/​bbrc.​1999.​1729.PubMedCrossRef
39.
Zurück zum Zitat Yla-Herttuala, S., Rissanen, T. T., Vajanto, I., & Hartikainen, J. (2007). Vascular endothelial growth factors: biology and current status of clinical applications in cardiovascular medicine. Journal of the American College of Cardiology, 49(10), 1015–1026. doi:10.1016/j.jacc.2006.09.053.PubMedCrossRef Yla-Herttuala, S., Rissanen, T. T., Vajanto, I., & Hartikainen, J. (2007). Vascular endothelial growth factors: biology and current status of clinical applications in cardiovascular medicine. Journal of the American College of Cardiology, 49(10), 1015–1026. doi:10.​1016/​j.​jacc.​2006.​09.​053.PubMedCrossRef
40.
Zurück zum Zitat Ferrara, N. (2001). Role of vascular endothelial growth factor in regulation of physiological angiogenesis. American Journal of Physiology. Cell Physiology, 280(6), C1358–C1366.PubMed Ferrara, N. (2001). Role of vascular endothelial growth factor in regulation of physiological angiogenesis. American Journal of Physiology. Cell Physiology, 280(6), C1358–C1366.PubMed
41.
Zurück zum Zitat Brown, L. F., Yeo, K. T., Berse, B., Yeo, T. K., Senger, D. R., Dvorak, H. F., et al. (1992). Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing. The Journal of Experimental Medicine, 176(5), 1375–1379.PubMedCrossRef Brown, L. F., Yeo, K. T., Berse, B., Yeo, T. K., Senger, D. R., Dvorak, H. F., et al. (1992). Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing. The Journal of Experimental Medicine, 176(5), 1375–1379.PubMedCrossRef
42.
Zurück zum Zitat Kumar, I., Staton, C. A., Cross, S. S., Reed, M. W., & Brown, N. J. (2009). Angiogenesis, vascular endothelial growth factor and its receptors in human surgical wounds. British Journal of Surgery, 96(12), 1484–1491. doi:10.1002/bjs.6778.PubMedCrossRef Kumar, I., Staton, C. A., Cross, S. S., Reed, M. W., & Brown, N. J. (2009). Angiogenesis, vascular endothelial growth factor and its receptors in human surgical wounds. British Journal of Surgery, 96(12), 1484–1491. doi:10.​1002/​bjs.​6778.PubMedCrossRef
43.
Zurück zum Zitat Westenbrink, B. D., Ruifrok, W. P., Voors, A. A., Tilton, R. G., van Veldhuisen, D. J., Schoemaker, R. G., et al. (2010). Vascular endothelial growth factor is crucial for erythropoietin-induced improvement of cardiac function in heart failure. Cardiovascular Research, 87(1), 30–39. doi:10.1093/cvr/cvq041.PubMedCrossRef Westenbrink, B. D., Ruifrok, W. P., Voors, A. A., Tilton, R. G., van Veldhuisen, D. J., Schoemaker, R. G., et al. (2010). Vascular endothelial growth factor is crucial for erythropoietin-induced improvement of cardiac function in heart failure. Cardiovascular Research, 87(1), 30–39. doi:10.​1093/​cvr/​cvq041.PubMedCrossRef
44.
Zurück zum Zitat Lee, C., & Agoston, D. V. (2010). Vascular endothelial growth factor is involved in mediating increased de novo hippocampal neurogenesis in response to traumatic brain injury. Journal of Neurotrauma, 27(3), 541–553. doi:10.1089/neu.2009.0905.PubMedCrossRef Lee, C., & Agoston, D. V. (2010). Vascular endothelial growth factor is involved in mediating increased de novo hippocampal neurogenesis in response to traumatic brain injury. Journal of Neurotrauma, 27(3), 541–553. doi:10.​1089/​neu.​2009.​0905.PubMedCrossRef
45.
Zurück zum Zitat Olfert, I. M., Howlett, R. A., Wagner, P. D., & Breen, E. C. (2010). Myocyte vascular endothelial growth factor is required for exercise-induced skeletal muscle angiogenesis. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 299(4), R1059–R1067. doi:10.1152/ajpregu.00347.2010.PubMedCrossRef Olfert, I. M., Howlett, R. A., Wagner, P. D., & Breen, E. C. (2010). Myocyte vascular endothelial growth factor is required for exercise-induced skeletal muscle angiogenesis. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 299(4), R1059–R1067. doi:10.​1152/​ajpregu.​00347.​2010.PubMedCrossRef
46.
Zurück zum Zitat Taylor, P. D., Wilson, H., Hillier, S. G., Wiegand, S. J., & Fraser, H. M. (2007). Effects of inhibition of vascular endothelial growth factor at time of selection on follicular angiogenesis, expansion, development and atresia in the marmoset. Molecular Human Reproduction, 13(10), 729–736. doi:10.1093/molehr/gam056.PubMedCrossRef Taylor, P. D., Wilson, H., Hillier, S. G., Wiegand, S. J., & Fraser, H. M. (2007). Effects of inhibition of vascular endothelial growth factor at time of selection on follicular angiogenesis, expansion, development and atresia in the marmoset. Molecular Human Reproduction, 13(10), 729–736. doi:10.​1093/​molehr/​gam056.PubMedCrossRef
48.
Zurück zum Zitat Zimmermann, R. C., Xiao, E., Husami, N., Sauer, M. V., Lobo, R., Kitajewski, J., et al. (2001). Short-term administration of antivascular endothelial growth factor antibody in the late follicular phase delays follicular development in the rhesus monkey. Journal of Clinical Endocrinology and Metabolism, 86(2), 768–772.PubMedCrossRef Zimmermann, R. C., Xiao, E., Husami, N., Sauer, M. V., Lobo, R., Kitajewski, J., et al. (2001). Short-term administration of antivascular endothelial growth factor antibody in the late follicular phase delays follicular development in the rhesus monkey. Journal of Clinical Endocrinology and Metabolism, 86(2), 768–772.PubMedCrossRef
49.
Zurück zum Zitat Wulff, C., Wiegand, S. J., Saunders, P. T., Scobie, G. A., & Fraser, H. M. (2001). Angiogenesis during follicular development in the primate and its inhibition by treatment with truncated Flt-1-Fc (vascular endothelial growth factor Trap(A40)). Endocrinology, 142(7), 3244–3254.PubMedCrossRef Wulff, C., Wiegand, S. J., Saunders, P. T., Scobie, G. A., & Fraser, H. M. (2001). Angiogenesis during follicular development in the primate and its inhibition by treatment with truncated Flt-1-Fc (vascular endothelial growth factor Trap(A40)). Endocrinology, 142(7), 3244–3254.PubMedCrossRef
50.
Zurück zum Zitat Zimmermann, R. C., Xiao, E., Bohlen, P., & Ferin, M. (2002). Administration of antivascular endothelial growth factor receptor 2 antibody in the early follicular phase delays follicular selection and development in the rhesus monkey. Endocrinology, 143(7), 2496–2502.PubMedCrossRef Zimmermann, R. C., Xiao, E., Bohlen, P., & Ferin, M. (2002). Administration of antivascular endothelial growth factor receptor 2 antibody in the early follicular phase delays follicular selection and development in the rhesus monkey. Endocrinology, 143(7), 2496–2502.PubMedCrossRef
51.
Zurück zum Zitat Zimmermann, R. C., Hartman, T., Kavic, S., Pauli, S. A., Bohlen, P., Sauer, M. V., et al. (2003). Vascular endothelial growth factor receptor 2-mediated angiogenesis is essential for gonadotropin-dependent follicle development. The Journal of Clinical Investigation, 112(5), 659–669. doi:10.1172/jci18740.PubMed Zimmermann, R. C., Hartman, T., Kavic, S., Pauli, S. A., Bohlen, P., Sauer, M. V., et al. (2003). Vascular endothelial growth factor receptor 2-mediated angiogenesis is essential for gonadotropin-dependent follicle development. The Journal of Clinical Investigation, 112(5), 659–669. doi:10.​1172/​jci18740.PubMed
52.
Zurück zum Zitat Fraser, H. M., Wilson, H., Rudge, J. S., & Wiegand, S. J. (2005). Single injections of vascular endothelial growth factor trap block ovulation in the macaque and produce a prolonged, dose-related suppression of ovarian function. Journal of Clinical Endocrinology and Metabolism, 90(2), 1114–1122. doi:10.1210/jc.2004-1572.PubMedCrossRef Fraser, H. M., Wilson, H., Rudge, J. S., & Wiegand, S. J. (2005). Single injections of vascular endothelial growth factor trap block ovulation in the macaque and produce a prolonged, dose-related suppression of ovarian function. Journal of Clinical Endocrinology and Metabolism, 90(2), 1114–1122. doi:10.​1210/​jc.​2004-1572.PubMedCrossRef
53.
Zurück zum Zitat Koos, R. D. (1995). Increased expression of vascular endothelial growth/permeability factor in the rat ovary following an ovulatory gonadotropin stimulus: potential roles in follicle rupture. Biology of Reproduction, 52(6), 1426–1435.PubMedCrossRef Koos, R. D. (1995). Increased expression of vascular endothelial growth/permeability factor in the rat ovary following an ovulatory gonadotropin stimulus: potential roles in follicle rupture. Biology of Reproduction, 52(6), 1426–1435.PubMedCrossRef
54.
Zurück zum Zitat Ferrara, N., Chen, H., Davis-Smyth, T., Gerber, H. P., Nguyen, T. N., Peers, D., et al. (1998). Vascular endothelial growth factor is essential for corpus luteum angiogenesis. Nature Medicine, 4(3), 336–340.PubMedCrossRef Ferrara, N., Chen, H., Davis-Smyth, T., Gerber, H. P., Nguyen, T. N., Peers, D., et al. (1998). Vascular endothelial growth factor is essential for corpus luteum angiogenesis. Nature Medicine, 4(3), 336–340.PubMedCrossRef
57.
Zurück zum Zitat Greenaway, J., Connor, K., Pedersen, H. G., Coomber, B. L., LaMarre, J., & Petrik, J. (2004). Vascular endothelial growth factor and its receptor, Flk-1/KDR, are cytoprotective in the extravascular compartment of the ovarian follicle. Endocrinology, 145(6), 2896–2905. doi:10.1210/en.2003-1620.PubMedCrossRef Greenaway, J., Connor, K., Pedersen, H. G., Coomber, B. L., LaMarre, J., & Petrik, J. (2004). Vascular endothelial growth factor and its receptor, Flk-1/KDR, are cytoprotective in the extravascular compartment of the ovarian follicle. Endocrinology, 145(6), 2896–2905. doi:10.​1210/​en.​2003-1620.PubMedCrossRef
59.
Zurück zum Zitat Rolaki, A., Coukos, G., Loutradis, D., DeLisser, H. M., Coutifaris, C., & Makrigiannakis, A. (2007). Luteogenic hormones act through a vascular endothelial growth factor-dependent mechanism to up-regulate α5β1 and αvβ3 integrins, promoting the migration and survival of human luteinized granulosa cells. American Journal of Pathology, 170(5), 1561–1572. doi:10.2353/ajpath.2007.060926.PubMedCrossRef Rolaki, A., Coukos, G., Loutradis, D., DeLisser, H. M., Coutifaris, C., & Makrigiannakis, A. (2007). Luteogenic hormones act through a vascular endothelial growth factor-dependent mechanism to up-regulate α5β1 and αvβ3 integrins, promoting the migration and survival of human luteinized granulosa cells. American Journal of Pathology, 170(5), 1561–1572. doi:10.​2353/​ajpath.​2007.​060926.PubMedCrossRef
60.
Zurück zum Zitat Scott, A., Powner, M. B., Gandhi, P., Clarkin, C., Gutmann, D. H., Johnson, R. S., et al. (2010). Astrocyte-derived vascular endothelial growth factor stabilizes vessels in the developing retinal vasculature. PloS One, 5(7), e11863. doi:10.1371/journal.pone.0011863.PubMedCrossRef Scott, A., Powner, M. B., Gandhi, P., Clarkin, C., Gutmann, D. H., Johnson, R. S., et al. (2010). Astrocyte-derived vascular endothelial growth factor stabilizes vessels in the developing retinal vasculature. PloS One, 5(7), e11863. doi:10.​1371/​journal.​pone.​0011863.PubMedCrossRef
61.
Zurück zum Zitat Smith, L. E. (2008). Through the eyes of a child: understanding retinopathy through ROP the Friedenwald lecture. Investigative Ophthalmology & Visual Science, 49(12), 5177–5182. doi:10.1167/iovs.08-2584.CrossRef Smith, L. E. (2008). Through the eyes of a child: understanding retinopathy through ROP the Friedenwald lecture. Investigative Ophthalmology & Visual Science, 49(12), 5177–5182. doi:10.​1167/​iovs.​08-2584.CrossRef
62.
Zurück zum Zitat Mahdy, R. A., Nada, W. M., Hadhoud, K. M., & El-Tarhony, S. A. (2010). The role of vascular endothelial growth factor in the progression of diabetic vascular complications. Eye (London, England), 24(10), 1576–1584. doi:10.1038/eye.2010.86.CrossRef Mahdy, R. A., Nada, W. M., Hadhoud, K. M., & El-Tarhony, S. A. (2010). The role of vascular endothelial growth factor in the progression of diabetic vascular complications. Eye (London, England), 24(10), 1576–1584. doi:10.​1038/​eye.​2010.​86.CrossRef
63.
Zurück zum Zitat Yasuda, S., Kachi, S., Kondo, M., Ushida, H., Uetani, R., Terui, T., et al. (2011). Significant correlation between electroretinogram parameters and ocular vascular endothelial growth factor concentration in central retinal vein occlusion eyes. Investigative Ophthalmology & Visual Science, 52(8), 5737–5742. doi:10.1167/iovs.10-6923.CrossRef Yasuda, S., Kachi, S., Kondo, M., Ushida, H., Uetani, R., Terui, T., et al. (2011). Significant correlation between electroretinogram parameters and ocular vascular endothelial growth factor concentration in central retinal vein occlusion eyes. Investigative Ophthalmology & Visual Science, 52(8), 5737–5742. doi:10.​1167/​iovs.​10-6923.CrossRef
65.
66.
Zurück zum Zitat Kurosaka, D., Hirai, K., Nishioka, M., Miyamoto, Y., Yoshida, K., Noda, K., et al. (2010). Clinical significance of serum levels of vascular endothelial growth factor, angiopoietin-1, and angiopoietin-2 in patients with rheumatoid arthritis. Journal of Rheumatology, 37(6), 1121–1128. doi:10.3899/jrheum.090941.PubMedCrossRef Kurosaka, D., Hirai, K., Nishioka, M., Miyamoto, Y., Yoshida, K., Noda, K., et al. (2010). Clinical significance of serum levels of vascular endothelial growth factor, angiopoietin-1, and angiopoietin-2 in patients with rheumatoid arthritis. Journal of Rheumatology, 37(6), 1121–1128. doi:10.​3899/​jrheum.​090941.PubMedCrossRef
67.
Zurück zum Zitat Murata, M., Yudoh, K., & Masuko, K. (2008). The potential role of vascular endothelial growth factor (VEGF) in cartilage: how the angiogenic factor could be involved in the pathogenesis of osteoarthritis? Osteoarthritis and Cartilage, 16(3), 279–286. doi:10.1016/j.joca.2007.09.003.PubMedCrossRef Murata, M., Yudoh, K., & Masuko, K. (2008). The potential role of vascular endothelial growth factor (VEGF) in cartilage: how the angiogenic factor could be involved in the pathogenesis of osteoarthritis? Osteoarthritis and Cartilage, 16(3), 279–286. doi:10.​1016/​j.​joca.​2007.​09.​003.PubMedCrossRef
68.
Zurück zum Zitat Otto, K., Duchrow, M., Broll, R., Bruch, H. P., & Strik, M. W. (2002). Expression of vascular endothelial growth factor mRNA and protein in human chronic renal allograft rejection. Transplantation Proceedings, 34(8), 3134–3137.PubMedCrossRef Otto, K., Duchrow, M., Broll, R., Bruch, H. P., & Strik, M. W. (2002). Expression of vascular endothelial growth factor mRNA and protein in human chronic renal allograft rejection. Transplantation Proceedings, 34(8), 3134–3137.PubMedCrossRef
72.
Zurück zum Zitat Celletti, F. L., Waugh, J. M., Amabile, P. G., Brendolan, A., Hilfiker, P. R., & Dake, M. D. (2001). Vascular endothelial growth factor enhances atherosclerotic plaque progression. Nature Medicine, 7(4), 425–429. doi:10.1038/86490.PubMedCrossRef Celletti, F. L., Waugh, J. M., Amabile, P. G., Brendolan, A., Hilfiker, P. R., & Dake, M. D. (2001). Vascular endothelial growth factor enhances atherosclerotic plaque progression. Nature Medicine, 7(4), 425–429. doi:10.​1038/​86490.PubMedCrossRef
73.
Zurück zum Zitat Nordlie, M. A., Wold, L. E., Simkhovich, B. Z., Sesti, C., & Kloner, R. A. (2006). Molecular aspects of ischemic heart disease: ischemia/reperfusion-induced genetic changes and potential applications of gene and RNA interference therapy. Journal of Cardiovascular Pharmacology and Therapeutics, 11(1), 17–30.PubMedCrossRef Nordlie, M. A., Wold, L. E., Simkhovich, B. Z., Sesti, C., & Kloner, R. A. (2006). Molecular aspects of ischemic heart disease: ischemia/reperfusion-induced genetic changes and potential applications of gene and RNA interference therapy. Journal of Cardiovascular Pharmacology and Therapeutics, 11(1), 17–30.PubMedCrossRef
74.
Zurück zum Zitat Stehr, A., Topel, I., Muller, S., Unverdorben, K., Geissler, E. K., Kasprzak, P. M., et al. (2010). VEGF: a surrogate marker for peripheral vascular disease. European Journal of Vascular and Endovascular Surgery, 39(3), 330–332. doi:10.1016/j.ejvs.2009.09.025.PubMedCrossRef Stehr, A., Topel, I., Muller, S., Unverdorben, K., Geissler, E. K., Kasprzak, P. M., et al. (2010). VEGF: a surrogate marker for peripheral vascular disease. European Journal of Vascular and Endovascular Surgery, 39(3), 330–332. doi:10.​1016/​j.​ejvs.​2009.​09.​025.PubMedCrossRef
77.
78.
Zurück zum Zitat Murakami, Y., Kobayashi, T., Omatsu, K., Suzuki, M., Ohashi, R., Matsuura, T., et al. (2005). Exogenous vascular endothelial growth factor can induce preeclampsia-like symptoms in pregnant mice. Seminars in Thrombosis and Hemostasis, 31(3), 307–313. doi:10.1055/s-2005-872437.PubMedCrossRef Murakami, Y., Kobayashi, T., Omatsu, K., Suzuki, M., Ohashi, R., Matsuura, T., et al. (2005). Exogenous vascular endothelial growth factor can induce preeclampsia-like symptoms in pregnant mice. Seminars in Thrombosis and Hemostasis, 31(3), 307–313. doi:10.​1055/​s-2005-872437.PubMedCrossRef
79.
Zurück zum Zitat Bussen, S., & Bussen, D. (2011). Influence of the vascular endothelial growth factor on the development of severe pre-eclampsia or HELLP syndrome. Archives of Gynecology and Obstetrics, 284(3), 551–557. doi:10.1007/s00404-010-1704-x.PubMedCrossRef Bussen, S., & Bussen, D. (2011). Influence of the vascular endothelial growth factor on the development of severe pre-eclampsia or HELLP syndrome. Archives of Gynecology and Obstetrics, 284(3), 551–557. doi:10.​1007/​s00404-010-1704-x.PubMedCrossRef
81.
Zurück zum Zitat Volm, M., Koomagi, R., Mattern, J., & Stammler, G. (1997). Angiogenic growth factors and their receptors in non-small cell lung carcinomas and their relationships to drug response in vitro. Anticancer Research, 17(1A), 99–103.PubMed Volm, M., Koomagi, R., Mattern, J., & Stammler, G. (1997). Angiogenic growth factors and their receptors in non-small cell lung carcinomas and their relationships to drug response in vitro. Anticancer Research, 17(1A), 99–103.PubMed
82.
Zurück zum Zitat Brown, L. F., Berse, B., Jackman, R. W., Tognazzi, K., Guidi, A. J., Dvorak, H. F., et al. (1995). Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in breast cancer. Human Pathology, 26(1), 86–91.PubMedCrossRef Brown, L. F., Berse, B., Jackman, R. W., Tognazzi, K., Guidi, A. J., Dvorak, H. F., et al. (1995). Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in breast cancer. Human Pathology, 26(1), 86–91.PubMedCrossRef
83.
Zurück zum Zitat Brown, L. F., Berse, B., Jackman, R. W., Tognazzi, K., Manseau, E. J., Senger, D. R., et al. (1993). Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in adenocarcinomas of the gastrointestinal tract. Cancer Research, 53(19), 4727–4735.PubMed Brown, L. F., Berse, B., Jackman, R. W., Tognazzi, K., Manseau, E. J., Senger, D. R., et al. (1993). Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in adenocarcinomas of the gastrointestinal tract. Cancer Research, 53(19), 4727–4735.PubMed
84.
Zurück zum Zitat Brown, L. F., Berse, B., Jackman, R. W., Tognazzi, K., Manseau, E. J., Dvorak, H. F., et al. (1993). Increased expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in kidney and bladder carcinomas. American Journal of Pathology, 143(5), 1255–1262.PubMed Brown, L. F., Berse, B., Jackman, R. W., Tognazzi, K., Manseau, E. J., Dvorak, H. F., et al. (1993). Increased expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in kidney and bladder carcinomas. American Journal of Pathology, 143(5), 1255–1262.PubMed
85.
Zurück zum Zitat Guidi, A. J., Abu-Jawdeh, G., Tognazzi, K., Dvorak, H. F., & Brown, L. F. (1996). Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in endometrial carcinoma. Cancer, 78(3), 454–460. doi:10.1002/(sici)1097-0142(19960801)78:3<454::aid-cncr12>3.0.co;2-y.PubMedCrossRef Guidi, A. J., Abu-Jawdeh, G., Tognazzi, K., Dvorak, H. F., & Brown, L. F. (1996). Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in endometrial carcinoma. Cancer, 78(3), 454–460. doi:10.1002/(sici)1097-0142(19960801)78:3<454::aid-cncr12>3.0.co;2-y.PubMedCrossRef
86.
87.
Zurück zum Zitat Turner, H. E., Harris, A. L., Melmed, S., & Wass, J. A. (2003). Angiogenesis in endocrine tumors. Endocrine Reviews, 24(5), 600–632.PubMedCrossRef Turner, H. E., Harris, A. L., Melmed, S., & Wass, J. A. (2003). Angiogenesis in endocrine tumors. Endocrine Reviews, 24(5), 600–632.PubMedCrossRef
88.
Zurück zum Zitat Fukumura, D., Xavier, R., Sugiura, T., Chen, Y., Park, E. C., Lu, N., et al. (1998). Tumor induction of VEGF promoter activity in stromal cells. Cell, 94(6), 715–725.PubMedCrossRef Fukumura, D., Xavier, R., Sugiura, T., Chen, Y., Park, E. C., Lu, N., et al. (1998). Tumor induction of VEGF promoter activity in stromal cells. Cell, 94(6), 715–725.PubMedCrossRef
89.
Zurück zum Zitat Gerber, H. P., Kowalski, J., Sherman, D., Eberhard, D. A., & Ferrara, N. (2000). Complete inhibition of rhabdomyosarcoma xenograft growth and neovascularization requires blockade of both tumor and host vascular endothelial growth factor. Cancer Research, 60(22), 6253–6258.PubMed Gerber, H. P., Kowalski, J., Sherman, D., Eberhard, D. A., & Ferrara, N. (2000). Complete inhibition of rhabdomyosarcoma xenograft growth and neovascularization requires blockade of both tumor and host vascular endothelial growth factor. Cancer Research, 60(22), 6253–6258.PubMed
92.
Zurück zum Zitat Kamba, T., Tam, B. Y., Hashizume, H., Haskell, A., Sennino, B., Mancuso, M. R., et al. (2006). VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature. American Journal of Physiology - Heart and Circulatory Physiology, 290(2), H560–H576. doi:10.1152/ajpheart.00133.2005.PubMedCrossRef Kamba, T., Tam, B. Y., Hashizume, H., Haskell, A., Sennino, B., Mancuso, M. R., et al. (2006). VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature. American Journal of Physiology - Heart and Circulatory Physiology, 290(2), H560–H576. doi:10.​1152/​ajpheart.​00133.​2005.PubMedCrossRef
93.
Zurück zum Zitat Nor, J. E., Christensen, J., Liu, J., Peters, M., Mooney, D. J., Strieter, R. M., et al. (2001). Up-regulation of Bcl-2 in microvascular endothelial cells enhances intratumoral angiogenesis and accelerates tumor growth. Cancer Research, 61(5), 2183–2188.PubMed Nor, J. E., Christensen, J., Liu, J., Peters, M., Mooney, D. J., Strieter, R. M., et al. (2001). Up-regulation of Bcl-2 in microvascular endothelial cells enhances intratumoral angiogenesis and accelerates tumor growth. Cancer Research, 61(5), 2183–2188.PubMed
94.
Zurück zum Zitat Folkman, J. (2003). Angiogenesis and apoptosis. Seminars in Cancer Biology, 13(2), 159–167.PubMedCrossRef Folkman, J. (2003). Angiogenesis and apoptosis. Seminars in Cancer Biology, 13(2), 159–167.PubMedCrossRef
95.
Zurück zum Zitat Dvorak, H. F., Brown, L. F., Detmar, M., & Dvorak, A. M. (1995). Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. American Journal of Pathology, 146(5), 1029–1039.PubMed Dvorak, H. F., Brown, L. F., Detmar, M., & Dvorak, A. M. (1995). Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. American Journal of Pathology, 146(5), 1029–1039.PubMed
96.
Zurück zum Zitat Unemori, E. N., Ferrara, N., Bauer, E. A., & Amento, E. P. (1992). Vascular endothelial growth factor induces interstitial collagenase expression in human endothelial cells. Journal of Cellular Physiology, 153(3), 557–562. doi:10.1002/jcp.1041530317.PubMedCrossRef Unemori, E. N., Ferrara, N., Bauer, E. A., & Amento, E. P. (1992). Vascular endothelial growth factor induces interstitial collagenase expression in human endothelial cells. Journal of Cellular Physiology, 153(3), 557–562. doi:10.​1002/​jcp.​1041530317.PubMedCrossRef
97.
Zurück zum Zitat Bamberger, E. S., & Perrett, C. W. (2002). Angiogenesis in epithelian ovarian cancer. Molecular Pathology, 55(6), 348–359.PubMedCrossRef Bamberger, E. S., & Perrett, C. W. (2002). Angiogenesis in epithelian ovarian cancer. Molecular Pathology, 55(6), 348–359.PubMedCrossRef
98.
Zurück zum Zitat Lichtenberger, B. M., Tan, P. K., Niederleithner, H., Ferrara, N., Petzelbauer, P., & Sibilia, M. (2010). Autocrine VEGF signaling synergizes with EGFR in tumor cells to promote epithelial cancer development. Cell, 140(2), 268–279. doi:10.1016/j.cell.2009.12.046.PubMedCrossRef Lichtenberger, B. M., Tan, P. K., Niederleithner, H., Ferrara, N., Petzelbauer, P., & Sibilia, M. (2010). Autocrine VEGF signaling synergizes with EGFR in tumor cells to promote epithelial cancer development. Cell, 140(2), 268–279. doi:10.​1016/​j.​cell.​2009.​12.​046.PubMedCrossRef
100.
Zurück zum Zitat Gabrilovich, D. I., Chen, H. L., Girgis, K. R., Cunningham, H. T., Meny, G. M., Nadaf, S., et al. (1996). Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nature Medicine, 2(10), 1096–1103.PubMedCrossRef Gabrilovich, D. I., Chen, H. L., Girgis, K. R., Cunningham, H. T., Meny, G. M., Nadaf, S., et al. (1996). Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nature Medicine, 2(10), 1096–1103.PubMedCrossRef
101.
Zurück zum Zitat Oyama, T., Ran, S., Ishida, T., Nadaf, S., Kerr, L., Carbone, D. P., et al. (1998). Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells. Journal of Immunology, 160(3), 1224–1232. Oyama, T., Ran, S., Ishida, T., Nadaf, S., Kerr, L., Carbone, D. P., et al. (1998). Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells. Journal of Immunology, 160(3), 1224–1232.
102.
Zurück zum Zitat Kaplan, R. N., Riba, R. D., Zacharoulis, S., Bramley, A. H., Vincent, L., Costa, C., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438(7069), 820–827. doi:10.1038/nature04186.PubMedCrossRef Kaplan, R. N., Riba, R. D., Zacharoulis, S., Bramley, A. H., Vincent, L., Costa, C., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438(7069), 820–827. doi:10.​1038/​nature04186.PubMedCrossRef
103.
Zurück zum Zitat Gerber, H. P., & Ferrara, N. (2003). The role of VEGF in normal and neoplastic hematopoiesis. Journal Molecule Medicine (Berl), 81(1), 20–31. doi:10.1007/s00109-002-0397-4. Gerber, H. P., & Ferrara, N. (2003). The role of VEGF in normal and neoplastic hematopoiesis. Journal Molecule Medicine (Berl), 81(1), 20–31. doi:10.​1007/​s00109-002-0397-4.
104.
Zurück zum Zitat Medinger, M., Fischer, N., & Tzankov, A. (2010). Vascular endothelial growth factor-related pathways in hemato-lymphoid malignancies. Journal Oncology, 2010, 729725. doi:10.1155/2010/729725. Medinger, M., Fischer, N., & Tzankov, A. (2010). Vascular endothelial growth factor-related pathways in hemato-lymphoid malignancies. Journal Oncology, 2010, 729725. doi:10.​1155/​2010/​729725.
105.
Zurück zum Zitat Olson, T. A., Mohanraj, D., Carson, L. F., & Ramakrishnan, S. (1994). Vascular permeability factor gene expression in normal and neoplastic human ovaries. Cancer Research, 54(1), 276–280.PubMed Olson, T. A., Mohanraj, D., Carson, L. F., & Ramakrishnan, S. (1994). Vascular permeability factor gene expression in normal and neoplastic human ovaries. Cancer Research, 54(1), 276–280.PubMed
106.
Zurück zum Zitat Abu-Jawdeh, G. M., Faix, J. D., Niloff, J., Tognazzi, K., Manseau, E., Dvorak, H. F., et al. (1996). Strong expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in ovarian borderline and malignant neoplasms. Laboratory Investigation, 74(6), 1105–1115.PubMed Abu-Jawdeh, G. M., Faix, J. D., Niloff, J., Tognazzi, K., Manseau, E., Dvorak, H. F., et al. (1996). Strong expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in ovarian borderline and malignant neoplasms. Laboratory Investigation, 74(6), 1105–1115.PubMed
107.
Zurück zum Zitat Hazelton, D., Nicosia, R. F., & Nicosia, S. V. (1999). Vascular endothelial growth factor levels in ovarian cyst fluid correlate with malignancy. Clinical Cancer Research, 5(4), 823–829.PubMed Hazelton, D., Nicosia, R. F., & Nicosia, S. V. (1999). Vascular endothelial growth factor levels in ovarian cyst fluid correlate with malignancy. Clinical Cancer Research, 5(4), 823–829.PubMed
108.
Zurück zum Zitat Schumacher, J. J., Dings, R. P., Cosin, J., Subramanian, I. V., Auersperg, N., & Ramakrishnan, S. (2007). Modulation of angiogenic phenotype alters tumorigenicity in rat ovarian epithelial cells. Cancer Research, 67(8), 3683–3690. doi:10.1158/0008-5472.can-06-3608.PubMedCrossRef Schumacher, J. J., Dings, R. P., Cosin, J., Subramanian, I. V., Auersperg, N., & Ramakrishnan, S. (2007). Modulation of angiogenic phenotype alters tumorigenicity in rat ovarian epithelial cells. Cancer Research, 67(8), 3683–3690. doi:10.​1158/​0008-5472.​can-06-3608.PubMedCrossRef
109.
Zurück zum Zitat Santin, A. D., Hermonat, P. L., Ravaggi, A., Cannon, M. J., Pecorelli, S., & Parham, G. P. (1999). Secretion of vascular endothelial growth factor in ovarian cancer. European Journal of Gynaecological Oncology, 20(3), 177–181.PubMed Santin, A. D., Hermonat, P. L., Ravaggi, A., Cannon, M. J., Pecorelli, S., & Parham, G. P. (1999). Secretion of vascular endothelial growth factor in ovarian cancer. European Journal of Gynaecological Oncology, 20(3), 177–181.PubMed
110.
Zurück zum Zitat Paley, P. J., Staskus, K. A., Gebhard, K., Mohanraj, D., Twiggs, L. B., Carson, L. F., et al. (1997). Vascular endothelial growth factor expression in early stage ovarian carcinoma. Cancer, 80(1), 98–106.PubMedCrossRef Paley, P. J., Staskus, K. A., Gebhard, K., Mohanraj, D., Twiggs, L. B., Carson, L. F., et al. (1997). Vascular endothelial growth factor expression in early stage ovarian carcinoma. Cancer, 80(1), 98–106.PubMedCrossRef
111.
Zurück zum Zitat Kassim, S. K., El-Salahy, E. M., Fayed, S. T., Helal, S. A., Helal, T., Azzam Eel, D., et al. (2004). Vascular endothelial growth factor and interleukin-8 are associated with poor prognosis in epithelial ovarian cancer patients. Clinical Biochemistry, 37(5), 363–369. doi:10.1016/j.clinbiochem.2004.01.014.PubMedCrossRef Kassim, S. K., El-Salahy, E. M., Fayed, S. T., Helal, S. A., Helal, T., Azzam Eel, D., et al. (2004). Vascular endothelial growth factor and interleukin-8 are associated with poor prognosis in epithelial ovarian cancer patients. Clinical Biochemistry, 37(5), 363–369. doi:10.​1016/​j.​clinbiochem.​2004.​01.​014.PubMedCrossRef
112.
Zurück zum Zitat Chambers, S. K., Clouser, M. C., Baker, A. F., Roe, D. J., Cui, H., Brewer, M. A., et al. (2010). Overexpression of tumor vascular endothelial growth factor A may portend an increased likelihood of progression in a phase II trial of bevacizumab and erlotinib in resistant ovarian cancer. Clinical Cancer Research, 16(21), 5320–5328. doi:10.1158/1078-0432.ccr-10-0974.PubMedCrossRef Chambers, S. K., Clouser, M. C., Baker, A. F., Roe, D. J., Cui, H., Brewer, M. A., et al. (2010). Overexpression of tumor vascular endothelial growth factor A may portend an increased likelihood of progression in a phase II trial of bevacizumab and erlotinib in resistant ovarian cancer. Clinical Cancer Research, 16(21), 5320–5328. doi:10.​1158/​1078-0432.​ccr-10-0974.PubMedCrossRef
113.
Zurück zum Zitat Siddiqui, G. K., Elmasry, K., Wong Te Fong, A. C., Perrett, C., Morris, R., Crow, J. C., et al. (2010). Prognostic significance of intratumoral vascular endothelial growth factor as a marker of tumour angiogenesis in epithelial ovarian cancer. European Journal of Gynaecological Oncology, 31(2), 156–159.PubMed Siddiqui, G. K., Elmasry, K., Wong Te Fong, A. C., Perrett, C., Morris, R., Crow, J. C., et al. (2010). Prognostic significance of intratumoral vascular endothelial growth factor as a marker of tumour angiogenesis in epithelial ovarian cancer. European Journal of Gynaecological Oncology, 31(2), 156–159.PubMed
114.
Zurück zum Zitat Siddiqui, G. K., Wong Te Fong, L. F., Rolfe, K. J., Hadjat, S., Reid, W. M. N., Maclean, A. B., et al. (2001). Abstracts presented at the Scientific Meeting, Portsmouth, 10th and 11th November 2000. BJOG: An International Journal of Obstetrics and Gynaecology, 108(5), 547–557. doi:10.1111/j.1471-0528.2001.00126.x.CrossRef Siddiqui, G. K., Wong Te Fong, L. F., Rolfe, K. J., Hadjat, S., Reid, W. M. N., Maclean, A. B., et al. (2001). Abstracts presented at the Scientific Meeting, Portsmouth, 10th and 11th November 2000. BJOG: An International Journal of Obstetrics and Gynaecology, 108(5), 547–557. doi:10.​1111/​j.​1471-0528.​2001.​00126.​x.CrossRef
115.
Zurück zum Zitat Zebrowski, B. K., Liu, W., Ramirez, K., Akagi, Y., Mills, G. B., & Ellis, L. M. (1999). Markedly elevated levels of vascular endothelial growth factor in malignant ascites. Annals of Surgical Oncology, 6(4), 373–378.PubMedCrossRef Zebrowski, B. K., Liu, W., Ramirez, K., Akagi, Y., Mills, G. B., & Ellis, L. M. (1999). Markedly elevated levels of vascular endothelial growth factor in malignant ascites. Annals of Surgical Oncology, 6(4), 373–378.PubMedCrossRef
116.
Zurück zum Zitat Bamias, A., Koutsoukou, V., Terpos, E., Tsiatas, M. L., Liakos, C., Tsitsilonis, O., et al. (2008). Correlation of NK T-like CD3+CD56+ cells and CD4+CD25+(hi) regulatory T cells with VEGF and TNFalpha in ascites from advanced ovarian cancer: association with platinum resistance and prognosis in patients receiving first-line, platinum-based chemotherapy. Gynecologic Oncology, 108(2), 421–427. doi:10.1016/j.ygyno.2007.10.018.PubMedCrossRef Bamias, A., Koutsoukou, V., Terpos, E., Tsiatas, M. L., Liakos, C., Tsitsilonis, O., et al. (2008). Correlation of NK T-like CD3+CD56+ cells and CD4+CD25+(hi) regulatory T cells with VEGF and TNFalpha in ascites from advanced ovarian cancer: association with platinum resistance and prognosis in patients receiving first-line, platinum-based chemotherapy. Gynecologic Oncology, 108(2), 421–427. doi:10.​1016/​j.​ygyno.​2007.​10.​018.PubMedCrossRef
117.
Zurück zum Zitat Cooper, B. C., Ritchie, J. M., Broghammer, C. L., Coffin, J., Sorosky, J. I., Buller, R. E., et al. (2002). Preoperative serum vascular endothelial growth factor levels: significance in ovarian cancer. Clinical Cancer Research, 8(10), 3193–3197.PubMed Cooper, B. C., Ritchie, J. M., Broghammer, C. L., Coffin, J., Sorosky, J. I., Buller, R. E., et al. (2002). Preoperative serum vascular endothelial growth factor levels: significance in ovarian cancer. Clinical Cancer Research, 8(10), 3193–3197.PubMed
118.
Zurück zum Zitat Li, L., Wang, L., Zhang, W., Tang, B., Zhang, J., Song, H., et al. (2004). Correlation of serum VEGF levels with clinical stage, therapy efficacy, tumor metastasis and patient survival in ovarian cancer. Anticancer Research, 24(3b), 1973–1979.PubMed Li, L., Wang, L., Zhang, W., Tang, B., Zhang, J., Song, H., et al. (2004). Correlation of serum VEGF levels with clinical stage, therapy efficacy, tumor metastasis and patient survival in ovarian cancer. Anticancer Research, 24(3b), 1973–1979.PubMed
119.
Zurück zum Zitat Hefler, L. A., Zeillinger, R., Grimm, C., Sood, A. K., Cheng, W. F., Gadducci, A., et al. (2006). Preoperative serum vascular endothelial growth factor as a prognostic parameter in ovarian cancer. Gynecologic Oncology, 103(2), 512–517. doi:10.1016/j.ygyno.2006.03.058.PubMedCrossRef Hefler, L. A., Zeillinger, R., Grimm, C., Sood, A. K., Cheng, W. F., Gadducci, A., et al. (2006). Preoperative serum vascular endothelial growth factor as a prognostic parameter in ovarian cancer. Gynecologic Oncology, 103(2), 512–517. doi:10.​1016/​j.​ygyno.​2006.​03.​058.PubMedCrossRef
121.
Zurück zum Zitat Osada, R., Horiuchi, A., Kikuchi, N., Ohira, S., Ota, M., Katsuyama, Y., et al. (2006). Expression of semaphorins, vascular endothelial growth factor, and their common receptor neuropilins and alleic loss of semaphorin locus in epithelial ovarian neoplasms: increased ratio of vascular endothelial growth factor to semaphorin is a poor prognostic factor in ovarian carcinomas. Human Pathology, 37(11), 1414–1425. doi:10.1016/j.humpath.2006.04.031.PubMedCrossRef Osada, R., Horiuchi, A., Kikuchi, N., Ohira, S., Ota, M., Katsuyama, Y., et al. (2006). Expression of semaphorins, vascular endothelial growth factor, and their common receptor neuropilins and alleic loss of semaphorin locus in epithelial ovarian neoplasms: increased ratio of vascular endothelial growth factor to semaphorin is a poor prognostic factor in ovarian carcinomas. Human Pathology, 37(11), 1414–1425. doi:10.​1016/​j.​humpath.​2006.​04.​031.PubMedCrossRef
122.
Zurück zum Zitat Hefler, L. A., Mustea, A., Konsgen, D., Concin, N., Tanner, B., Strick, R., et al. (2007). Vascular endothelial growth factor gene polymorphisms are associated with prognosis in ovarian cancer. Clinical Cancer Research, 13(3), 898–901. doi:10.1158/1078-0432.ccr-06-1008.PubMedCrossRef Hefler, L. A., Mustea, A., Konsgen, D., Concin, N., Tanner, B., Strick, R., et al. (2007). Vascular endothelial growth factor gene polymorphisms are associated with prognosis in ovarian cancer. Clinical Cancer Research, 13(3), 898–901. doi:10.​1158/​1078-0432.​ccr-06-1008.PubMedCrossRef
123.
Zurück zum Zitat Horiuchi, A., Imai, T., Shimizu, M., Oka, K., Wang, C., Nikaido, T., et al. (2002). Hypoxia-induced changes in the expression of VEGF, HIF-1 alpha and cell cycle-related molecules in ovarian cancer cells. Anticancer Research, 22(5), 2697–2702.PubMed Horiuchi, A., Imai, T., Shimizu, M., Oka, K., Wang, C., Nikaido, T., et al. (2002). Hypoxia-induced changes in the expression of VEGF, HIF-1 alpha and cell cycle-related molecules in ovarian cancer cells. Anticancer Research, 22(5), 2697–2702.PubMed
124.
Zurück zum Zitat Skinner, H. D., Zheng, J. Z., Fang, J., Agani, F., & Jiang, B.-H. (2004). Vascular endothelial growth factor transcriptional activation is mediated by hypoxia-inducible factor 1α, HDM2, and p70S6K1 in response to phosphatidylinositol 3-kinase/AKT signaling. Journal of Biological Chemistry, 279(44), 45643–45651. doi:10.1074/jbc.M404097200.PubMedCrossRef Skinner, H. D., Zheng, J. Z., Fang, J., Agani, F., & Jiang, B.-H. (2004). Vascular endothelial growth factor transcriptional activation is mediated by hypoxia-inducible factor 1α, HDM2, and p70S6K1 in response to phosphatidylinositol 3-kinase/AKT signaling. Journal of Biological Chemistry, 279(44), 45643–45651. doi:10.​1074/​jbc.​M404097200.PubMedCrossRef
125.
Zurück zum Zitat Kryczek, I., Lange, A., Mottram, P., Alvarez, X., Cheng, P., Hogan, M., et al. (2005). CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers. Cancer Research, 65(2), 465–472.PubMed Kryczek, I., Lange, A., Mottram, P., Alvarez, X., Cheng, P., Hogan, M., et al. (2005). CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers. Cancer Research, 65(2), 465–472.PubMed
126.
Zurück zum Zitat Cao, Z., Fang, J., Xia, C., Shi, X., & Jiang, B.-H. (2004). trans-3,4,5′-Trihydroxystibene inhibits hypoxia-inducible factor 1α and vascular endothelial growth factor expression in human ovarian cancer cells. Clinical Cancer Research, 10(15), 5253–5263. doi:10.1158/1078-0432.ccr-03-0588.PubMedCrossRef Cao, Z., Fang, J., Xia, C., Shi, X., & Jiang, B.-H. (2004). trans-3,4,5′-Trihydroxystibene inhibits hypoxia-inducible factor 1α and vascular endothelial growth factor expression in human ovarian cancer cells. Clinical Cancer Research, 10(15), 5253–5263. doi:10.​1158/​1078-0432.​ccr-03-0588.PubMedCrossRef
127.
Zurück zum Zitat Liu, L.-Z., Hu, X.-W., Xia, C., He, J., Zhou, Q., Shi, X., et al. (2006). Reactive oxygen species regulate epidermal growth factor-induced vascular endothelial growth factor and hypoxia-inducible factor-1α expression through activation of AKT and P70S6K1 in human ovarian cancer cells. Free Radical Biology & Medicine, 41(10), 1521–1533. doi:10.1016/j.freeradbiomed.2006.08.003.CrossRef Liu, L.-Z., Hu, X.-W., Xia, C., He, J., Zhou, Q., Shi, X., et al. (2006). Reactive oxygen species regulate epidermal growth factor-induced vascular endothelial growth factor and hypoxia-inducible factor-1α expression through activation of AKT and P70S6K1 in human ovarian cancer cells. Free Radical Biology & Medicine, 41(10), 1521–1533. doi:10.​1016/​j.​freeradbiomed.​2006.​08.​003.CrossRef
128.
Zurück zum Zitat Matei, D., Kelich, S., Cao, L., Menning, N., Emerson, R. E., Rao, J., et al. (2007). PDGF BB induces VEGF secretion in ovarian cancer. Cancer Biology & Therapy, 6(12), 1951–1959.CrossRef Matei, D., Kelich, S., Cao, L., Menning, N., Emerson, R. E., Rao, J., et al. (2007). PDGF BB induces VEGF secretion in ovarian cancer. Cancer Biology & Therapy, 6(12), 1951–1959.CrossRef
129.
Zurück zum Zitat Liao, S., Liu, J., Lin, P., Shi, T., Jain, R. K., & Xu, L. (2011). TGF-beta blockade controls ascites by preventing abnormalization of lymphatic vessels in orthotopic human ovarian carcinoma models. Clinical Cancer Research, 17(6), 1415–1424. doi:10.1158/1078-0432.ccr-10-2429.PubMedCrossRef Liao, S., Liu, J., Lin, P., Shi, T., Jain, R. K., & Xu, L. (2011). TGF-beta blockade controls ascites by preventing abnormalization of lymphatic vessels in orthotopic human ovarian carcinoma models. Clinical Cancer Research, 17(6), 1415–1424. doi:10.​1158/​1078-0432.​ccr-10-2429.PubMedCrossRef
130.
Zurück zum Zitat Kulbe, H., Thompson, R., Wilson, J. L., Robinson, S., Hagemann, T., Fatah, R., et al. (2007). The inflammatory cytokine tumor necrosis factor-alpha generates an autocrine tumor-promoting network in epithelial ovarian cancer cells. Cancer Research, 67(2), 585–592. doi:10.1158/0008-5472.can-06-2941.PubMedCrossRef Kulbe, H., Thompson, R., Wilson, J. L., Robinson, S., Hagemann, T., Fatah, R., et al. (2007). The inflammatory cytokine tumor necrosis factor-alpha generates an autocrine tumor-promoting network in epithelial ovarian cancer cells. Cancer Research, 67(2), 585–592. doi:10.​1158/​0008-5472.​can-06-2941.PubMedCrossRef
132.
Zurück zum Zitat Stadlmann, S., Amberger, A., Pollheimer, J., Gastl, G., Offner, F. A., Margreiter, R., et al. (2005). Ovarian carcinoma cells and IL-1beta-activated human peritoneal mesothelial cells are possible sources of vascular endothelial growth factor in inflammatory and malignant peritoneal effusions. Gynecologic Oncology, 97(3), 784–789. doi:10.1016/j.ygyno.2005.02.017.PubMedCrossRef Stadlmann, S., Amberger, A., Pollheimer, J., Gastl, G., Offner, F. A., Margreiter, R., et al. (2005). Ovarian carcinoma cells and IL-1beta-activated human peritoneal mesothelial cells are possible sources of vascular endothelial growth factor in inflammatory and malignant peritoneal effusions. Gynecologic Oncology, 97(3), 784–789. doi:10.​1016/​j.​ygyno.​2005.​02.​017.PubMedCrossRef
133.
Zurück zum Zitat Coward, J., Kulbe, H., Chakravarty, P., Leader, D. A., Vassileva, V., Leinster, D. A., et al. (2011). Interleukin-6 as a therapeutic target in human ovarian cancer. Clinical Cancer Research. doi:10.1158/1078-0432.ccr-11-0945. Coward, J., Kulbe, H., Chakravarty, P., Leader, D. A., Vassileva, V., Leinster, D. A., et al. (2011). Interleukin-6 as a therapeutic target in human ovarian cancer. Clinical Cancer Research. doi:10.​1158/​1078-0432.​ccr-11-0945.
134.
135.
Zurück zum Zitat Kandalaft, L. E., Motz, G. T., Duraiswamy, J., & Coukos, G. (2011). Tumor immune surveillance and ovarian cancer: lessons on immune mediated tumor rejection or tolerance. Cancer and Metastasis Reviews, 30(1), 141–151.PubMedCrossRef Kandalaft, L. E., Motz, G. T., Duraiswamy, J., & Coukos, G. (2011). Tumor immune surveillance and ovarian cancer: lessons on immune mediated tumor rejection or tolerance. Cancer and Metastasis Reviews, 30(1), 141–151.PubMedCrossRef
136.
Zurück zum Zitat Yokoyama, Y., Xin, B., Shigeto, T., & Mizunuma, H. (2011). Combination of ciglitazone, a peroxisome proliferator-activated receptor gamma ligand, and cisplatin enhances the inhibition of growth of human ovarian cancers. Journal of Cancer Research and Clinical Oncology, 137(8), 1219–1228. doi:10.1007/s00432-011-0993-1.PubMedCrossRef Yokoyama, Y., Xin, B., Shigeto, T., & Mizunuma, H. (2011). Combination of ciglitazone, a peroxisome proliferator-activated receptor gamma ligand, and cisplatin enhances the inhibition of growth of human ovarian cancers. Journal of Cancer Research and Clinical Oncology, 137(8), 1219–1228. doi:10.​1007/​s00432-011-0993-1.PubMedCrossRef
137.
Zurück zum Zitat Schiffenbauer, Y. S., Abramovitch, R., Meir, G., Nevo, N., Holzinger, M., Itin, A., et al. (1997). Loss of ovarian function promotes angiogenesis in human ovarian carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 94(24), 13203–13208.PubMedCrossRef Schiffenbauer, Y. S., Abramovitch, R., Meir, G., Nevo, N., Holzinger, M., Itin, A., et al. (1997). Loss of ovarian function promotes angiogenesis in human ovarian carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 94(24), 13203–13208.PubMedCrossRef
138.
Zurück zum Zitat Wang, J., Luo, F., Lu, J. J., Chen, P. K., Liu, P., & Zheng, W. (2002). VEGF expression and enhanced production by gonadotropins in ovarian epithelial tumors. International Journal of Cancer, 97(2), 163–167.CrossRef Wang, J., Luo, F., Lu, J. J., Chen, P. K., Liu, P., & Zheng, W. (2002). VEGF expression and enhanced production by gonadotropins in ovarian epithelial tumors. International Journal of Cancer, 97(2), 163–167.CrossRef
139.
Zurück zum Zitat Gao, N., Nester, R. A., & Sarkar, M. A. (2004). 4-Hydroxy estradiol but not 2-hydroxy estradiol induces expression of hypoxia-inducible factor 1alpha and vascular endothelial growth factor A through phosphatidylinositol 3-kinase/Akt/FRAP pathway in OVCAR-3 and A2780-CP70 human ovarian carcinoma cells. Toxicology and Applied Pharmacology, 196(1), 124–135. doi:10.1016/j.taap.2003.12.002.PubMedCrossRef Gao, N., Nester, R. A., & Sarkar, M. A. (2004). 4-Hydroxy estradiol but not 2-hydroxy estradiol induces expression of hypoxia-inducible factor 1alpha and vascular endothelial growth factor A through phosphatidylinositol 3-kinase/Akt/FRAP pathway in OVCAR-3 and A2780-CP70 human ovarian carcinoma cells. Toxicology and Applied Pharmacology, 196(1), 124–135. doi:10.​1016/​j.​taap.​2003.​12.​002.PubMedCrossRef
140.
Zurück zum Zitat Belotti, D., Paganoni, P., Manenti, L., Garofalo, A., Marchini, S., Taraboletti, G., et al. (2003). Matrix metalloproteinases (MMP9 and MMP2) induce the release of vascular endothelial growth factor (VEGF) by ovarian carcinoma cells: implications for ascites formation. Cancer Research, 63(17), 5224–5229.PubMed Belotti, D., Paganoni, P., Manenti, L., Garofalo, A., Marchini, S., Taraboletti, G., et al. (2003). Matrix metalloproteinases (MMP9 and MMP2) induce the release of vascular endothelial growth factor (VEGF) by ovarian carcinoma cells: implications for ascites formation. Cancer Research, 63(17), 5224–5229.PubMed
141.
Zurück zum Zitat Xia, C., Meng, Q., Liu, L. Z., Rojanasakul, Y., Wang, X. R., & Jiang, B. H. (2007). Reactive oxygen species regulate angiogenesis and tumor growth through vascular endothelial growth factor. Cancer Research, 67(22), 10823–10830. doi:10.1158/0008-5472.can-07-0783.PubMedCrossRef Xia, C., Meng, Q., Liu, L. Z., Rojanasakul, Y., Wang, X. R., & Jiang, B. H. (2007). Reactive oxygen species regulate angiogenesis and tumor growth through vascular endothelial growth factor. Cancer Research, 67(22), 10823–10830. doi:10.​1158/​0008-5472.​can-07-0783.PubMedCrossRef
142.
Zurück zum Zitat Gupta, R. A., Tejada, L. V., Tong, B. J., Das, S. K., Morrow, J. D., Dey, S. K., et al. (2003). Cyclooxygenase-1 is overexpressed and promotes angiogenic growth factor production in ovarian cancer. Cancer Research, 63(5), 906–911.PubMed Gupta, R. A., Tejada, L. V., Tong, B. J., Das, S. K., Morrow, J. D., Dey, S. K., et al. (2003). Cyclooxygenase-1 is overexpressed and promotes angiogenic growth factor production in ovarian cancer. Cancer Research, 63(5), 906–911.PubMed
143.
Zurück zum Zitat Xin, B., Yokoyama, Y., Shigeto, T., Futagami, M., & Mizunuma, H. (2007). Inhibitory effect of meloxicam, a selective cyclooxygenase-2 inhibitor, and ciglitazone, a peroxisome proliferator-activated receptor gamma ligand, on the growth of human ovarian cancers. Cancer, 110(4), 791–800. doi:10.1002/cncr.22854.PubMedCrossRef Xin, B., Yokoyama, Y., Shigeto, T., Futagami, M., & Mizunuma, H. (2007). Inhibitory effect of meloxicam, a selective cyclooxygenase-2 inhibitor, and ciglitazone, a peroxisome proliferator-activated receptor gamma ligand, on the growth of human ovarian cancers. Cancer, 110(4), 791–800. doi:10.​1002/​cncr.​22854.PubMedCrossRef
144.
Zurück zum Zitat Hu, Y. L., Tee, M. K., Goetzl, E. J., Auersperg, N., Mills, G. B., Ferrara, N., et al. (2001). Lysophosphatidic acid induction of vascular endothelial growth factor expression in human ovarian cancer cells. Journal of the National Cancer Institute, 93(10), 762–768.PubMedCrossRef Hu, Y. L., Tee, M. K., Goetzl, E. J., Auersperg, N., Mills, G. B., Ferrara, N., et al. (2001). Lysophosphatidic acid induction of vascular endothelial growth factor expression in human ovarian cancer cells. Journal of the National Cancer Institute, 93(10), 762–768.PubMedCrossRef
145.
Zurück zum Zitat Dutta, S., Wang, F. Q., Wu, H. S., Mukherjee, T. J., & Fishman, D. A. (2011). The NF-kappaB pathway mediates lysophosphatidic acid (LPA)-induced VEGF signaling and cell invasion in epithelial ovarian cancer (EOC). Gynecologic Oncology. doi:10.1016/j.ygyno.2011.06.006. Dutta, S., Wang, F. Q., Wu, H. S., Mukherjee, T. J., & Fishman, D. A. (2011). The NF-kappaB pathway mediates lysophosphatidic acid (LPA)-induced VEGF signaling and cell invasion in epithelial ovarian cancer (EOC). Gynecologic Oncology. doi:10.​1016/​j.​ygyno.​2011.​06.​006.
146.
Zurück zum Zitat Zhang, L., Yang, N., Katsaros, D., Huang, W., Park, J. W., Fracchioli, S., et al. (2003). The oncogene phosphatidylinositol 3′-kinase catalytic subunit alpha promotes angiogenesis via vascular endothelial growth factor in ovarian carcinoma. Cancer Research, 63(14), 4225–4231.PubMed Zhang, L., Yang, N., Katsaros, D., Huang, W., Park, J. W., Fracchioli, S., et al. (2003). The oncogene phosphatidylinositol 3′-kinase catalytic subunit alpha promotes angiogenesis via vascular endothelial growth factor in ovarian carcinoma. Cancer Research, 63(14), 4225–4231.PubMed
147.
Zurück zum Zitat Yang, G., Cai, K. Q., Thompson-Lanza, J. A., Bast, R. C., Jr., & Liu, J. (2004). Inhibition of breast and ovarian tumor growth through multiple signaling pathways by using retrovirus-mediated small interfering RNA against Her-2/neu gene expression. Journal of Biological Chemistry, 279(6), 4339–4345. doi:10.1074/jbc.M311153200.PubMedCrossRef Yang, G., Cai, K. Q., Thompson-Lanza, J. A., Bast, R. C., Jr., & Liu, J. (2004). Inhibition of breast and ovarian tumor growth through multiple signaling pathways by using retrovirus-mediated small interfering RNA against Her-2/neu gene expression. Journal of Biological Chemistry, 279(6), 4339–4345. doi:10.​1074/​jbc.​M311153200.PubMedCrossRef
148.
Zurück zum Zitat Hennessy, B. T., Coleman, R. L., & Markman, M. (2009). Ovarian cancer. The Lancet, 374(9698), 1371–1382.CrossRef Hennessy, B. T., Coleman, R. L., & Markman, M. (2009). Ovarian cancer. The Lancet, 374(9698), 1371–1382.CrossRef
149.
Zurück zum Zitat Mesiano, S., Ferrara, N., & Jaffe, R. B. (1998). Role of vascular endothelial growth factor in ovarian cancer: inhibition of ascites formation by immunoneutralization. American Journal of Pathology, 153(4), 1249–1256. doi:10.1016/s0002-9440(10)65669-6.PubMedCrossRef Mesiano, S., Ferrara, N., & Jaffe, R. B. (1998). Role of vascular endothelial growth factor in ovarian cancer: inhibition of ascites formation by immunoneutralization. American Journal of Pathology, 153(4), 1249–1256. doi:10.​1016/​s0002-9440(10)65669-6.PubMedCrossRef
150.
Zurück zum Zitat Zhang, L., Yang, N., Park, J. W., Katsaros, D., Fracchioli, S., Cao, G., et al. (2003). Tumor-derived vascular endothelial growth factor up-regulates angiopoietin-2 in host endothelium and destabilizes host vasculature, supporting angiogenesis in ovarian cancer. Cancer Research, 63(12), 3403–3412.PubMed Zhang, L., Yang, N., Park, J. W., Katsaros, D., Fracchioli, S., Cao, G., et al. (2003). Tumor-derived vascular endothelial growth factor up-regulates angiopoietin-2 in host endothelium and destabilizes host vasculature, supporting angiogenesis in ovarian cancer. Cancer Research, 63(12), 3403–3412.PubMed
151.
Zurück zum Zitat Xia, C., Meng, Q., Cao, Z., Shi, X., & Jiang, B. H. (2006). Regulation of angiogenesis and tumor growth by p110 alpha and AKT1 via VEGF expression. Journal of Cellular Physiology, 209(1), 56–66. doi:10.1002/jcp.20707.PubMedCrossRef Xia, C., Meng, Q., Cao, Z., Shi, X., & Jiang, B. H. (2006). Regulation of angiogenesis and tumor growth by p110 alpha and AKT1 via VEGF expression. Journal of Cellular Physiology, 209(1), 56–66. doi:10.​1002/​jcp.​20707.PubMedCrossRef
152.
Zurück zum Zitat Liby, T. A., Spyropoulos, P., Buff Lindner, H., Eldridge, J., Beeson, C., Hsu, T., et al. (2011). Akt3 controls vascular endothelial growth factor secretion and angiogenesis in ovarian cancer cells. International Journal of Cancer. doi:10.1002/ijc.26010. Liby, T. A., Spyropoulos, P., Buff Lindner, H., Eldridge, J., Beeson, C., Hsu, T., et al. (2011). Akt3 controls vascular endothelial growth factor secretion and angiogenesis in ovarian cancer cells. International Journal of Cancer. doi:10.​1002/​ijc.​26010.
153.
Zurück zum Zitat Boocock, C. A., Charnock-Jones, D. S., Sharkey, A. M., McLaren, J., Barker, P. J., Wright, K. A., et al. (1995). Expression of vascular endothelial growth factor and its receptors flt and KDR in ovarian carcinoma. Journal of the National Cancer Institute, 87(7), 506–516.PubMedCrossRef Boocock, C. A., Charnock-Jones, D. S., Sharkey, A. M., McLaren, J., Barker, P. J., Wright, K. A., et al. (1995). Expression of vascular endothelial growth factor and its receptors flt and KDR in ovarian carcinoma. Journal of the National Cancer Institute, 87(7), 506–516.PubMedCrossRef
154.
Zurück zum Zitat Mattern, J., Stammler, G., Koomagi, R., Wallwiener, D., Kaufmann, M., & Volm, M. (1997). Association of vascular endothelial growth factor expression with tumor cell proliferation in ovarian carcinoma. Anticancer Research, 17(1B), 621–624.PubMed Mattern, J., Stammler, G., Koomagi, R., Wallwiener, D., Kaufmann, M., & Volm, M. (1997). Association of vascular endothelial growth factor expression with tumor cell proliferation in ovarian carcinoma. Anticancer Research, 17(1B), 621–624.PubMed
156.
Zurück zum Zitat Spannuth, W. A., Nick, A. M., Jennings, N. B., Armaiz-Pena, G. N., Mangala, L. S., Danes, C. G., et al. (2009). Functional significance of VEGFR-2 on ovarian cancer cells. International Journal of Cancer, 124(5), 1045–1053. doi:10.1002/ijc.24028.CrossRef Spannuth, W. A., Nick, A. M., Jennings, N. B., Armaiz-Pena, G. N., Mangala, L. S., Danes, C. G., et al. (2009). Functional significance of VEGFR-2 on ovarian cancer cells. International Journal of Cancer, 124(5), 1045–1053. doi:10.​1002/​ijc.​24028.CrossRef
157.
Zurück zum Zitat Sher, I., Adham, S. A., Petrik, J., & Coomber, B. L. (2009). Autocrine VEGF-A/KDR loop protects epithelial ovarian carcinoma cells from anoikis. International Journal of Cancer, 124(3), 553–561. doi:10.1002/ijc.23963.CrossRef Sher, I., Adham, S. A., Petrik, J., & Coomber, B. L. (2009). Autocrine VEGF-A/KDR loop protects epithelial ovarian carcinoma cells from anoikis. International Journal of Cancer, 124(3), 553–561. doi:10.​1002/​ijc.​23963.CrossRef
158.
Zurück zum Zitat Trinh, X. B., Tjalma, W. A., Vermeulen, P. B., Van den Eynden, G., Van der Auwera, I., Van Laere, S. J., et al. (2009). The VEGF pathway and the AKT/mTOR/p70S6K1 signalling pathway in human epithelial ovarian cancer. British Journal of Cancer, 100(6), 971–978. doi:10.1038/sj.bjc.6604921.PubMedCrossRef Trinh, X. B., Tjalma, W. A., Vermeulen, P. B., Van den Eynden, G., Van der Auwera, I., Van Laere, S. J., et al. (2009). The VEGF pathway and the AKT/mTOR/p70S6K1 signalling pathway in human epithelial ovarian cancer. British Journal of Cancer, 100(6), 971–978. doi:10.​1038/​sj.​bjc.​6604921.PubMedCrossRef
160.
Zurück zum Zitat Sawano, A., Iwai, S., Sakurai, Y., Ito, M., Shitara, K., Nakahata, T., et al. (2001). Flt-1, vascular endothelial growth factor receptor 1, is a novel cell surface marker for the lineage of monocyte-macrophages in humans. Blood, 97(3), 785–791.PubMedCrossRef Sawano, A., Iwai, S., Sakurai, Y., Ito, M., Shitara, K., Nakahata, T., et al. (2001). Flt-1, vascular endothelial growth factor receptor 1, is a novel cell surface marker for the lineage of monocyte-macrophages in humans. Blood, 97(3), 785–791.PubMedCrossRef
161.
Zurück zum Zitat Hashizume, H., Baluk, P., Morikawa, S., McLean, J. W., Thurston, G., Roberge, S., et al. (2000). Openings between defective endothelial cells explain tumor vessel leakiness. American Journal of Pathology, 156(4), 1363–1380. doi:10.1016/s0002-9440(10)65006-7.PubMedCrossRef Hashizume, H., Baluk, P., Morikawa, S., McLean, J. W., Thurston, G., Roberge, S., et al. (2000). Openings between defective endothelial cells explain tumor vessel leakiness. American Journal of Pathology, 156(4), 1363–1380. doi:10.​1016/​s0002-9440(10)65006-7.PubMedCrossRef
162.
Zurück zum Zitat Summy, J. M., & Gallick, G. E. (2003). Src family kinases in tumor progression and metastasis. Cancer and Metastasis Reviews, 22(4), 337–358.PubMedCrossRef Summy, J. M., & Gallick, G. E. (2003). Src family kinases in tumor progression and metastasis. Cancer and Metastasis Reviews, 22(4), 337–358.PubMedCrossRef
163.
Zurück zum Zitat Weis, S., Cui, J., Barnes, L., & Cheresh, D. (2004). Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. The Journal of Cell Biology, 167(2), 223–229. doi:10.1083/jcb.200408130.PubMedCrossRef Weis, S., Cui, J., Barnes, L., & Cheresh, D. (2004). Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. The Journal of Cell Biology, 167(2), 223–229. doi:10.​1083/​jcb.​200408130.PubMedCrossRef
164.
Zurück zum Zitat Olson, T., Mohanraj, D., & Ramakrishnan, S. (1996). In vivo neutralization of vascular endothelial growth factor (VEGF) vascular permeability factor (VPF) inhibits ovarian carcinoma-associated ascites formation and tumor growth. International Journal of Oncology, 8(3), 505–511.PubMed Olson, T., Mohanraj, D., & Ramakrishnan, S. (1996). In vivo neutralization of vascular endothelial growth factor (VEGF) vascular permeability factor (VPF) inhibits ovarian carcinoma-associated ascites formation and tumor growth. International Journal of Oncology, 8(3), 505–511.PubMed
165.
Zurück zum Zitat Zhang, L., Yang, N., Garcia, J. R., Mohamed, A., Benencia, F., Rubin, S. C., et al. (2002). Generation of a syngeneic mouse model to study the effects of vascular endothelial growth factor in ovarian carcinoma. American Journal of Pathology, 161(6), 2295–2309.PubMedCrossRef Zhang, L., Yang, N., Garcia, J. R., Mohamed, A., Benencia, F., Rubin, S. C., et al. (2002). Generation of a syngeneic mouse model to study the effects of vascular endothelial growth factor in ovarian carcinoma. American Journal of Pathology, 161(6), 2295–2309.PubMedCrossRef
166.
167.
Zurück zum Zitat Wang, F. Q., So, J., Reierstad, S., & Fishman, D. A. (2006). Vascular endothelial growth factor-regulated ovarian cancer invasion and migration involves expression and activation of matrix metalloproteinases. International Journal of Cancer, 118(4), 879–888. doi:10.1002/ijc.21421.CrossRef Wang, F. Q., So, J., Reierstad, S., & Fishman, D. A. (2006). Vascular endothelial growth factor-regulated ovarian cancer invasion and migration involves expression and activation of matrix metalloproteinases. International Journal of Cancer, 118(4), 879–888. doi:10.​1002/​ijc.​21421.CrossRef
168.
Zurück zum Zitat Zhang, A., Meng, L., Wang, Q., Xi, L., Chen, G., Wang, S., et al. (2006). Enhanced in vitro invasiveness of ovarian cancer cells through up-regulation of VEGF and induction of MMP-2. Oncology Reports, 15(4), 831–836.PubMed Zhang, A., Meng, L., Wang, Q., Xi, L., Chen, G., Wang, S., et al. (2006). Enhanced in vitro invasiveness of ovarian cancer cells through up-regulation of VEGF and induction of MMP-2. Oncology Reports, 15(4), 831–836.PubMed
169.
Zurück zum Zitat Belotti, D., Calcagno, C., Garofalo, A., Caronia, D., Riccardi, E., Giavazzi, R., et al. (2008). Vascular endothelial growth factor stimulates organ-specific host matrix metalloproteinase-9 expression and ovarian cancer invasion. Molecular Cancer Research, 6(4), 525–534. doi:10.1158/1541-7786.mcr-07-0366.PubMedCrossRef Belotti, D., Calcagno, C., Garofalo, A., Caronia, D., Riccardi, E., Giavazzi, R., et al. (2008). Vascular endothelial growth factor stimulates organ-specific host matrix metalloproteinase-9 expression and ovarian cancer invasion. Molecular Cancer Research, 6(4), 525–534. doi:10.​1158/​1541-7786.​mcr-07-0366.PubMedCrossRef
170.
Zurück zum Zitat Wang, J. Y., Sun, T., Zhao, X. L., Zhang, S. W., Zhang, D. F., Gu, Q., et al. (2008). Functional significance of VEGF-a in human ovarian carcinoma: role in vasculogenic mimicry. Cancer Biology & Therapy, 7(5), 758–766.CrossRef Wang, J. Y., Sun, T., Zhao, X. L., Zhang, S. W., Zhang, D. F., Gu, Q., et al. (2008). Functional significance of VEGF-a in human ovarian carcinoma: role in vasculogenic mimicry. Cancer Biology & Therapy, 7(5), 758–766.CrossRef
171.
172.
Zurück zum Zitat Ziogas, A. C., Gavalas, N. G., Tsiatas, M., Tsitsilonis, O., Politi, E., Terpos, E., et al. (2011). VEGF directly suppresses activation of T cells from ovarian cancer patients and healthy individuals via VEGF receptor type 2. International Journal of Cancer. doi:10.1002/ijc.26094. Ziogas, A. C., Gavalas, N. G., Tsiatas, M., Tsitsilonis, O., Politi, E., Terpos, E., et al. (2011). VEGF directly suppresses activation of T cells from ovarian cancer patients and healthy individuals via VEGF receptor type 2. International Journal of Cancer. doi:10.​1002/​ijc.​26094.
173.
Zurück zum Zitat Ahmed, N., Thompson, E. W., & Quinn, M. A. (2007). Epithelial-mesenchymal interconversions in normal ovarian surface epithelium and ovarian carcinomas: an exception to the norm. Journal of Cellular Physiology, 213(3), 581–588. doi:10.1002/jcp.21240.PubMedCrossRef Ahmed, N., Thompson, E. W., & Quinn, M. A. (2007). Epithelial-mesenchymal interconversions in normal ovarian surface epithelium and ovarian carcinomas: an exception to the norm. Journal of Cellular Physiology, 213(3), 581–588. doi:10.​1002/​jcp.​21240.PubMedCrossRef
175.
Zurück zum Zitat Carmignani, C. P., Sugarbaker, T. A., Bromley, C. M., & Sugarbaker, P. H. (2003). Intraperitoneal cancer dissemination: mechanisms of the patterns of spread. Cancer and Metastasis Reviews, 22(4), 465–472.PubMedCrossRef Carmignani, C. P., Sugarbaker, T. A., Bromley, C. M., & Sugarbaker, P. H. (2003). Intraperitoneal cancer dissemination: mechanisms of the patterns of spread. Cancer and Metastasis Reviews, 22(4), 465–472.PubMedCrossRef
177.
Zurück zum Zitat Fagotti, A., Gallotta, V., Romano, F., Fanfani, F., Rossitto, C., Naldini, A., et al. (2010). Peritoneal carcinosis of ovarian origin. World Journal Gastrointestinal Oncology, 2(2), 102–108. doi:10.4251/wjgo.v2.i2.102.CrossRef Fagotti, A., Gallotta, V., Romano, F., Fanfani, F., Rossitto, C., Naldini, A., et al. (2010). Peritoneal carcinosis of ovarian origin. World Journal Gastrointestinal Oncology, 2(2), 102–108. doi:10.​4251/​wjgo.​v2.​i2.​102.CrossRef
178.
Zurück zum Zitat Chereau, E., Ballester, M., Selle, F., Cortez, A., Darai, E., & Rouzier, R. (2010). Comparison of peritoneal carcinomatosis scoring methods in predicting resectability and prognosis in advanced ovarian cancer. American Journal of Obstetrics and Gynecology, 202(2), 178 e171–178 e110. doi:10.1016/j.ajog.2009.10.856.CrossRef Chereau, E., Ballester, M., Selle, F., Cortez, A., Darai, E., & Rouzier, R. (2010). Comparison of peritoneal carcinomatosis scoring methods in predicting resectability and prognosis in advanced ovarian cancer. American Journal of Obstetrics and Gynecology, 202(2), 178 e171–178 e110. doi:10.​1016/​j.​ajog.​2009.​10.​856.CrossRef
179.
Zurück zum Zitat Parsons, S. L., Lang, M. W., & Steele, R. J. (1996). Malignant ascites: a 2-year review from a teaching hospital. European Journal of Surgical Oncology, 22(3), 237–239.PubMedCrossRef Parsons, S. L., Lang, M. W., & Steele, R. J. (1996). Malignant ascites: a 2-year review from a teaching hospital. European Journal of Surgical Oncology, 22(3), 237–239.PubMedCrossRef
180.
Zurück zum Zitat Mackey, J. R., & Venner, P. M. (1996). Malignant ascites: demographics, therapeutic efficacy and predictors of survival. The Canadian Journal of Oncology, 6(2), 474–480.PubMed Mackey, J. R., & Venner, P. M. (1996). Malignant ascites: demographics, therapeutic efficacy and predictors of survival. The Canadian Journal of Oncology, 6(2), 474–480.PubMed
181.
Zurück zum Zitat Wilailak, S., Linasmita, V., & Srivannaboon, S. (1999). Malignant ascites in female patients: a seven-year review. Journal of the Medical Association of Thailand, 82(1), 15–19.PubMed Wilailak, S., Linasmita, V., & Srivannaboon, S. (1999). Malignant ascites in female patients: a seven-year review. Journal of the Medical Association of Thailand, 82(1), 15–19.PubMed
183.
Zurück zum Zitat Hirabayashi, K., & Graham, J. (1970). Genesis of ascites in ovarian cancer. American Journal of Obstetrics and Gynecology, 106(4), 492–497.PubMed Hirabayashi, K., & Graham, J. (1970). Genesis of ascites in ovarian cancer. American Journal of Obstetrics and Gynecology, 106(4), 492–497.PubMed
184.
Zurück zum Zitat Byrne, A. T., Ross, L., Holash, J., Nakanishi, M., Hu, L., Hofmann, J. I., et al. (2003). Vascular endothelial growth factor-trap decreases tumor burden, inhibits ascites, and causes dramatic vascular remodeling in an ovarian cancer model. Clinical Cancer Research, 9(15), 5721–5728.PubMed Byrne, A. T., Ross, L., Holash, J., Nakanishi, M., Hu, L., Hofmann, J. I., et al. (2003). Vascular endothelial growth factor-trap decreases tumor burden, inhibits ascites, and causes dramatic vascular remodeling in an ovarian cancer model. Clinical Cancer Research, 9(15), 5721–5728.PubMed
185.
Zurück zum Zitat Pourgholami, M. H., Yan Cai, Z., Lu, Y., Wang, L., & Morris, D. L. (2006). Albendazole: a potent inhibitor of vascular endothelial growth factor and malignant ascites formation in OVCAR-3 tumor-bearing nude mice. Clinical Cancer Research, 12(6), 1928–1935. doi:10.1158/1078-0432.ccr-05-1181.PubMedCrossRef Pourgholami, M. H., Yan Cai, Z., Lu, Y., Wang, L., & Morris, D. L. (2006). Albendazole: a potent inhibitor of vascular endothelial growth factor and malignant ascites formation in OVCAR-3 tumor-bearing nude mice. Clinical Cancer Research, 12(6), 1928–1935. doi:10.​1158/​1078-0432.​ccr-05-1181.PubMedCrossRef
186.
Zurück zum Zitat Senger, D. R., Perruzzi, C. A., Feder, J., & Dvorak, H. F. (1986). A highly conserved vascular permeability factor secreted by a variety of human and rodent tumor cell lines. Cancer Research, 46(11), 5629–5632.PubMed Senger, D. R., Perruzzi, C. A., Feder, J., & Dvorak, H. F. (1986). A highly conserved vascular permeability factor secreted by a variety of human and rodent tumor cell lines. Cancer Research, 46(11), 5629–5632.PubMed
187.
Zurück zum Zitat Yeo, K. T., Wang, H. H., Nagy, J. A., Sioussat, T. M., Ledbetter, S. R., Hoogewerf, A. J., et al. (1993). Vascular permeability factor (vascular endothelial growth factor) in guinea pig and human tumor and inflammatory effusions. Cancer Research, 53(12), 2912–2918.PubMed Yeo, K. T., Wang, H. H., Nagy, J. A., Sioussat, T. M., Ledbetter, S. R., Hoogewerf, A. J., et al. (1993). Vascular permeability factor (vascular endothelial growth factor) in guinea pig and human tumor and inflammatory effusions. Cancer Research, 53(12), 2912–2918.PubMed
188.
Zurück zum Zitat Nagy, J. A., Masse, E. M., Herzberg, K. T., Meyers, M. S., Yeo, K. T., Yeo, T. K., et al. (1995). Pathogenesis of ascites tumor growth: vascular permeability factor, vascular hyperpermeability, and ascites fluid accumulation. Cancer Research, 55(2), 360–368.PubMed Nagy, J. A., Masse, E. M., Herzberg, K. T., Meyers, M. S., Yeo, K. T., Yeo, T. K., et al. (1995). Pathogenesis of ascites tumor growth: vascular permeability factor, vascular hyperpermeability, and ascites fluid accumulation. Cancer Research, 55(2), 360–368.PubMed
189.
Zurück zum Zitat Luo, J. C., Yamaguchi, S., Shinkai, A., Shitara, K., & Shibuya, M. (1998). Significant expression of vascular endothelial growth factor/vascular permeability factor in mouse ascites tumors. Cancer Research, 58(12), 2652–2660.PubMed Luo, J. C., Yamaguchi, S., Shinkai, A., Shitara, K., & Shibuya, M. (1998). Significant expression of vascular endothelial growth factor/vascular permeability factor in mouse ascites tumors. Cancer Research, 58(12), 2652–2660.PubMed
190.
Zurück zum Zitat Hampl, M., Tanaka, T., Albert, P. S., Lee, J., Ferrari, N., & Fine, H. A. (2001). Therapeutic effects of viral vector-mediated antiangiogenic gene transfer in malignant ascites. Human Gene Therapy, 12(14), 1713–1729. doi:10.1089/104303401750476221.PubMedCrossRef Hampl, M., Tanaka, T., Albert, P. S., Lee, J., Ferrari, N., & Fine, H. A. (2001). Therapeutic effects of viral vector-mediated antiangiogenic gene transfer in malignant ascites. Human Gene Therapy, 12(14), 1713–1729. doi:10.​1089/​1043034017504762​21.PubMedCrossRef
191.
Zurück zum Zitat Xu, L., Yoneda, J., Herrera, C., Wood, J., Killion, J. J., & Fidler, I. J. (2000). Inhibition of malignant ascites and growth of human ovarian carcinoma by oral administration of a potent inhibitor of the vascular endothelial growth factor receptor tyrosine kinases. International Journal of Oncology, 16(3), 445–454.PubMed Xu, L., Yoneda, J., Herrera, C., Wood, J., Killion, J. J., & Fidler, I. J. (2000). Inhibition of malignant ascites and growth of human ovarian carcinoma by oral administration of a potent inhibitor of the vascular endothelial growth factor receptor tyrosine kinases. International Journal of Oncology, 16(3), 445–454.PubMed
192.
Zurück zum Zitat Hasumi, Y., Mizukami, H., Urabe, M., Kohno, T., Takeuchi, K., Kume, A., et al. (2002). Soluble FLT-1 expression suppresses carcinomatous ascites in nude mice bearing ovarian cancer. Cancer Research, 62(7), 2019–2023.PubMed Hasumi, Y., Mizukami, H., Urabe, M., Kohno, T., Takeuchi, K., Kume, A., et al. (2002). Soluble FLT-1 expression suppresses carcinomatous ascites in nude mice bearing ovarian cancer. Cancer Research, 62(7), 2019–2023.PubMed
193.
Zurück zum Zitat Dong, W. G., Sun, X. M., Yu, B. P., Luo, H. S., & Yu, J. P. (2003). Role of VEGF and CD44v6 in differentiating benign from malignant ascites. World Journal of Gastroenterology, 9(11), 2596–2600.PubMed Dong, W. G., Sun, X. M., Yu, B. P., Luo, H. S., & Yu, J. P. (2003). Role of VEGF and CD44v6 in differentiating benign from malignant ascites. World Journal of Gastroenterology, 9(11), 2596–2600.PubMed
194.
Zurück zum Zitat Yabushita, H., Shimazu, M., Noguchi, M., Kishida, T., Narumiya, H., & Sawaguchi, K. (2003). Vascular endothelial growth factor activating matrix metalloproteinase in ascitic fluid during peritoneal dissemination of ovarian cancer. Oncology Reports, 10(1), 89–95.PubMed Yabushita, H., Shimazu, M., Noguchi, M., Kishida, T., Narumiya, H., & Sawaguchi, K. (2003). Vascular endothelial growth factor activating matrix metalloproteinase in ascitic fluid during peritoneal dissemination of ovarian cancer. Oncology Reports, 10(1), 89–95.PubMed
195.
Zurück zum Zitat Cormio, G., Rossi, C., Cazzolla, A., Resta, L., Loverro, G., Greco, P., et al. (2003). Distant metastases in ovarian carcinoma. International Journal of Gynecological Cancer, 13(2), 125–129.PubMedCrossRef Cormio, G., Rossi, C., Cazzolla, A., Resta, L., Loverro, G., Greco, P., et al. (2003). Distant metastases in ovarian carcinoma. International Journal of Gynecological Cancer, 13(2), 125–129.PubMedCrossRef
196.
Zurück zum Zitat Akahira, J. I., Yoshikawa, H., Shimizu, Y., Tsunematsu, R., Hirakawa, T., Kuramoto, H., et al. (2001). Prognostic factors of stage IV epithelial ovarian cancer: a multicenter retrospective study. Gynecologic Oncology, 81(3), 398–403. doi:10.1006/gyno.2001.6172.PubMedCrossRef Akahira, J. I., Yoshikawa, H., Shimizu, Y., Tsunematsu, R., Hirakawa, T., Kuramoto, H., et al. (2001). Prognostic factors of stage IV epithelial ovarian cancer: a multicenter retrospective study. Gynecologic Oncology, 81(3), 398–403. doi:10.​1006/​gyno.​2001.​6172.PubMedCrossRef
197.
Zurück zum Zitat Huang, K. J., & Sui, L. H. (2011). The relevance and role of vascular endothelial growth factor C, matrix metalloproteinase-2 and E-cadherin in epithelial ovarian cancer. Medical Oncology. doi:10.1007/s12032-010-9817-4. Huang, K. J., & Sui, L. H. (2011). The relevance and role of vascular endothelial growth factor C, matrix metalloproteinase-2 and E-cadherin in epithelial ovarian cancer. Medical Oncology. doi:10.​1007/​s12032-010-9817-4.
199.
Zurück zum Zitat Hu, L., Hofmann, J., Zaloudek, C., Ferrara, N., Hamilton, T., & Jaffe, R. B. (2002). Vascular endothelial growth factor immunoneutralization plus Paclitaxel markedly reduces tumor burden and ascites in athymic mouse model of ovarian cancer. American Journal of Pathology, 161(5), 1917–1924. doi:10.1016/s0002-9440(10)64467-7.PubMedCrossRef Hu, L., Hofmann, J., Zaloudek, C., Ferrara, N., Hamilton, T., & Jaffe, R. B. (2002). Vascular endothelial growth factor immunoneutralization plus Paclitaxel markedly reduces tumor burden and ascites in athymic mouse model of ovarian cancer. American Journal of Pathology, 161(5), 1917–1924. doi:10.​1016/​s0002-9440(10)64467-7.PubMedCrossRef
200.
Zurück zum Zitat Mabuchi, S., Terai, Y., Morishige, K., Tanabe-Kimura, A., Sasaki, H., Kanemura, M., et al. (2008). Maintenance treatment with bevacizumab prolongs survival in an in vivo ovarian cancer model. Clinical Cancer Research, 14(23), 7781–7789. doi:10.1158/1078-0432.ccr-08-0243.PubMedCrossRef Mabuchi, S., Terai, Y., Morishige, K., Tanabe-Kimura, A., Sasaki, H., Kanemura, M., et al. (2008). Maintenance treatment with bevacizumab prolongs survival in an in vivo ovarian cancer model. Clinical Cancer Research, 14(23), 7781–7789. doi:10.​1158/​1078-0432.​ccr-08-0243.PubMedCrossRef
201.
Zurück zum Zitat Wulff, C., Wilson, H., Rudge, J. S., Wiegand, S. J., Lunn, S. F., & Fraser, H. M. (2001). Luteal angiogenesis: prevention and intervention by treatment with vascular endothelial growth factor trap(A40). Journal of Clinical Endocrinology and Metabolism, 86(7), 3377–3386.PubMedCrossRef Wulff, C., Wilson, H., Rudge, J. S., Wiegand, S. J., Lunn, S. F., & Fraser, H. M. (2001). Luteal angiogenesis: prevention and intervention by treatment with vascular endothelial growth factor trap(A40). Journal of Clinical Endocrinology and Metabolism, 86(7), 3377–3386.PubMedCrossRef
202.
Zurück zum Zitat Hu, L., Hofmann, J., Holash, J., Yancopoulos, G. D., Sood, A. K., & Jaffe, R. B. (2005). Vascular endothelial growth factor trap combined with paclitaxel strikingly inhibits tumor and ascites, prolonging survival in a human ovarian cancer model. Clinical Cancer Research, 11(19 Pt 1), 6966–6971. doi:10.1158/1078-0432.ccr-05-0910.PubMedCrossRef Hu, L., Hofmann, J., Holash, J., Yancopoulos, G. D., Sood, A. K., & Jaffe, R. B. (2005). Vascular endothelial growth factor trap combined with paclitaxel strikingly inhibits tumor and ascites, prolonging survival in a human ovarian cancer model. Clinical Cancer Research, 11(19 Pt 1), 6966–6971. doi:10.​1158/​1078-0432.​ccr-05-0910.PubMedCrossRef
203.
Zurück zum Zitat Krupitskaya, Y., & Wakelee, H. A. (2009). Ramucirumab, a fully human mAb to the transmembrane signaling tyrosine kinase VEGFR-2 for the potential treatment of cancer. Current Opinion in Investigational Drugs, 10(6), 597–605.PubMed Krupitskaya, Y., & Wakelee, H. A. (2009). Ramucirumab, a fully human mAb to the transmembrane signaling tyrosine kinase VEGFR-2 for the potential treatment of cancer. Current Opinion in Investigational Drugs, 10(6), 597–605.PubMed
204.
Zurück zum Zitat Spratlin, J. L., Cohen, R. B., Eadens, M., Gore, L., Camidge, D. R., Diab, S., et al. (2010). Phase I pharmacologic and biologic study of ramucirumab (IMC-1121B), a fully human immunoglobulin G1 monoclonal antibody targeting the vascular endothelial growth factor receptor-2. Journal of Clinical Oncology, 28(5), 780–787. doi:10.1200/JCO.2009.23.7537.PubMedCrossRef Spratlin, J. L., Cohen, R. B., Eadens, M., Gore, L., Camidge, D. R., Diab, S., et al. (2010). Phase I pharmacologic and biologic study of ramucirumab (IMC-1121B), a fully human immunoglobulin G1 monoclonal antibody targeting the vascular endothelial growth factor receptor-2. Journal of Clinical Oncology, 28(5), 780–787. doi:10.​1200/​JCO.​2009.​23.​7537.PubMedCrossRef
205.
Zurück zum Zitat Wedge, S. R., Kendrew, J., Hennequin, L. F., Valentine, P. J., Barry, S. T., Brave, S. R., et al. (2005). AZD2171: a highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer. Cancer Research, 65(10), 4389–4400. doi:10.1158/0008-5472.CAN-04-4409.PubMedCrossRef Wedge, S. R., Kendrew, J., Hennequin, L. F., Valentine, P. J., Barry, S. T., Brave, S. R., et al. (2005). AZD2171: a highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer. Cancer Research, 65(10), 4389–4400. doi:10.​1158/​0008-5472.​CAN-04-4409.PubMedCrossRef
206.
Zurück zum Zitat Hirte, H. W., Vidal, L., Fleming, G. F., Sugimoto, A. K., Morgan, R. J., Biagi, J. J., et al. (2008). A phase II study of cediranib (AZD2171) in recurrent or persistent ovarian, peritoneal or fallopian tube cancer: final results of a PMH, Chicago and California consortia trial. Journal Clinical Oncology (Meeting Abstracts), 26(15_suppl), 5521. Hirte, H. W., Vidal, L., Fleming, G. F., Sugimoto, A. K., Morgan, R. J., Biagi, J. J., et al. (2008). A phase II study of cediranib (AZD2171) in recurrent or persistent ovarian, peritoneal or fallopian tube cancer: final results of a PMH, Chicago and California consortia trial. Journal Clinical Oncology (Meeting Abstracts), 26(15_suppl), 5521.
207.
Zurück zum Zitat Matulonis, U. A., Berlin, S., Ivy, P., Tyburski, K., Krasner, C., Zarwan, C., et al. (2009). Cediranib, an oral inhibitor of vascular endothelial growth factor receptor kinases, is an active drug in recurrent epithelial ovarian, fallopian tube, and peritoneal cancer. Journal of Clinical Oncology, 27(33), 5601–5606. doi:10.1200/JCO.2009.23.2777.PubMedCrossRef Matulonis, U. A., Berlin, S., Ivy, P., Tyburski, K., Krasner, C., Zarwan, C., et al. (2009). Cediranib, an oral inhibitor of vascular endothelial growth factor receptor kinases, is an active drug in recurrent epithelial ovarian, fallopian tube, and peritoneal cancer. Journal of Clinical Oncology, 27(33), 5601–5606. doi:10.​1200/​JCO.​2009.​23.​2777.PubMedCrossRef
208.
Zurück zum Zitat Holtz, D. O., Krafty, R. T., Mohamed-Hadley, A., Zhang, L., Alagkiozidis, I., Leiby, B., et al. (2008). Should tumor VEGF expression influence decisions on combining low-dose chemotherapy with antiangiogenic therapy? Preclinical modeling in ovarian cancer. Journal of Translational Medicine, 6, 2. doi:10.1186/1479-5876-6-2.PubMedCrossRef Holtz, D. O., Krafty, R. T., Mohamed-Hadley, A., Zhang, L., Alagkiozidis, I., Leiby, B., et al. (2008). Should tumor VEGF expression influence decisions on combining low-dose chemotherapy with antiangiogenic therapy? Preclinical modeling in ovarian cancer. Journal of Translational Medicine, 6, 2. doi:10.​1186/​1479-5876-6-2.PubMedCrossRef
209.
Zurück zum Zitat Bauerschlag, D. O., Schem, C., Tiwari, S., Egberts, J. H., Weigel, M. T., Kalthoff, H., et al. (2010). Sunitinib (SU11248) inhibits growth of human ovarian cancer in xenografted mice. Anticancer Research, 30(9), 3355–3360.PubMed Bauerschlag, D. O., Schem, C., Tiwari, S., Egberts, J. H., Weigel, M. T., Kalthoff, H., et al. (2010). Sunitinib (SU11248) inhibits growth of human ovarian cancer in xenografted mice. Anticancer Research, 30(9), 3355–3360.PubMed
211.
Zurück zum Zitat Biagi, J. J., Oza, A. M., Grimshaw, R., Ellard, S. L., Lee, U., Sederias, J., et al. (2008). A phase II study of sunitinib (SU11248) in patients (pts) with recurrent epithelial ovarian, fallopian tube or primary peritoneal carcinoma–NCIC CTG IND 185. ASCO Meeting Abstracts, 26(15_suppl), 5522. Biagi, J. J., Oza, A. M., Grimshaw, R., Ellard, S. L., Lee, U., Sederias, J., et al. (2008). A phase II study of sunitinib (SU11248) in patients (pts) with recurrent epithelial ovarian, fallopian tube or primary peritoneal carcinoma–NCIC CTG IND 185. ASCO Meeting Abstracts, 26(15_suppl), 5522.
213.
Zurück zum Zitat DeGrendele, H., Chu, E., & Marshall, J. (2003). Activity of the Raf kinase inhibitor BAY 43–9006 in patients with advanced solid tumors. Clinical Colorectal Cancer, 3(1), 16–18.CrossRef DeGrendele, H., Chu, E., & Marshall, J. (2003). Activity of the Raf kinase inhibitor BAY 43–9006 in patients with advanced solid tumors. Clinical Colorectal Cancer, 3(1), 16–18.CrossRef
214.
Zurück zum Zitat Azad, N. S., Posadas, E. M., Kwitkowski, V. E., Steinberg, S. M., Jain, L., Annunziata, C. M., et al. (2008). Combination targeted therapy with sorafenib and bevacizumab results in enhanced toxicity and antitumor activity. Journal of Clinical Oncology, 26(22), 3709–3714. doi:10.1200/JCO.2007.10.8332.PubMedCrossRef Azad, N. S., Posadas, E. M., Kwitkowski, V. E., Steinberg, S. M., Jain, L., Annunziata, C. M., et al. (2008). Combination targeted therapy with sorafenib and bevacizumab results in enhanced toxicity and antitumor activity. Journal of Clinical Oncology, 26(22), 3709–3714. doi:10.​1200/​JCO.​2007.​10.​8332.PubMedCrossRef
215.
Zurück zum Zitat Matei, D., Sill, M. W., Lankes, H. A., DeGeest, K., Bristow, R. E., Mutch, D., et al. (2010). Activity of sorafenib in recurrent ovarian cancer and primary peritoneal carcinomatosis: a gynecologic oncology group trial. Journal of Clinical Oncology, 29(1), 69–75. doi:10.1200/JCO.2009.26.7856.PubMedCrossRef Matei, D., Sill, M. W., Lankes, H. A., DeGeest, K., Bristow, R. E., Mutch, D., et al. (2010). Activity of sorafenib in recurrent ovarian cancer and primary peritoneal carcinomatosis: a gynecologic oncology group trial. Journal of Clinical Oncology, 29(1), 69–75. doi:10.​1200/​JCO.​2009.​26.​7856.PubMedCrossRef
216.
Zurück zum Zitat Schroder, W., Witteveen, E., Abadie, S., Campone, M., Viens, P., Jalava, T., et al. (2005). A phase IB, open label, safety and pharmacokinetic (PK) study of escalating doses of PTK787/ZK 222584 in combination with paclitaxel and carboplatin in patients (PTs) with stage IIC to IV epithelial ovarian cancer. ASCO Meeting Abstracts, 23(16_suppl), 5042. Schroder, W., Witteveen, E., Abadie, S., Campone, M., Viens, P., Jalava, T., et al. (2005). A phase IB, open label, safety and pharmacokinetic (PK) study of escalating doses of PTK787/ZK 222584 in combination with paclitaxel and carboplatin in patients (PTs) with stage IIC to IV epithelial ovarian cancer. ASCO Meeting Abstracts, 23(16_suppl), 5042.
217.
Zurück zum Zitat Wedge, S. R., Ogilvie, D. J., Dukes, M., Kendrew, J., Chester, R., Jackson, J. A., et al. (2002). ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Research, 62(16), 4645–4655.PubMed Wedge, S. R., Ogilvie, D. J., Dukes, M., Kendrew, J., Chester, R., Jackson, J. A., et al. (2002). ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Research, 62(16), 4645–4655.PubMed
218.
Zurück zum Zitat Annunziata, C. M., Walker, A. J., Minasian, L., Yu, M., Kotz, H., Wood, B. J., et al. (2010). Vandetanib, designed to inhibit VEGFR2 and EGFR signaling, had no clinical activity as monotherapy for recurrent ovarian cancer and no detectable modulation of VEGFR2. Clinical Cancer Research, 16(2), 664–672. doi:10.1158/1078-0432.CCR-09-2308.PubMedCrossRef Annunziata, C. M., Walker, A. J., Minasian, L., Yu, M., Kotz, H., Wood, B. J., et al. (2010). Vandetanib, designed to inhibit VEGFR2 and EGFR signaling, had no clinical activity as monotherapy for recurrent ovarian cancer and no detectable modulation of VEGFR2. Clinical Cancer Research, 16(2), 664–672. doi:10.​1158/​1078-0432.​CCR-09-2308.PubMedCrossRef
219.
Zurück zum Zitat Hilberg, F., Roth, G. J., Krssak, M., Kautschitsch, S., Sommergruber, W., Tontsch-Grunt, U., et al. (2008). BIBF 1120: triple angiokinase inhibitor with sustained receptor blockade and good antitumor efficacy. Cancer Research, 68(12), 4774–4782. doi:10.1158/0008-5472.CAN-07-6307.PubMedCrossRef Hilberg, F., Roth, G. J., Krssak, M., Kautschitsch, S., Sommergruber, W., Tontsch-Grunt, U., et al. (2008). BIBF 1120: triple angiokinase inhibitor with sustained receptor blockade and good antitumor efficacy. Cancer Research, 68(12), 4774–4782. doi:10.​1158/​0008-5472.​CAN-07-6307.PubMedCrossRef
220.
Zurück zum Zitat Ledermann, J. A., Rustin, G. J., Hackshaw, A., Kaye, S. B., Jayson, G., Gabra, H., et al. (2009). A randomized phase II placebo-controlled trial using maintenance therapy to evaluate the vascular targeting agent BIBF 1120 following treatment of relapsed ovarian cancer (OC). ASCO Meeting Abstracts, 27(15S), 5501. Ledermann, J. A., Rustin, G. J., Hackshaw, A., Kaye, S. B., Jayson, G., Gabra, H., et al. (2009). A randomized phase II placebo-controlled trial using maintenance therapy to evaluate the vascular targeting agent BIBF 1120 following treatment of relapsed ovarian cancer (OC). ASCO Meeting Abstracts, 27(15S), 5501.
221.
Zurück zum Zitat Thaker, P. H., Yazici, S., Nilsson, M. B., Yokoi, K., Tsan, R. Z., He, J., et al. (2005). Antivascular therapy for orthotopic human ovarian carcinoma through blockade of the vascular endothelial growth factor and epidermal growth factor receptors. Clinical Cancer Research, 11(13), 4923–4933. doi:10.1158/1078-0432.CCR-04-2060.PubMedCrossRef Thaker, P. H., Yazici, S., Nilsson, M. B., Yokoi, K., Tsan, R. Z., He, J., et al. (2005). Antivascular therapy for orthotopic human ovarian carcinoma through blockade of the vascular endothelial growth factor and epidermal growth factor receptors. Clinical Cancer Research, 11(13), 4923–4933. doi:10.​1158/​1078-0432.​CCR-04-2060.PubMedCrossRef
222.
223.
Zurück zum Zitat Merritt, W. M., Nick, A. M., Carroll, A. R., Lu, C., Matsuo, K., Dumble, M., et al. (2010). Bridging the gap between cytotoxic and biologic therapy with metronomic topotecan and pazopanib in ovarian cancer. Molecular Cancer Therapeutics, 9(4), 985–995. doi:10.1158/1535-7163.mct-09-0967.PubMedCrossRef Merritt, W. M., Nick, A. M., Carroll, A. R., Lu, C., Matsuo, K., Dumble, M., et al. (2010). Bridging the gap between cytotoxic and biologic therapy with metronomic topotecan and pazopanib in ovarian cancer. Molecular Cancer Therapeutics, 9(4), 985–995. doi:10.​1158/​1535-7163.​mct-09-0967.PubMedCrossRef
224.
Zurück zum Zitat Friedlander, M., Hancock, K. C., Rischin, D., Messing, M. J., Stringer, C. A., Matthys, G. M., et al. (2010). A phase II, open-label study evaluating pazopanib in patients with recurrent ovarian cancer. Gynecologic Oncology, 119(1), 32–37. doi:10.1016/j.ygyno.2010.05.033.PubMedCrossRef Friedlander, M., Hancock, K. C., Rischin, D., Messing, M. J., Stringer, C. A., Matthys, G. M., et al. (2010). A phase II, open-label study evaluating pazopanib in patients with recurrent ovarian cancer. Gynecologic Oncology, 119(1), 32–37. doi:10.​1016/​j.​ygyno.​2010.​05.​033.PubMedCrossRef
225.
Zurück zum Zitat Polverino, A., Coxon, A., Starnes, C., Diaz, Z., DeMelfi, T., Wang, L., et al. (2006). AMG 706, an oral, multikinase inhibitor that selectively targets vascular endothelial growth factor, platelet-derived growth factor, and kit receptors, potently inhibits angiogenesis and induces regression in tumor xenografts. Cancer Research, 66(17), 8715–8721. doi:10.1158/0008-5472.can-05-4665.PubMedCrossRef Polverino, A., Coxon, A., Starnes, C., Diaz, Z., DeMelfi, T., Wang, L., et al. (2006). AMG 706, an oral, multikinase inhibitor that selectively targets vascular endothelial growth factor, platelet-derived growth factor, and kit receptors, potently inhibits angiogenesis and induces regression in tumor xenografts. Cancer Research, 66(17), 8715–8721. doi:10.​1158/​0008-5472.​can-05-4665.PubMedCrossRef
226.
Zurück zum Zitat Hirte, H. W. (2009). Novel developments in angiogenesis cancer therapy. Current Oncology, 16(3), 50–54.PubMedCrossRef Hirte, H. W. (2009). Novel developments in angiogenesis cancer therapy. Current Oncology, 16(3), 50–54.PubMedCrossRef
227.
Zurück zum Zitat Cook, K. M., & Figg, W. D. (2010). Angiogenesis inhibitors: current strategies and future prospects. CA: A Cancer Journal for Clinicians, 60(4), 222–243. doi:10.3322/caac.20075.CrossRef Cook, K. M., & Figg, W. D. (2010). Angiogenesis inhibitors: current strategies and future prospects. CA: A Cancer Journal for Clinicians, 60(4), 222–243. doi:10.​3322/​caac.​20075.CrossRef
228.
Zurück zum Zitat Shojaei, F., Wu, X., Malik, A. K., Zhong, C., Baldwin, M. E., Schanz, S., et al. (2007). Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nature Biotechnology, 25(8), 911–920. doi:10.1038/nbt1323.PubMedCrossRef Shojaei, F., Wu, X., Malik, A. K., Zhong, C., Baldwin, M. E., Schanz, S., et al. (2007). Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nature Biotechnology, 25(8), 911–920. doi:10.​1038/​nbt1323.PubMedCrossRef
230.
Zurück zum Zitat Paez-Ribes, M., Allen, E., Hudock, J., Takeda, T., Okuyama, H., Vinals, F., et al. (2009). Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell, 15(3), 220–231. doi:10.1016/j.ccr.2009.01.027.PubMedCrossRef Paez-Ribes, M., Allen, E., Hudock, J., Takeda, T., Okuyama, H., Vinals, F., et al. (2009). Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell, 15(3), 220–231. doi:10.​1016/​j.​ccr.​2009.​01.​027.PubMedCrossRef
231.
Zurück zum Zitat Ebos, J. M., Lee, C. R., Cruz-Munoz, W., Bjarnason, G. A., Christensen, J. G., & Kerbel, R. S. (2009). Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell, 15(3), 232–239. doi:10.1016/j.ccr.2009.01.021.PubMedCrossRef Ebos, J. M., Lee, C. R., Cruz-Munoz, W., Bjarnason, G. A., Christensen, J. G., & Kerbel, R. S. (2009). Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell, 15(3), 232–239. doi:10.​1016/​j.​ccr.​2009.​01.​021.PubMedCrossRef
233.
Zurück zum Zitat Ocana, A., Amir, E., Vera, F., Eisenhauer, E. A., & Tannock, I. F. (2011). Addition of bevacizumab to chemotherapy for treatment of solid tumors: similar results but different conclusions. Journal of Clinical Oncology, 29(3), 254–256. doi:10.1200/jco.2010.32.0275.PubMedCrossRef Ocana, A., Amir, E., Vera, F., Eisenhauer, E. A., & Tannock, I. F. (2011). Addition of bevacizumab to chemotherapy for treatment of solid tumors: similar results but different conclusions. Journal of Clinical Oncology, 29(3), 254–256. doi:10.​1200/​jco.​2010.​32.​0275.PubMedCrossRef
235.
Zurück zum Zitat Cohn, D. E., Kim, K. H., Resnick, K. E., O’Malley, D. M., & Straughn, J. M., Jr. (2011). At what cost does a potential survival advantage of bevacizumab make sense for the primary treatment of ovarian cancer? A cost-effectiveness analysis. Journal of Clinical Oncology, 29(10), 1247–1251. doi:10.1200/jco.2010.32.1075.PubMedCrossRef Cohn, D. E., Kim, K. H., Resnick, K. E., O’Malley, D. M., & Straughn, J. M., Jr. (2011). At what cost does a potential survival advantage of bevacizumab make sense for the primary treatment of ovarian cancer? A cost-effectiveness analysis. Journal of Clinical Oncology, 29(10), 1247–1251. doi:10.​1200/​jco.​2010.​32.​1075.PubMedCrossRef
237.
Zurück zum Zitat Burger, R. A., Sill, M. W., Monk, B. J., Greer, B. E., & Sorosky, J. I. (2007). Phase II trial of bevacizumab in persistent or recurrent epithelial ovarian cancer or primary peritoneal cancer: a Gynecologic Oncology Group Study. Journal of Clinical Oncology, 25(33), 5165–5171. doi:10.1200/JCO.2007.11.5345.PubMedCrossRef Burger, R. A., Sill, M. W., Monk, B. J., Greer, B. E., & Sorosky, J. I. (2007). Phase II trial of bevacizumab in persistent or recurrent epithelial ovarian cancer or primary peritoneal cancer: a Gynecologic Oncology Group Study. Journal of Clinical Oncology, 25(33), 5165–5171. doi:10.​1200/​JCO.​2007.​11.​5345.PubMedCrossRef
238.
Zurück zum Zitat Cannistra, S. A., Matulonis, U. A., Penson, R. T., Hambleton, J., Dupont, J., Mackey, H., et al. (2007). Phase II study of bevacizumab in patients with platinum-resistant ovarian cancer or peritoneal serous cancer. Journal of Clinical Oncology, 25(33), 5180–5186. doi:10.1200/JCO.2007.12.0782.PubMedCrossRef Cannistra, S. A., Matulonis, U. A., Penson, R. T., Hambleton, J., Dupont, J., Mackey, H., et al. (2007). Phase II study of bevacizumab in patients with platinum-resistant ovarian cancer or peritoneal serous cancer. Journal of Clinical Oncology, 25(33), 5180–5186. doi:10.​1200/​JCO.​2007.​12.​0782.PubMedCrossRef
239.
Zurück zum Zitat Micha, J. P., Goldstein, B. H., Rettenmaier, M. A., Genesen, M., Graham, C., Bader, K., et al. (2007). A phase II study of outpatient first-line paclitaxel, carboplatin, and bevacizumab for advanced-stage epithelial ovarian, peritoneal, and fallopian tube cancer. International Journal of Gynecological Cancer, 17(4), 771–776. doi:10.1111/j.1525-1438.2007.00886.x.PubMedCrossRef Micha, J. P., Goldstein, B. H., Rettenmaier, M. A., Genesen, M., Graham, C., Bader, K., et al. (2007). A phase II study of outpatient first-line paclitaxel, carboplatin, and bevacizumab for advanced-stage epithelial ovarian, peritoneal, and fallopian tube cancer. International Journal of Gynecological Cancer, 17(4), 771–776. doi:10.​1111/​j.​1525-1438.​2007.​00886.​x.PubMedCrossRef
240.
Zurück zum Zitat Garcia, A. A., Hirte, H., Fleming, G., Yang, D., Tsao-Wei, D. D., Roman, L., et al. (2008). Phase II clinical trial of bevacizumab and low-dose metronomic oral cyclophosphamide in recurrent ovarian cancer: a trial of the California, Chicago, and Princess Margaret Hospital phase II consortia. Journal of Clinical Oncology, 26(1), 76–82. doi:10.1200/JCO.2007.12.1939.PubMedCrossRef Garcia, A. A., Hirte, H., Fleming, G., Yang, D., Tsao-Wei, D. D., Roman, L., et al. (2008). Phase II clinical trial of bevacizumab and low-dose metronomic oral cyclophosphamide in recurrent ovarian cancer: a trial of the California, Chicago, and Princess Margaret Hospital phase II consortia. Journal of Clinical Oncology, 26(1), 76–82. doi:10.​1200/​JCO.​2007.​12.​1939.PubMedCrossRef
241.
Zurück zum Zitat Richardson, D. L., Backes, F. J., Seamon, L. G., Zanagnolo, V., O’Malley, D. M., Cohn, D. E., et al. (2008). Combination gemcitabine, platinum, and bevacizumab for the treatment of recurrent ovarian cancer. Gynecologic Oncology, 111(3), 461–466. doi:10.1016/j.ygyno.2008.08.011.PubMedCrossRef Richardson, D. L., Backes, F. J., Seamon, L. G., Zanagnolo, V., O’Malley, D. M., Cohn, D. E., et al. (2008). Combination gemcitabine, platinum, and bevacizumab for the treatment of recurrent ovarian cancer. Gynecologic Oncology, 111(3), 461–466. doi:10.​1016/​j.​ygyno.​2008.​08.​011.PubMedCrossRef
242.
Zurück zum Zitat Penson, R. T., Dizon, D. S., Cannistra, S. A., Roche, M. R., Krasner, C. N., Berlin, S. T., et al. (2009). Phase II study of carboplatin, paclitaxel, and bevacizumab with maintenance bevacizumab as first-line chemotherapy for advanced mullerian tumors. Journal of Clinical Oncology, 28(1), 154–159. doi:10.1200/JCO.2009.22.7900.PubMedCrossRef Penson, R. T., Dizon, D. S., Cannistra, S. A., Roche, M. R., Krasner, C. N., Berlin, S. T., et al. (2009). Phase II study of carboplatin, paclitaxel, and bevacizumab with maintenance bevacizumab as first-line chemotherapy for advanced mullerian tumors. Journal of Clinical Oncology, 28(1), 154–159. doi:10.​1200/​JCO.​2009.​22.​7900.PubMedCrossRef
243.
Zurück zum Zitat Rose, P. G., Drake, R., Braly, P. S., Bell, M. C., Wenham, R. M., Hines, J. H., et al. (2009). Preliminary results of a phase II study of oxaliplatin, docetaxel, and bevacizumab as first-line therapy of advanced cancer of the ovary, peritoneum, and fallopian tube. ASCO Meeting Abstracts, 27(15S), 5546. Rose, P. G., Drake, R., Braly, P. S., Bell, M. C., Wenham, R. M., Hines, J. H., et al. (2009). Preliminary results of a phase II study of oxaliplatin, docetaxel, and bevacizumab as first-line therapy of advanced cancer of the ovary, peritoneum, and fallopian tube. ASCO Meeting Abstracts, 27(15S), 5546.
244.
Zurück zum Zitat Brown, J. V., 3rd, Micha, J. P., Rettenmaier, M. A., Abaid, L. N., Lopez, K. L., & Goldstein, B. H. (2010). A pilot study evaluating a novel regimen comprised of carboplatin, paclitaxel, and bevacizumab for advanced-stage ovarian carcinoma. International Journal of Gynecological Cancer, 20(7), 1132–1136.PubMedCrossRef Brown, J. V., 3rd, Micha, J. P., Rettenmaier, M. A., Abaid, L. N., Lopez, K. L., & Goldstein, B. H. (2010). A pilot study evaluating a novel regimen comprised of carboplatin, paclitaxel, and bevacizumab for advanced-stage ovarian carcinoma. International Journal of Gynecological Cancer, 20(7), 1132–1136.PubMedCrossRef
245.
Zurück zum Zitat Tillmanns, T. D., Lowe, M. P., Schwartzberg, L. S., Walker, M. S., & Stepanski, E. J. (2010). A phase II study of bevacizumab with nab-paclitaxel in patients with recurrent, platinum-resistant primary epithelial ovarian or primary peritoneal carcinoma. ASCO Meeting Abstracts, 28(15_suppl), 5009. Tillmanns, T. D., Lowe, M. P., Schwartzberg, L. S., Walker, M. S., & Stepanski, E. J. (2010). A phase II study of bevacizumab with nab-paclitaxel in patients with recurrent, platinum-resistant primary epithelial ovarian or primary peritoneal carcinoma. ASCO Meeting Abstracts, 28(15_suppl), 5009.
246.
Zurück zum Zitat Burger, R. A., Brady, M. F., Bookman, M. A., Walker, J. L., Homesley, H. D., Fowler, J., et al. (2010). Phase III trial of bevacizumab (BEV) in the primary treatment of advanced epithelial ovarian cancer (EOC), primary peritoneal cancer (PPC), or fallopian tube cancer (FTC): A Gynecologic Oncology Group study. ASCO Meeting Abstracts, 28(18_suppl). LBA1. Burger, R. A., Brady, M. F., Bookman, M. A., Walker, J. L., Homesley, H. D., Fowler, J., et al. (2010). Phase III trial of bevacizumab (BEV) in the primary treatment of advanced epithelial ovarian cancer (EOC), primary peritoneal cancer (PPC), or fallopian tube cancer (FTC): A Gynecologic Oncology Group study. ASCO Meeting Abstracts, 28(18_suppl). LBA1.
247.
Zurück zum Zitat McGonigle, K. F., Muntz, H. G., Vuky, J., Paley, P. J., Veljovich, D. S., Greer, B. E., et al. (2011). Combined weekly topotecan and biweekly bevacizumab in women with platinum-resistant ovarian, peritoneal, or fallopian tube cancer: results of a phase 2 study. Cancer, 117(16), 3731–3740. doi:10.1002/cncr.25967.PubMedCrossRef McGonigle, K. F., Muntz, H. G., Vuky, J., Paley, P. J., Veljovich, D. S., Greer, B. E., et al. (2011). Combined weekly topotecan and biweekly bevacizumab in women with platinum-resistant ovarian, peritoneal, or fallopian tube cancer: results of a phase 2 study. Cancer, 117(16), 3731–3740. doi:10.​1002/​cncr.​25967.PubMedCrossRef
248.
Zurück zum Zitat del Carmen, M. G., Micha, J. P., Small, L. A., Street, D. G., Londhe, A., & McGowan, T. (2011). Pegylated liposomal doxorubicin and carboplatin plus bevacizumab in patients with platinum sensitive recurrent ovarian, fallopian tube, or primary peritoneal cancers: results of a phase II study. ASCO Meeting Abstracts, 29(15_suppl), 5061. del Carmen, M. G., Micha, J. P., Small, L. A., Street, D. G., Londhe, A., & McGowan, T. (2011). Pegylated liposomal doxorubicin and carboplatin plus bevacizumab in patients with platinum sensitive recurrent ovarian, fallopian tube, or primary peritoneal cancers: results of a phase II study. ASCO Meeting Abstracts, 29(15_suppl), 5061.
249.
Zurück zum Zitat Horowitz, N. S., Penson, R. T., Duda, D. G., di Tomaso, E., Boucher, Y., Ancukiewicz, M., et al. (2011). Safety, efficacy, and biomarker exploration in a phase ii study of bevacizumab, oxaliplatin, and gemcitabine in recurrent Mullerian carcinoma. Clinical Ovarian Cancer Other Gynecology Malignant, 4(1), 26–33. doi:10.1016/j.cloc.2011.04.003.CrossRef Horowitz, N. S., Penson, R. T., Duda, D. G., di Tomaso, E., Boucher, Y., Ancukiewicz, M., et al. (2011). Safety, efficacy, and biomarker exploration in a phase ii study of bevacizumab, oxaliplatin, and gemcitabine in recurrent Mullerian carcinoma. Clinical Ovarian Cancer Other Gynecology Malignant, 4(1), 26–33. doi:10.​1016/​j.​cloc.​2011.​04.​003.CrossRef
250.
Zurück zum Zitat Wenham, R., LaPolla, J., Hui-Yi, L., Apte, S., Roberts, W., Lancaster, J., et al. (2011). Phase II trial of docetaxel and bevacizumab in recurrent ovarian cancer within 12 months of prior platinum-based chemotherapy. Gynecologic Oncology, 120(Supplement 1(0)), S83–S84. doi:10.1016/j.ygyno.2010.12.199.CrossRef Wenham, R., LaPolla, J., Hui-Yi, L., Apte, S., Roberts, W., Lancaster, J., et al. (2011). Phase II trial of docetaxel and bevacizumab in recurrent ovarian cancer within 12 months of prior platinum-based chemotherapy. Gynecologic Oncology, 120(Supplement 1(0)), S83–S84. doi:10.​1016/​j.​ygyno.​2010.​12.​199.CrossRef
251.
Zurück zum Zitat Aghajanian, C., Finkler, N. J., Rutherford, T., Smith, D. A., Yi, J., Parmar, H., et al. (2011). OCEANS: A randomized, double-blinded, placebo-controlled phase III trial of chemotherapy with or without bevacizumab (BEV) in patients with platinum-sensitive recurrent epithelial ovarian (EOC), primary peritoneal (PPC), or fallopian tube cancer (FTC). ASCO Meeting Abstracts, 29(15_suppl), LBA5007. Aghajanian, C., Finkler, N. J., Rutherford, T., Smith, D. A., Yi, J., Parmar, H., et al. (2011). OCEANS: A randomized, double-blinded, placebo-controlled phase III trial of chemotherapy with or without bevacizumab (BEV) in patients with platinum-sensitive recurrent epithelial ovarian (EOC), primary peritoneal (PPC), or fallopian tube cancer (FTC). ASCO Meeting Abstracts, 29(15_suppl), LBA5007.
252.
Zurück zum Zitat Kristensen, G., Perren, T., Qian, W., Pfisterer, J., Ledermann, J. A., Joly, F., et al. (2011). Result of interim analysis of overall survival in the GCIG ICON7 phase III randomized trial of bevacizumab in women with newly diagnosed ovarian cancer. ASCO Meeting Abstracts, 29(15_suppl), LBA5006. Kristensen, G., Perren, T., Qian, W., Pfisterer, J., Ledermann, J. A., Joly, F., et al. (2011). Result of interim analysis of overall survival in the GCIG ICON7 phase III randomized trial of bevacizumab in women with newly diagnosed ovarian cancer. ASCO Meeting Abstracts, 29(15_suppl), LBA5006.
253.
Zurück zum Zitat Kudoh, K., Takano, M., Kouta, H., Kikuchi, R., Kita, T., Miyamoto, M., et al. (2011). Effects of bevacizumab and pegylated liposomal doxorubicin for the patients with recurrent or refractory ovarian cancers. Gynecologic Oncology, 122(2), 233–237. doi:10.1016/j.ygyno.2011.04.046.PubMedCrossRef Kudoh, K., Takano, M., Kouta, H., Kikuchi, R., Kita, T., Miyamoto, M., et al. (2011). Effects of bevacizumab and pegylated liposomal doxorubicin for the patients with recurrent or refractory ovarian cancers. Gynecologic Oncology, 122(2), 233–237. doi:10.​1016/​j.​ygyno.​2011.​04.​046.PubMedCrossRef
254.
Zurück zum Zitat O’Malley, D. M., Richardson, D. L., Rheaume, P. S., Salani, R., Eisenhauer, E. L., McCann, G. A., et al. (2011). Addition of bevacizumab to weekly paclitaxel significantly improves progression-free survival in heavily pretreated recurrent epithelial ovarian cancer. Gynecologic Oncology, 121(2), 269–272. doi:10.1016/j.ygyno.2011.01.009.PubMedCrossRef O’Malley, D. M., Richardson, D. L., Rheaume, P. S., Salani, R., Eisenhauer, E. L., McCann, G. A., et al. (2011). Addition of bevacizumab to weekly paclitaxel significantly improves progression-free survival in heavily pretreated recurrent epithelial ovarian cancer. Gynecologic Oncology, 121(2), 269–272. doi:10.​1016/​j.​ygyno.​2011.​01.​009.PubMedCrossRef
255.
Zurück zum Zitat Ojeda, B., Casado, A., Tibau, A., Redondo, A., Beltran, M., Garcia-Martinez, E., et al. (2011). Bevacizumab alone or with chemotherapy in highly pretreated, relapsed, epithelial ovarian cancer patients. ASCO Meeting Abstracts, 29(15_suppl), e15590. Ojeda, B., Casado, A., Tibau, A., Redondo, A., Beltran, M., Garcia-Martinez, E., et al. (2011). Bevacizumab alone or with chemotherapy in highly pretreated, relapsed, epithelial ovarian cancer patients. ASCO Meeting Abstracts, 29(15_suppl), e15590.
256.
Zurück zum Zitat Tew, W. P., Colombo, N., Ray-Coquard, I., Oza, A., del Campo, J., Scambia, G., et al. (2007). VEGF-trap for patients (pts) with recurrent platinum-resistant epithelial ovarian cancer (EOC): preliminary results of a randomized, multicenter phase II study. Journal Clinical Oncology (Meeting Abstracts), 25(18_suppl), 5508. Tew, W. P., Colombo, N., Ray-Coquard, I., Oza, A., del Campo, J., Scambia, G., et al. (2007). VEGF-trap for patients (pts) with recurrent platinum-resistant epithelial ovarian cancer (EOC): preliminary results of a randomized, multicenter phase II study. Journal Clinical Oncology (Meeting Abstracts), 25(18_suppl), 5508.
257.
Zurück zum Zitat Colombo, N., Mangili, G., Mammoliti, S., Kalling, M., Tholander, B., Sternas, L., et al. (2008). Aflibercept (VEGF Trap) for advanced epithelial ovarian cancer (EOC) patients (pts) with symptomatic malignant ascites: preliminary results of a pilot study. Journal Clinical Oncology (Meeting Abstracts), 26(15_suppl), 14598. Colombo, N., Mangili, G., Mammoliti, S., Kalling, M., Tholander, B., Sternas, L., et al. (2008). Aflibercept (VEGF Trap) for advanced epithelial ovarian cancer (EOC) patients (pts) with symptomatic malignant ascites: preliminary results of a pilot study. Journal Clinical Oncology (Meeting Abstracts), 26(15_suppl), 14598.
258.
Zurück zum Zitat Coleman, R. L., Duska, L. R., Ramirez, P. T., Modesitt, S. C., Schmeler, K. M., Iyer, R., et al. (2011). Phase II multi-institutional study of docetaxel plus aflibercept (AVE0005, NSC# 724770) in patients with recurrent ovarian, primary peritoneal, and fallopian tube cancer. ASCO Meeting Abstracts, 29(15_suppl), 5017. Coleman, R. L., Duska, L. R., Ramirez, P. T., Modesitt, S. C., Schmeler, K. M., Iyer, R., et al. (2011). Phase II multi-institutional study of docetaxel plus aflibercept (AVE0005, NSC# 724770) in patients with recurrent ovarian, primary peritoneal, and fallopian tube cancer. ASCO Meeting Abstracts, 29(15_suppl), 5017.
Metadaten
Titel
Significance of vascular endothelial growth factor in growth and peritoneal dissemination of ovarian cancer
verfasst von
Samar Masoumi Moghaddam
Afshin Amini
David L. Morris
Mohammad H. Pourgholami
Publikationsdatum
01.06.2012
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 1-2/2012
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-011-9337-5

Weitere Artikel der Ausgabe 1-2/2012

Cancer and Metastasis Reviews 1-2/2012 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.