Skip to main content
Erschienen in: Journal of Neuro-Oncology 1/2009

Open Access 01.05.2009 | Clinical Study - patient Studies

Adjuvant enoxaparin therapy may decrease the incidence of postoperative thrombotic events though does not increase the incidence of postoperative intracranial hemorrhage in patients with meningiomas

verfasst von: Tene A. Cage, Kathleen R. Lamborn, Marcus L. Ware, Anna Frankfurt, Lenna Chakalian, Mitchell S. Berger, Michael W. McDermott

Erschienen in: Journal of Neuro-Oncology | Ausgabe 1/2009

Abstract

Patients with brain tumors including intracranial meningiomas are at increased risk for developing deep vein thrombosis (DVTs) and suffering thromboembolic events (VTEs). Many surgeons are concerned that early use of low dose enoxaparin may increase the risk of intracranial hemorrhage which outweighs the benefit of DVT/VTE reduction. We aimed to address concerns around the use of enoxaparin after meningioma resection in the development of postoperative intracranial hemorrhages and DVT/VTEs. This is a retrospective review of 86 patients with intracranial meningiomas who underwent craniectomy and surgical resection of the mass, treated by one attending surgeon at UCSF Medical Center between 2000 and 2005. Within 48 h after surgery patients treated 2003–2005 routinely received enoxaparin therapy unless there was documented intracranial hemorrhage, lumbar subarachnoid drain, enoxaparin hypersensitivity, or thrombocytopenia (n = 24). These were compared to a cohort treated 2000–2002 who did not receive the drug (n = 62). Exclusion criteria were prior VTEs or coagulopathies. The groups were similar in tumor and surgical characteristics. Enoxaparin therapy did not increase the incidence of intracranial hemorrhage following surgical meningioma resection and the incidence of DVTs/VTEs was 0% (n = 0) versus 4.8% (n = 3) in the non-enoxaparin group. Results did not reach statistical significance. In this retrospective study, postoperative administration of enoxaparin following meningioma resection does not increase the risk of intracranial hematoma though enoxaparin administration may slightly decrease the incidence of post-surgical thromboembolic events. Due to study design and power, we were not able to demonstrate DVT/VTE reduction with statistical significance.

Introduction

Meningiomas are benign intracranial tumors treated by craniotomy and surgical resection. Postoperative complications of surgical tumor resection include spontaneous intracranial hemorrhage [13]. However, postoperative brain tumor patients are also at increased risk of developing thromboembolic events (VTEs) [4, 5]. It is thought that thromboembolic events that occur postoperatively following resection may be due to the tumor-induced hemostatic changes resulting in a hypercoagulable state and may be exacerbated by the post-surgical recovery period when patients are initially non-ambulatory. Because of this, patients with brain tumors, including meningiomas are at increased risk of developing deep vein thrombosis (DVT) and experiencing venous thromboembolic events (VTE) [69]. DVT and VTEs significantly increase tumor patient morbidity and mortality and therefore are important aspects of tumor treatment to address. Prior studies have shown that prophylactic treatment with low molecular weight heparin leads to fewer vascular complications such DVT and VTEs [1015]. However, the risk of postoperative hematoma has been shown to increase with early anticoagulation [16]. Some studies have evaluated the use of heparin or enoxaparin with different regimens and different doses and there is no good consensus for preferred postoperative anticoagulation regimen. Neurosurgeons are frequently concerned about the use of anti-coagulation in the post-craniotomy setting. Meningoma surgery tends to require extensive bone and soft tissue dissection which may increase the risk of anti-coagulation treatment-related post-operative hemorrhagic complications.
Because of the duality of positive and negative effects of anticoagulation therapy in the post meningioma resection setting, the use of enoxaparin remains controversial. At our institution, there is no standard of practice amongst meningioma surgeons about the use of anti-coagulation with meningioma resection, although there is Class 1 evidence to support its use in glioma and meningioma patients post-operatively. One surgeon uses it routinely while the others do not. We decided to evaluate the use of enoxaparin by a single surgeon and the associated incidence of postoperative hematomas and DVT/VTEs in a control cohort group. Our aim is to address concerns around the use of enoxaparin after meningioma resection in the development of postoperative hematomas and thromboembolic events.

Materials and methods

Patient population

Only one surgeon at our institution began using enoxaparin routinely in 2002 beginning within two days after surgery. 86 patients surgically treated at the University of California San Francisco Neurosurgery Department between 2000 and 2005 by this surgeon for histologically confirmed meningiomas were retrospectively identified from the database. Patients who underwent surgical resection of intracranial meningiomas between 2003 and 2005 (after enoxaparin was routinely administered) were eligible for treatment with enoxaparin starting within 48 h after surgery. Patients did not receive enoxaparin therapy if they had a documented intracranial hemorrhage, presence of a lumbar subarachnoid drain, hypersensitivity to heparin or enoxaparin, or thrombocytopenia. The patients who were treated between 2003 and 2005 and who received enoxaparin (n = 24) are compared to those who underwent surgical resection for meningioma between 2000 and 2002, before enoxaparin was routinely administered, and therefore did not receive enoxaparin in the post-operative period (n = 62). Patients were excluded from the study if they had a prior DVT/VTE, other thromboembolic event, or coagulopathy.
The average age of patients at initial diagnosis was 56 years for patients who received enoxaparin and those who did not (range: 30–73 years and 31–80 years respectively). Records were analyzed for symptoms present at diagnosis, prior chemotherapy or radiotherapy, and pre-operative embolization to treat the tumor. In addition, we analyzed tumor characteristics (primary or recurrent tumor, tumor location and volume) and pathologic diagnosis (WHO classification of tissue).

Surgical treatment

Between 2000 and 2005, patients underwent craniotomy and surgical resection of the tumor. Gross total resection (Simpson Grade I) or near gross total resection (Simpson Grade II) was performed in most cases studied.
Features of the surgical procedure were noted including length of procedure and estimated blood loss.

Enoxaparin therapy

Between 2003 and 2005, with start times ranging from within 24 h up to 48 h after surgery, patients were treated with enoxaparin delivered as a subcutaneous injection for between one and seven days. The most common dose of enoxaparin treatment is 40 mg daily, one patient received a dose of 30 mg. Of the 24 patients in the treatment group, 8 patients began treatment within 24 h after the operation and 16 initiated treatment between 24 and 48 h after surgery.
The use of post-operative anti-embolic prophylaxis including TED hose and pneumatic sequential compression devices (SCD) was also noted.

Statistical analysis

Data were collected through a retrospective review of charts and were summarized. Records were reviewed for radiographic evidence of post-operative hematoma and other complications occurring within the first 30 days of surgery. Also, records were reviewed for clinical or radiographic evidence of deep vein thrombosis (DVT) or venous thromboembolic events (VTEs) following surgical treatement for meningioma and adjuvant therapy with enoxaparin. Only one subject from the treatment group died prior to 30 days following surgery, all other subjects had follow-up data for 30 days.
We identified complications as clinical symptoms and deficits following hemorrhage, radiographic evidence of DVT, VTE, or hematoma, complications leading to further surgical or medical treatment, and death. Postoperative hemorrhages were identified clinically then confirmed and classified by CT scan. DVT was diagnosed clinically and confirmed with doppler ultrasound. Data were analyzed using GraphPad Software.

Results

Patient characteristics

The two populations of patients, those who received enoxaparin and those who did not, had similar tumor and treatment characteristics with the exception of tumor-associated edema. The tumor qualities and treatment approach are represented in Table 1. The majority of meningiomas were WHO grade 1, and the dominant location of these tumors is in the middle fossa. More patients who received enoxaparin are known to have had edema-associated tumors (41.7%) than those who did not receive enoxaparin therapy (21.0%) (P = 0.45). The majority of meningiomas in this patient population are medium to large size and in many cases, treatment included preoperative embolization followed by resection.
Table 1
Tumor and resection characteristics of enoxaparin group and non-enoxaparin group
Tumor characteristics
Enoxaparin group; n (%)
No Enoxaparin group; n (%)
WHO grade
    1
20 (83.3)
54 (87.1)
    2
3 (12.5)
6 (9.7)
    3
1 (4.2)
2 (3.2)
Tumor site
    Anterior fossa
4 (16.7)
9 (14.5)
    Middle fossa
12 (50)
29 (45.2)
    Posterior fossa
8 (33.3)
23 (37.1)
    Intraventricular
0
1 (1.6)
Associated edema
    Yes
10 (41.7)
13 (21.0)
    No
8 (33.3)
24 (38.7)
    Unknown
6 (25)
25 (40.3)
Preoperative embolization
    Yes
9 (37.5)
25 (40.3)
    No
15 (62.5)
37 (59.7)
Simpson grade resection
    0
0
2 (3.2)
    1
6 (25)
16 (25.8)
    2
10 (41.7)
20 (32.3)
    3
3 (12.5)
12 (19.4)
    4
0
2 (3.2)
    5
0
1 (1.6)
    Unknown
5 (20.8)
9 (14.5)
Primary versus reoperation
    Primary
19 (79.2)
55 (88.7)
    Reoperation
5 (20.8)
7 (11.3)
Prior DVT was an exclusion criterion for this study and therefore 100 percent of patients in the enoxaparin and non-enoxaparin groups had no history of DVT. All patients received pneumatic calf compression devices as DVT prophylaxis until ambulatory.

Postoperative hemorrhages

12.5 percent (n = 3) in the enoxaparin group and 12.9% (n = 8) in the non-enoxaparin group suffered postoperative intracranial hemorrhages. Of these, one patient in the treatment group and 5 patients in the non-treatment group suffered clinically symptomatic deficits as a result of the hemorrhage (Table 2).
Table 2
Postoperative hemorrhage characteristics in the enoxaparin group and the non-enoxaparin group
Hemorrhage characteristics
Enoxaparin group; n (%)
No Enoxaparin group; n (%)
Postoperative hemorrhage
3 (12.5)
8 (12.9)
Symptomatic hemorrhage
1 (4.2)
5 (8.1)
Hemorrhage classification
  
    Intraparenchymal
1 (4.2)
2 (3.2)
    Subdural
0
0
    Subarachnoid
2 (8.3)
0
    Mixed
0
3 (4.8)
    Not classified
0
3 (4.8)
Of the intracranial hematomas in the group that received enoxaparin, one was classified as intraparenchymal and two others as subarachnoid. Of the group that did not received enoxaparin, postoperative hemorrhages were classified as intraparenchymal, mixed, and not classified hematomas (Table 2).

Postoperative DVT/VTEs

There was a slight apparent decrease in the incidence and percentage of patients with postoperative thromboembolic events in the enoxaparin group (one and 62.5% respectively) compared to those who did not receive treatment (five and 67.8% respectively) though these differences did not achieve statistical significance (P > 0.5). No patients receiving enoxaparin experienced clinically diagnosed VTEs/DVTs. A total of three patients from the non-treatment group experienced DVT/VTE. Two had both pulmonary embolism and extensive DVTs, involving bilateral iliac veins and the inferior vena cava in one and the distal lower extremity in the other. And one patient who did not receive enoxaparin had an extensive right lower extremity DVT alone.
In addition, three patients total suffered intracranial arterial embolic strokes, one in the enoxaparin group and two in the non-enoxaparin group. Table 3 represents all reported postoperative hemorrhage-related, thrombotic, and other complications. Reported complications were greater in the non-treatment group except neurologic, genitourinary (UTI and acute renal failure), hematologic (anemia), and the one death (due to renal failure) P > 0.5.
Table 3
Reported complications following surgical resection of meningioma
Reported complications
Enoxaparin
No enoxaparin
Number of pts with comps
Percentage of all pts who received enox
Number of events
Number of pts with comps
Percentage of all pts who did not receive enox
Number of events
Hemorrhage-related
1
4.2
2
5
8.1
8
    Progressive somnolence
1
4.2
1
0
0
0
    Altered mental status
0
0
0
1
1.6
1
    Language impairment
0
0
0
0
0
0
    Seizure
0
0
0
2
3.2
2
    Headache
0
0
0
1
1.6
1
    Hematoma evacuation
1
4.2
1
2
3.2
2
    Craniectomy
0
0
0
2
3.2
2
Venous thrombotic events
0
0
0
3
4.8
5
    DVT
0
0
0
3
4.8
3
    Pulmonary embolism
0
0
0
2
3.2
2
Intracranial embolic infarct
1
4.2
1
2
3.2
2
Surgery-related
3
12.5
3
12
19.4
19
    CSF leak
1
4.2
1
0
0
0
    Scalp/wound infection
2
8.3
2
2
3.2
2
    Pseudomeningocele
0
0
0
3
4.8
3
    Pneumocephalus
0
0
0
1
1.6
1
    Hydrocephalus
0
0
0
8
12.9
8
    VP shunt placement
0
0
0
5
8.1
5
Constitutional
0
0
0
1
1.6
1
Neurologic
13
54.2
20
29
46.8
41
Pulmonary
1
4.2
1
5
8.1
5
GU
2
8.3
2
0
0
0
Hematologic
1
4.2
1
0
0
0
Cardiac
0
0
0
1
1.6
1
Death
1
4.2
1
0
0
0
Other
0
0
0
4
6.5
4
Total
15
62.5
31
42
67.8
86
Pts patients, comps complications, enox enoxaparin

Discussion

No consensus about postoperative administration of enoxaparin as thromboembolic prophylaxis following meningioma resection has been reached thus far. The biggest confounding complication is undoubtedly published evidence of increased risk of postoperative intracranial hemorrhage with the administration of a low molecular weight heparin [17]. Other contributing factors may include surgeon preference as well as conflicting studies some of which support anticoagulation in decreasing the risk of DVT and PE and others which show no difference in their occurrences [18, 19]. Individual patient characteristics such as age, preexisting compromise of vascular integrity, use of lumbar drains or coagulopathies make each meningioma resection unique and therefore may prolong controversy in the field around adjuvant enoxaparin administration post meningioma resection [1, 20, 21]. Perhaps a large multi-center, randomized control trial is necessary to conclusively establish practice guidelines.
In agreement with many and in direct opposition to other studies, we have found that postoperative administration of enoxaparin following resection of meningiomas is consistent with a lower rate of clinically significant thromboembolic events such as DVT or VTEs however we were not able to demonstrate this definitively. Though this retrospective study was not designed or powered to evaluate the reduction in thromboembolic risk (retrospective, cohort design), we have demonstrated that the incidence of DVTs/VTEs with enoxaparin therapy does not increase over non-treatment. Prior studies showing a reduction in thromboembolic events in neurosurgical patients include those of Frim et al. 1992 (low-dose heparin plus pneumatic compression boots) and Agnelli et al. 1998 while those of Barnett et al. 1977, Goldhaber et al. 2002 and Boström et al. 1986 do not. Of the studies that did show a difference all were prospective randomized controlled trials with P = 0.020 and P = 0.04, respectively. Similarly, the negative studies all were prospective randomized trials. This lack of agreement with seemingly properly designed and conducted trials, has raised questions for surgeons about the external validity and applicability of the conclusions from one study alone. Our control (non-enoxaparin) and study (enoxaparin) populations were similar in terms of WHO grade, tumor location, associated edema, preoperative embolization, Simpson grade resection and newly diagnosed or recurrent tumor.
In addition, our investigation suggests that for the population studied, postoperative enoxaparin administration does not cause an increase in the number of postoperative intracranial hemorrhages nor does it increase the percentage of symptomatic intracranial bleeds. In fact, the percentage of hemorrhage and symptomatic hemorrhage was greater in the non-enoxaparin control group though was not statistically significant. This is critical information when considering the initiation of enoxaparin therapy post meningioma resection. For patients who may benefit from the anticoagulation properties of enoxaparin, it is critical to understand that they may not be at increased risk of developing intracranial hemorrhages if therapy is begun. At our institution for the senior authors cases enoxaparin is begun the morning of the second day following surgery if no contraindications to its use exist. Frequently postoperative scanning is done within 48 h or earlier if there is a clinical problem and radiographic evidence of hemorrhage may influence the decision on whether or not to start prophylactic therapy.

Conclusions

Our study suggests that there is no significant increased risk of postoperative hemorrhage in patients who receive enoxaparin compared to those who do not. The overall incidence of a symptomatic hemorrhage requiring treatment is thankfully low in both treated and non-treated groups. We were not, however, able to conclusively demonstrate statistically significant improvement in DVT/VTEs with enoxaparin therapy due to limitations such as small sample size, retrospective design, and unknown patient characteristics that cannot be screened for. Another limitation of this retrospective study is that time to first ambulation is not documented and therefore was not available for all patients. Although antiembolic prophylaxis such as SCD and TED were routinely used in all patients until ambulatory, early ambulation is known to decrease the incidence of DVT/VTE in postoperative paitents. These limitations contribute to the dispute regarding enoxaparin use in postoperative meningioma resection patients. Our results suggest an agreement with prior studies reporting that the frequency of thromboembolic events is lower in meningioma patients who receive enoxaparin therapy within the first 48 h after surgical resection and offer some support for the routine administration of enoxaparin following meningioma resection to decrease the incidence of postoperative thromboembolic events.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://​creativecommons.​org/​licenses/​by-nc/​2.​0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Neurologie & Psychiatrie

Kombi-Abonnement

Mit e.Med Neurologie & Psychiatrie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

e.Med Neurologie

Kombi-Abonnement

Mit e.Med Neurologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes, den Premium-Inhalten der neurologischen Fachzeitschriften, inklusive einer gedruckten Neurologie-Zeitschrift Ihrer Wahl.

Literatur
3.
Zurück zum Zitat Gerlach R, Raabe A, Scharrer I, Meixensberger J, Seifert V (2004) Post-operative hematoma after surgery for intracranial meningiomas: causes, avoidable risk factors and clinical outcome. Neurol Res 26(1):61–66. doi:10.1179/016164104773026543 PubMedCrossRef Gerlach R, Raabe A, Scharrer I, Meixensberger J, Seifert V (2004) Post-operative hematoma after surgery for intracranial meningiomas: causes, avoidable risk factors and clinical outcome. Neurol Res 26(1):61–66. doi:10.​1179/​0161641047730265​43 PubMedCrossRef
6.
Zurück zum Zitat Constantini S, Pomeranz S, Rappaport ZH (1991) Thromboembolic phenomena in neurosurgical patients operated upon for primary and metastatic brain tumours. Acta Neurochir (Wien) 109:93–97. doi:10.1007/BF01403001 CrossRef Constantini S, Pomeranz S, Rappaport ZH (1991) Thromboembolic phenomena in neurosurgical patients operated upon for primary and metastatic brain tumours. Acta Neurochir (Wien) 109:93–97. doi:10.​1007/​BF01403001 CrossRef
7.
Zurück zum Zitat Constantini S, Friedman A, Shoshan Y, Israel Z, Ashkenazi E, Gertel M, Even A, Shevach Y, Shalit M, Umansky F, Rappaport ZH (2001) Safety of perioperative minidose heparin in patients undergoing brain tumor surgery: a prospective, randomized, double-blind study. J Neurosurg 94:918–921PubMedCrossRef Constantini S, Friedman A, Shoshan Y, Israel Z, Ashkenazi E, Gertel M, Even A, Shevach Y, Shalit M, Umansky F, Rappaport ZH (2001) Safety of perioperative minidose heparin in patients undergoing brain tumor surgery: a prospective, randomized, double-blind study. J Neurosurg 94:918–921PubMedCrossRef
10.
Zurück zum Zitat Agnelli G, Buoncristiani SeveriP, Pini M, D’Angelo A, Beltrametti C, Damiani M, Andrioli G, Pugliese R, Iorio A, Brambilla G (1998) Enoxaparin plus compression stockings compared with compression stockings alone in the prevention of venous thromboembolism after elective neurosurgery. N Engl J Med 339:80–85. doi:10.1056/NEJM199807093390204 PubMedCrossRef Agnelli G, Buoncristiani SeveriP, Pini M, D’Angelo A, Beltrametti C, Damiani M, Andrioli G, Pugliese R, Iorio A, Brambilla G (1998) Enoxaparin plus compression stockings compared with compression stockings alone in the prevention of venous thromboembolism after elective neurosurgery. N Engl J Med 339:80–85. doi:10.​1056/​NEJM199807093390​204 PubMedCrossRef
11.
Zurück zum Zitat Barnett HG, Clifford JR, Llewellyn RC (1977) Safety of mini-dose heparin administration for neurosurgical patients. J Neurosurg 47(1):27–30PubMedCrossRef Barnett HG, Clifford JR, Llewellyn RC (1977) Safety of mini-dose heparin administration for neurosurgical patients. J Neurosurg 47(1):27–30PubMedCrossRef
12.
Zurück zum Zitat Bostrom S, Holmgren E, Jonsson O, Lindgerg S, Lindstrom B, Winso I, Zachrisson B (1986) Post-operative thromboembolism in neurosurgery: a study on the prophylactic effect of calf muscle stimulation plus dextran compared to low-dose heparin. Acta Neurochir (Wien) 80(3–4):83–89. doi:10.1007/BF01812279 CrossRef Bostrom S, Holmgren E, Jonsson O, Lindgerg S, Lindstrom B, Winso I, Zachrisson B (1986) Post-operative thromboembolism in neurosurgery: a study on the prophylactic effect of calf muscle stimulation plus dextran compared to low-dose heparin. Acta Neurochir (Wien) 80(3–4):83–89. doi:10.​1007/​BF01812279 CrossRef
13.
Zurück zum Zitat Cerrato D, Ariano C, Fiacchino F (1978) Deep vein thrombosis and low-dose heparin prophylaxis in neurosurgical patients. J Neurosurg 49(3):378–381PubMedCrossRef Cerrato D, Ariano C, Fiacchino F (1978) Deep vein thrombosis and low-dose heparin prophylaxis in neurosurgical patients. J Neurosurg 49(3):378–381PubMedCrossRef
15.
Zurück zum Zitat Nurmohamed MT, van Riel AM, Henkens CM, Koopman MM et al (1996) Low molecular weight heparin and compression stockings in the prevention of venous thromboembolism in neurosurgery. Thromb Haemost 75(2):233–238PubMed Nurmohamed MT, van Riel AM, Henkens CM, Koopman MM et al (1996) Low molecular weight heparin and compression stockings in the prevention of venous thromboembolism in neurosurgery. Thromb Haemost 75(2):233–238PubMed
16.
Zurück zum Zitat Dickinson LD, Miller LD, Patel CP, Gupta SK (1998) Enoxaparin increases the incidence of postoperative intracranial hemorrhage when initiated preoperatively for deep venous thrombosis prophylaxis in patients with brain tumors clinical study. Neurosurgery 45(5):1074–1081. doi:10.1097/00006123-199811000-00039 CrossRef Dickinson LD, Miller LD, Patel CP, Gupta SK (1998) Enoxaparin increases the incidence of postoperative intracranial hemorrhage when initiated preoperatively for deep venous thrombosis prophylaxis in patients with brain tumors clinical study. Neurosurgery 45(5):1074–1081. doi:10.​1097/​00006123-199811000-00039 CrossRef
17.
21.
Zurück zum Zitat Gerber DE, Salhotra A, Olivi A, Grossman SA, Streiff MB (2007) Venous thromboembolism occurs infrequently in meningioma patients receiving combined modality prophylaxis. Cancer 109:300–305. doi:10.1002/cncr.22405 PubMedCrossRef Gerber DE, Salhotra A, Olivi A, Grossman SA, Streiff MB (2007) Venous thromboembolism occurs infrequently in meningioma patients receiving combined modality prophylaxis. Cancer 109:300–305. doi:10.​1002/​cncr.​22405 PubMedCrossRef
Metadaten
Titel
Adjuvant enoxaparin therapy may decrease the incidence of postoperative thrombotic events though does not increase the incidence of postoperative intracranial hemorrhage in patients with meningiomas
verfasst von
Tene A. Cage
Kathleen R. Lamborn
Marcus L. Ware
Anna Frankfurt
Lenna Chakalian
Mitchell S. Berger
Michael W. McDermott
Publikationsdatum
01.05.2009
Verlag
Springer US
Erschienen in
Journal of Neuro-Oncology / Ausgabe 1/2009
Print ISSN: 0167-594X
Elektronische ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-009-9886-4

Weitere Artikel der Ausgabe 1/2009

Journal of Neuro-Oncology 1/2009 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Demenzkranke durch Antipsychotika vielfach gefährdet

23.04.2024 Demenz Nachrichten

Wenn Demenzkranke aufgrund von Symptomen wie Agitation oder Aggressivität mit Antipsychotika behandelt werden, sind damit offenbar noch mehr Risiken verbunden als bislang angenommen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.