Skip to main content
Erschienen in: Forensic Toxicology 2/2013

01.07.2013 | Short Communication

Human brain microsomes: their abilities to metabolize tetrahydrocannabinols and cannabinol

verfasst von: Kazuhito Watanabe, Misa Miyamoto, Satoshi Yamaori, Koutaro Hasegawa, Kanako Watanabe, Osamu Suzuki

Erschienen in: Forensic Toxicology | Ausgabe 2/2013

Einloggen, um Zugang zu erhalten

Abstract

In spite of the psychedelic action of Δ9-tetrahydrocannabinol (Δ9-THC) in the brain, no report on its metabolism by human brain microsomes has been published. In this study, the metabolism of Δ8-THC, Δ9-THC and cannabinol (CBN) was studied using human brain microsomes. The metabolites formed were analyzed by gas chromatography–mass spectrometry after trimethylsilylation. The three cannabinoids were biotransformed to two main metabolites by human brain microsomes. Δ8- and Δ9-THCs were mainly oxidized at the allylic positions. The main metabolites of Δ8-THC were 7α-hydroxy- and 11-hydroxy-Δ8-THCs, whereas those of Δ9-THC were 8α-hydroxy- and 11-hydroxy-Δ9-THCs. CBN was metabolized to 8-hydroxy- and 11-hydroxy-CBNs. Although the primary metabolic pathways of the THCs and CBN in brain microsomes are different from those in liver microsomes for other mammalian species, those in human brain microsomes were similar to those in human liver microsomes.
Literatur
1.
Zurück zum Zitat Uchiyama N, Kawamura M, Kikura-Hanajiri R, Goda Y (2012) Identification of two new-type synthetic cannabinoids, N-(1-adamantyl)-1-pentyl-1H-indole-3-carboxamide (APICA) and N-(1-adamantyl)-1-pentyl-1H-indole-3-carboxamide (APINACA), and detection of five synthetic cannabinoids, AM-1220, AM-2233, AM-1241, CB-13 (CRA-13), and AM-1248, as designer drugs in illegal products. Forensic Toxicol 30:114–125CrossRef Uchiyama N, Kawamura M, Kikura-Hanajiri R, Goda Y (2012) Identification of two new-type synthetic cannabinoids, N-(1-adamantyl)-1-pentyl-1H-indole-3-carboxamide (APICA) and N-(1-adamantyl)-1-pentyl-1H-indole-3-carboxamide (APINACA), and detection of five synthetic cannabinoids, AM-1220, AM-2233, AM-1241, CB-13 (CRA-13), and AM-1248, as designer drugs in illegal products. Forensic Toxicol 30:114–125CrossRef
2.
Zurück zum Zitat Papoutsis I, Nikolaou P, Dona A, Pistos C, Stefanidou M, Spiliopoulou C, Athanaselis S (2012) A validated GC-MS method for the determination of Δ9-tetrahydrocannabinol and 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid in bile samples. Forensic Toxicol 30:51–58CrossRef Papoutsis I, Nikolaou P, Dona A, Pistos C, Stefanidou M, Spiliopoulou C, Athanaselis S (2012) A validated GC-MS method for the determination of Δ9-tetrahydrocannabinol and 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid in bile samples. Forensic Toxicol 30:51–58CrossRef
3.
Zurück zum Zitat Tormey W, Moore T (2012) Inconsistent coroner interpretations of cardiac death in the presence of cannabis in urine. Forensic Toxicol 30:84–85CrossRef Tormey W, Moore T (2012) Inconsistent coroner interpretations of cardiac death in the presence of cannabis in urine. Forensic Toxicol 30:84–85CrossRef
4.
Zurück zum Zitat Harvey DJ (1984) Chemistry, metabolism, and pharmacokinetics of the cannabinoids. In: Nahas GG (ed) Marijuana in science and medicine. Raven Press, New York, pp 37–107 Harvey DJ (1984) Chemistry, metabolism, and pharmacokinetics of the cannabinoids. In: Nahas GG (ed) Marijuana in science and medicine. Raven Press, New York, pp 37–107
5.
Zurück zum Zitat Yamamoto I, Watanabe K, Narimatsu S, Yoshimura H (1995) Recent advances in the metabolism of cannabinoids. Int J Biochem Cell Biol 27:741–746PubMedCrossRef Yamamoto I, Watanabe K, Narimatsu S, Yoshimura H (1995) Recent advances in the metabolism of cannabinoids. Int J Biochem Cell Biol 27:741–746PubMedCrossRef
6.
Zurück zum Zitat Watanabe K, Yamaori S, Funahashi T, Kimura T, Yamamoto I (2007) Cytochrome P450 enzymes involved in the metabolism of tetrahydrocannabinols and cannabinol by human hepatic microsomes. Life Sci 80:1415–1419PubMedCrossRef Watanabe K, Yamaori S, Funahashi T, Kimura T, Yamamoto I (2007) Cytochrome P450 enzymes involved in the metabolism of tetrahydrocannabinols and cannabinol by human hepatic microsomes. Life Sci 80:1415–1419PubMedCrossRef
7.
Zurück zum Zitat Razdan RK (1986) Structure–activity relationships in cannabinoids. Pharm Rev 38:75–149PubMed Razdan RK (1986) Structure–activity relationships in cannabinoids. Pharm Rev 38:75–149PubMed
8.
Zurück zum Zitat Yamamoto I, Watanabe K, Matsunaga T, Kimura T, Funahashi T, Yoshimura H (2003) Pharmacology and toxicology of marihuana—on the metabolic activation of cannabinoids and its mechanism. J Toxicol Toxin Rev 22:577–589CrossRef Yamamoto I, Watanabe K, Matsunaga T, Kimura T, Funahashi T, Yoshimura H (2003) Pharmacology and toxicology of marihuana—on the metabolic activation of cannabinoids and its mechanism. J Toxicol Toxin Rev 22:577–589CrossRef
9.
Zurück zum Zitat Miksys SL, Tyndale RF (2002) Drug-metabolizing cytochrome P450 in the brain. J Psychiatry Neurosci 27:406–415PubMed Miksys SL, Tyndale RF (2002) Drug-metabolizing cytochrome P450 in the brain. J Psychiatry Neurosci 27:406–415PubMed
10.
Zurück zum Zitat Woodland C, Huang TT, Gryz E, Bendayan R, Fawcett JP (2008) Expression, activity and regulation of CYP3A in human and rodent brain. Drug Metab Rev 40:149–168PubMedCrossRef Woodland C, Huang TT, Gryz E, Bendayan R, Fawcett JP (2008) Expression, activity and regulation of CYP3A in human and rodent brain. Drug Metab Rev 40:149–168PubMedCrossRef
11.
Zurück zum Zitat Watanabe K, Tanaka T, Yamamoto I, Yoshimura H (1988) Brain microsomal oxidation of Δ8- and Δ9-tetrahydrocannabinol. Biochem Biophys Res Commun 157:75–80PubMedCrossRef Watanabe K, Tanaka T, Yamamoto I, Yoshimura H (1988) Brain microsomal oxidation of Δ8- and Δ9-tetrahydrocannabinol. Biochem Biophys Res Commun 157:75–80PubMedCrossRef
12.
Zurück zum Zitat Watanabe K, Fujinami M, Yamaori S, Yamamoto I (2011) Possible involvement of Cyp3a enzymes in the metabolism of tetrahydrocannabinols by mouse brain microsomes. Forensic Toxicol 29:56–60CrossRef Watanabe K, Fujinami M, Yamaori S, Yamamoto I (2011) Possible involvement of Cyp3a enzymes in the metabolism of tetrahydrocannabinols by mouse brain microsomes. Forensic Toxicol 29:56–60CrossRef
13.
Zurück zum Zitat Aramaki H, Tomiyasu N, Yoshimura H, Tsukamoto H (1968) Forensic chemical study on marihuana. I. A detection method of the principal constituents by thin-layer and gas chromatographies. Chem Pharm Bull 16:822–826PubMedCrossRef Aramaki H, Tomiyasu N, Yoshimura H, Tsukamoto H (1968) Forensic chemical study on marihuana. I. A detection method of the principal constituents by thin-layer and gas chromatographies. Chem Pharm Bull 16:822–826PubMedCrossRef
14.
Zurück zum Zitat Watanabe K, Yamaori S, Funahashi T, Kimura T, Yamamoto I (2006) 8-Hydroxycannabinol: a new metabolite of cannabinol formed by human hepatic microsomes. Forensic Toxicol 24:80–82CrossRef Watanabe K, Yamaori S, Funahashi T, Kimura T, Yamamoto I (2006) 8-Hydroxycannabinol: a new metabolite of cannabinol formed by human hepatic microsomes. Forensic Toxicol 24:80–82CrossRef
15.
Zurück zum Zitat Watanabe K, Itokawa Y, Yamaori S, Funahashi T, Kimura T, Kaji T, Yamamoto I (2007) Conversion of cannabidiol to Δ9-tetrahydrocannabinol and related cannabinoids in artificial gastric juice, and their pharmacological effects in mice. Forensic Toxicol 25:16–21CrossRef Watanabe K, Itokawa Y, Yamaori S, Funahashi T, Kimura T, Kaji T, Yamamoto I (2007) Conversion of cannabidiol to Δ9-tetrahydrocannabinol and related cannabinoids in artificial gastric juice, and their pharmacological effects in mice. Forensic Toxicol 25:16–21CrossRef
16.
Zurück zum Zitat Yamaori S, Maeda C, Yamamoto I, Watanabe K (2011) Differential inhibition of human cytochrome P450 2A6 and 2B6 by major phytocannabinoids. Forensic Toxicol 29:117–124CrossRef Yamaori S, Maeda C, Yamamoto I, Watanabe K (2011) Differential inhibition of human cytochrome P450 2A6 and 2B6 by major phytocannabinoids. Forensic Toxicol 29:117–124CrossRef
17.
Zurück zum Zitat Mechoulam R, Varconi H, Ben-Zvi Z, Edery H, Grunfeld Y (1972) Synthesis and biological activity of five tetrahydrocannabinol metabolites. J Am Chem Soc 94:7930–7931PubMedCrossRef Mechoulam R, Varconi H, Ben-Zvi Z, Edery H, Grunfeld Y (1972) Synthesis and biological activity of five tetrahydrocannabinol metabolites. J Am Chem Soc 94:7930–7931PubMedCrossRef
18.
Zurück zum Zitat Inayama S, Sawa A, Hosoya E (1974) The oxidation of Δ1- and Δ6-tetrahydrocannabinol with selenium dioxide. Chem Pharm Bull 22:1519–1525PubMedCrossRef Inayama S, Sawa A, Hosoya E (1974) The oxidation of Δ1- and Δ6-tetrahydrocannabinol with selenium dioxide. Chem Pharm Bull 22:1519–1525PubMedCrossRef
19.
Zurück zum Zitat Pitt CG, Fowler MS, Sathe S, Srivastava SC, Williams DL (1975) Synthesis of metabolites of Δ9-tetrahydrocannabinol. J Am Chem Soc 97:3798–3802PubMedCrossRef Pitt CG, Fowler MS, Sathe S, Srivastava SC, Williams DL (1975) Synthesis of metabolites of Δ9-tetrahydrocannabinol. J Am Chem Soc 97:3798–3802PubMedCrossRef
20.
Zurück zum Zitat Yamamoto I, Narimatsu S, Watanabe K, Shimonishi T, Yoshimura H, Nagano T (1983) Human liver microsomal oxidation of Δ8-tetrahydrocannabinol. Chem Pharm Bull 31:1784–1787PubMedCrossRef Yamamoto I, Narimatsu S, Watanabe K, Shimonishi T, Yoshimura H, Nagano T (1983) Human liver microsomal oxidation of Δ8-tetrahydrocannabinol. Chem Pharm Bull 31:1784–1787PubMedCrossRef
21.
Zurück zum Zitat Bornheim LM, Lasker JM, Raucy JL (1992) Human hepatic microsomal metabolism of Δ1-tetrahydrocannabinol. Drug Metab Dispos 20:241–246PubMed Bornheim LM, Lasker JM, Raucy JL (1992) Human hepatic microsomal metabolism of Δ1-tetrahydrocannabinol. Drug Metab Dispos 20:241–246PubMed
22.
Zurück zum Zitat Burstein SH, Kupfer D (1971) Hydroxylation of trans-Δ1-tetrahydrocannabinol by a hepatic microsomal monooxygenase. Chem-Biol Interact 3:316PubMedCrossRef Burstein SH, Kupfer D (1971) Hydroxylation of trans-Δ1-tetrahydrocannabinol by a hepatic microsomal monooxygenase. Chem-Biol Interact 3:316PubMedCrossRef
23.
Zurück zum Zitat Ben-Zvi Z, Burstein S, Zikopoulos J (1974) Metabolism of Δ1-tetrahydrocannabinol by mouse hepatic microsomes: identification of 6α-hydroxytetrahydrocannabinol. J Pharm Sci 63:1173–1174PubMedCrossRef Ben-Zvi Z, Burstein S, Zikopoulos J (1974) Metabolism of Δ1-tetrahydrocannabinol by mouse hepatic microsomes: identification of 6α-hydroxytetrahydrocannabinol. J Pharm Sci 63:1173–1174PubMedCrossRef
24.
Zurück zum Zitat Ben-Zvi Z, Burstein S (1975) Transformation of Δ1-tetrahydrocannabinol (THC) by rabbit liver microsomes. Biochem Pharmacol 24:1130–1131PubMedCrossRef Ben-Zvi Z, Burstein S (1975) Transformation of Δ1-tetrahydrocannabinol (THC) by rabbit liver microsomes. Biochem Pharmacol 24:1130–1131PubMedCrossRef
25.
Zurück zum Zitat Watanabe K, Narimatsu S, Matsunaga T, Yamamoto I, Yoshimura H (1992) A cytochrome P450 isozyme having aldehyde oxygenase activity plays a major role in metabolizing cannabinoids by mouse hepatic microsomes. Biochem Pharmacol 46:405–411CrossRef Watanabe K, Narimatsu S, Matsunaga T, Yamamoto I, Yoshimura H (1992) A cytochrome P450 isozyme having aldehyde oxygenase activity plays a major role in metabolizing cannabinoids by mouse hepatic microsomes. Biochem Pharmacol 46:405–411CrossRef
26.
Zurück zum Zitat Pai HV, Upadhya SC, Chinta SJ, Hegde SN, Ravindranath V (2002) Differential metabolism of alprazolam by liver and brain cytochrome (P4503A) to pharmacologically active metabolite. Pharmacogenomics J 2:243–258PubMedCrossRef Pai HV, Upadhya SC, Chinta SJ, Hegde SN, Ravindranath V (2002) Differential metabolism of alprazolam by liver and brain cytochrome (P4503A) to pharmacologically active metabolite. Pharmacogenomics J 2:243–258PubMedCrossRef
27.
Zurück zum Zitat Agarwal V, Kommaddi P, Valli K, Ryder D, Hyde TM, Kleinman JE, Strobel HW, Ravindranath V (2008) Drug metabolism in human brain: high levels of cytochrome P4503A43 in brain and metabolism of anti-anxiety drug alprazolam to its active metabolite. PLoS ONE 3(6):e2337. doi:10.1371/journal.pone.0002337 PubMedCrossRef Agarwal V, Kommaddi P, Valli K, Ryder D, Hyde TM, Kleinman JE, Strobel HW, Ravindranath V (2008) Drug metabolism in human brain: high levels of cytochrome P4503A43 in brain and metabolism of anti-anxiety drug alprazolam to its active metabolite. PLoS ONE 3(6):e2337. doi:10.​1371/​journal.​pone.​0002337 PubMedCrossRef
28.
Zurück zum Zitat Christensen HD, Freudenthal RI, Gidley GT, Rosenfeld R, Boegli G, Testino L, Brine DR, Pitt CG, Wall ME (1971) Activity of Δ8- and Δ9-tetrahydrocannabinol and related compounds in the mouse. Science 172:165–167PubMedCrossRef Christensen HD, Freudenthal RI, Gidley GT, Rosenfeld R, Boegli G, Testino L, Brine DR, Pitt CG, Wall ME (1971) Activity of Δ8- and Δ9-tetrahydrocannabinol and related compounds in the mouse. Science 172:165–167PubMedCrossRef
29.
Zurück zum Zitat Watanabe K, Yamamoto I, Oguri K, Yoshimura H (1980) Comparison in mice of pharmacological effects of Δ8-tetrahydrocannabinol oxidized at 11-position. Eur J Pharmacol 63:1–6PubMedCrossRef Watanabe K, Yamamoto I, Oguri K, Yoshimura H (1980) Comparison in mice of pharmacological effects of Δ8-tetrahydrocannabinol oxidized at 11-position. Eur J Pharmacol 63:1–6PubMedCrossRef
30.
Zurück zum Zitat Yamamoto I, Watanabe K, Kuzuoka K, Narimatsu S, Yoshimura H (1987) The pharmacological activity of cannabinol and its major metabolite, 11-hydroxycannabinol. Chem Pharm Bull 35:2144–2147PubMedCrossRef Yamamoto I, Watanabe K, Kuzuoka K, Narimatsu S, Yoshimura H (1987) The pharmacological activity of cannabinol and its major metabolite, 11-hydroxycannabinol. Chem Pharm Bull 35:2144–2147PubMedCrossRef
Metadaten
Titel
Human brain microsomes: their abilities to metabolize tetrahydrocannabinols and cannabinol
verfasst von
Kazuhito Watanabe
Misa Miyamoto
Satoshi Yamaori
Koutaro Hasegawa
Kanako Watanabe
Osamu Suzuki
Publikationsdatum
01.07.2013
Verlag
Springer Japan
Erschienen in
Forensic Toxicology / Ausgabe 2/2013
Print ISSN: 1860-8965
Elektronische ISSN: 1860-8973
DOI
https://doi.org/10.1007/s11419-013-0181-x

Weitere Artikel der Ausgabe 2/2013

Forensic Toxicology 2/2013 Zur Ausgabe

Neu im Fachgebiet Rechtsmedizin

Molekularpathologische Untersuchungen im Wandel der Zeit

Open Access Biomarker Leitthema

Um auch an kleinen Gewebeproben zuverlässige und reproduzierbare Ergebnisse zu gewährleisten ist eine strenge Qualitätskontrolle in jedem Schritt des Arbeitsablaufs erforderlich. Eine nicht ordnungsgemäße Prüfung oder Behandlung des …

Vergleichende Pathologie in der onkologischen Forschung

Pathologie Leitthema

Die vergleichende experimentelle Pathologie („comparative experimental pathology“) ist ein Fachbereich an der Schnittstelle von Human- und Veterinärmedizin. Sie widmet sich der vergleichenden Erforschung von Gemeinsamkeiten und Unterschieden von …

Gastrointestinale Stromatumoren

Open Access GIST CME-Artikel

Gastrointestinale Stromatumoren (GIST) stellen seit über 20 Jahren ein Paradigma für die zielgerichtete Therapie mit Tyrosinkinaseinhibitoren dar. Eine elementare Voraussetzung für eine mögliche neoadjuvante oder adjuvante Behandlung bei …

Personalisierte Medizin in der Onkologie

Aufgrund des erheblichen technologischen Fortschritts in der molekularen und genetischen Diagnostik sowie zunehmender Erkenntnisse über die molekulare Pathogenese von Krankheiten hat in den letzten zwei Jahrzehnten ein grundlegender …