Skip to main content
Erschienen in: Current Heart Failure Reports 4/2012

01.12.2012 | Pathophysiology of Myocardial Failure (IS Anand, Section Editor)

Growth Differentiation Factor 15 in Heart Failure: An Update

verfasst von: Kai C. Wollert, Tibor Kempf

Erschienen in: Current Heart Failure Reports | Ausgabe 4/2012

Einloggen, um Zugang zu erhalten

Abstract

Growth differentiation factor 15 (GDF-15) is a stress-responsive cytokine expressed in the cardiovascular system. GDF-15 is emerging as a biomarker of cardiometabolic risk and disease burden. GDF-15 integrates information from cardiac and extracardiac disease pathways that are linked to the incidence, progression, and prognosis of heart failure (HF). Increased circulating levels of GDF-15 are associated with an increased risk of developing HF in apparently healthy individuals from the community. After an acute coronary syndrome, elevated levels of GDF-15 are indicative of an increased risk of developing adverse left ventricular remodeling and HF. In patients with established HF, the levels of GDF-15 and increases in GDF-15 over time are associated with adverse outcomes. The information provided by GDF-15 is independent of established risk factors and cardiac biomarkers, including BNP. More studies are needed to elucidate how the information provided by GDF-15 can be used for patient monitoring and formulating treatment decisions. Further understanding of the pathobiology of GDF-15 may lead to the discovery of new treatment targets in HF.
Literatur
1.
Zurück zum Zitat Shah AM, Mann DL. In search of new therapeutic targets and strategies for heart failure: recent advances in basic science. Lancet. 2011;378:704–12.PubMedCrossRef Shah AM, Mann DL. In search of new therapeutic targets and strategies for heart failure: recent advances in basic science. Lancet. 2011;378:704–12.PubMedCrossRef
2.
Zurück zum Zitat Strait JB, Lakatta EG. Aging-associated cardiovascular changes and their relationship to heart failure. Heart Fail Clin. 2012;8:143–64.PubMedCrossRef Strait JB, Lakatta EG. Aging-associated cardiovascular changes and their relationship to heart failure. Heart Fail Clin. 2012;8:143–64.PubMedCrossRef
3.
Zurück zum Zitat Dhingra R, Vasan RS. Diabetes and the risk of heart failure. Heart Fail Clin. 2012;8:125–33.PubMedCrossRef Dhingra R, Vasan RS. Diabetes and the risk of heart failure. Heart Fail Clin. 2012;8:125–33.PubMedCrossRef
5.
Zurück zum Zitat Ronco C, Haapio M, House AA, et al. Cardiorenal syndrome. J Am Coll Cardiol. 2008;52:1527–39.PubMedCrossRef Ronco C, Haapio M, House AA, et al. Cardiorenal syndrome. J Am Coll Cardiol. 2008;52:1527–39.PubMedCrossRef
6.
Zurück zum Zitat Anand IS. Anemia and chronic heart failure implications and treatment options. J Am Coll Cardiol. 2008;52:501–11.PubMedCrossRef Anand IS. Anemia and chronic heart failure implications and treatment options. J Am Coll Cardiol. 2008;52:501–11.PubMedCrossRef
7.
Zurück zum Zitat Clark AL, Poole-Wilson PA, Coats AJ. Exercise limitation in chronic heart failure: central role of the periphery. J Am Coll Cardiol. 1996;28:1092–102.PubMedCrossRef Clark AL, Poole-Wilson PA, Coats AJ. Exercise limitation in chronic heart failure: central role of the periphery. J Am Coll Cardiol. 1996;28:1092–102.PubMedCrossRef
9.
Zurück zum Zitat van Kimmenade RR, Januzzi JL. Emerging biomarkers in heart failure. Clin Chem. 2012;58:127–38.PubMedCrossRef van Kimmenade RR, Januzzi JL. Emerging biomarkers in heart failure. Clin Chem. 2012;58:127–38.PubMedCrossRef
10.
Zurück zum Zitat Wollert KC. Tailored therapy for heart failure: the role of biomarkers. Eur Heart J. 2012, Epub ahead of print. Wollert KC. Tailored therapy for heart failure: the role of biomarkers. Eur Heart J. 2012, Epub ahead of print.
11.
Zurück zum Zitat Kempf T, Wollert KC. Growth-differentiation factor-15 in heart failure. Heart Fail Clin. 2009;5:537–47.PubMedCrossRef Kempf T, Wollert KC. Growth-differentiation factor-15 in heart failure. Heart Fail Clin. 2009;5:537–47.PubMedCrossRef
12.
Zurück zum Zitat Bootcov MR, Bauskin AR, Valenzuela SM, et al. MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-β superfamily. Proc Natl Acad Sci U S A. 1997;94:11514–9.PubMedCrossRef Bootcov MR, Bauskin AR, Valenzuela SM, et al. MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-β superfamily. Proc Natl Acad Sci U S A. 1997;94:11514–9.PubMedCrossRef
13.
Zurück zum Zitat Bauskin AR, Zhang HP, Fairlie WD, et al. The propeptide of macrophage inhibitory cytokine (MIC-1), a TGF-β superfamily member, acts as a quality control determinant for correctly folded MIC-1. EMBO J. 2000;19:2212–20.PubMedCrossRef Bauskin AR, Zhang HP, Fairlie WD, et al. The propeptide of macrophage inhibitory cytokine (MIC-1), a TGF-β superfamily member, acts as a quality control determinant for correctly folded MIC-1. EMBO J. 2000;19:2212–20.PubMedCrossRef
14.
Zurück zum Zitat Shi M, Zhu J, Wang R, et al. Latent TGF-β structure and activation. Nature. 2011;474:343–9.PubMedCrossRef Shi M, Zhu J, Wang R, et al. Latent TGF-β structure and activation. Nature. 2011;474:343–9.PubMedCrossRef
15.
Zurück zum Zitat Su AI, Wiltshire T, Batalov S, et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci U S A. 2004;101:6062–7.PubMedCrossRef Su AI, Wiltshire T, Batalov S, et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci U S A. 2004;101:6062–7.PubMedCrossRef
16.
Zurück zum Zitat Kempf T, Eden M, Strelau J, et al. The transforming growth factor-β superfamily member growth-differentiation factor-15 protects the heart from ischemia/reperfusion injury. Circ Res. 2006;98:351–60.PubMedCrossRef Kempf T, Eden M, Strelau J, et al. The transforming growth factor-β superfamily member growth-differentiation factor-15 protects the heart from ischemia/reperfusion injury. Circ Res. 2006;98:351–60.PubMedCrossRef
17.
Zurück zum Zitat •• Kempf T, Zarbock A, Widera C, et al. GDF-15 is an inhibitor of leukocyte integrin activation required for survival after myocardial infarction in mice. Nat Med. 2011;17:581–8. This study uncovers a major role for GDF-15 in controlling inflammatory cell recruitment by directly interfering with leukocyte integrin activation. Loss of this unique anti-inflammatory mechanism leads to fatal cardiac rupture after myocardial infarction in mice, thus attributing an adaptive function to GDF-15 in the context of acute ischemic injury. PubMedCrossRef •• Kempf T, Zarbock A, Widera C, et al. GDF-15 is an inhibitor of leukocyte integrin activation required for survival after myocardial infarction in mice. Nat Med. 2011;17:581–8. This study uncovers a major role for GDF-15 in controlling inflammatory cell recruitment by directly interfering with leukocyte integrin activation. Loss of this unique anti-inflammatory mechanism leads to fatal cardiac rupture after myocardial infarction in mice, thus attributing an adaptive function to GDF-15 in the context of acute ischemic injury. PubMedCrossRef
18.
Zurück zum Zitat Buitrago M, Lorenz K, Maass AH, et al. The transcriptional repressor Nab1 is a specific regulator of pathological cardiac hypertrophy. Nat Med. 2005;11:837–44.PubMedCrossRef Buitrago M, Lorenz K, Maass AH, et al. The transcriptional repressor Nab1 is a specific regulator of pathological cardiac hypertrophy. Nat Med. 2005;11:837–44.PubMedCrossRef
19.
Zurück zum Zitat Xu J, Kimball TR, Lorenz JN, et al. GDF15/MIC-1 functions as a protective and antihypertrophic factor released from the myocardium in association with SMAD protein activation. Circ Res. 2006;98:342–50.PubMedCrossRef Xu J, Kimball TR, Lorenz JN, et al. GDF15/MIC-1 functions as a protective and antihypertrophic factor released from the myocardium in association with SMAD protein activation. Circ Res. 2006;98:342–50.PubMedCrossRef
20.
Zurück zum Zitat Krusche CA, Holthofer B, Hofe V, et al. Desmoglein 2 mutant mice develop cardiac fibrosis and dilation. Basic Res Cardiol. 2011;106:617–33.PubMedCrossRef Krusche CA, Holthofer B, Hofe V, et al. Desmoglein 2 mutant mice develop cardiac fibrosis and dilation. Basic Res Cardiol. 2011;106:617–33.PubMedCrossRef
21.
Zurück zum Zitat Clerk A, Kemp TJ, Zoumpoulidou G, Sugden PH. Cardiac myocyte gene expression profiling during H2O2-induced apoptosis. Physiol Genomics. 2007;29:118–27.PubMed Clerk A, Kemp TJ, Zoumpoulidou G, Sugden PH. Cardiac myocyte gene expression profiling during H2O2-induced apoptosis. Physiol Genomics. 2007;29:118–27.PubMed
22.
Zurück zum Zitat Frank D, Kuhn C, Brors B, et al. Gene expression pattern in biomechanically stretched cardiomyocytes: evidence for a stretch-specific gene program. Hypertension. 2008;51:309–18.PubMedCrossRef Frank D, Kuhn C, Brors B, et al. Gene expression pattern in biomechanically stretched cardiomyocytes: evidence for a stretch-specific gene program. Hypertension. 2008;51:309–18.PubMedCrossRef
23.
Zurück zum Zitat Widera C, Giannitsis E, Kempf T, et al. Identification of follistatin-like 1 by expression cloning as an activator of the growth differentiation factor 15 gene and a prognostic biomarker in acute coronary syndrome. Clin Chem. 2012;58:1233–41. Widera C, Giannitsis E, Kempf T, et al. Identification of follistatin-like 1 by expression cloning as an activator of the growth differentiation factor 15 gene and a prognostic biomarker in acute coronary syndrome. Clin Chem. 2012;58:1233–41.
24.
Zurück zum Zitat de Lemos JA, McGuire DK, Drazner MH. B-type natriuretic peptide in cardiovascular disease. Lancet. 2003;362:316–22.PubMedCrossRef de Lemos JA, McGuire DK, Drazner MH. B-type natriuretic peptide in cardiovascular disease. Lancet. 2003;362:316–22.PubMedCrossRef
25.
Zurück zum Zitat Schlittenhardt D, Schober A, Strelau J, et al. Involvement of growth differentiation factor-15/macrophage inhibitory cytokine-1 (GDF-15/MIC-1) in oxLDL-induced apoptosis of human macrophages in vitro and in arteriosclerotic lesions. Cell Tissue Res. 2004;318:325–33.PubMedCrossRef Schlittenhardt D, Schober A, Strelau J, et al. Involvement of growth differentiation factor-15/macrophage inhibitory cytokine-1 (GDF-15/MIC-1) in oxLDL-induced apoptosis of human macrophages in vitro and in arteriosclerotic lesions. Cell Tissue Res. 2004;318:325–33.PubMedCrossRef
26.
Zurück zum Zitat Bermudez B, Lopez S, Pacheco YM, et al. Influence of postprandial triglyceride-rich lipoproteins on lipid-mediated gene expression in smooth muscle cells of the human coronary artery. Cardiovasc Res. 2008;79:294–303.PubMedCrossRef Bermudez B, Lopez S, Pacheco YM, et al. Influence of postprandial triglyceride-rich lipoproteins on lipid-mediated gene expression in smooth muscle cells of the human coronary artery. Cardiovasc Res. 2008;79:294–303.PubMedCrossRef
27.
Zurück zum Zitat Ferrari N, Pfeffer U. Dell'Eva R, et al.: The transforming growth factor-β family members bone morphogenetic protein-2 and macrophage inhibitory cytokine-1 as mediators of the antiangiogenic activity of N-(4-hydroxyphenyl)retinamide. Clin Cancer Res. 2005;11:4610–9.PubMedCrossRef Ferrari N, Pfeffer U. Dell'Eva R, et al.: The transforming growth factor-β family members bone morphogenetic protein-2 and macrophage inhibitory cytokine-1 as mediators of the antiangiogenic activity of N-(4-hydroxyphenyl)retinamide. Clin Cancer Res. 2005;11:4610–9.PubMedCrossRef
28.
Zurück zum Zitat Secchiero P, Corallini F, Gonelli A, et al. Antiangiogenic activity of the MDM2 antagonist nutlin-3. Circ Res. 2007;100:61–9.PubMedCrossRef Secchiero P, Corallini F, Gonelli A, et al. Antiangiogenic activity of the MDM2 antagonist nutlin-3. Circ Res. 2007;100:61–9.PubMedCrossRef
29.
Zurück zum Zitat Nickel N, Jonigk D, Kempf T, et al. GDF-15 is abundantly expressed in plexiform lesions in patients with pulmonary arterial hypertension and affects proliferation and apoptosis of pulmonary endothelial cells. Respir Res. 2011;12:62.PubMedCrossRef Nickel N, Jonigk D, Kempf T, et al. GDF-15 is abundantly expressed in plexiform lesions in patients with pulmonary arterial hypertension and affects proliferation and apoptosis of pulmonary endothelial cells. Respir Res. 2011;12:62.PubMedCrossRef
30.
Zurück zum Zitat Ding Q, Mracek T, Gonzalez-Muniesa P, et al. Identification of macrophage inhibitory cytokine-1 in adipose tissue and its secretion as an adipokine by human adipocytes. Endocrinology. 2009;150:1688–96.PubMedCrossRef Ding Q, Mracek T, Gonzalez-Muniesa P, et al. Identification of macrophage inhibitory cytokine-1 in adipose tissue and its secretion as an adipokine by human adipocytes. Endocrinology. 2009;150:1688–96.PubMedCrossRef
31.
Zurück zum Zitat de Jager SC, Bermudez B, Bot I, et al. Growth differentiation factor 15 deficiency protects against atherosclerosis by attenuating CCR2-mediated macrophage chemotaxis. J Exp Med. 2011;208:217–25.PubMedCrossRef de Jager SC, Bermudez B, Bot I, et al. Growth differentiation factor 15 deficiency protects against atherosclerosis by attenuating CCR2-mediated macrophage chemotaxis. J Exp Med. 2011;208:217–25.PubMedCrossRef
32.
Zurück zum Zitat •• Lok SI, Winkens B, Goldschmeding R, et al. Circulating growth differentiation factor-15 correlates with myocardial fibrosis in patients with non-ischaemic dilated cardiomyopathy and decreases rapidly after left ventricular assist device support. Eur J Heart Fail. 2012. doi:10.1093/eurjhf/hfs120. This study shows that the GDF-15 levels in patients with advanced nonischemic HF decrease substantially after left ventricular assist device implantation, indicating that even large increases in GDF-15 are, to some extent, reversible and responsive to a potentially life-saving therapeutic intervention. •• Lok SI, Winkens B, Goldschmeding R, et al. Circulating growth differentiation factor-15 correlates with myocardial fibrosis in patients with non-ischaemic dilated cardiomyopathy and decreases rapidly after left ventricular assist device support. Eur J Heart Fail. 2012. doi:10.​1093/​eurjhf/​hfs120. This study shows that the GDF-15 levels in patients with advanced nonischemic HF decrease substantially after left ventricular assist device implantation, indicating that even large increases in GDF-15 are, to some extent, reversible and responsive to a potentially life-saving therapeutic intervention.
33.
Zurück zum Zitat Heger J, Schiegnitz E, von Waldthausen D, et al. Growth differentiation factor 15 acts anti-apoptotic and pro-hypertrophic in adult cardiomyocytes. J Cell Physiol. 2010;224:120–6.PubMed Heger J, Schiegnitz E, von Waldthausen D, et al. Growth differentiation factor 15 acts anti-apoptotic and pro-hypertrophic in adult cardiomyocytes. J Cell Physiol. 2010;224:120–6.PubMed
34.
Zurück zum Zitat Kempf T, Horn-Wichmann R, Brabant G, et al. Circulating concentrations of growth-differentiation factor 15 in apparently healthy elderly individuals and patients with chronic heart failure as assessed by a new immunoradiometric sandwich assay. Clin Chem. 2007;53:284–91.PubMedCrossRef Kempf T, Horn-Wichmann R, Brabant G, et al. Circulating concentrations of growth-differentiation factor 15 in apparently healthy elderly individuals and patients with chronic heart failure as assessed by a new immunoradiometric sandwich assay. Clin Chem. 2007;53:284–91.PubMedCrossRef
35.
Zurück zum Zitat • Rohatgi A, Patel P, Das SR, et al. Association of growth differentiation factor-15 with coronary atherosclerosis and mortality in a young, multiethnic population: observations from the Dallas Heart Study. Clin Chem. 2012;58:172–82. This large population-based study shows that the circulating levels of GDF-15 are independently related to coronary artery calcium, all-cause mortality, and cardiovascular mortality in community-dwelling individuals without known cardiovascular disease. PubMedCrossRef • Rohatgi A, Patel P, Das SR, et al. Association of growth differentiation factor-15 with coronary atherosclerosis and mortality in a young, multiethnic population: observations from the Dallas Heart Study. Clin Chem. 2012;58:172–82. This large population-based study shows that the circulating levels of GDF-15 are independently related to coronary artery calcium, all-cause mortality, and cardiovascular mortality in community-dwelling individuals without known cardiovascular disease. PubMedCrossRef
36.
Zurück zum Zitat Kempf T, Sinning JM, Quint A, et al. Growth-differentiation factor-15 for risk stratification in patients with stable and unstable coronary heart disease: results from the AtheroGene study. Circ Cardiovasc Genet. 2009;2:286–92.PubMedCrossRef Kempf T, Sinning JM, Quint A, et al. Growth-differentiation factor-15 for risk stratification in patients with stable and unstable coronary heart disease: results from the AtheroGene study. Circ Cardiovasc Genet. 2009;2:286–92.PubMedCrossRef
37.
Zurück zum Zitat Kempf T, von Haehling S, Peter T, et al. Prognostic utility of growth differentiation factor-15 in patients with chronic heart failure. J Am Coll Cardiol. 2007;50:1054–60.PubMedCrossRef Kempf T, von Haehling S, Peter T, et al. Prognostic utility of growth differentiation factor-15 in patients with chronic heart failure. J Am Coll Cardiol. 2007;50:1054–60.PubMedCrossRef
38.
Zurück zum Zitat •• Anand IS, Kempf T, Rector TS, et al. Serial measurement of growth-differentiation factor-15 in heart failure: relation to disease severity and prognosis in the Valsartan Heart Failure Trial. Circulation. 2010;122:1387–95. This study presents the largest experience with GDF-15 in heart failure and identifies GDF-15 as an independent prognostic biomarker. The GDF-15 levels increase over time, indicating that GDF-15 reflects a pathophysiological axis that is not completely addressed by the therapies prescribed in Val-HeFT. PubMedCrossRef •• Anand IS, Kempf T, Rector TS, et al. Serial measurement of growth-differentiation factor-15 in heart failure: relation to disease severity and prognosis in the Valsartan Heart Failure Trial. Circulation. 2010;122:1387–95. This study presents the largest experience with GDF-15 in heart failure and identifies GDF-15 as an independent prognostic biomarker. The GDF-15 levels increase over time, indicating that GDF-15 reflects a pathophysiological axis that is not completely addressed by the therapies prescribed in Val-HeFT. PubMedCrossRef
39.
Zurück zum Zitat • Stahrenberg R, Edelmann F, Mende M, et al. The novel biomarker growth differentiation factor 15 in heart failure with normal ejection fraction. Eur J Heart Fail. 2010;12:1309–16. This study shows that GDF-15 levels in heart failure with preserved ejection fraction are similar to those in heart failure with reduced ejection fraction. The diagnostic properties of GDF-15 for detecting heart failure with preserved ejection fraction were at least as good as those of NT-proBNP, and a combination of both markers significantly improved diagnostic accuracy. PubMedCrossRef • Stahrenberg R, Edelmann F, Mende M, et al. The novel biomarker growth differentiation factor 15 in heart failure with normal ejection fraction. Eur J Heart Fail. 2010;12:1309–16. This study shows that GDF-15 levels in heart failure with preserved ejection fraction are similar to those in heart failure with reduced ejection fraction. The diagnostic properties of GDF-15 for detecting heart failure with preserved ejection fraction were at least as good as those of NT-proBNP, and a combination of both markers significantly improved diagnostic accuracy. PubMedCrossRef
40.
Zurück zum Zitat Zimmers TA, Jin X, Hsiao EC, et al. Growth differentiation factor-15/macrophage inhibitory cytokine-1 induction after kidney and lung injury. Shock. 2005;23:543–8.PubMed Zimmers TA, Jin X, Hsiao EC, et al. Growth differentiation factor-15/macrophage inhibitory cytokine-1 induction after kidney and lung injury. Shock. 2005;23:543–8.PubMed
41.
Zurück zum Zitat Zimmers TA, Jin X, Hsiao EC, et al. Growth differentiation factor-15: induction in liver injury through p53 and tumor necrosis factor-independent mechanisms. J Surg Res. 2006;130:45–51.PubMedCrossRef Zimmers TA, Jin X, Hsiao EC, et al. Growth differentiation factor-15: induction in liver injury through p53 and tumor necrosis factor-independent mechanisms. J Surg Res. 2006;130:45–51.PubMedCrossRef
42.
Zurück zum Zitat Melanson BD, Bose R, Hamill JD, et al. The role of mRNA decay in p53-induced gene expression. RNA. 2011;17:2222–34.PubMedCrossRef Melanson BD, Bose R, Hamill JD, et al. The role of mRNA decay in p53-induced gene expression. RNA. 2011;17:2222–34.PubMedCrossRef
43.
Zurück zum Zitat Baek SJ, Horowitz JM, Eling TE. Molecular cloning and characterization of human nonsteroidal anti-inflammatory drug-activated gene promoter. Basal transcription is mediated by Sp1 and Sp3. J Biol Chem. 2001;276:33384–92.PubMedCrossRef Baek SJ, Horowitz JM, Eling TE. Molecular cloning and characterization of human nonsteroidal anti-inflammatory drug-activated gene promoter. Basal transcription is mediated by Sp1 and Sp3. J Biol Chem. 2001;276:33384–92.PubMedCrossRef
44.
Zurück zum Zitat Kannan K, Amariglio N, Rechavi G, Givol D. Profile of gene expression regulated by induced p53: connection to the TGF-β family. FEBS Lett. 2000;470:77–82.PubMedCrossRef Kannan K, Amariglio N, Rechavi G, Givol D. Profile of gene expression regulated by induced p53: connection to the TGF-β family. FEBS Lett. 2000;470:77–82.PubMedCrossRef
45.
Zurück zum Zitat Li PX, Wong J, Ayed A, et al. Placental transforming growth factor-β is a downstream mediator of the growth arrest and apoptotic response of tumor cells to DNA damage and p53 overexpression. J Biol Chem. 2000;275:20127–35.PubMedCrossRef Li PX, Wong J, Ayed A, et al. Placental transforming growth factor-β is a downstream mediator of the growth arrest and apoptotic response of tumor cells to DNA damage and p53 overexpression. J Biol Chem. 2000;275:20127–35.PubMedCrossRef
46.
Zurück zum Zitat Tan M, Wang Y, Guan K, Sun Y. PTGF-β, a type β transforming growth factor (TGF-β) superfamily member, is a p53 target gene that inhibits tumor cell growth via TGF-β signaling pathway. Proc Natl Acad Sci U S A. 2000;97:109–14.PubMedCrossRef Tan M, Wang Y, Guan K, Sun Y. PTGF-β, a type β transforming growth factor (TGF-β) superfamily member, is a p53 target gene that inhibits tumor cell growth via TGF-β signaling pathway. Proc Natl Acad Sci U S A. 2000;97:109–14.PubMedCrossRef
47.
Zurück zum Zitat Yang H, Filipovic Z, Brown D, et al. Macrophage inhibitory cytokine-1: a novel biomarker for p53 pathway activation. Mol Cancer Ther. 2003;2:1023–9.PubMed Yang H, Filipovic Z, Brown D, et al. Macrophage inhibitory cytokine-1: a novel biomarker for p53 pathway activation. Mol Cancer Ther. 2003;2:1023–9.PubMed
48.
Zurück zum Zitat Osada M, Park HL, Park MJ, et al. A p53-type response element in the GDF15 promoter confers high specificity for p53 activation. Biochem Biophys Res Commun. 2007;354:913–8.PubMedCrossRef Osada M, Park HL, Park MJ, et al. A p53-type response element in the GDF15 promoter confers high specificity for p53 activation. Biochem Biophys Res Commun. 2007;354:913–8.PubMedCrossRef
49.
Zurück zum Zitat Albertoni M, Shaw PH, Nozaki M, et al. Anoxia induces macrophage inhibitory cytokine-1 (MIC-1) in glioblastoma cells independently of p53 and HIF-1. Oncogene. 2002;21:4212–9.PubMedCrossRef Albertoni M, Shaw PH, Nozaki M, et al. Anoxia induces macrophage inhibitory cytokine-1 (MIC-1) in glioblastoma cells independently of p53 and HIF-1. Oncogene. 2002;21:4212–9.PubMedCrossRef
50.
Zurück zum Zitat Minamino T, Orimo M, Shimizu I, et al. A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nat Med. 2009;15:1082–7.PubMedCrossRef Minamino T, Orimo M, Shimizu I, et al. A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nat Med. 2009;15:1082–7.PubMedCrossRef
52.
Zurück zum Zitat Reinhardt HC, Schumacher B. The p53 network: cellular and systemic DNA damage responses in aging and cancer. Trends Genet. 2012;28:128–36.PubMedCrossRef Reinhardt HC, Schumacher B. The p53 network: cellular and systemic DNA damage responses in aging and cancer. Trends Genet. 2012;28:128–36.PubMedCrossRef
53.
Zurück zum Zitat Wang JC, Bennett M. Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ Res. 2012;111:245–59.PubMedCrossRef Wang JC, Bennett M. Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ Res. 2012;111:245–59.PubMedCrossRef
54.
Zurück zum Zitat Moslehi J, DePinho RA, Sahin E. Telomeres and mitochondria in the aging heart. Circ Res. 2012;110:1226–37.PubMedCrossRef Moslehi J, DePinho RA, Sahin E. Telomeres and mitochondria in the aging heart. Circ Res. 2012;110:1226–37.PubMedCrossRef
55.
Zurück zum Zitat Sahin E, Colla S, Liesa M, et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature. 2011;470:359–65.PubMedCrossRef Sahin E, Colla S, Liesa M, et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature. 2011;470:359–65.PubMedCrossRef
56.
Zurück zum Zitat Sano M, Minamino T, Toko H, et al. p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload. Nature. 2007;446:444–8.PubMedCrossRef Sano M, Minamino T, Toko H, et al. p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload. Nature. 2007;446:444–8.PubMedCrossRef
57.
Zurück zum Zitat Shimizu I, Yoshida Y, Katsuno T, et al. p53-induced adipose tissue inflammation is critically involved in the development of insulin resistance in heart failure. Cell Metab. 2012;15:51–64.PubMedCrossRef Shimizu I, Yoshida Y, Katsuno T, et al. p53-induced adipose tissue inflammation is critically involved in the development of insulin resistance in heart failure. Cell Metab. 2012;15:51–64.PubMedCrossRef
58.
Zurück zum Zitat • Daniels LB, Clopton P, Laughlin GA, et al. Growth-differentiation factor-15 is a robust, independent predictor of 11-year mortality risk in community-dwelling older adults: the Rancho Bernardo Study. Circulation. 2011;123:2101–10. This population-based study in older adults without known heart disease identifies GDF-15 as a robust predictor of all-cause, cardiovascular, and noncardiovascular mortality, adding incremental value to traditional risk factors, NT-proBNP, and CRP. PubMedCrossRef • Daniels LB, Clopton P, Laughlin GA, et al. Growth-differentiation factor-15 is a robust, independent predictor of 11-year mortality risk in community-dwelling older adults: the Rancho Bernardo Study. Circulation. 2011;123:2101–10. This population-based study in older adults without known heart disease identifies GDF-15 as a robust predictor of all-cause, cardiovascular, and noncardiovascular mortality, adding incremental value to traditional risk factors, NT-proBNP, and CRP. PubMedCrossRef
59.
Zurück zum Zitat Lind L, Wallentin L, Kempf T, et al. Growth-differentiation factor-15 is an independent marker of cardiovascular dysfunction and disease in the elderly: results from the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) Study. Eur Heart J. 2009;30:2346–53.PubMedCrossRef Lind L, Wallentin L, Kempf T, et al. Growth-differentiation factor-15 is an independent marker of cardiovascular dysfunction and disease in the elderly: results from the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) Study. Eur Heart J. 2009;30:2346–53.PubMedCrossRef
60.
Zurück zum Zitat Eggers KM, Kempf T, Lagerqvist B, et al. Growth-differentiation factor-15 for long-term risk prediction in patients stabilized after an episode of non-ST-segment-elevation acute coronary syndrome. Circ Cardiovasc Genet. 2010;3:88–96.PubMedCrossRef Eggers KM, Kempf T, Lagerqvist B, et al. Growth-differentiation factor-15 for long-term risk prediction in patients stabilized after an episode of non-ST-segment-elevation acute coronary syndrome. Circ Cardiovasc Genet. 2010;3:88–96.PubMedCrossRef
61.
Zurück zum Zitat Wollert KC, Kempf T, Peter T, et al. Prognostic value of growth-differentiation factor-15 in patients with non-ST-elevation acute coronary syndrome. Circulation. 2007;115:962–71.PubMedCrossRef Wollert KC, Kempf T, Peter T, et al. Prognostic value of growth-differentiation factor-15 in patients with non-ST-elevation acute coronary syndrome. Circulation. 2007;115:962–71.PubMedCrossRef
62.
Zurück zum Zitat Wollert KC, Kempf T, Lagerqvist B, et al. Growth differentiation factor 15 for risk stratification and selection of an invasive treatment strategy in non ST-elevation acute coronary syndrome. Circulation. 2007;116:1540–8.PubMedCrossRef Wollert KC, Kempf T, Lagerqvist B, et al. Growth differentiation factor 15 for risk stratification and selection of an invasive treatment strategy in non ST-elevation acute coronary syndrome. Circulation. 2007;116:1540–8.PubMedCrossRef
63.
Zurück zum Zitat Kempf T, Bjorklund E, Olofsson S, et al. Growth-differentiation factor-15 improves risk stratification in ST-segment elevation myocardial infarction. Eur Heart J. 2007;28:2858–65.PubMedCrossRef Kempf T, Bjorklund E, Olofsson S, et al. Growth-differentiation factor-15 improves risk stratification in ST-segment elevation myocardial infarction. Eur Heart J. 2007;28:2858–65.PubMedCrossRef
64.
Zurück zum Zitat Khan SQ, Ng K, Dhillon O, et al. Growth differentiation factor-15 as a prognostic marker in patients with acute myocardial infarction. Eur Heart J. 2009;30:1057–65.PubMedCrossRef Khan SQ, Ng K, Dhillon O, et al. Growth differentiation factor-15 as a prognostic marker in patients with acute myocardial infarction. Eur Heart J. 2009;30:1057–65.PubMedCrossRef
65.
Zurück zum Zitat Dostalova I, Roubicek T, Bartlova M, et al. Increased serum concentrations of macrophage inhibitory cytokine-1 in patients with obesity and type 2 diabetes mellitus: the influence of very low calorie diet. Eur J Endocrinol. 2009;161:397–404.PubMedCrossRef Dostalova I, Roubicek T, Bartlova M, et al. Increased serum concentrations of macrophage inhibitory cytokine-1 in patients with obesity and type 2 diabetes mellitus: the influence of very low calorie diet. Eur J Endocrinol. 2009;161:397–404.PubMedCrossRef
66.
Zurück zum Zitat Vila G, Riedl M, Anderwald C, et al. The relationship between insulin resistance and the cardiovascular biomarker growth differentiation factor-15 in obese patients. Clin Chem. 2011;57:309–16.PubMedCrossRef Vila G, Riedl M, Anderwald C, et al. The relationship between insulin resistance and the cardiovascular biomarker growth differentiation factor-15 in obese patients. Clin Chem. 2011;57:309–16.PubMedCrossRef
67.
Zurück zum Zitat Kempf T, Guba-Quint A, Torgerson J, et al. Growth differentiation factor 15 predicts future insulin resistance and impaired glucose control in obese non-diabetic individuals: results from the XENDOS trial. Eur J Endocrinol. 2012. doi:10.1530/EJE-12-0466. Kempf T, Guba-Quint A, Torgerson J, et al. Growth differentiation factor 15 predicts future insulin resistance and impaired glucose control in obese non-diabetic individuals: results from the XENDOS trial. Eur J Endocrinol. 2012. doi:10.​1530/​EJE-12-0466.
68.
Zurück zum Zitat Schledzewski K, Geraud C, Arnold B, et al. Deficiency of liver sinusoidal scavenger receptors stabilin-1 and −2 in mice causes glomerulofibrotic nephropathy via impaired hepatic clearance of noxious blood factors. J Clin Invest. 2011;121:703–14.PubMedCrossRef Schledzewski K, Geraud C, Arnold B, et al. Deficiency of liver sinusoidal scavenger receptors stabilin-1 and −2 in mice causes glomerulofibrotic nephropathy via impaired hepatic clearance of noxious blood factors. J Clin Invest. 2011;121:703–14.PubMedCrossRef
69.
Zurück zum Zitat Duong Van Huyen JP, Cheval L, Bloch-Faure M, et al. GDF15 triggers homeostatic proliferation of acid-secreting collecting duct cells. J Am Soc Nephrol. 2008;19:1965–74.PubMedCrossRef Duong Van Huyen JP, Cheval L, Bloch-Faure M, et al. GDF15 triggers homeostatic proliferation of acid-secreting collecting duct cells. J Am Soc Nephrol. 2008;19:1965–74.PubMedCrossRef
70.
Zurück zum Zitat Simonson MS, Tiktin M, Debanne SM, et al. The renal transcriptome of db/db mice identifies putative urinary biomarker proteins in patients with type 2 diabetes: a pilot study. Am J Physiol Renal Physiol. 2012;302:F820–9.PubMedCrossRef Simonson MS, Tiktin M, Debanne SM, et al. The renal transcriptome of db/db mice identifies putative urinary biomarker proteins in patients with type 2 diabetes: a pilot study. Am J Physiol Renal Physiol. 2012;302:F820–9.PubMedCrossRef
71.
Zurück zum Zitat • Bonaca MP, Morrow DA, Braunwald E, et al. Growth differentiation factor-15 and risk of recurrent events in patients stabilized after acute coronary syndrome: observations from PROVE IT-TIMI 22. Arterioscler Thromb Vasc Biol. 2011;31:203–10. This large study in patients with acute coronary syndrome shows that predischarge levels of GDF-15 are associated with the future risks of heart failure, recurrent myocardial infarction, and death independently of clinical predictors, BNP, and CRP. PubMedCrossRef • Bonaca MP, Morrow DA, Braunwald E, et al. Growth differentiation factor-15 and risk of recurrent events in patients stabilized after acute coronary syndrome: observations from PROVE IT-TIMI 22. Arterioscler Thromb Vasc Biol. 2011;31:203–10. This large study in patients with acute coronary syndrome shows that predischarge levels of GDF-15 are associated with the future risks of heart failure, recurrent myocardial infarction, and death independently of clinical predictors, BNP, and CRP. PubMedCrossRef
72.
Zurück zum Zitat Lindahl B, Lindback J, Jernberg T, et al. Serial analyses of N-terminal pro-B-type natriuretic peptide in patients with non-ST-segment elevation acute coronary syndromes: a Fragmin and fast Revascularisation during In Stability in Coronary artery disease (FRISC)-II substudy. J Am Coll Cardiol. 2005;45:533–41.PubMedCrossRef Lindahl B, Lindback J, Jernberg T, et al. Serial analyses of N-terminal pro-B-type natriuretic peptide in patients with non-ST-segment elevation acute coronary syndromes: a Fragmin and fast Revascularisation during In Stability in Coronary artery disease (FRISC)-II substudy. J Am Coll Cardiol. 2005;45:533–41.PubMedCrossRef
73.
Zurück zum Zitat Manhenke C, Orn S, von Haehling S, et al. Clustering of 37 circulating biomarkers by exploratory factor analysis in patients following complicated acute myocardial infarction. Int J Cardiol. 2011, Epub ahead of print. Manhenke C, Orn S, von Haehling S, et al. Clustering of 37 circulating biomarkers by exploratory factor analysis in patients following complicated acute myocardial infarction. Int J Cardiol. 2011, Epub ahead of print.
74.
Zurück zum Zitat Dominguez-Rodriguez A, Abreu-Gonzalez P, Avanzas P. Relation of growth-differentiation factor 15 to left ventricular remodeling in ST-segment elevation myocardial infarction. Am J Cardiol. 2011;108:955–8.PubMedCrossRef Dominguez-Rodriguez A, Abreu-Gonzalez P, Avanzas P. Relation of growth-differentiation factor 15 to left ventricular remodeling in ST-segment elevation myocardial infarction. Am J Cardiol. 2011;108:955–8.PubMedCrossRef
75.
Zurück zum Zitat Bernheim SM, Grady JN, Lin Z, et al. National patterns of risk-standardized mortality and readmission for acute myocardial infarction and heart failure. Update on publicly reported outcomes measures based on the 2010 release. Circ Cardiovasc Qual Outcomes. 2010;3:459–67.PubMedCrossRef Bernheim SM, Grady JN, Lin Z, et al. National patterns of risk-standardized mortality and readmission for acute myocardial infarction and heart failure. Update on publicly reported outcomes measures based on the 2010 release. Circ Cardiovasc Qual Outcomes. 2010;3:459–67.PubMedCrossRef
76.
Zurück zum Zitat •• Wang TJ, Wollert KC, Larson MG, et al. Prognostic utility of novel biomarkers of cardiovascular stress: the Framingham Heart Study. Circulation. 2012, first published on August 20 2012 as doi:10.1161/CIRCULATIONAHA.112.129437. As is shown in this study, GDF-15 predicts the future risk of heart failure in apparently healthy individuals from the community even in the context of BNP and established clinical risk factors. •• Wang TJ, Wollert KC, Larson MG, et al. Prognostic utility of novel biomarkers of cardiovascular stress: the Framingham Heart Study. Circulation. 2012, first published on August 20 2012 as doi:10.​1161/​CIRCULATIONAHA.​112.​129437. As is shown in this study, GDF-15 predicts the future risk of heart failure in apparently healthy individuals from the community even in the context of BNP and established clinical risk factors.
77.
Zurück zum Zitat Brown DA, Breit SN, Buring J, et al. Concentration in plasma of macrophage inhibitory cytokine-1 and risk of cardiovascular events in women: a nested case–control study. Lancet. 2002;359:2159–63.PubMedCrossRef Brown DA, Breit SN, Buring J, et al. Concentration in plasma of macrophage inhibitory cytokine-1 and risk of cardiovascular events in women: a nested case–control study. Lancet. 2002;359:2159–63.PubMedCrossRef
78.
Zurück zum Zitat Wiklund FE, Bennet AM, Magnusson PK, et al. Macrophage inhibitory cytokine-1 (MIC-1/GDF15): a new marker of all-cause mortality. Aging Cell. 2010;9:1057–64.PubMedCrossRef Wiklund FE, Bennet AM, Magnusson PK, et al. Macrophage inhibitory cytokine-1 (MIC-1/GDF15): a new marker of all-cause mortality. Aging Cell. 2010;9:1057–64.PubMedCrossRef
79.
Zurück zum Zitat Widera C, Pencina MJ, Meisner A, et al. Adjustment of the GRACE score by growth differentiation factor 15 enables a more accurate appreciation of risk in non-ST-elevation acute coronary syndrome. Eur Heart J. 2012;33:1095–104.PubMedCrossRef Widera C, Pencina MJ, Meisner A, et al. Adjustment of the GRACE score by growth differentiation factor 15 enables a more accurate appreciation of risk in non-ST-elevation acute coronary syndrome. Eur Heart J. 2012;33:1095–104.PubMedCrossRef
80.
Zurück zum Zitat Foley PW, Stegemann B, Ng K, et al. Growth differentiation factor-15 predicts mortality and morbidity after cardiac resynchronization therapy. Eur Heart J. 2009;30:2749–57.PubMedCrossRef Foley PW, Stegemann B, Ng K, et al. Growth differentiation factor-15 predicts mortality and morbidity after cardiac resynchronization therapy. Eur Heart J. 2009;30:2749–57.PubMedCrossRef
81.
Zurück zum Zitat • Lankeit M, Kempf T, Dellas C, et al. Growth differentiation factor-15 for prognostic assessment of patients with acute pulmonary embolism. Am J Respir Crit Care Med. 2008;177:1018–25. This study identifies GDF-15 as a prognostic biomarker in acute pulmonary embolism. The ability of GDF-15 to identify patients who experienced complications during the first 30 days was superior to that of NT-proBNP. GDF-15, but not NT-proBNP, added prognostic information to an echocardiographic assessment of right ventricular function. PubMedCrossRef • Lankeit M, Kempf T, Dellas C, et al. Growth differentiation factor-15 for prognostic assessment of patients with acute pulmonary embolism. Am J Respir Crit Care Med. 2008;177:1018–25. This study identifies GDF-15 as a prognostic biomarker in acute pulmonary embolism. The ability of GDF-15 to identify patients who experienced complications during the first 30 days was superior to that of NT-proBNP. GDF-15, but not NT-proBNP, added prognostic information to an echocardiographic assessment of right ventricular function. PubMedCrossRef
82.
Zurück zum Zitat Jaff MR, McMurtry MS, Archer SL, et al. Management of massive and submassive pulmonary embolism, iliofemoral deep vein thrombosis, and chronic thromboembolic pulmonary hypertension: a scientific statement from the American Heart Association. Circulation. 2011;123:1788–830.PubMedCrossRef Jaff MR, McMurtry MS, Archer SL, et al. Management of massive and submassive pulmonary embolism, iliofemoral deep vein thrombosis, and chronic thromboembolic pulmonary hypertension: a scientific statement from the American Heart Association. Circulation. 2011;123:1788–830.PubMedCrossRef
83.
Zurück zum Zitat • Nickel N, Kempf T, Tapken H, et al. Growth differentiation factor-15 in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med. 2008;178:534–41. This study identifies GDF-15 as an independent prognostic biomarker in patients with idiopathic pulmonary arterial hypertension and right-sided heart failure. Changes in GDF-15 over time after initiation of medical therapy were tracking changes in functional status. PubMedCrossRef • Nickel N, Kempf T, Tapken H, et al. Growth differentiation factor-15 in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med. 2008;178:534–41. This study identifies GDF-15 as an independent prognostic biomarker in patients with idiopathic pulmonary arterial hypertension and right-sided heart failure. Changes in GDF-15 over time after initiation of medical therapy were tracking changes in functional status. PubMedCrossRef
84.
Zurück zum Zitat Richards AM, Troughton RW. Use of natriuretic peptides to guide and monitor heart failure therapy. Clin Chem. 2012;58:62–71.PubMedCrossRef Richards AM, Troughton RW. Use of natriuretic peptides to guide and monitor heart failure therapy. Clin Chem. 2012;58:62–71.PubMedCrossRef
85.
Zurück zum Zitat Frankenstein L, Remppis A, Frankenstein J, et al. Reference change values and determinants of variability of NT-proANP and GDF15 in stable chronic heart failure. Basic Res Cardiol. 2009;104:731–8.PubMedCrossRef Frankenstein L, Remppis A, Frankenstein J, et al. Reference change values and determinants of variability of NT-proANP and GDF15 in stable chronic heart failure. Basic Res Cardiol. 2009;104:731–8.PubMedCrossRef
86.
Zurück zum Zitat Frankenstein L, Remppis A, Frankenstein J, et al. Variability of N-terminal probrain natriuretic peptide in stable chronic heart failure and its relation to changes in clinical variables. Clin Chem. 2009;55:923–9.PubMedCrossRef Frankenstein L, Remppis A, Frankenstein J, et al. Variability of N-terminal probrain natriuretic peptide in stable chronic heart failure and its relation to changes in clinical variables. Clin Chem. 2009;55:923–9.PubMedCrossRef
87.
Zurück zum Zitat Miller LW, Pagani FD, Russell SD, et al. Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med. 2007;357:885–96.PubMedCrossRef Miller LW, Pagani FD, Russell SD, et al. Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med. 2007;357:885–96.PubMedCrossRef
88.
Zurück zum Zitat Kato TS, Chokshi A, Singh P, et al. Effects of continuous-flow versus pulsatile-flow left ventricular assist devices on myocardial unloading and remodeling. Circ Heart Fail. 2011;4:546–53.PubMedCrossRef Kato TS, Chokshi A, Singh P, et al. Effects of continuous-flow versus pulsatile-flow left ventricular assist devices on myocardial unloading and remodeling. Circ Heart Fail. 2011;4:546–53.PubMedCrossRef
89.
Zurück zum Zitat Munzel T, Gori T, Bruno RM, Taddei S. Is oxidative stress a therapeutic target in cardiovascular disease? Eur Heart J. 2010;31:2741–8.PubMedCrossRef Munzel T, Gori T, Bruno RM, Taddei S. Is oxidative stress a therapeutic target in cardiovascular disease? Eur Heart J. 2010;31:2741–8.PubMedCrossRef
90.
Zurück zum Zitat Heymans S, Hirsch E, Anker SD, et al. Inflammation as a therapeutic target in heart failure? A scientific statement from the Translational Research Committee of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2009;11:119–29.PubMedCrossRef Heymans S, Hirsch E, Anker SD, et al. Inflammation as a therapeutic target in heart failure? A scientific statement from the Translational Research Committee of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2009;11:119–29.PubMedCrossRef
91.
Zurück zum Zitat Wang X, Yang X, Sun K, et al. The haplotype of the growth-differentiation factor 15 gene is associated with left ventricular hypertrophy in human essential hypertension. Clin Sci. 2010;118:137–45.CrossRef Wang X, Yang X, Sun K, et al. The haplotype of the growth-differentiation factor 15 gene is associated with left ventricular hypertrophy in human essential hypertension. Clin Sci. 2010;118:137–45.CrossRef
Metadaten
Titel
Growth Differentiation Factor 15 in Heart Failure: An Update
verfasst von
Kai C. Wollert
Tibor Kempf
Publikationsdatum
01.12.2012
Verlag
Current Science Inc.
Erschienen in
Current Heart Failure Reports / Ausgabe 4/2012
Print ISSN: 1546-9530
Elektronische ISSN: 1546-9549
DOI
https://doi.org/10.1007/s11897-012-0113-9

Weitere Artikel der Ausgabe 4/2012

Current Heart Failure Reports 4/2012 Zur Ausgabe

Pathophysiology of Myocardial Failure (IS Anand, Section Editor)

Anemia and Iron Deficiency in Heart Failure

Pathophysiology of Myocardial Failure (IS Anand, Section Editor)

Atrial Fibrillation in Heart Failure

Prevention of Heart Failure After Myocardial Infarction (M St. John Sutton, Section Editor)

Molecular and Cellular Basis for Diastolic Dysfunction

Epidemiology of Heart Failure (J Butler, Section Editor)

Prevalence and Importance of Comorbidities in Patients With Heart Failure

Epidemiology of Heart Failure (J Butler, Section Editor)

Aging of the United States Population: Impact on Heart Failure

„Jeder Fall von plötzlichem Tod muss obduziert werden!“

17.05.2024 Plötzlicher Herztod Nachrichten

Ein signifikanter Anteil der Fälle von plötzlichem Herztod ist genetisch bedingt. Um ihre Verwandten vor diesem Schicksal zu bewahren, sollten jüngere Personen, die plötzlich unerwartet versterben, ausnahmslos einer Autopsie unterzogen werden.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Schlechtere Vorhofflimmern-Prognose bei kleinem linken Ventrikel

17.05.2024 Vorhofflimmern Nachrichten

Nicht nur ein vergrößerter, sondern auch ein kleiner linker Ventrikel ist bei Vorhofflimmern mit einer erhöhten Komplikationsrate assoziiert. Der Zusammenhang besteht nach Daten aus China unabhängig von anderen Risikofaktoren.

Semaglutid bei Herzinsuffizienz: Wie erklärt sich die Wirksamkeit?

17.05.2024 Herzinsuffizienz Nachrichten

Bei adipösen Patienten mit Herzinsuffizienz des HFpEF-Phänotyps ist Semaglutid von symptomatischem Nutzen. Resultiert dieser Benefit allein aus der Gewichtsreduktion oder auch aus spezifischen Effekten auf die Herzinsuffizienz-Pathogenese? Eine neue Analyse gibt Aufschluss.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.