Skip to main content
Erschienen in: Immunologic Research 1-3/2013

01.03.2013 | Immunology in Colorado

The role of Mg2+ in immune cells

verfasst von: Katherine Brandao, Francina Deason-Towne, Anne-Laure Perraud, Carsten Schmitz

Erschienen in: Immunologic Research | Ausgabe 1-3/2013

Einloggen, um Zugang zu erhalten

Abstract

The physiological and clinical relevance of Mg2+ has evolved over the last decades. The molecular identification of multiple Mg2+ transporters (Acdp2, MagT1, Mrs2, Paracellin-1, SLC41A1, SLC41A2, TRPM6 and TRPM7) and their biophysical characterization in recent years has improved our understanding of Mg2+ homeostasis regulation and has provided a basis for investigating the role of Mg2+ in the immune system. Deletions and mutations of Mg2+ transporters produce severe phenotypes with more systemic symptoms than those seen with Ca2+ channel deletions, which tend to be more specific and less profound. Deficiency of the Mg2+ permeable ion channels TRPM6 or TRPM7 in mice is lethal at embryonic day 12.5 or at day 6.5, respectively, and, even more surprisingly, chicken DT40 B cells lacking TRPM7 die after 24–48 h. Recent progress made in Mg2+ research has helped to define underlying mechanisms of two hereditary diseases, human Hypomagnesemia (TRPM6 deletion) and X-chromosomal immunodeficiency (MagT1 deletion), and has revealed a potential new role for Mg2+ as a second messenger. Future elucidation of human Mg2+ transporters (Mrs2, SLC41A1, SLC41A2, TRPM7) expressed in immunocytes, beyond MagT1 and TRPM6, will widen our knowledge about the potential role of Mg2+ in the activation of the immune response.
Literatur
1.
Zurück zum Zitat Perraud AL, Knowles HM, Schmitz C. Novel aspects of signaling and ion-homeostasis regulation in immunocytes. The TRPM ion channels and their potential role in modulating the immune response. Mol Immunol. 2004;41:657–73.PubMedCrossRef Perraud AL, Knowles HM, Schmitz C. Novel aspects of signaling and ion-homeostasis regulation in immunocytes. The TRPM ion channels and their potential role in modulating the immune response. Mol Immunol. 2004;41:657–73.PubMedCrossRef
2.
Zurück zum Zitat Schmitz C, Deason F, Perraud AL. Molecular components of vertebrate Mg2+-homeostasis regulation. Magnes Res. 2007;20:6–18.PubMed Schmitz C, Deason F, Perraud AL. Molecular components of vertebrate Mg2+-homeostasis regulation. Magnes Res. 2007;20:6–18.PubMed
3.
Zurück zum Zitat Quamme GA. Molecular identification of ancient and modern mammalian magnesium transporters. Am J Physiol Cell Physiol. 2010;298:C407–29.PubMedCrossRef Quamme GA. Molecular identification of ancient and modern mammalian magnesium transporters. Am J Physiol Cell Physiol. 2010;298:C407–29.PubMedCrossRef
4.
5.
6.
Zurück zum Zitat Romani AM, Matthews VD, Scarpa A. Parallel stimulation of glucose and Mg(2+) accumulation by insulin in rat hearts and cardiac ventricular myocytes. Circ Res. 2000;86:326–33.PubMedCrossRef Romani AM, Matthews VD, Scarpa A. Parallel stimulation of glucose and Mg(2+) accumulation by insulin in rat hearts and cardiac ventricular myocytes. Circ Res. 2000;86:326–33.PubMedCrossRef
7.
Zurück zum Zitat Eskes R, Antonsson B, Osen-Sand A, et al. Bax-induced cytochrome C release from mitochondria is independent of the permeability transition pore but highly dependent on Mg2+ ions. J Cell Biol. 1998;143:217–24.PubMedCrossRef Eskes R, Antonsson B, Osen-Sand A, et al. Bax-induced cytochrome C release from mitochondria is independent of the permeability transition pore but highly dependent on Mg2+ ions. J Cell Biol. 1998;143:217–24.PubMedCrossRef
8.
Zurück zum Zitat Wolf FI, Cittadini A. Magnesium in cell proliferation and differentiation. Front Biosci. 1999;4:D607–17.PubMedCrossRef Wolf FI, Cittadini A. Magnesium in cell proliferation and differentiation. Front Biosci. 1999;4:D607–17.PubMedCrossRef
9.
Zurück zum Zitat Wolf FI, Trapani V. Cell (patho)physiology of magnesium. Clin Sci (Lond). 2008;114:27–35.CrossRef Wolf FI, Trapani V. Cell (patho)physiology of magnesium. Clin Sci (Lond). 2008;114:27–35.CrossRef
10.
Zurück zum Zitat O’Rourke B. Ion channels as sensors of cellular energy. Mechanisms for modulation by magnesium and nucleotides. Biochem Pharmacol. 1993;46:1103–12.PubMedCrossRef O’Rourke B. Ion channels as sensors of cellular energy. Mechanisms for modulation by magnesium and nucleotides. Biochem Pharmacol. 1993;46:1103–12.PubMedCrossRef
11.
Zurück zum Zitat Morrill GA, Gupta RK, Kostellow AB, et al. Mg2+ modulates membrane sphingolipid and lipid second messenger levels in vascular smooth muscle cells. FEBS Lett. 1998;440:167–71.PubMedCrossRef Morrill GA, Gupta RK, Kostellow AB, et al. Mg2+ modulates membrane sphingolipid and lipid second messenger levels in vascular smooth muscle cells. FEBS Lett. 1998;440:167–71.PubMedCrossRef
12.
13.
Zurück zum Zitat Chien MM, Cambier JC. Divalent cation regulation of phosphoinositide metabolism. Naturally occurring B lymphoblasts contain a Mg2(+)-regulated phosphatidylinositol-specific phospholipase C. J Biol Chem. 1990;265:9201–7.PubMed Chien MM, Cambier JC. Divalent cation regulation of phosphoinositide metabolism. Naturally occurring B lymphoblasts contain a Mg2(+)-regulated phosphatidylinositol-specific phospholipase C. J Biol Chem. 1990;265:9201–7.PubMed
14.
Zurück zum Zitat D’Angelo EK, Singer HA, Rembold CM. Magnesium relaxes arterial smooth muscle by decreasing intracellular Ca2+ without changing intracellular Mg2+. J Clin Invest. 1992;89:1988–94.PubMedCrossRef D’Angelo EK, Singer HA, Rembold CM. Magnesium relaxes arterial smooth muscle by decreasing intracellular Ca2+ without changing intracellular Mg2+. J Clin Invest. 1992;89:1988–94.PubMedCrossRef
15.
Zurück zum Zitat Nakajima T, Iwasawa K, Hazama H, et al. Extracellular Mg2+ inhibits receptor-mediated Ca(2+)-permeable non-selective cation currents in aortic smooth muscle cells. Eur J Pharmacol. 1997;320:81–6.PubMedCrossRef Nakajima T, Iwasawa K, Hazama H, et al. Extracellular Mg2+ inhibits receptor-mediated Ca(2+)-permeable non-selective cation currents in aortic smooth muscle cells. Eur J Pharmacol. 1997;320:81–6.PubMedCrossRef
16.
Zurück zum Zitat Zhang A, Cheng TP, Altura BT, et al. Extracellular magnesium regulates intracellular free Mg2+ in vascular smooth muscle cells. Pflugers Arch. 1992;421:391–3.PubMedCrossRef Zhang A, Cheng TP, Altura BT, et al. Extracellular magnesium regulates intracellular free Mg2+ in vascular smooth muscle cells. Pflugers Arch. 1992;421:391–3.PubMedCrossRef
17.
Zurück zum Zitat Mazur A, Maier JA, Rock E, et al. Magnesium and the inflammatory response: potential physiopathological implications. Arch Biochem Biophys. 2007;458:48–56.PubMedCrossRef Mazur A, Maier JA, Rock E, et al. Magnesium and the inflammatory response: potential physiopathological implications. Arch Biochem Biophys. 2007;458:48–56.PubMedCrossRef
18.
Zurück zum Zitat Zimowska W, Girardeau JP, Kuryszko J, et al. Morphological and immune response alterations in the intestinal mucosa of the mouse after short periods on a low-magnesium diet. Br J Nutr. 2002;88:515–22.PubMedCrossRef Zimowska W, Girardeau JP, Kuryszko J, et al. Morphological and immune response alterations in the intestinal mucosa of the mouse after short periods on a low-magnesium diet. Br J Nutr. 2002;88:515–22.PubMedCrossRef
19.
Zurück zum Zitat Malpuech-Brugere C, Nowacki W, Gueux E, et al. Accelerated thymus involution in magnesium-deficient rats is related to enhanced apoptosis and sensitivity to oxidative stress. Br J Nutr. 1999;81:405–11.PubMed Malpuech-Brugere C, Nowacki W, Gueux E, et al. Accelerated thymus involution in magnesium-deficient rats is related to enhanced apoptosis and sensitivity to oxidative stress. Br J Nutr. 1999;81:405–11.PubMed
20.
Zurück zum Zitat Guerrero-Romero F, Rodriguez-Moran M. Magnesium improves the beta-cell function to compensate variation of insulin sensitivity: double-blind, randomized clinical trial. Eur J Clin Invest. 2011;41:405–10.PubMedCrossRef Guerrero-Romero F, Rodriguez-Moran M. Magnesium improves the beta-cell function to compensate variation of insulin sensitivity: double-blind, randomized clinical trial. Eur J Clin Invest. 2011;41:405–10.PubMedCrossRef
21.
Zurück zum Zitat Rayssiguier Y, Libako P, Nowacki W, et al. Magnesium deficiency and metabolic syndrome: stress and inflammation may reflect calcium activation. Magnes Res. 2010;23:73–80.PubMed Rayssiguier Y, Libako P, Nowacki W, et al. Magnesium deficiency and metabolic syndrome: stress and inflammation may reflect calcium activation. Magnes Res. 2010;23:73–80.PubMed
22.
Zurück zum Zitat Deason-Towne F, Perraud AL, Schmitz C. Identification of Ser/Thr phosphorylation sites in the C2-domain of phospholipase C gamma2 (PLCgamma2) using TRPM7-kinase. Cell Signal. 2012;24:2070–2075. Deason-Towne F, Perraud AL, Schmitz C. Identification of Ser/Thr phosphorylation sites in the C2-domain of phospholipase C gamma2 (PLCgamma2) using TRPM7-kinase. Cell Signal. 2012;24:2070–2075.
23.
Zurück zum Zitat Li FY, Chaigne-Delalande B, Kanellopoulou C, et al. Second messenger role for Mg2+ revealed by human T-cell immunodeficiency. Nature. 2011;475:471–6.PubMedCrossRef Li FY, Chaigne-Delalande B, Kanellopoulou C, et al. Second messenger role for Mg2+ revealed by human T-cell immunodeficiency. Nature. 2011;475:471–6.PubMedCrossRef
24.
Zurück zum Zitat Zsurka G, Gregan J, Schweyen RJ. The human mitochondrial Mrs2 protein functionally substitutes for its yeast homologue, a candidate magnesium transporter. Genomics. 2001;72:158–68.PubMedCrossRef Zsurka G, Gregan J, Schweyen RJ. The human mitochondrial Mrs2 protein functionally substitutes for its yeast homologue, a candidate magnesium transporter. Genomics. 2001;72:158–68.PubMedCrossRef
25.
Zurück zum Zitat Goytain A, Quamme GA. Identification and characterization of a novel mammalian Mg2+ transporter with channel-like properties. BMC Genomics. 2005;6:48.PubMedCrossRef Goytain A, Quamme GA. Identification and characterization of a novel mammalian Mg2+ transporter with channel-like properties. BMC Genomics. 2005;6:48.PubMedCrossRef
26.
Zurück zum Zitat Schlingmann KP, Weber S, Peters M, et al. Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat Genet. 2002;31:166–70.PubMedCrossRef Schlingmann KP, Weber S, Peters M, et al. Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat Genet. 2002;31:166–70.PubMedCrossRef
27.
Zurück zum Zitat Walder RY, Landau D, Meyer P, et al. Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat Genet. 2002;31:171–4.PubMedCrossRef Walder RY, Landau D, Meyer P, et al. Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat Genet. 2002;31:171–4.PubMedCrossRef
28.
Zurück zum Zitat Runnels LW, Yue L, Clapham DE. TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science. 2001;291:1043–7.PubMedCrossRef Runnels LW, Yue L, Clapham DE. TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science. 2001;291:1043–7.PubMedCrossRef
29.
Zurück zum Zitat Nadler MJ, Hermosura MC, Inabe K, et al. LTRPC7 is a Mg. ATP-regulated divalent cation channel required for cell viability. Nature. 2001;411:590–5.PubMedCrossRef Nadler MJ, Hermosura MC, Inabe K, et al. LTRPC7 is a Mg. ATP-regulated divalent cation channel required for cell viability. Nature. 2001;411:590–5.PubMedCrossRef
30.
Zurück zum Zitat Ryazanov AG. Elongation factor-2 kinase and its newly discovered relatives. FEBS Lett. 2002;514:26–9.PubMedCrossRef Ryazanov AG. Elongation factor-2 kinase and its newly discovered relatives. FEBS Lett. 2002;514:26–9.PubMedCrossRef
31.
Zurück zum Zitat Ryazanova LV, Rondon LJ, Zierler S, et al. TRPM7 is essential for Mg(2+) homeostasis in mammals. Nat Commun. 2010;1:109.PubMedCrossRef Ryazanova LV, Rondon LJ, Zierler S, et al. TRPM7 is essential for Mg(2+) homeostasis in mammals. Nat Commun. 2010;1:109.PubMedCrossRef
32.
Zurück zum Zitat Zhou H, Clapham DE. Mammalian MagT1 and TUSC3 are required for cellular magnesium uptake and vertebrate embryonic development. Proc Natl Acad Sci USA. 2009;106:15750–5.PubMedCrossRef Zhou H, Clapham DE. Mammalian MagT1 and TUSC3 are required for cellular magnesium uptake and vertebrate embryonic development. Proc Natl Acad Sci USA. 2009;106:15750–5.PubMedCrossRef
33.
Zurück zum Zitat Schweigel M, Kuzinski J, Deiner C, et al. Rumen epithelial cells adapt magnesium transport to high and low extracellular magnesium conditions. Magnes Res. 2009;22:133–50.PubMed Schweigel M, Kuzinski J, Deiner C, et al. Rumen epithelial cells adapt magnesium transport to high and low extracellular magnesium conditions. Magnes Res. 2009;22:133–50.PubMed
34.
Zurück zum Zitat Wolf FI, Trapani V, Simonacci M, et al. Modulation of TRPM6 and Na(+)/Mg(2+) exchange in mammary epithelial cells in response to variations of magnesium availability. J Cell Physiol. 2010;222:374–81.PubMedCrossRef Wolf FI, Trapani V, Simonacci M, et al. Modulation of TRPM6 and Na(+)/Mg(2+) exchange in mammary epithelial cells in response to variations of magnesium availability. J Cell Physiol. 2010;222:374–81.PubMedCrossRef
35.
Zurück zum Zitat Deason-Towne F, Perraud AL, Schmitz C. The Mg(2+) transporter MagT1 partially rescues cell growth and Mg(2+) uptake in cells lacking the channel-kinase TRPM7. FEBS Lett. 2011;585:2275–8.PubMedCrossRef Deason-Towne F, Perraud AL, Schmitz C. The Mg(2+) transporter MagT1 partially rescues cell growth and Mg(2+) uptake in cells lacking the channel-kinase TRPM7. FEBS Lett. 2011;585:2275–8.PubMedCrossRef
36.
Zurück zum Zitat Wabakken T, Rian E, Kveine M, et al. The human solute carrier SLC41A1 belongs to a novel eukaryotic subfamily with homology to prokaryotic MgtE Mg2+ transporters. Biochem Biophys Res Commun. 2003;306:718–24.PubMedCrossRef Wabakken T, Rian E, Kveine M, et al. The human solute carrier SLC41A1 belongs to a novel eukaryotic subfamily with homology to prokaryotic MgtE Mg2+ transporters. Biochem Biophys Res Commun. 2003;306:718–24.PubMedCrossRef
37.
Zurück zum Zitat Goytain A, Quamme GA. Functional characterization of the mouse (corrected) solute carrier, SLC41A2. Biochem Biophys Res Commun. 2005;330:701–5.PubMedCrossRef Goytain A, Quamme GA. Functional characterization of the mouse (corrected) solute carrier, SLC41A2. Biochem Biophys Res Commun. 2005;330:701–5.PubMedCrossRef
38.
Zurück zum Zitat Sahni J, Nelson B, Scharenberg AM. SLC41A2 encodes a plasma-membrane Mg2+ transporter. Biochem J. 2007;401:505–13.PubMedCrossRef Sahni J, Nelson B, Scharenberg AM. SLC41A2 encodes a plasma-membrane Mg2+ transporter. Biochem J. 2007;401:505–13.PubMedCrossRef
39.
Zurück zum Zitat Mandt T, Song Y, Scharenberg AM, et al. SLC41A1 Mg(2+) transport is regulated via Mg(2+)-dependent endosomal recycling through its N-terminal cytoplasmic domain. Biochem J. 2011;439:129–39.PubMedCrossRef Mandt T, Song Y, Scharenberg AM, et al. SLC41A1 Mg(2+) transport is regulated via Mg(2+)-dependent endosomal recycling through its N-terminal cytoplasmic domain. Biochem J. 2011;439:129–39.PubMedCrossRef
40.
Zurück zum Zitat Kolisek M, Launay P, Beck A, et al. SLC41A1 is a novel mammalian Mg2+ carrier. J Biol Chem. 2008;283:16235–47.PubMedCrossRef Kolisek M, Launay P, Beck A, et al. SLC41A1 is a novel mammalian Mg2+ carrier. J Biol Chem. 2008;283:16235–47.PubMedCrossRef
41.
Zurück zum Zitat Kolisek M, Nestler A, Vormann J, et al. Human gene SLC41A1 encodes for the Na +/Mg(2) + exchanger. Am J Physiol Cell Physiol. 2012;302:C318–26.PubMedCrossRef Kolisek M, Nestler A, Vormann J, et al. Human gene SLC41A1 encodes for the Na +/Mg(2) + exchanger. Am J Physiol Cell Physiol. 2012;302:C318–26.PubMedCrossRef
43.
Zurück zum Zitat Nilius B, Owsianik G. The transient receptor potential family of ion channels. Genome Biol. 2011;12:218.PubMedCrossRef Nilius B, Owsianik G. The transient receptor potential family of ion channels. Genome Biol. 2011;12:218.PubMedCrossRef
44.
Zurück zum Zitat Yamaguchi H, Matsushita M, Nairn AC, et al. Crystal structure of the atypical protein kinase domain of a TRP channel with phosphotransferase activity. Mol Cell. 2001;7:1047–57.PubMedCrossRef Yamaguchi H, Matsushita M, Nairn AC, et al. Crystal structure of the atypical protein kinase domain of a TRP channel with phosphotransferase activity. Mol Cell. 2001;7:1047–57.PubMedCrossRef
45.
Zurück zum Zitat Hofmann T, Chubanov V, Chen X, et al. Drosophila TRPM channel is essential for the control of extracellular magnesium levels. PLoS ONE. 2010;5:e10519.PubMedCrossRef Hofmann T, Chubanov V, Chen X, et al. Drosophila TRPM channel is essential for the control of extracellular magnesium levels. PLoS ONE. 2010;5:e10519.PubMedCrossRef
46.
Zurück zum Zitat Schmitz C, Perraud AL, Johnson CO, et al. Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7. Cell. 2003;114:191–200.PubMedCrossRef Schmitz C, Perraud AL, Johnson CO, et al. Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7. Cell. 2003;114:191–200.PubMedCrossRef
47.
Zurück zum Zitat Matsushita M, Kozak JA, Shimizu Y, et al. Channel function is dissociated from the intrinsic kinase activity and autophosphorylation of TRPM7/ChaK1. J Biol Chem. 2005;280:20793–803.PubMedCrossRef Matsushita M, Kozak JA, Shimizu Y, et al. Channel function is dissociated from the intrinsic kinase activity and autophosphorylation of TRPM7/ChaK1. J Biol Chem. 2005;280:20793–803.PubMedCrossRef
48.
Zurück zum Zitat Clapham DE. Sorting out MIC, TRP, and CRAC ion channels. J Gen Physiol. 2002;120:217–20.PubMed Clapham DE. Sorting out MIC, TRP, and CRAC ion channels. J Gen Physiol. 2002;120:217–20.PubMed
49.
Zurück zum Zitat Monteilh-Zoller MK, Hermosura MC, Nadler MJ, et al. TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. J Gen Physiol. 2003;121:49–60.PubMedCrossRef Monteilh-Zoller MK, Hermosura MC, Nadler MJ, et al. TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. J Gen Physiol. 2003;121:49–60.PubMedCrossRef
50.
Zurück zum Zitat Prakriya M, Lewis RS. Separation and characterization of currents through store-operated CRAC channels and Mg2+-inhibited cation (MIC) channels. J Gen Physiol. 2002;119:487–507.PubMedCrossRef Prakriya M, Lewis RS. Separation and characterization of currents through store-operated CRAC channels and Mg2+-inhibited cation (MIC) channels. J Gen Physiol. 2002;119:487–507.PubMedCrossRef
51.
Zurück zum Zitat Kozak JA, Cahalan MD. MIC channels are inhibited by internal divalent cations but not ATP. Biophys J. 2003;84:922–7.PubMedCrossRef Kozak JA, Cahalan MD. MIC channels are inhibited by internal divalent cations but not ATP. Biophys J. 2003;84:922–7.PubMedCrossRef
52.
Zurück zum Zitat Jiang X, Newell EW, Schlichter LC. Regulation of a TRPM7-like current in rat brain microglia. J Biol Chem. 2003;278:42867–76.PubMedCrossRef Jiang X, Newell EW, Schlichter LC. Regulation of a TRPM7-like current in rat brain microglia. J Biol Chem. 2003;278:42867–76.PubMedCrossRef
53.
Zurück zum Zitat Clark K, Middelbeek J, Morrice NA, et al. Massive autophosphorylation of the Ser/Thr-rich domain controls protein kinase activity of TRPM6 and TRPM7. PLoS ONE. 2008;3:e1876.PubMedCrossRef Clark K, Middelbeek J, Morrice NA, et al. Massive autophosphorylation of the Ser/Thr-rich domain controls protein kinase activity of TRPM6 and TRPM7. PLoS ONE. 2008;3:e1876.PubMedCrossRef
54.
Zurück zum Zitat Perraud AL, Zhao X, Ryazanov AG, et al. The channel-kinase TRPM7 regulates phosphorylation of the translational factor eEF2 via eEF2-k. Cell Signal. 2011;23:586–93.PubMedCrossRef Perraud AL, Zhao X, Ryazanov AG, et al. The channel-kinase TRPM7 regulates phosphorylation of the translational factor eEF2 via eEF2-k. Cell Signal. 2011;23:586–93.PubMedCrossRef
55.
Zurück zum Zitat Clark K, Langeslag M, van Leeuwen B, et al. TRPM7, a novel regulator of actomyosin contractility and cell adhesion. EMBO J. 2006;25:290–301.PubMedCrossRef Clark K, Langeslag M, van Leeuwen B, et al. TRPM7, a novel regulator of actomyosin contractility and cell adhesion. EMBO J. 2006;25:290–301.PubMedCrossRef
56.
Zurück zum Zitat Dorovkov MV, Ryazanov AG. Phosphorylation of annexin I by TRPM7 channel-kinase. J Biol Chem. 2004;279:50643–6.PubMedCrossRef Dorovkov MV, Ryazanov AG. Phosphorylation of annexin I by TRPM7 channel-kinase. J Biol Chem. 2004;279:50643–6.PubMedCrossRef
57.
Zurück zum Zitat Xie J, Sun B, Du J, et al. Phosphatidylinositol 4,5-bisphosphate (PIP2) controls magnesium gatekeeper TRPM6 activity. Sci Rep. 2011;1:146.PubMedCrossRef Xie J, Sun B, Du J, et al. Phosphatidylinositol 4,5-bisphosphate (PIP2) controls magnesium gatekeeper TRPM6 activity. Sci Rep. 2011;1:146.PubMedCrossRef
58.
Zurück zum Zitat Runnels LW, Yue L, Clapham DE. The TRPM7 channel is inactivated by PIP(2) hydrolysis. Nat Cell Biol. 2002;4:329–36.PubMed Runnels LW, Yue L, Clapham DE. The TRPM7 channel is inactivated by PIP(2) hydrolysis. Nat Cell Biol. 2002;4:329–36.PubMed
59.
Zurück zum Zitat Takezawa R, Schmitz C, Demeuse P, et al. Receptor-mediated regulation of the TRPM7 channel through its endogenous protein kinase domain. Proc Natl Acad Sci USA. 2004;101:6009–14.PubMedCrossRef Takezawa R, Schmitz C, Demeuse P, et al. Receptor-mediated regulation of the TRPM7 channel through its endogenous protein kinase domain. Proc Natl Acad Sci USA. 2004;101:6009–14.PubMedCrossRef
60.
Zurück zum Zitat Langeslag M, Clark K, Moolenaar WH, et al. Activation of TRPM7 channels by phospholipase C-coupled receptor agonists. J Biol Chem. 2007;282:232–9.PubMedCrossRef Langeslag M, Clark K, Moolenaar WH, et al. Activation of TRPM7 channels by phospholipase C-coupled receptor agonists. J Biol Chem. 2007;282:232–9.PubMedCrossRef
61.
Zurück zum Zitat Buerstedde JM, Takeda S. Increased ratio of targeted to random integration after transfection of chicken B cell lines. Cell. 1991;67:179–88.PubMedCrossRef Buerstedde JM, Takeda S. Increased ratio of targeted to random integration after transfection of chicken B cell lines. Cell. 1991;67:179–88.PubMedCrossRef
62.
Zurück zum Zitat Walder RY, Yang B, Stokes JB, et al. Mice defective in Trpm6 show embryonic mortality and neural tube defects. Hum Mol Genet. 2009;18:4367–75.PubMedCrossRef Walder RY, Yang B, Stokes JB, et al. Mice defective in Trpm6 show embryonic mortality and neural tube defects. Hum Mol Genet. 2009;18:4367–75.PubMedCrossRef
63.
Zurück zum Zitat Voets T, Nilius B, Hoefs S, et al. TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J Biol Chem. 2004;279:19–25.PubMedCrossRef Voets T, Nilius B, Hoefs S, et al. TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J Biol Chem. 2004;279:19–25.PubMedCrossRef
64.
Zurück zum Zitat Schmitz C, Dorovkov MV, Zhao X, et al. The channel kinases TRPM6 and TRPM7 are functionally nonredundant. J Biol Chem. 2005;280:37763–71.PubMedCrossRef Schmitz C, Dorovkov MV, Zhao X, et al. The channel kinases TRPM6 and TRPM7 are functionally nonredundant. J Biol Chem. 2005;280:37763–71.PubMedCrossRef
65.
Zurück zum Zitat Kerschbaum HH, Kozak JA, Cahalan MD. Polyvalent cations as permeant probes of MIC and TRPM7 pores. Biophys J. 2003;84:2293–305.PubMedCrossRef Kerschbaum HH, Kozak JA, Cahalan MD. Polyvalent cations as permeant probes of MIC and TRPM7 pores. Biophys J. 2003;84:2293–305.PubMedCrossRef
66.
Zurück zum Zitat Chokshi R, Matsushita M, Kozak JA. Detailed examination of Mg2+ and pH sensitivity of human TRPM7 channels. Am J Physiol Cell Physiol. 2012;302:C1004–11.PubMedCrossRef Chokshi R, Matsushita M, Kozak JA. Detailed examination of Mg2+ and pH sensitivity of human TRPM7 channels. Am J Physiol Cell Physiol. 2012;302:C1004–11.PubMedCrossRef
67.
Zurück zum Zitat Groenestege WM, Hoenderop JG, van den Heuvel L, et al. The epithelial Mg2+ channel transient receptor potential melastatin 6 is regulated by dietary Mg2+ content and estrogens. J Am Soc Nephrol. 2006;17:1035–43.PubMedCrossRef Groenestege WM, Hoenderop JG, van den Heuvel L, et al. The epithelial Mg2+ channel transient receptor potential melastatin 6 is regulated by dietary Mg2+ content and estrogens. J Am Soc Nephrol. 2006;17:1035–43.PubMedCrossRef
68.
Zurück zum Zitat Schlingmann KP, Waldegger S, Konrad M, et al. TRPM6 and TRPM7–Gatekeepers of human magnesium metabolism. Biochim Biophys Acta. 2007;1772:813–21.PubMedCrossRef Schlingmann KP, Waldegger S, Konrad M, et al. TRPM6 and TRPM7–Gatekeepers of human magnesium metabolism. Biochim Biophys Acta. 2007;1772:813–21.PubMedCrossRef
69.
Zurück zum Zitat Wuensch T, Thilo F, Krueger K, et al. High glucose-induced oxidative stress increases transient receptor potential channel expression in human monocytes. Diabetes. 2010;59:844–9.PubMedCrossRef Wuensch T, Thilo F, Krueger K, et al. High glucose-induced oxidative stress increases transient receptor potential channel expression in human monocytes. Diabetes. 2010;59:844–9.PubMedCrossRef
70.
Zurück zum Zitat Wenning AS, Neblung K, Strauss B, et al. TRP expression pattern and the functional importance of TRPC3 in primary human T-cells. Biochim Biophys Acta. 2011;1813:412–23.PubMedCrossRef Wenning AS, Neblung K, Strauss B, et al. TRP expression pattern and the functional importance of TRPC3 in primary human T-cells. Biochim Biophys Acta. 2011;1813:412–23.PubMedCrossRef
71.
Zurück zum Zitat Sahni J, Tamura R, Sweet IR, et al. TRPM7 regulates quiescent/proliferative metabolic transitions in lymphocytes. Cell Cycle. 2010;9:3565–74.PubMedCrossRef Sahni J, Tamura R, Sweet IR, et al. TRPM7 regulates quiescent/proliferative metabolic transitions in lymphocytes. Cell Cycle. 2010;9:3565–74.PubMedCrossRef
72.
Zurück zum Zitat Jin J, Desai BN, Navarro B, et al. Deletion of Trpm7 disrupts embryonic development and thymopoiesis without altering Mg2+ homeostasis. Science. 2008;322:756–60.PubMedCrossRef Jin J, Desai BN, Navarro B, et al. Deletion of Trpm7 disrupts embryonic development and thymopoiesis without altering Mg2+ homeostasis. Science. 2008;322:756–60.PubMedCrossRef
73.
Zurück zum Zitat Mason MJ, Schaffner C, Floto RA, et al. Constitutive expression of a Mg2+-inhibited K + current and a TRPM7-like current in human erythroleukemia cells. Am J Physiol Cell Physiol. 2012;302:C853–67.PubMedCrossRef Mason MJ, Schaffner C, Floto RA, et al. Constitutive expression of a Mg2+-inhibited K + current and a TRPM7-like current in human erythroleukemia cells. Am J Physiol Cell Physiol. 2012;302:C853–67.PubMedCrossRef
Metadaten
Titel
The role of Mg2+ in immune cells
verfasst von
Katherine Brandao
Francina Deason-Towne
Anne-Laure Perraud
Carsten Schmitz
Publikationsdatum
01.03.2013
Verlag
Springer-Verlag
Erschienen in
Immunologic Research / Ausgabe 1-3/2013
Print ISSN: 0257-277X
Elektronische ISSN: 1559-0755
DOI
https://doi.org/10.1007/s12026-012-8371-x

Weitere Artikel der Ausgabe 1-3/2013

Immunologic Research 1-3/2013 Zur Ausgabe

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

HNO-Op. auch mit über 90?

16.04.2024 HNO-Chirurgie Nachrichten

Mit Blick auf das Risiko für Komplikationen nach elektiven Eingriffen im HNO-Bereich scheint das Alter der Patienten kein ausschlaggebender Faktor zu sein. Entscheidend ist offenbar, wie fit die Betroffenen tatsächlich sind.

Intrakapsuläre Tonsillektomie gewinnt an Boden

16.04.2024 Tonsillektomie Nachrichten

Gegenüber der vollständigen Entfernung der Gaumenmandeln hat die intrakapsuläre Tonsillektomie einige Vorteile, wie HNO-Fachleute aus den USA hervorheben. Sie haben die aktuelle Literatur zu dem Verfahren gesichtet.

Bilateraler Hörsturz hat eine schlechte Prognose

15.04.2024 Hörsturz Nachrichten

Die Mehrzahl der Menschen mit Hörsturz ist einseitig betroffen, doch auch ein beidseitiger Hörsturz ist möglich. Wie häufig solche Fälle sind und wie sich ihr Verlauf darstellt, hat eine HNO-Expertenrunde aus den USA untersucht.

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.