Skip to main content
Erschienen in: Journal of Ocular Biology, Diseases, and Informatics 2/2009

Open Access 01.06.2009 | Technical Perspectives

Neural protection by naturopathic compounds—an example of tetramethylpyrazine from retina to brain

verfasst von: Zhiqun Tan

Erschienen in: Journal of Ocular Biology, Diseases, and Informatics | Ausgabe 2/2009

Abstract

Given the advantages of being stable in the ambient environment, being permeable to the blood–brain and/or blood–eye barriers and being convenient for administration, naturopathic compounds have growingly become promising therapeutic candidates for neural protection. Extracted from one of the most common Chinese herbal medicines, tetramethylpyrazine (TMP), also designated as ligustrazine, has been suggested to be neuroprotective in the central nervous system as well as the peripheral nerve network. Although the detailed molecular mechanisms of its efficacy for neural protection are understood limitedly, accumulating evidence suggests that antioxidative stress, antagonism for calcium, and suppression of pro-inflammatory factors contribute significantly to its neuroprotection. In animal studies, systemic administration of TMP (subcutaneous injection, 50 mg/kg) significantly blocked neuronal degeneration in hippocampus as well as the other vulnerable regions in brains of Sprague–Dawley rats following kainate-induced prolonged seizures. Results from us and others also demonstrated potent neuroprotective efficacy of TMP for retinal cells and robust benefits for brain in Alzheimer’s disease or other brain injury. These results suggest a promising prospect for TMP to be used as a treatment of specific neurodegenerative diseases. Given the assessment of the distribution, metabolism, excretion, and toxicity information that is already available on most neuroprotective naturopathic compounds such as TMP, it would not take much preclinical data to justify bringing such therapeutic compounds to clinical trials in humans.
Hinweise
An erratum to this article can be found at http://​dx.​doi.​org/​10.​1007/​s12177-009-9033-7

Introduction

Neuronal degeneration, i.e., neuronal cell death, underlies the pathology and malfunction of many different neurological diseases occurring in both animals and human beings. Progressive and selective neuronal cell death in the central nervous system (CNS) and/or the peripheral nerve network has been profoundly implicated in the pathogenesis of neurodegenerative disorders including Alzheimer’s disease (AD), Parkinson’s disease, Huntington’s disease, Lou Gehrig’s disease or amyotrophic lateral sclerosis, multiple sclerosis, epilepsy, stroke, traumatic injury, age-related macular degeneration, glaucoma, prion diseases, infections, and so on [1, 2]. Evidence is rapidly accumulating to suggest that selective neuronal cell death through necrosis and/or apoptosis mechanisms contributes significantly to the functional anomalies of specific neurologic disorders [1]. Changes of genetic, epigenetic, metabolic, and environmental factors might directly or indirectly cause (1) massive DNA damage, (2) dysfunction of the ubiquitin-proteasomal system, (3) disruption of the axonal transport machinery, (4) abnormalities of mitochondrial structure and function, (4) disturbance of intracellular ionic homeostasis (particularly Ca2+ and Zn2+), and (5) accumulation of reactive oxygen species (ROS) in the neuronal cells. Accumulating intracellular stress subsequently results in (1) loss of spines and synapses, (2) fragmentation of neuronal processes and extended neuritic degeneration following demyelination, (3) global neuronal cell death following activation of signal transduction cascade for programmed cell death, (4) anomalies of microvasculature, and (5) provocated neuroinflammatory response leading to the destructive pathogenic changes (see several representative reviews) [14]. Accordingly, the main aim of neural protection in neurodegenerative disorders is to retard progression by blocking the mechanisms that lead to neuronal cell death as well as associated neuroinflammatory events. Therefore, considerable efforts have been made in recent decades to discover new potential therapeutic compounds that can help to prevent the onset or to slow down the progression of such diseases. Equal attempts are also made to improve the therapeutic efficacy of known medications through chemical modification. Given the evident advantages of being stable in the ambient environment, being permeable to the blood–brain and/or blood–eye barriers, and being convenient for administration (Fig. 1), naturopathic compounds have growingly become groups of the best therapeutic candidates for neural protection from the sensory system including retina to the central nervous system (brain). Table 1 summarizes a group of selected herbal extracts that have demonstrated significant neuroprotective efficacy both in vivo and in vitro. Taking tetramethylpyrazine (TMP) as an example, the neuroprotective efficacy and related issues are discussed here.
Table 1
List of selected naturopathic compounds that have demonstrated neuroprotective efficacy in both retina and brain
Name
Natural sources (selected)
Structural classification
Selected studies
Baicalein
Radix scutellariae
Alkaloids
C [49, 50]; R [51, 52]; B [53, 54]
Chlorogenic acid
Eucommia or other plants
Polyphenolics
C [55]; R [56]; B [57, 58]
Curcumin
Curcuma longa
Alkaloids
C [59, 60]; R [59, 61]; B [60, 62, 63]
Emodin
Leguminosae seed
Alkaloids
C [64, 65]; R [66]; B [65, 67]
Fisetin
Rhus cotinus bark
Polyphenolics
C [68, 69]; R [70]; B [71]
Kaempferol
Euonymus alatus or Impatiens balsamina
Flavonoids
C [72, 73]; R [70, 74]; B [75]
Ligustrazine
Ligusticum wallichii roots
Alkaloids
C [19]; R [76]; B [23, 77]
Morin
The Moraceae family, e.g., mulberry
Flavonoids
C [78]; R [79]; B [80, 81]
Myricetin
Myrica rubra
Flavonoids
C [78]; R [74]; B [82]
Naringenin
Satureja obovata
Flavonoids
C [83]; R [84]; B [85]
Paeoniflorin
Paeony roots
Polyphenolics
C [86]; R [87]; B [8890]
Puerarin
Pueraria lobata roots
Alkaloids
C [91, 92]; R [93, 94]; B [95, 96]
Pycnogenol
Pinus maritime bark
Flavonoids
C [97]; R [98, 99]; B [100]
Quercetin
Euonymus alatus
Flavonoids
C [101, 102]; R [84, 103]; B [104, 105].
Resveratrol
Grapes
Flavonoids
C [106, 107]; R [108]; B [108110]
Rutin
Buckwheat
Flavonoids
C [111]; R [84]; B [104]
Wogonin
Scutellaria baicalensis
Flavonoids
C [112, 113]; R [114]; B [115, 116]
C, in vitro studies conducted in cultured cells; R, in vivo studies showing retinal protection; B, in vivo studies demonstrating neuroprotective efficacy in the brain

Tetramethylpyrazine, an herbal extract showing multiple protective effects on cells and benefits on physiological function

As listed in Table 1, TMP, also designated as ligustrazine, is an alkaloid extracted from the Chinese herbal medicine, Ligusticum wallichii Franchat (chuanxiong) [5]. For hundreds of years, chuanxiong has been used as a traditional Chinese medicine for heart, kidney, and brain diseases [6, 7]. Experimental studies demonstrated that TMP treatments significantly improved cardiac and cerebral blood flow and elevated blood reperfusion as shown in the nail microcirculation [8, 9]. In an ex vivo study, a semi-synthetic form of TMP monomer induced a dose-dependent relaxation of human pulmonary and bronchial arteries [10]. TMP also exhibited a calcium antagonist role in vascular tissues [11]; functioned as a ROS scavenger to deactivate cytotoxic ROS such as superoxide anion (O2−), hydroxyl (OH−), and lipid peroxyl (LOO−) free radicals [12, 13]; and inhibited inflammatory events in vivo possibly through modulating secretion of specific cytokines and nitric oxide-related pathways [1416].
About two decades ago, a study briefly reported that TMP alleviated ischemic retinal degeneration in vivo [17]. Recently, a different group of researchers demonstrated that systemic injection of TMP significantly protected retinal photoreceptor from loss induced by N-methyl-N-nitrosourea in rats [18]. Further, we demonstrated that TMP efficiently enhanced in vitro survival of cultured rat retinal cells and significantly attenuated cell damage in these cells exposed to hydrogen peroxide [19].
In the CNS, TMP significantly suppressed oxidative stress and attenuated neuronal cell death in neuronal cultures following iron-mediated oxidative damage and glutamate-mediated excitotoxicity [2022]. Systemic administration of TMP protected neuronal cells against ischemic or traumatic brain or spinal cord injury and promoted functional recovery in rodents and rabbits [23, 24]. Interestingly, systemic administration of TMP also attenuated impairment of learning and memory performance in rodents following d-galactose- or ischemia-induced brain injury [25, 26]. The potential therapeutic efficacy of TMP for AD is further supported by our recent observations about significant improvement of cognitive function as well as cerebral amyloid pathology in the demented Alzheimer’s triple transgenic (3xTg-AD) mice (Tan et al., unpublished observations). These findings suggest that TMP has potent neuroprotective efficacy.

TMP protects neuronal degeneration in rat brain against excitotoxicity—an experimental study

Systemic administration of excitotoxin, kainic acid (KA), a glutamate analog, causes striking neuronal cell death in rat brain following prolonged seizures. To examine further whether TMP protects brain cells from KA-induced neuronal degeneration, which is one of the most common animal models for excitotoxic neuronal cell death that is apparently involved in the pathogenesis of multiple neurodegenerative disorders [2729], 1-month-old male Sprague–Dawley rats were housed and treated according to the National Institutes of Health guidelines for the care and use of laboratory animals and a protocol approved by the UCI Institutional Animal Care and Use Committee. One hour after the onset of seizures following subcutaneous (s.c.) injection of KA (10.5 mg/kg), rats received TMP (50 mg/kg, s.c.) or equal volume of vehicle. Untreated animals were used as blank controls. All the animals (N = 6 each group) were decapitated 24 h after TMP or vehicle injection under CO2 gas-induced deep anesthesia. The brain was rapidly harvested, frozen, and cryosectioned in the coronal plane at 10 µm. Adjacent sections from each brain were stained with hematoxylin–eosin (H & E) and in situ cell death assay kit for terminal deoxytransferase-mediated dUTP nick end labeling (TUNEL; Roche, Indianapolis, IN, USA), respectively, as described in our previous work [30, 31].
Systemic administration of KA resulted in a well-described pattern of behavioral seizures including wet dog shake at the beginning stage and progressed to tonic–clonic activity [27]. Seizures typically occurred intermittently during the first 6–8 h and yielded about 10% or less mortality. As observed in this study, TMP treatments did not alter the pattern and the severity of the seizures. Brain sections from the animals that received “KA + vehicle” demonstrated robust neuronal degeneration in KA-vulnerable regions in brain as revealed by both H & E staining and TUNEL labeling (Fig. 2a (f–j)) whereas the controls showed no eosinophilic or TUNEL-positive damaged cells (Fig. 2a (a–e)). In contrast, given 50 mg/kg TMP following the onset of seizures, animals showed markedly fewer damaged cells in the corresponding regions in the brain (Fig. 2a (k–o)). Quantification of TUNEL-positive cells conducted as described in our previous work [32, 33] revealed a statistically significant difference between “KA + vehicle” and “KA + TMP”, suggesting remarkable neuroprotective efficacy of TMP in the CNS under excitotoxic attack.
In cultured neural cells, TMP treatments significantly reduced generation of lipid peroxidation products, malondialdehyde, induced by hydrogen peroxide [19, 20]. The observations are also in agreement with an increase in abundance of glutathione in 3xTg-AD mouse brains following TMP treatments (data not shown). In addition, the benefits of TMP treatments preserved abundance of MAP2 and rattin, two molecules that play important roles in cell growth and function [19, 34, 35]. Taken these together, TMP may target multiple levels and cell signal transduction pathways to contribute to the survival of neural cells and the normal function of the nervous system.

How far is TMP from the next phase for clinical applications?

As a naturopathic compound isolated from a Chinese herbal medicine, TMP has been the subject of many pharmacological and toxicological studies. The solubility of purified TMP in crystal form is relatively low in neutral aqueous solution (~10 µg/ml) and dramatically increases in an acidic environment (>40 mg/ml, pH < 4), in which TMP is stable and active [36]. Preclinical assessment of the distribution, metabolism, excretion, and toxicity (ADMET) of TMP has been performed in animals and in vitro since more than 20 years ago [3741]. Without any surprise, pharmacokinetic studies demonstrated that TMP was efficiently permeable to the blood–brain barrier in multiple animal models [39, 40]. Toxicity assays revealed a very low level of toxicity in animals with an oral LD50 of about 1,910 mg/kg in rats and 1,436 mg/kg in mice [42, 43]. Importantly, practitioners of traditional Chinese medicine have continued to use TMP as a treatment for inflammatory or degenerative diseases, usually in combination with other medications [6, 8, 4446]. In this regard, both TMP tablets and TMP–HCl injection solution are prescription-available for a treatment of cardiovascular diseases in China [47, 48]. Given the ADMET information that is already available on TMP, it would not take much preclinical data to justify bringing TMP to clinical trials in humans. This proof-of-concept proposal will provide sufficient preclinical evidence to justify studying TMP in patients with neurodegenerative disorders in a double-blind placebo-controlled manner. Nevertheless, our understanding of the molecular basis for TMP-mediated pharmacological actions remains limiting. Similarly, there is a lack of well-designed preclinical studies of TMP efficacy for neurological disorders. Such studies are critical prior to moving TMP to studies in humans.

Summary

In addition to TMP, there are groups of naturopathic compounds that have been purified from related herbal medicines and identified as efficient neuroprotective ingredients as mentioned. Resembling TMP, many of these compounds have demonstrated remarkable neuroprotective efficacy in experimental studies conducted in cell cultures and/or live animals. Some of them are also used in clinics as treatment for specific neurological disorders. Therefore, once further studies are warranted to decipher the molecular basis of related pharmacological efficacy, many of such naturopathic molecules would move to clinical assessments for neural protection in humans.

Acknowledgment

This study is supported by a research grant from the Alzheimer’s Drug Discovery Foundation.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://​creativecommons.​org/​licenses/​by-nc/​2.​0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Literatur
1.
2.
Zurück zum Zitat Mattson MP. Neuronal life-and-death signaling, apoptosis, and neurodegenerative disorders. Antioxid Redox Signal. 2006;8:1997–2006.PubMedCrossRef Mattson MP. Neuronal life-and-death signaling, apoptosis, and neurodegenerative disorders. Antioxid Redox Signal. 2006;8:1997–2006.PubMedCrossRef
3.
Zurück zum Zitat Kazantsev AG. Cellular pathways leading to neuronal dysfunction and degeneration. Drug News Perspect. 2007;20:501–9.PubMedCrossRef Kazantsev AG. Cellular pathways leading to neuronal dysfunction and degeneration. Drug News Perspect. 2007;20:501–9.PubMedCrossRef
4.
Zurück zum Zitat Trushina E, McMurray CT. Oxidative stress and mitochondrial dysfunction in neurodegenerative diseases. Neuroscience. 2007;145:1233–48.PubMedCrossRef Trushina E, McMurray CT. Oxidative stress and mitochondrial dysfunction in neurodegenerative diseases. Neuroscience. 2007;145:1233–48.PubMedCrossRef
5.
Zurück zum Zitat Liu YH, Liu YF, Guo XX. Current studies on anti-endotoxic chemical components of traditional Chinese medicine in China. Acta Pharmacologica Sinica. 2001;22:1071–7.PubMed Liu YH, Liu YF, Guo XX. Current studies on anti-endotoxic chemical components of traditional Chinese medicine in China. Acta Pharmacologica Sinica. 2001;22:1071–7.PubMed
6.
Zurück zum Zitat Ho JW, Jie M. Pharmacological activity of cardiovascular agents from herbal medicine. Cardiovasc Hematol Agents Med Chem. 2007;5:273–7.PubMedCrossRef Ho JW, Jie M. Pharmacological activity of cardiovascular agents from herbal medicine. Cardiovasc Hematol Agents Med Chem. 2007;5:273–7.PubMedCrossRef
7.
Zurück zum Zitat Xu H, Shi DZ, Guan CY. Clinical application and pharmacological actions of ligustrazine. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2003;23:376–9.PubMed Xu H, Shi DZ, Guan CY. Clinical application and pharmacological actions of ligustrazine. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2003;23:376–9.PubMed
8.
Zurück zum Zitat Wang GJ. The change in the nailfold microcirculation in patients with acute cerebral thrombosis treated with ligustrazine. Zhonghua Shen Jing Jing Shen Ke Za Zhi. 1984;17:121–4.PubMed Wang GJ. The change in the nailfold microcirculation in patients with acute cerebral thrombosis treated with ligustrazine. Zhonghua Shen Jing Jing Shen Ke Za Zhi. 1984;17:121–4.PubMed
9.
Zurück zum Zitat Yan F, Luo R. Effects of ligustrazine on blood vessels and blood components. Zhong Yao Cai. 2002;25:143–5.PubMed Yan F, Luo R. Effects of ligustrazine on blood vessels and blood components. Zhong Yao Cai. 2002;25:143–5.PubMed
10.
Zurück zum Zitat Liu SF, Cai YN, Evans TW, McCormack DG, Barer GR, Barnes PJ. Ligustrazine is a vasodilator of human pulmonary and bronchial arteries. Eur J Pharmacol. 1990;191:345–50.PubMedCrossRef Liu SF, Cai YN, Evans TW, McCormack DG, Barer GR, Barnes PJ. Ligustrazine is a vasodilator of human pulmonary and bronchial arteries. Eur J Pharmacol. 1990;191:345–50.PubMedCrossRef
11.
Zurück zum Zitat Pang PK, Shan JJ, Chiu KW. Tetramethylpyrazine, a calcium antagonist. Planta Med. 1996;62:431–5.PubMedCrossRef Pang PK, Shan JJ, Chiu KW. Tetramethylpyrazine, a calcium antagonist. Planta Med. 1996;62:431–5.PubMedCrossRef
12.
Zurück zum Zitat Zhang ZH, Yu SZ, Wang ZT, Zhao BL, Hou JW, Yang FJ, et al. Scavenging effects of tetramethylpyrazine on active oxygen free radicals. Zhongguo Yao Li Xue Bao. 1994;15:229–31.PubMed Zhang ZH, Yu SZ, Wang ZT, Zhao BL, Hou JW, Yang FJ, et al. Scavenging effects of tetramethylpyrazine on active oxygen free radicals. Zhongguo Yao Li Xue Bao. 1994;15:229–31.PubMed
13.
Zurück zum Zitat Zhang Z, Wei T, Hou J, Li G, Yu S, Xin W. Tetramethylpyrazine scavenges superoxide anion and decreases nitric oxide production in human polymorphonuclear leukocytes. Life Sci. 2003;72:2465–72.PubMedCrossRef Zhang Z, Wei T, Hou J, Li G, Yu S, Xin W. Tetramethylpyrazine scavenges superoxide anion and decreases nitric oxide production in human polymorphonuclear leukocytes. Life Sci. 2003;72:2465–72.PubMedCrossRef
14.
Zurück zum Zitat Ozaki Y. Antiinflammatory effect of tetramethylpyrazine and ferulic acid. Chem Pharm Bull (Tokyo). 1992;40:954–6. Ozaki Y. Antiinflammatory effect of tetramethylpyrazine and ferulic acid. Chem Pharm Bull (Tokyo). 1992;40:954–6.
15.
Zurück zum Zitat Chang Y, Hsiao G, Chen SH, Chen YC, Lin JH, Lin KH, et al. Tetramethylpyrazine suppresses HIF-1alpha, TNF-alpha, and activated caspase-3 expression in middle cerebral artery occlusion-induced brain ischemia in rats. Acta Pharmacologica Sinica. 2007;28:327–33.PubMedCrossRef Chang Y, Hsiao G, Chen SH, Chen YC, Lin JH, Lin KH, et al. Tetramethylpyrazine suppresses HIF-1alpha, TNF-alpha, and activated caspase-3 expression in middle cerebral artery occlusion-induced brain ischemia in rats. Acta Pharmacologica Sinica. 2007;28:327–33.PubMedCrossRef
16.
Zurück zum Zitat Liao MH, Wu CC, Yen MH. Beneficial effects of tetramethylpyrazine, an active constituent of Chinese herbs, on rats with endotoxemia. Proc Natl Sci Counc Repub China B. 1998;22:46–54.PubMed Liao MH, Wu CC, Yen MH. Beneficial effects of tetramethylpyrazine, an active constituent of Chinese herbs, on rats with endotoxemia. Proc Natl Sci Counc Repub China B. 1998;22:46–54.PubMed
17.
Zurück zum Zitat Chiou GC, Yan HY, Lei XL, Li BH, Shen ZF. Ocular and cardiovascular pharmacology of tetramethylpyrazine isolated from Ligusticum wallichii Franch. Zhongguo Yao Li Xue Bao. 1991;12:99–104.PubMed Chiou GC, Yan HY, Lei XL, Li BH, Shen ZF. Ocular and cardiovascular pharmacology of tetramethylpyrazine isolated from Ligusticum wallichii Franch. Zhongguo Yao Li Xue Bao. 1991;12:99–104.PubMed
18.
Zurück zum Zitat Yang JN, Chen JM, Luo L, Lin SC, Li D, Hu SX. Tetramethylpyrazine protected photoreceptor cells of rats by modulating nuclear translocation of NF-kappaB. Acta Pharmacologica Sinica. 2005;26:887–92.PubMedCrossRef Yang JN, Chen JM, Luo L, Lin SC, Li D, Hu SX. Tetramethylpyrazine protected photoreceptor cells of rats by modulating nuclear translocation of NF-kappaB. Acta Pharmacologica Sinica. 2005;26:887–92.PubMedCrossRef
19.
Zurück zum Zitat Yang Z, Zhang Q, Ge J, Tan Z. Protective effects of tetramethylpyrazine on rat retinal cell cultures. Neurochem Int. 2008;52:1176–87.PubMedCrossRef Yang Z, Zhang Q, Ge J, Tan Z. Protective effects of tetramethylpyrazine on rat retinal cell cultures. Neurochem Int. 2008;52:1176–87.PubMedCrossRef
20.
Zurück zum Zitat Zhang Z, Wei T, Hou J, Li G, Yu S, Xin W. Iron-induced oxidative damage and apoptosis in cerebellar granule cells: attenuation by tetramethylpyrazine and ferulic acid. Eur J Pharmacol. 2003;467:41–7.PubMedCrossRef Zhang Z, Wei T, Hou J, Li G, Yu S, Xin W. Iron-induced oxidative damage and apoptosis in cerebellar granule cells: attenuation by tetramethylpyrazine and ferulic acid. Eur J Pharmacol. 2003;467:41–7.PubMedCrossRef
21.
Zurück zum Zitat Shih YH, Wu SL, Chiou WF, Ku HH, Ko TL, Fu YS. Protective effects of tetramethylpyrazine on kainate-induced excitotoxicity in hippocampal culture. NeuroReport. 2002;13:515–9.PubMedCrossRef Shih YH, Wu SL, Chiou WF, Ku HH, Ko TL, Fu YS. Protective effects of tetramethylpyrazine on kainate-induced excitotoxicity in hippocampal culture. NeuroReport. 2002;13:515–9.PubMedCrossRef
22.
Zurück zum Zitat Liao SL, Kao TK, Chen WY, Lin YS, Chen SY, Raung SL, et al. Tetramethylpyrazine reduces ischemic brain injury in rats. Neurosci Lett. 2004;372:40–5.PubMedCrossRef Liao SL, Kao TK, Chen WY, Lin YS, Chen SY, Raung SL, et al. Tetramethylpyrazine reduces ischemic brain injury in rats. Neurosci Lett. 2004;372:40–5.PubMedCrossRef
23.
Zurück zum Zitat Kao TK, Ou YC, Kuo JS, Chen WY, Liao SL, Wu CW, et al. Neuroprotection by tetramethylpyrazine against ischemic brain injury in rats. Neurochem Int. 2006;48:166–76.PubMedCrossRef Kao TK, Ou YC, Kuo JS, Chen WY, Liao SL, Wu CW, et al. Neuroprotection by tetramethylpyrazine against ischemic brain injury in rats. Neurochem Int. 2006;48:166–76.PubMedCrossRef
24.
Zurück zum Zitat Fan LH, Wang KZ, Cheng B, Wang CS, Dang XQ. Anti-apoptotic and neuroprotective effects of Tetramethylpyrazine following spinal cord ischemia in rabbits. BMC Neurosci. 2006;7:48.PubMedCrossRef Fan LH, Wang KZ, Cheng B, Wang CS, Dang XQ. Anti-apoptotic and neuroprotective effects of Tetramethylpyrazine following spinal cord ischemia in rabbits. BMC Neurosci. 2006;7:48.PubMedCrossRef
25.
Zurück zum Zitat Zhang C, Wang SZ, Zuo PP, Cui X, Cai J. Protective effect of tetramethylpyrazine on learning and memory function in d-galactose-lesioned mice. Chin Med Sci J. 2004;19:180–4.PubMed Zhang C, Wang SZ, Zuo PP, Cui X, Cai J. Protective effect of tetramethylpyrazine on learning and memory function in d-galactose-lesioned mice. Chin Med Sci J. 2004;19:180–4.PubMed
26.
Zurück zum Zitat Ni JW, Matsumoto K, Watanabe H. Tetramethylpyrazine improves spatial cognitive impairment induced by permanent occlusion of bilateral common carotid arteries or scopolamine in rats. Jpn J Pharmacol. 1995;67:137–41.PubMedCrossRef Ni JW, Matsumoto K, Watanabe H. Tetramethylpyrazine improves spatial cognitive impairment induced by permanent occlusion of bilateral common carotid arteries or scopolamine in rats. Jpn J Pharmacol. 1995;67:137–41.PubMedCrossRef
28.
Zurück zum Zitat Salinska E, Danysz W, Lazarewicz JW. The role of excitotoxicity in neurodegeneration. Folia Neuropathol. 2005;43:322–39.PubMed Salinska E, Danysz W, Lazarewicz JW. The role of excitotoxicity in neurodegeneration. Folia Neuropathol. 2005;43:322–39.PubMed
29.
Zurück zum Zitat Casson RJ. Possible role of excitotoxicity in the pathogenesis of glaucoma. Clin Experiment Ophthalmol. 2006;34:54–63.PubMedCrossRef Casson RJ. Possible role of excitotoxicity in the pathogenesis of glaucoma. Clin Experiment Ophthalmol. 2006;34:54–63.PubMedCrossRef
30.
Zurück zum Zitat Tan Z, Tu W, Schreiber SS. Downregulation of free ubiquitin: a novel mechanism of p53 stabilization and neuronal cell death. Brain Res Mol Brain Res. 2001;91:179–88.PubMedCrossRef Tan Z, Tu W, Schreiber SS. Downregulation of free ubiquitin: a novel mechanism of p53 stabilization and neuronal cell death. Brain Res Mol Brain Res. 2001;91:179–88.PubMedCrossRef
31.
Zurück zum Zitat Tan Z, Levid J, Schreiber SS. Increased expression of Fas (CD95/APO-1) in adult rat brain after kainate-induced seizures. NeuroReport. 2001;12:1979–82.PubMedCrossRef Tan Z, Levid J, Schreiber SS. Increased expression of Fas (CD95/APO-1) in adult rat brain after kainate-induced seizures. NeuroReport. 2001;12:1979–82.PubMedCrossRef
32.
Zurück zum Zitat Quach N, Chan T, Lu TA, Schreiber SS, Tan Z. Induction of DNA repair proteins, Ref-1 and XRCC1, in adult rat brain following kainic acid-induced seizures. Brain Res. 2005;1042:236–40.PubMedCrossRef Quach N, Chan T, Lu TA, Schreiber SS, Tan Z. Induction of DNA repair proteins, Ref-1 and XRCC1, in adult rat brain following kainic acid-induced seizures. Brain Res. 2005;1042:236–40.PubMedCrossRef
33.
Zurück zum Zitat Tan Z, Sankar R, Shin D, Sun N, Liu H, Wasterlain CG, et al. Differential induction of p53 in immature and adult rat brain following lithium-pilocarpine status epilepticus. Brain Res. 2002;928:187–93.PubMedCrossRef Tan Z, Sankar R, Shin D, Sun N, Liu H, Wasterlain CG, et al. Differential induction of p53 in immature and adult rat brain following lithium-pilocarpine status epilepticus. Brain Res. 2002;928:187–93.PubMedCrossRef
34.
Zurück zum Zitat Dehmelt L, Halpain S. Actin and microtubules in neurite initiation: are MAPs the missing link? J Neurobiol. 2004;58:18–33.PubMedCrossRef Dehmelt L, Halpain S. Actin and microtubules in neurite initiation: are MAPs the missing link? J Neurobiol. 2004;58:18–33.PubMedCrossRef
35.
Zurück zum Zitat Hashimoto Y, Niikura T, Tajima H, Yasukawa T, Sudo H, Ito Y, et al. A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer's disease genes and Abeta. Proc Natl Acad Sci U S A. 2001;98:6336–41.PubMedCrossRef Hashimoto Y, Niikura T, Tajima H, Yasukawa T, Sudo H, Ito Y, et al. A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer's disease genes and Abeta. Proc Natl Acad Sci U S A. 2001;98:6336–41.PubMedCrossRef
36.
Zurück zum Zitat Qi X, Ackermann C, Sun D, Sheng M, Hou H. Physicochemical characterization and percutaneous delivery of 2, 3, 5, 6-tetramethylpyrazine. Int J Pharm. 2003;253:177–83.PubMedCrossRef Qi X, Ackermann C, Sun D, Sheng M, Hou H. Physicochemical characterization and percutaneous delivery of 2, 3, 5, 6-tetramethylpyrazine. Int J Pharm. 2003;253:177–83.PubMedCrossRef
37.
Zurück zum Zitat Ren P, Huang X, Jiang YP. Effect of sijunzi decoction on motilin and pharmacokinetic characteristics of tetramethylpyrazine in rat model of spleen deficiency syndrome. Zhongguo Zhong Xi Yi Jie He Za Zhi. 1997;17:45–7.PubMed Ren P, Huang X, Jiang YP. Effect of sijunzi decoction on motilin and pharmacokinetic characteristics of tetramethylpyrazine in rat model of spleen deficiency syndrome. Zhongguo Zhong Xi Yi Jie He Za Zhi. 1997;17:45–7.PubMed
38.
Zurück zum Zitat Lou YQ, Zhang H, Cao X, Chen ML. The pharmacokinetics and disposition of tetramethylpyrazine phosphate in dogs and rats. Yao Xue Xue Bao. 1986;21:481–7.PubMed Lou YQ, Zhang H, Cao X, Chen ML. The pharmacokinetics and disposition of tetramethylpyrazine phosphate in dogs and rats. Yao Xue Xue Bao. 1986;21:481–7.PubMed
39.
Zurück zum Zitat Tsai TH, Liang C. Pharmacokinetics of tetramethylpyrazine in rat blood and brain using microdialysis. Int J Pharm. 2001;216:61–6.PubMedCrossRef Tsai TH, Liang C. Pharmacokinetics of tetramethylpyrazine in rat blood and brain using microdialysis. Int J Pharm. 2001;216:61–6.PubMedCrossRef
40.
Zurück zum Zitat Huang X, Ren P, Wen AD, Wang LL, Zhang L, Gao F. Pharmacokinetics of traditional Chinese syndrome and recipe: a hypothesis and its verification (I). World J Gastroenterol. 2000;6:384–91.PubMed Huang X, Ren P, Wen AD, Wang LL, Zhang L, Gao F. Pharmacokinetics of traditional Chinese syndrome and recipe: a hypothesis and its verification (I). World J Gastroenterol. 2000;6:384–91.PubMed
41.
Zurück zum Zitat Qi X, Ackermann C, Sun D, Liu R, Sheng M, Hou H. The prediction of plasma and brain levels of 2, 3, 5, 6-tetramethylpyrazine following transdermal application. AAPS PharmSci. 2002;4:E46.PubMedCrossRef Qi X, Ackermann C, Sun D, Liu R, Sheng M, Hou H. The prediction of plasma and brain levels of 2, 3, 5, 6-tetramethylpyrazine following transdermal application. AAPS PharmSci. 2002;4:E46.PubMedCrossRef
42.
Zurück zum Zitat Occelli E, Mariani L, Fontanella L, Corsico N. Substances with central nervous system activity. Derivatives of octahydro-1,4-dihydroxypyrrolo(1,2-a)pyrazine-6-carboxylic acids. Farmaco [Sci]. 1984;39:718–38. Occelli E, Mariani L, Fontanella L, Corsico N. Substances with central nervous system activity. Derivatives of octahydro-1,4-dihydroxypyrrolo(1,2-a)pyrazine-6-carboxylic acids. Farmaco [Sci]. 1984;39:718–38.
43.
Zurück zum Zitat Adams TB, Doull J, Feron VJ, Goodman JI, Marnett LJ, Munro IC, et al. The FEMA GRAS assessment of pyrazine derivatives used as flavor ingredients. Flavor and Extract Manufacturers Association. Food Chem Toxicol. 2002;40:429–51.PubMedCrossRef Adams TB, Doull J, Feron VJ, Goodman JI, Marnett LJ, Munro IC, et al. The FEMA GRAS assessment of pyrazine derivatives used as flavor ingredients. Flavor and Extract Manufacturers Association. Food Chem Toxicol. 2002;40:429–51.PubMedCrossRef
44.
Zurück zum Zitat Huang KJ, Williams WM. The pharmacology of Chinese herbs. Boca Raton: CRC; 1993. Huang KJ, Williams WM. The pharmacology of Chinese herbs. Boca Raton: CRC; 1993.
45.
Zurück zum Zitat Tang X. Effect of ligustrazine on proliferative glomerulonephritis. Zhong Yao Cai. 2003;26:611–2.PubMed Tang X. Effect of ligustrazine on proliferative glomerulonephritis. Zhong Yao Cai. 2003;26:611–2.PubMed
46.
Zurück zum Zitat Gao BT. The effects of ligustrazine, aspirin and beta-histine on platelet aggregation in patients with acute ischemic stroke. Zhonghua Shen Jing Jing Shen Ke Za Zhi. 1989;22:148–51. 191.PubMed Gao BT. The effects of ligustrazine, aspirin and beta-histine on platelet aggregation in patients with acute ischemic stroke. Zhonghua Shen Jing Jing Shen Ke Za Zhi. 1989;22:148–51. 191.PubMed
47.
Zurück zum Zitat Wang XF, Zhao MQ. Ligustrazine and Salvia miltiorrhiza injection solution in complementary therapy of pregnancy-induced hypertension: clinical analysis of 60 cases. Di Yi Jun Yi Da Xue Xue Bao. 2003;23:969–71.PubMed Wang XF, Zhao MQ. Ligustrazine and Salvia miltiorrhiza injection solution in complementary therapy of pregnancy-induced hypertension: clinical analysis of 60 cases. Di Yi Jun Yi Da Xue Xue Bao. 2003;23:969–71.PubMed
48.
Zurück zum Zitat Peng W, Duan SF. Effects of ligustrazine controlled release capsule in chronic pulmonary heart disease. J Tongji Med Univ. 1991;11:101–5.PubMedCrossRef Peng W, Duan SF. Effects of ligustrazine controlled release capsule in chronic pulmonary heart disease. J Tongji Med Univ. 1991;11:101–5.PubMedCrossRef
49.
Zurück zum Zitat Hanneken A, Lin FF, Johnson J, Maher P. Flavonoids protect human retinal pigment epithelial cells from oxidative-stress-induced death. Invest Ophthalmol Vis Sci. 2006;47:3164–77.PubMedCrossRef Hanneken A, Lin FF, Johnson J, Maher P. Flavonoids protect human retinal pigment epithelial cells from oxidative-stress-induced death. Invest Ophthalmol Vis Sci. 2006;47:3164–77.PubMedCrossRef
50.
Zurück zum Zitat Lee HJ, Noh YH, Lee DY, Kim YS, Kim KY, Chung YH, et al. Baicalein attenuates 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells. Eur J Cell Biol. 2005;84:897–905.PubMedCrossRef Lee HJ, Noh YH, Lee DY, Kim YS, Kim KY, Chung YH, et al. Baicalein attenuates 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells. Eur J Cell Biol. 2005;84:897–905.PubMedCrossRef
51.
Zurück zum Zitat Yang L, Sun HL, Wu LM, Guo XJ, Dou H, Tso MO, et al. Baicalein reduces inflammatory process in a rodent model of diabetic retinopathy. Invest Ophthalmol Vis Sci. 2009;50:2319–27.PubMedCrossRef Yang L, Sun HL, Wu LM, Guo XJ, Dou H, Tso MO, et al. Baicalein reduces inflammatory process in a rodent model of diabetic retinopathy. Invest Ophthalmol Vis Sci. 2009;50:2319–27.PubMedCrossRef
52.
Zurück zum Zitat Wang SY, Wang HH, Chi CW, Chen CF, Liao JF. Effects of baicalein on beta-amyloid peptide-(25–35)-induced amnesia in mice. Eur J Pharmacol. 2004;506:55–61.PubMedCrossRef Wang SY, Wang HH, Chi CW, Chen CF, Liao JF. Effects of baicalein on beta-amyloid peptide-(25–35)-induced amnesia in mice. Eur J Pharmacol. 2004;506:55–61.PubMedCrossRef
53.
Zurück zum Zitat Sexton A, McDonald M, Cayla C, Thiemermann C, Ahluwalia A. 12-Lipoxygenase-derived eicosanoids protect against myocardial ischemia/reperfusion injury via activation of neuronal TRPV1. FASEB J. 2007;21:2695–703.PubMedCrossRef Sexton A, McDonald M, Cayla C, Thiemermann C, Ahluwalia A. 12-Lipoxygenase-derived eicosanoids protect against myocardial ischemia/reperfusion injury via activation of neuronal TRPV1. FASEB J. 2007;21:2695–703.PubMedCrossRef
54.
Zurück zum Zitat Wu PH, Shen YC, Wang YH, Chi CW, Yen JC. Baicalein attenuates methamphetamine-induced loss of dopamine transporter in mouse striatum. Toxicology. 2006;226:238–45.PubMedCrossRef Wu PH, Shen YC, Wang YH, Chi CW, Yen JC. Baicalein attenuates methamphetamine-induced loss of dopamine transporter in mouse striatum. Toxicology. 2006;226:238–45.PubMedCrossRef
55.
Zurück zum Zitat Silva BA, Dias AC, Ferreres F, Malva JO, Oliveira CR. Neuroprotective effect of H. perforatum extracts on beta-amyloid-induced neurotoxicity. Neurotox Res. 2004;6:119–30.PubMedCrossRef Silva BA, Dias AC, Ferreres F, Malva JO, Oliveira CR. Neuroprotective effect of H. perforatum extracts on beta-amyloid-induced neurotoxicity. Neurotox Res. 2004;6:119–30.PubMedCrossRef
56.
Zurück zum Zitat Nakajima Y, Shimazawa M, Mishima S, Hara H. Water extract of propolis and its main constituents, caffeoylquinic acid derivatives, exert neuroprotective effects via antioxidant actions. Life Sci. 2007;80:370–7.PubMedCrossRef Nakajima Y, Shimazawa M, Mishima S, Hara H. Water extract of propolis and its main constituents, caffeoylquinic acid derivatives, exert neuroprotective effects via antioxidant actions. Life Sci. 2007;80:370–7.PubMedCrossRef
57.
Zurück zum Zitat Bouayed J, Rammal H, Dicko A, Younos C, Soulimani R. Chlorogenic acid, a polyphenol from Prunus domestica (Mirabelle), with coupled anxiolytic and antioxidant effects. J Neurol Sci. 2007;262:77–84.PubMedCrossRef Bouayed J, Rammal H, Dicko A, Younos C, Soulimani R. Chlorogenic acid, a polyphenol from Prunus domestica (Mirabelle), with coupled anxiolytic and antioxidant effects. J Neurol Sci. 2007;262:77–84.PubMedCrossRef
58.
Zurück zum Zitat Ohnishi R, Ito H, Iguchi A, Shinomiya K, Kamei C, Hatano T, et al. Effects of chlorogenic acid and its metabolites on spontaneous locomotor activity in mice. Biosci Biotechnol Biochem. 2006;70:2560–3.PubMedCrossRef Ohnishi R, Ito H, Iguchi A, Shinomiya K, Kamei C, Hatano T, et al. Effects of chlorogenic acid and its metabolites on spontaneous locomotor activity in mice. Biosci Biotechnol Biochem. 2006;70:2560–3.PubMedCrossRef
59.
Zurück zum Zitat Mandal MN, Patlolla JM, Zheng L, Agbaga MP, Tran JT, Wicker L, et al. Curcumin protects retinal cells from light- and oxidant stress-induced cell death. Free Radic Biol Med. 2009;46:672–9.PubMedCrossRef Mandal MN, Patlolla JM, Zheng L, Agbaga MP, Tran JT, Wicker L, et al. Curcumin protects retinal cells from light- and oxidant stress-induced cell death. Free Radic Biol Med. 2009;46:672–9.PubMedCrossRef
60.
Zurück zum Zitat Jagatha B, Mythri RB, Vali S, Bharath MM. Curcumin treatment alleviates the effects of glutathione depletion in vitro and in vivo: therapeutic implications for Parkinson's disease explained via in silico studies. Free Radic Biol Med. 2008;44:907–17.PubMedCrossRef Jagatha B, Mythri RB, Vali S, Bharath MM. Curcumin treatment alleviates the effects of glutathione depletion in vitro and in vivo: therapeutic implications for Parkinson's disease explained via in silico studies. Free Radic Biol Med. 2008;44:907–17.PubMedCrossRef
61.
Zurück zum Zitat Matteucci A, Frank C, Domenici MR, Balduzzi M, Paradisi S, Carnovale-Scalzo G, et al. Curcumin treatment protects rat retinal neurons against excitotoxicity: effect on N-methyl-d-aspartate-induced intracellular Ca(2+) increase. Exp Brain Res. 2005;167:641–8.PubMedCrossRef Matteucci A, Frank C, Domenici MR, Balduzzi M, Paradisi S, Carnovale-Scalzo G, et al. Curcumin treatment protects rat retinal neurons against excitotoxicity: effect on N-methyl-d-aspartate-induced intracellular Ca(2+) increase. Exp Brain Res. 2005;167:641–8.PubMedCrossRef
62.
Zurück zum Zitat Shukla PK, Khanna VK, Ali MM, Khan MY, Srimal RC. Anti-ischemic effect of curcumin in rat brain. Neurochem Res. 2008;33:1036–43.PubMedCrossRef Shukla PK, Khanna VK, Ali MM, Khan MY, Srimal RC. Anti-ischemic effect of curcumin in rat brain. Neurochem Res. 2008;33:1036–43.PubMedCrossRef
63.
Zurück zum Zitat Rathore P, Dohare P, Varma S, Ray A, Sharma U, Jaganathanan NR, et al. Curcuma oil: reduces early accumulation of oxidative product and is anti-apoptogenic in transient focal ischemia in rat brain. Neurochem Res. 2008;33:1672–82.PubMedCrossRef Rathore P, Dohare P, Varma S, Ray A, Sharma U, Jaganathanan NR, et al. Curcuma oil: reduces early accumulation of oxidative product and is anti-apoptogenic in transient focal ischemia in rat brain. Neurochem Res. 2008;33:1672–82.PubMedCrossRef
64.
Zurück zum Zitat Lin HJ, Lai CC, Lee Chao PD, Fan SS, Tsai Y, Huang SY, et al. Aloe-emodin metabolites protected N-methyl-d-aspartate-treated retinal ganglion cells by Cu–Zn superoxide dismutase. J Ocul Pharmacol Ther. 2007;23:152–71.PubMedCrossRef Lin HJ, Lai CC, Lee Chao PD, Fan SS, Tsai Y, Huang SY, et al. Aloe-emodin metabolites protected N-methyl-d-aspartate-treated retinal ganglion cells by Cu–Zn superoxide dismutase. J Ocul Pharmacol Ther. 2007;23:152–71.PubMedCrossRef
65.
Zurück zum Zitat Wang C, Zhang D, Ma H, Liu J. Neuroprotective effects of emodin-8-O-beta-d-glucoside in vivo and in vitro. Eur J Pharmacol. 2007;577:58–63.PubMedCrossRef Wang C, Zhang D, Ma H, Liu J. Neuroprotective effects of emodin-8-O-beta-d-glucoside in vivo and in vitro. Eur J Pharmacol. 2007;577:58–63.PubMedCrossRef
66.
Zurück zum Zitat Kramerov AA, Saghizadeh M, Pan H, Kabosova A, Montenarh M, Ahmed K, et al. Expression of protein kinase CK2 in astroglial cells of normal and neovascularized retina. Am J Pathol. 2006;168:1722–36.PubMedCrossRef Kramerov AA, Saghizadeh M, Pan H, Kabosova A, Montenarh M, Ahmed K, et al. Expression of protein kinase CK2 in astroglial cells of normal and neovascularized retina. Am J Pathol. 2006;168:1722–36.PubMedCrossRef
67.
Zurück zum Zitat Gu JW, Hasuo H, Takeya M, Akasu T. Effects of emodin on synaptic transmission in rat hippocampal CA1 pyramidal neurons in vitro. Neuropharmacology. 2005;49:103–11.PubMedCrossRef Gu JW, Hasuo H, Takeya M, Akasu T. Effects of emodin on synaptic transmission in rat hippocampal CA1 pyramidal neurons in vitro. Neuropharmacology. 2005;49:103–11.PubMedCrossRef
68.
Zurück zum Zitat Soliman KF, Mazzio EA. In vitro attenuation of nitric oxide production in C6 astrocyte cell culture by various dietary compounds. Proc Soc Exp Biol Med. 1998;218:390–7.PubMed Soliman KF, Mazzio EA. In vitro attenuation of nitric oxide production in C6 astrocyte cell culture by various dietary compounds. Proc Soc Exp Biol Med. 1998;218:390–7.PubMed
69.
Zurück zum Zitat Zheng LT, Ock J, Kwon BM, Suk K. Suppressive effects of flavonoid fisetin on lipopolysaccharide-induced microglial activation and neurotoxicity. Int Immunopharmacol. 2008;8:484–94.PubMedCrossRef Zheng LT, Ock J, Kwon BM, Suk K. Suppressive effects of flavonoid fisetin on lipopolysaccharide-induced microglial activation and neurotoxicity. Int Immunopharmacol. 2008;8:484–94.PubMedCrossRef
70.
Zurück zum Zitat Park YH, Xu XR, Chiou GC. Structural requirements of flavonoids for increment of ocular blood flow in the rabbit and retinal function recovery in rat eyes. J Ocul Pharmacol Ther. 2004;20:189–200.PubMedCrossRef Park YH, Xu XR, Chiou GC. Structural requirements of flavonoids for increment of ocular blood flow in the rabbit and retinal function recovery in rat eyes. J Ocul Pharmacol Ther. 2004;20:189–200.PubMedCrossRef
71.
Zurück zum Zitat Dajas F, Rivera F, Blasina F, Arredondo F, Echeverry C, Lafon L, et al. Cell culture protection and in vivo neuroprotective capacity of flavonoids. Neurotox Res. 2003;5:425–32.PubMedCrossRef Dajas F, Rivera F, Blasina F, Arredondo F, Echeverry C, Lafon L, et al. Cell culture protection and in vivo neuroprotective capacity of flavonoids. Neurotox Res. 2003;5:425–32.PubMedCrossRef
72.
Zurück zum Zitat Wang CN, Chi CW, Lin YL, Chen CF, Shiao YJ. The neuroprotective effects of phytoestrogens on amyloid beta protein-induced toxicity are mediated by abrogating the activation of caspase cascade in rat cortical neurons. J Biol Chem. 2001;276:5287–95.PubMedCrossRef Wang CN, Chi CW, Lin YL, Chen CF, Shiao YJ. The neuroprotective effects of phytoestrogens on amyloid beta protein-induced toxicity are mediated by abrogating the activation of caspase cascade in rat cortical neurons. J Biol Chem. 2001;276:5287–95.PubMedCrossRef
73.
Zurück zum Zitat Samhan-Arias AK, Martin-Romero FJ, Gutierrez-Merino C. Kaempferol blocks oxidative stress in cerebellar granule cells and reveals a key role for reactive oxygen species production at the plasma membrane in the commitment to apoptosis. Free Radic Biol Med. 2004;37:48–61.PubMedCrossRef Samhan-Arias AK, Martin-Romero FJ, Gutierrez-Merino C. Kaempferol blocks oxidative stress in cerebellar granule cells and reveals a key role for reactive oxygen species production at the plasma membrane in the commitment to apoptosis. Free Radic Biol Med. 2004;37:48–61.PubMedCrossRef
74.
Zurück zum Zitat Laabich A, Manmoto CC, Kuksa V, Leung DW, Vissvesvaran GP, Karliga I, et al. Protective effects of myricetin and related flavonols against A2E and light mediated-cell death in bovine retinal primary cell culture. Exp Eye Res. 2007;85:154–65.PubMedCrossRef Laabich A, Manmoto CC, Kuksa V, Leung DW, Vissvesvaran GP, Karliga I, et al. Protective effects of myricetin and related flavonols against A2E and light mediated-cell death in bovine retinal primary cell culture. Exp Eye Res. 2007;85:154–65.PubMedCrossRef
75.
Zurück zum Zitat Lopez-Sanchez C, Martin-Romero FJ, Sun F, Luis L, Samhan-Arias AK, Garcia-Martinez V, et al. Blood micromolar concentrations of kaempferol afford protection against ischemia/reperfusion-induced damage in rat brain. Brain Res. 2007;1182:123–37.PubMedCrossRef Lopez-Sanchez C, Martin-Romero FJ, Sun F, Luis L, Samhan-Arias AK, Garcia-Martinez V, et al. Blood micromolar concentrations of kaempferol afford protection against ischemia/reperfusion-induced damage in rat brain. Brain Res. 2007;1182:123–37.PubMedCrossRef
76.
Zurück zum Zitat Chao HM, Lin DE, Chang Y, Hsu WM, Lee SM, Lee FL, et al. Ferulic acid, but not tetramethylpyrazine, significantly attenuates retinal ischemia/reperfusion-induced alterations by acting as a hydroxyl radical scavenger. J Ocul Pharmacol Ther. 2008;24:461–72.PubMedCrossRef Chao HM, Lin DE, Chang Y, Hsu WM, Lee SM, Lee FL, et al. Ferulic acid, but not tetramethylpyrazine, significantly attenuates retinal ischemia/reperfusion-induced alterations by acting as a hydroxyl radical scavenger. J Ocul Pharmacol Ther. 2008;24:461–72.PubMedCrossRef
77.
Zurück zum Zitat Chen KJ, Chen K. Ischemic stroke treated with Ligusticum chuanxiong. Chin Med J (Engl). 1992;105:870–3. Chen KJ, Chen K. Ischemic stroke treated with Ligusticum chuanxiong. Chin Med J (Engl). 1992;105:870–3.
78.
Zurück zum Zitat Ono K, Yoshiike Y, Takashima A, Hasegawa K, Naiki H, Yamada M. Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: implications for the prevention and therapeutics of Alzheimer's disease. J Neurochem. 2003;87:172–81.PubMedCrossRef Ono K, Yoshiike Y, Takashima A, Hasegawa K, Naiki H, Yamada M. Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: implications for the prevention and therapeutics of Alzheimer's disease. J Neurochem. 2003;87:172–81.PubMedCrossRef
79.
Zurück zum Zitat Amaratunga A, Fine RE. Generation of amyloidogenic C-terminal fragments during rapid axonal transport in vivo of beta-amyloid precursor protein in the optic nerve. J Biol Chem. 1995;270:17268–72.PubMedCrossRef Amaratunga A, Fine RE. Generation of amyloidogenic C-terminal fragments during rapid axonal transport in vivo of beta-amyloid precursor protein in the optic nerve. J Biol Chem. 1995;270:17268–72.PubMedCrossRef
80.
Zurück zum Zitat Gottlieb M, Leal-Campanario R, Campos-Esparza MR, Sanchez-Gomez MV, Alberdi E, Arranz A, et al. Neuroprotection by two polyphenols following excitotoxicity and experimental ischemia. Neurobiol Dis. 2006;23:374–86.PubMedCrossRef Gottlieb M, Leal-Campanario R, Campos-Esparza MR, Sanchez-Gomez MV, Alberdi E, Arranz A, et al. Neuroprotection by two polyphenols following excitotoxicity and experimental ischemia. Neurobiol Dis. 2006;23:374–86.PubMedCrossRef
81.
Zurück zum Zitat Ibarretxe G, Sanchez-Gomez MV, Campos-Esparza MR, Alberdi E, Matute C. Differential oxidative stress in oligodendrocytes and neurons after excitotoxic insults and protection by natural polyphenols. Glia. 2006;53:201–11.PubMedCrossRef Ibarretxe G, Sanchez-Gomez MV, Campos-Esparza MR, Alberdi E, Matute C. Differential oxidative stress in oligodendrocytes and neurons after excitotoxic insults and protection by natural polyphenols. Glia. 2006;53:201–11.PubMedCrossRef
82.
Zurück zum Zitat Oyama Y, Fuchs PA, Katayama N, Noda K. Myricetin and quercetin, the flavonoid constituents of Ginkgo biloba extract, greatly reduce oxidative metabolism in both resting and Ca(2+)-loaded brain neurons. Brain Res. 1994;635:125–9.PubMedCrossRef Oyama Y, Fuchs PA, Katayama N, Noda K. Myricetin and quercetin, the flavonoid constituents of Ginkgo biloba extract, greatly reduce oxidative metabolism in both resting and Ca(2+)-loaded brain neurons. Brain Res. 1994;635:125–9.PubMedCrossRef
83.
Zurück zum Zitat Zbarsky V, Datla KP, Parkar S, Rai DK, Aruoma OI, Dexter DT. Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson's disease. Free Radic Res. 2005;39:1119–25.PubMedCrossRef Zbarsky V, Datla KP, Parkar S, Rai DK, Aruoma OI, Dexter DT. Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson's disease. Free Radic Res. 2005;39:1119–25.PubMedCrossRef
84.
Zurück zum Zitat Chiou GC, Xu XR. Effects of some natural flavonoids on retinal function recovery after ischemic insult in the rat. J Ocul Pharmacol Ther. 2004;20:107–13.PubMedCrossRef Chiou GC, Xu XR. Effects of some natural flavonoids on retinal function recovery after ischemic insult in the rat. J Ocul Pharmacol Ther. 2004;20:107–13.PubMedCrossRef
85.
Zurück zum Zitat Baluchnejadmojarad T, Roghani M. Effect of naringenin on intracerebroventricular streptozotocin-induced cognitive deficits in rat: a behavioral analysis. Pharmacology. 2006;78:193–7.PubMedCrossRef Baluchnejadmojarad T, Roghani M. Effect of naringenin on intracerebroventricular streptozotocin-induced cognitive deficits in rat: a behavioral analysis. Pharmacology. 2006;78:193–7.PubMedCrossRef
86.
Zurück zum Zitat Tsai TY, Wu SN, Liu YC, Wu AZ, Tsai YC. Inhibitory action of L-type Ca2+ current by paeoniflorin, a major constituent of peony root, in NG108-15 neuronal cells. Eur J Pharmacol. 2005;523:16–24.PubMedCrossRef Tsai TY, Wu SN, Liu YC, Wu AZ, Tsai YC. Inhibitory action of L-type Ca2+ current by paeoniflorin, a major constituent of peony root, in NG108-15 neuronal cells. Eur J Pharmacol. 2005;523:16–24.PubMedCrossRef
87.
Zurück zum Zitat Li J, Xiong X, Liu Y. Protective effect of paeoniflorin against optic nerve crush. Journal of Huazhong University of Science and Technology. 2007;27:650–2.PubMedCrossRef Li J, Xiong X, Liu Y. Protective effect of paeoniflorin against optic nerve crush. Journal of Huazhong University of Science and Technology. 2007;27:650–2.PubMedCrossRef
88.
Zurück zum Zitat Liu J, Jin DZ, Xiao L, Zhu XZ. Paeoniflorin attenuates chronic cerebral hypoperfusion-induced learning dysfunction and brain damage in rats. Brain Res. 2006;1089:162–70.PubMedCrossRef Liu J, Jin DZ, Xiao L, Zhu XZ. Paeoniflorin attenuates chronic cerebral hypoperfusion-induced learning dysfunction and brain damage in rats. Brain Res. 2006;1089:162–70.PubMedCrossRef
89.
Zurück zum Zitat Liu HQ, Zhang WY, Luo XT, Ye Y, Zhu XZ. Paeoniflorin attenuates neuroinflammation and dopaminergic neurodegeneration in the MPTP model of Parkinson's disease by activation of adenosine A1 receptor. Br J Pharmacol. 2006;148:314–25.PubMedCrossRef Liu HQ, Zhang WY, Luo XT, Ye Y, Zhu XZ. Paeoniflorin attenuates neuroinflammation and dopaminergic neurodegeneration in the MPTP model of Parkinson's disease by activation of adenosine A1 receptor. Br J Pharmacol. 2006;148:314–25.PubMedCrossRef
90.
Zurück zum Zitat Tsuda T, Sugaya A, Ohguchi H, Kishida N, Sugaya E. Protective effects of peony root extract and its components on neuron damage in the hippocampus induced by the cobalt focus epilepsy model. Exp Neurol. 1997;146:518–25.PubMedCrossRef Tsuda T, Sugaya A, Ohguchi H, Kishida N, Sugaya E. Protective effects of peony root extract and its components on neuron damage in the hippocampus induced by the cobalt focus epilepsy model. Exp Neurol. 1997;146:518–25.PubMedCrossRef
91.
Zurück zum Zitat Dong LP, Wang TY. Effects of puerarin against glutamate excitotoxicity on cultured mouse cerebral cortical neurons. Zhongguo Yao Li Xue Bao. 1998;19:339–42.PubMed Dong LP, Wang TY. Effects of puerarin against glutamate excitotoxicity on cultured mouse cerebral cortical neurons. Zhongguo Yao Li Xue Bao. 1998;19:339–42.PubMed
92.
Zurück zum Zitat Lin F, Xin Y, Wang J, Ma L, Liu J, Liu C, et al. Puerarin facilitates Ca(2+)-induced Ca(2+) release triggered by KCl-depolarization in primary cultured rat hippocampal neurons. Eur J Pharmacol. 2007;570:43–9.PubMedCrossRef Lin F, Xin Y, Wang J, Ma L, Liu J, Liu C, et al. Puerarin facilitates Ca(2+)-induced Ca(2+) release triggered by KCl-depolarization in primary cultured rat hippocampal neurons. Eur J Pharmacol. 2007;570:43–9.PubMedCrossRef
93.
Zurück zum Zitat Teng Y, Cui H, Yang M, Song H, Zhang Q, Su Y, et al. Protective effect of puerarin on diabetic retinopathy in rats. Mol Biol Rep. 2008;36:1129–33.PubMedCrossRef Teng Y, Cui H, Yang M, Song H, Zhang Q, Su Y, et al. Protective effect of puerarin on diabetic retinopathy in rats. Mol Biol Rep. 2008;36:1129–33.PubMedCrossRef
94.
Zurück zum Zitat Xuan B, Zhou YH, Yang RL, Li N, Min ZD, Chiou GC. Improvement of ocular blood flow and retinal functions with puerarin analogs. J Ocul Pharmacol Ther. 1999;15:207–16.PubMedCrossRef Xuan B, Zhou YH, Yang RL, Li N, Min ZD, Chiou GC. Improvement of ocular blood flow and retinal functions with puerarin analogs. J Ocul Pharmacol Ther. 1999;15:207–16.PubMedCrossRef
95.
Zurück zum Zitat Xu XH, Zhao TQ. Effects of puerarin on d-galactose-induced memory deficits in mice. Acta Pharmacologica Sinica. 2002;23:587–90.PubMed Xu XH, Zhao TQ. Effects of puerarin on d-galactose-induced memory deficits in mice. Acta Pharmacologica Sinica. 2002;23:587–90.PubMed
96.
Zurück zum Zitat Xu X, Zhang S, Zhang L, Yan W, Zheng X. The Neuroprotection of puerarin against cerebral ischemia is associated with the prevention of apoptosis in rats. Planta Med. 2005;71:585–91.PubMedCrossRef Xu X, Zhang S, Zhang L, Yan W, Zheng X. The Neuroprotection of puerarin against cerebral ischemia is associated with the prevention of apoptosis in rats. Planta Med. 2005;71:585–91.PubMedCrossRef
97.
Zurück zum Zitat Kobayashi MS, Han D, Packer L. Antioxidants and herbal extracts protect HT-4 neuronal cells against glutamate-induced cytotoxicity. Free Radic Res. 2000;32:115–24.PubMedCrossRef Kobayashi MS, Han D, Packer L. Antioxidants and herbal extracts protect HT-4 neuronal cells against glutamate-induced cytotoxicity. Free Radic Res. 2000;32:115–24.PubMedCrossRef
98.
Zurück zum Zitat Schonlau F, Rohdewald P. Pycnogenol for diabetic retinopathy. A review. Int Ophthalmol. 2001;24:161–71.PubMedCrossRef Schonlau F, Rohdewald P. Pycnogenol for diabetic retinopathy. A review. Int Ophthalmol. 2001;24:161–71.PubMedCrossRef
99.
Zurück zum Zitat Spadea L, Balestrazzi E. Treatment of vascular retinopathies with Pycnogenol. Phytother Res. 2001;15:219–23.PubMedCrossRef Spadea L, Balestrazzi E. Treatment of vascular retinopathies with Pycnogenol. Phytother Res. 2001;15:219–23.PubMedCrossRef
100.
Zurück zum Zitat Veurink G, Liu D, Taddei K, Perry G, Smith MA, Robertson TA, et al. Reduction of inclusion body pathology in ApoE-deficient mice fed a combination of antioxidants. Free Radic Biol Med. 2003;34:1070–7.PubMedCrossRef Veurink G, Liu D, Taddei K, Perry G, Smith MA, Robertson TA, et al. Reduction of inclusion body pathology in ApoE-deficient mice fed a combination of antioxidants. Free Radic Biol Med. 2003;34:1070–7.PubMedCrossRef
101.
Zurück zum Zitat Kook D, Wolf AH, Yu AL, Neubauer AS, Priglinger SG, Kampik A, et al. The protective effect of quercetin against oxidative stress in the human RPE in vitro. Invest Ophthalmol Vis Sci. 2008;49:1712–20.PubMedCrossRef Kook D, Wolf AH, Yu AL, Neubauer AS, Priglinger SG, Kampik A, et al. The protective effect of quercetin against oxidative stress in the human RPE in vitro. Invest Ophthalmol Vis Sci. 2008;49:1712–20.PubMedCrossRef
102.
Zurück zum Zitat Areias FM, Rego AC, Oliveira CR, Seabra RM. Antioxidant effect of flavonoids after ascorbate/Fe(2+)-induced oxidative stress in cultured retinal cells. Biochem Pharmacol. 2001;62:111–8.PubMedCrossRef Areias FM, Rego AC, Oliveira CR, Seabra RM. Antioxidant effect of flavonoids after ascorbate/Fe(2+)-induced oxidative stress in cultured retinal cells. Biochem Pharmacol. 2001;62:111–8.PubMedCrossRef
103.
Zurück zum Zitat Ishii Y, Kwong JM, Caprioli J. Retinal ganglion cell protection with geranylgeranylacetone, a heat shock protein inducer, in a rat glaucoma model. Invest Ophthalmol Vis Sci. 2003;44:1982–92.PubMedCrossRef Ishii Y, Kwong JM, Caprioli J. Retinal ganglion cell protection with geranylgeranylacetone, a heat shock protein inducer, in a rat glaucoma model. Invest Ophthalmol Vis Sci. 2003;44:1982–92.PubMedCrossRef
104.
Zurück zum Zitat Pu F, Mishima K, Irie K, Motohashi K, Tanaka Y, Orito K, et al. Neuroprotective effects of quercetin and rutin on spatial memory impairment in an 8-arm radial maze task and neuronal death induced by repeated cerebral ischemia in rats. J Pharmacol Sci. 2007;104:329–34.PubMedCrossRef Pu F, Mishima K, Irie K, Motohashi K, Tanaka Y, Orito K, et al. Neuroprotective effects of quercetin and rutin on spatial memory impairment in an 8-arm radial maze task and neuronal death induced by repeated cerebral ischemia in rats. J Pharmacol Sci. 2007;104:329–34.PubMedCrossRef
105.
Zurück zum Zitat Cho JY, Kim IS, Jang YH, Kim AR, Lee SR. Protective effect of quercetin, a natural flavonoid against neuronal damage after transient global cerebral ischemia. Neurosci Lett. 2006;404:330–5.PubMedCrossRef Cho JY, Kim IS, Jang YH, Kim AR, Lee SR. Protective effect of quercetin, a natural flavonoid against neuronal damage after transient global cerebral ischemia. Neurosci Lett. 2006;404:330–5.PubMedCrossRef
106.
Zurück zum Zitat Bureau G, Longpre F, Martinoli MG. Resveratrol and quercetin, two natural polyphenols, reduce apoptotic neuronal cell death induced by neuroinflammation. J Neurosci Res. 2008;86:403–10.PubMedCrossRef Bureau G, Longpre F, Martinoli MG. Resveratrol and quercetin, two natural polyphenols, reduce apoptotic neuronal cell death induced by neuroinflammation. J Neurosci Res. 2008;86:403–10.PubMedCrossRef
107.
Zurück zum Zitat Parker JA, Arango M, Abderrahmane S, Lambert E, Tourette C, Catoire H, et al. Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nat Genet. 2005;37:349–50.PubMedCrossRef Parker JA, Arango M, Abderrahmane S, Lambert E, Tourette C, Catoire H, et al. Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nat Genet. 2005;37:349–50.PubMedCrossRef
108.
Zurück zum Zitat Mozaffarieh M, Grieshaber MC, Orgul S, Flammer J. The potential value of natural antioxidative treatment in glaucoma. Surv Ophthalmol. 2008;53:479–505.PubMedCrossRef Mozaffarieh M, Grieshaber MC, Orgul S, Flammer J. The potential value of natural antioxidative treatment in glaucoma. Surv Ophthalmol. 2008;53:479–505.PubMedCrossRef
109.
Zurück zum Zitat Marambaud P, Zhao H, Davies P. Resveratrol promotes clearance of Alzheimer's disease amyloid-beta peptides. J Biol Chem. 2005;280:37377–82.PubMedCrossRef Marambaud P, Zhao H, Davies P. Resveratrol promotes clearance of Alzheimer's disease amyloid-beta peptides. J Biol Chem. 2005;280:37377–82.PubMedCrossRef
110.
Zurück zum Zitat Ates O, Cayli SR, Yucel N, Altinoz E, Kocak A, Durak MA, et al. Central nervous system protection by resveratrol in streptozotocin-induced diabetic rats. J Clin Neurosci. 2007;14:256–60.PubMedCrossRef Ates O, Cayli SR, Yucel N, Altinoz E, Kocak A, Durak MA, et al. Central nervous system protection by resveratrol in streptozotocin-induced diabetic rats. J Clin Neurosci. 2007;14:256–60.PubMedCrossRef
111.
Zurück zum Zitat Almaas R, Saugstad OD, Pleasure D, Rootwelt T. Neuronal formation of free radicals plays a minor role in hypoxic cell death in human NT2-N neurons. Pediatr Res. 2002;51:136–43.PubMedCrossRef Almaas R, Saugstad OD, Pleasure D, Rootwelt T. Neuronal formation of free radicals plays a minor role in hypoxic cell death in human NT2-N neurons. Pediatr Res. 2002;51:136–43.PubMedCrossRef
112.
Zurück zum Zitat Nakamura N, Hayasaka S, Zhang XY, Nagaki Y, Matsumoto M, Hayasaka Y, et al. Effects of baicalin, baicalein, and wogonin on interleukin-6 and interleukin-8 expression, and nuclear factor-kappab binding activities induced by interleukin-1beta in human retinal pigment epithelial cell line. Exp Eye Res. 2003;77:195–202.PubMedCrossRef Nakamura N, Hayasaka S, Zhang XY, Nagaki Y, Matsumoto M, Hayasaka Y, et al. Effects of baicalin, baicalein, and wogonin on interleukin-6 and interleukin-8 expression, and nuclear factor-kappab binding activities induced by interleukin-1beta in human retinal pigment epithelial cell line. Exp Eye Res. 2003;77:195–202.PubMedCrossRef
113.
Zurück zum Zitat Cho J, Lee HK. Wogonin inhibits excitotoxic and oxidative neuronal damage in primary cultured rat cortical cells. Eur J Pharmacol. 2004;485:105–10.PubMedCrossRef Cho J, Lee HK. Wogonin inhibits excitotoxic and oxidative neuronal damage in primary cultured rat cortical cells. Eur J Pharmacol. 2004;485:105–10.PubMedCrossRef
114.
Zurück zum Zitat Nagaki Y, Hayasaka S, Kadoi C, Nakamura N, Hayasaka Y. Effects of scutellariae radix extract and its components (baicalein, baicalin, and wogonin) on the experimental elevation of aqueous flare in pigmented rabbits. Jpn J Ophthalmol. 2001;45:216–20.PubMedCrossRef Nagaki Y, Hayasaka S, Kadoi C, Nakamura N, Hayasaka Y. Effects of scutellariae radix extract and its components (baicalein, baicalin, and wogonin) on the experimental elevation of aqueous flare in pigmented rabbits. Jpn J Ophthalmol. 2001;45:216–20.PubMedCrossRef
115.
Zurück zum Zitat Shieh DE, Liu LT, Lin CC. Antioxidant and free radical scavenging effects of baicalein, baicalin and wogonin. Anticancer Res. 2000;20:2861–5.PubMed Shieh DE, Liu LT, Lin CC. Antioxidant and free radical scavenging effects of baicalein, baicalin and wogonin. Anticancer Res. 2000;20:2861–5.PubMed
116.
Zurück zum Zitat Cho J, Lee HK. Wogonin inhibits ischemic brain injury in a rat model of permanent middle cerebral artery occlusion. Biol Pharm Bull. 2004;27:1561–4.PubMedCrossRef Cho J, Lee HK. Wogonin inhibits ischemic brain injury in a rat model of permanent middle cerebral artery occlusion. Biol Pharm Bull. 2004;27:1561–4.PubMedCrossRef
Metadaten
Titel
Neural protection by naturopathic compounds—an example of tetramethylpyrazine from retina to brain
verfasst von
Zhiqun Tan
Publikationsdatum
01.06.2009
Verlag
Humana Press Inc
Erschienen in
Journal of Ocular Biology, Diseases, and Informatics / Ausgabe 2/2009
Elektronische ISSN: 1936-8445
DOI
https://doi.org/10.1007/s12177-009-9024-8

Weitere Artikel der Ausgabe 2/2009

Journal of Ocular Biology, Diseases, and Informatics 2/2009 Zur Ausgabe

Neu im Fachgebiet Augenheilkunde

Metastase in der periokulären Region

Metastasen Leitthema

Orbitale und periokuläre metastatische Tumoren galten früher als sehr selten. Aber mit der ständigen Aktualisierung von Medikamenten und Nachweismethoden für die Krebsbehandlung werden neue Chemotherapien und Strahlenbehandlungen eingesetzt. Die …

Staging und Systemtherapie bei okulären und periokulären Metastasen

Metastasen Leitthema

Metastasen bösartiger Erkrankungen sind die häufigsten Tumoren, die im Auge diagnostiziert werden. Sie treten bei ungefähr 5–10 % der Patienten mit soliden Tumoren im Verlauf der Erkrankung auf. Besonders häufig sind diese beim Mammakarzinom und …

Wundheilung nach Trabekulektomie

Trabekulektomie CME-Artikel

Die überschießende Wundheilung in der filtrierenden Glaukomchirurgie ist ein zentraler Faktor für ein operatives Versagen. Nach der Einführung der Trabekulektomie in den 1960er-Jahren wurden viele Faktoren erkannt, die mit einer vermehrten …

„standard operating procedures“ (SOP) – Vorschlag zum therapeutischen Management bei periokulären sowie intraokulären Metastasen

Metastasen Leitthema

Peri- sowie intraokuläre Metastasen sind insgesamt gesehen selten und meist Zeichen einer fortgeschrittenen primären Tumorerkrankung. Die Therapie ist daher zumeist palliativ und selten kurativ. Zudem ist die Therapiefindung sehr individuell. Die …

Update Augenheilkunde

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.