Skip to main content
Erschienen in: The Cerebellum 2/2017

01.04.2017 | Consensus paper

Current Opinions and Areas of Consensus on the Role of the Cerebellum in Dystonia

verfasst von: Vikram G. Shakkottai, Amit Batla, Kailash Bhatia, William T Dauer, Christian Dresel, Martin Niethammer, David Eidelberg, Robert S. Raike, Yoland Smith, H. A. Jinnah, Ellen J. Hess, Sabine Meunier, Mark Hallett, Rachel Fremont, Kamran Khodakhah, Mark S. LeDoux, Traian Popa, Cécile Gallea, Stéphane Lehericy, Andreea C. Bostan, Peter L. Strick

Erschienen in: The Cerebellum | Ausgabe 2/2017

Einloggen, um Zugang zu erhalten

Abstract

A role for the cerebellum in causing ataxia, a disorder characterized by uncoordinated movement, is widely accepted. Recent work has suggested that alterations in activity, connectivity, and structure of the cerebellum are also associated with dystonia, a neurological disorder characterized by abnormal and sustained muscle contractions often leading to abnormal maintained postures. In this manuscript, the authors discuss their views on how the cerebellum may play a role in dystonia. The following topics are discussed:
  • The relationships between neuronal/network dysfunctions and motor abnormalities in rodent models of dystonia.
  • Data about brain structure, cerebellar metabolism, cerebellar connections, and noninvasive cerebellar stimulation that support (or not) a role for the cerebellum in human dystonia.
  • Connections between the cerebellum and motor cortical and sub-cortical structures that could support a role for the cerebellum in dystonia.
Overall points of consensus include:
  • Neuronal dysfunction originating in the cerebellum can drive dystonic movements in rodent model systems.
  • Imaging and neurophysiological studies in humans suggest that the cerebellum plays a role in the pathophysiology of dystonia, but do not provide conclusive evidence that the cerebellum is the primary or sole neuroanatomical site of origin.
Literatur
2.
Zurück zum Zitat Bhatia KP, Marsden CD. The behavioral and motor consequences of focal lesions of the basal ganglia in man. Brain. 1994;117:859–76.PubMedCrossRef Bhatia KP, Marsden CD. The behavioral and motor consequences of focal lesions of the basal ganglia in man. Brain. 1994;117:859–76.PubMedCrossRef
4.
Zurück zum Zitat Prudente CN, Hess EJ, Jinnah HA. Dystonia as a network disorder: what is the role of the cerebellum? Neuroscience. 2014;260:23–35.PubMedCrossRef Prudente CN, Hess EJ, Jinnah HA. Dystonia as a network disorder: what is the role of the cerebellum? Neuroscience. 2014;260:23–35.PubMedCrossRef
5.
Zurück zum Zitat Malfait N, Sanger TD. Does dystonia always include co-contraction? A study of unconstrained reaching in children with primary and secondary dystonia. Exp Brain Res. 2007;176(2):206–16.PubMedCrossRef Malfait N, Sanger TD. Does dystonia always include co-contraction? A study of unconstrained reaching in children with primary and secondary dystonia. Exp Brain Res. 2007;176(2):206–16.PubMedCrossRef
6.
Zurück zum Zitat Yanagisawa N, Goto A. Dystonia musculorum deformans. Analysis with electromyography. J Neurol Sci. 1971;13(1):39–65.PubMedCrossRef Yanagisawa N, Goto A. Dystonia musculorum deformans. Analysis with electromyography. J Neurol Sci. 1971;13(1):39–65.PubMedCrossRef
9.
Zurück zum Zitat Jinnah HA et al. Rodent models for dystonia research: characteristics, evaluation, and utility. Mov Disord. 2005;20(3):283–92.PubMedCrossRef Jinnah HA et al. Rodent models for dystonia research: characteristics, evaluation, and utility. Mov Disord. 2005;20(3):283–92.PubMedCrossRef
10.
Zurück zum Zitat Butler AB, Hodos W. Comparative vertebrate neuroanatomy: evolution and adaptation. 2nd ed. Hoboken, N.J: Wiley-Interscience; 2005. p. xxi–715.CrossRef Butler AB, Hodos W. Comparative vertebrate neuroanatomy: evolution and adaptation. 2nd ed. Hoboken, N.J: Wiley-Interscience; 2005. p. xxi–715.CrossRef
11.
14.
Zurück zum Zitat Filip P, Lungu OV, Bares M. Dystonia and the cerebellum: a new field of interest in movement disorders? Clin Neurophysiol. 2013;124(7):1269–76.PubMedCrossRef Filip P, Lungu OV, Bares M. Dystonia and the cerebellum: a new field of interest in movement disorders? Clin Neurophysiol. 2013;124(7):1269–76.PubMedCrossRef
15.
Zurück zum Zitat Sadnicka A et al. The cerebellum in dystonia—help or hindrance? Clin Neurophysiol. 2012;123(1):65–70.PubMedCrossRef Sadnicka A et al. The cerebellum in dystonia—help or hindrance? Clin Neurophysiol. 2012;123(1):65–70.PubMedCrossRef
16.
Zurück zum Zitat Avanzino L, Abbruzzese G. How does the cerebellum contribute to the pathophysiology of dystonia. Basal Ganglia. 2012;2:231–5.CrossRef Avanzino L, Abbruzzese G. How does the cerebellum contribute to the pathophysiology of dystonia. Basal Ganglia. 2012;2:231–5.CrossRef
17.
Zurück zum Zitat Zoons E et al. Structural, functional and molecular imaging of the brain in primary focal dystonia—a review. NeuroImage. 2011;56(3):1011–20.PubMedCrossRef Zoons E et al. Structural, functional and molecular imaging of the brain in primary focal dystonia—a review. NeuroImage. 2011;56(3):1011–20.PubMedCrossRef
18.
Zurück zum Zitat Burke RE, Fahn S. Chlorpromazine methiodide acts at the vestibular nuclear complex to induce barrel rotation in the rat. Brain Res. 1983;288(1–2):273–81.PubMedCrossRef Burke RE, Fahn S. Chlorpromazine methiodide acts at the vestibular nuclear complex to induce barrel rotation in the rat. Brain Res. 1983;288(1–2):273–81.PubMedCrossRef
19.
Zurück zum Zitat Cenci MA, Whishaw IQ, Schallert T. Animal models of neurological deficits: how relevant is the rat? Nat Rev Neurosci. 2002;3(7):574–9.PubMedCrossRef Cenci MA, Whishaw IQ, Schallert T. Animal models of neurological deficits: how relevant is the rat? Nat Rev Neurosci. 2002;3(7):574–9.PubMedCrossRef
20.
Zurück zum Zitat Dang MT et al. Generation and characterization of Dyt1 DeltaGAG knock-in mouse as a model for early-onset dystonia. Exp Neurol. 2005;196(2):452–63.PubMedCrossRef Dang MT et al. Generation and characterization of Dyt1 DeltaGAG knock-in mouse as a model for early-onset dystonia. Exp Neurol. 2005;196(2):452–63.PubMedCrossRef
21.
22.
23.
Zurück zum Zitat Song CH et al. Subtle microstructural changes of the cerebellum in a knock-in mouse model of DYT1 dystonia. Neurobiol Dis. 2014;62:372–80.PubMedCrossRef Song CH et al. Subtle microstructural changes of the cerebellum in a knock-in mouse model of DYT1 dystonia. Neurobiol Dis. 2014;62:372–80.PubMedCrossRef
24.
Zurück zum Zitat Liang CC et al. TorsinA hypofunction causes abnormal twisting movements and sensorimotor circuit neurodegeneration. J Clin Invest. 2014;124(7):3080–92.PubMedPubMedCentralCrossRef Liang CC et al. TorsinA hypofunction causes abnormal twisting movements and sensorimotor circuit neurodegeneration. J Clin Invest. 2014;124(7):3080–92.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Weisheit, C.E. and W.T. Dauer, A novel conditional knock-in approach defines molecular and circuit effects of the DYT1 dystonia mutation. Hum Mol Genet, 2015. Weisheit, C.E. and W.T. Dauer, A novel conditional knock-in approach defines molecular and circuit effects of the DYT1 dystonia mutation. Hum Mol Genet, 2015.
26.
Zurück zum Zitat Pappas SS et al. Forebrain deletion of the dystonia protein torsinA causes dystonic-like movements and loss of striatal cholinergic neurons. Elife. 2015;4:e08352.PubMedPubMedCentralCrossRef Pappas SS et al. Forebrain deletion of the dystonia protein torsinA causes dystonic-like movements and loss of striatal cholinergic neurons. Elife. 2015;4:e08352.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Yokoi F et al. Motor deficits and hyperactivity in cerebral cortex-specific Dyt1 conditional knockout mice. J Biochem. 2008;143(1):39–47.PubMedCrossRef Yokoi F et al. Motor deficits and hyperactivity in cerebral cortex-specific Dyt1 conditional knockout mice. J Biochem. 2008;143(1):39–47.PubMedCrossRef
28.
Zurück zum Zitat Yokoi F et al. Motor deficits and decreased striatal dopamine receptor 2 binding activity in the striatum-specific Dyt1 conditional knockout mice. PLoS One. 2011;6(9):e24539.PubMedPubMedCentralCrossRef Yokoi F et al. Motor deficits and decreased striatal dopamine receptor 2 binding activity in the striatum-specific Dyt1 conditional knockout mice. PLoS One. 2011;6(9):e24539.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Middleton FA, Strick PL. Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Brain Res Rev. 2000;31(2–3):236–50.PubMedCrossRef Middleton FA, Strick PL. Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Brain Res Rev. 2000;31(2–3):236–50.PubMedCrossRef
31.
Zurück zum Zitat Dum RP, Li C, Strick PL. Motor and nonmotor domains in the monkey dentate. Ann N Y Acad Sci. 2002;978:289–301.PubMedCrossRef Dum RP, Li C, Strick PL. Motor and nonmotor domains in the monkey dentate. Ann N Y Acad Sci. 2002;978:289–301.PubMedCrossRef
32.
Zurück zum Zitat Akkal D, Dum RP, Strick PL. Supplementary motor area and presupplementary motor area: targets of basal ganglia and cerebellar output. J Neurosci. 2007;27(40):10659–73.PubMedCrossRef Akkal D, Dum RP, Strick PL. Supplementary motor area and presupplementary motor area: targets of basal ganglia and cerebellar output. J Neurosci. 2007;27(40):10659–73.PubMedCrossRef
33.
34.
Zurück zum Zitat Hoshi E et al. The cerebellum communicates with the basal ganglia. Nat Neurosci. 2005;8(11):1491–3.PubMedCrossRef Hoshi E et al. The cerebellum communicates with the basal ganglia. Nat Neurosci. 2005;8(11):1491–3.PubMedCrossRef
37.
Zurück zum Zitat Kelly RM, Strick PL. Macro-architecture of basal ganglia loops with the cerebral cortex: use of rabies virus to reveal multisynaptic circuits. Prog Brain Res. 2004;143:449–59.PubMed Kelly RM, Strick PL. Macro-architecture of basal ganglia loops with the cerebral cortex: use of rabies virus to reveal multisynaptic circuits. Prog Brain Res. 2004;143:449–59.PubMed
38.
Zurück zum Zitat Sutton AC et al. Stimulation of the subthalamic nucleus engages the cerebellum for motor function in parkinsonian rats. Brain Struct Funct. 2015;220(6):3595–609.PubMedCrossRef Sutton AC et al. Stimulation of the subthalamic nucleus engages the cerebellum for motor function in parkinsonian rats. Brain Struct Funct. 2015;220(6):3595–609.PubMedCrossRef
39.
Zurück zum Zitat Campbell DB, Hess EJ. Cerebellar circuitry is activated during convulsive episodes in the tottering (tg/tg) mutant mouse. Neuroscience. 1998;85(3):773–83.PubMedCrossRef Campbell DB, Hess EJ. Cerebellar circuitry is activated during convulsive episodes in the tottering (tg/tg) mutant mouse. Neuroscience. 1998;85(3):773–83.PubMedCrossRef
40.
41.
Zurück zum Zitat Chen G et al. Low-frequency oscillations in the cerebellar cortex of the tottering mouse. J Neurophysiol. 2009;101(1):234–45.PubMedCrossRef Chen G et al. Low-frequency oscillations in the cerebellar cortex of the tottering mouse. J Neurophysiol. 2009;101(1):234–45.PubMedCrossRef
42.
Zurück zum Zitat Walter JT et al. Decreases in the precision of Purkinje cell pacemaking cause cerebellar dysfunction and ataxia. Nat Neurosci. 2006;9(3):389–97.PubMedCrossRef Walter JT et al. Decreases in the precision of Purkinje cell pacemaking cause cerebellar dysfunction and ataxia. Nat Neurosci. 2006;9(3):389–97.PubMedCrossRef
43.
Zurück zum Zitat Fremont R et al. Abnormal high-frequency burst firing of cerebellar neurons in rapid-onset dystonia-parkinsonism. J Neurosci. 2014;34(35):11723–32.PubMedPubMedCentralCrossRef Fremont R et al. Abnormal high-frequency burst firing of cerebellar neurons in rapid-onset dystonia-parkinsonism. J Neurosci. 2014;34(35):11723–32.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Hisatsune C et al. IP3R1 deficiency in the cerebellum/brainstem causes basal ganglia-independent dystonia by triggering tonic Purkinje cell firings in mice. Front Neural Circuits. 2013;7:156.PubMedPubMedCentralCrossRef Hisatsune C et al. IP3R1 deficiency in the cerebellum/brainstem causes basal ganglia-independent dystonia by triggering tonic Purkinje cell firings in mice. Front Neural Circuits. 2013;7:156.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Campbell DB, Hess EJ. L-type calcium channels contribute to the tottering mouse dystonic episodes. Mol Pharmacol. 1999;55(1):23–31.PubMed Campbell DB, Hess EJ. L-type calcium channels contribute to the tottering mouse dystonic episodes. Mol Pharmacol. 1999;55(1):23–31.PubMed
46.
Zurück zum Zitat LeDoux MS, Lorden JF, Ervin JM. Cerebellectomy eliminates the motor syndrome of the genetically dystonic rat. Exp Neurol. 1993;120(2):302–10.PubMedCrossRef LeDoux MS, Lorden JF, Ervin JM. Cerebellectomy eliminates the motor syndrome of the genetically dystonic rat. Exp Neurol. 1993;120(2):302–10.PubMedCrossRef
48.
50.
Zurück zum Zitat Raike RS et al. Limited regional cerebellar dysfunction induces focal dystonia in mice. Neurobiol Dis. 2012;49C:200–10. Raike RS et al. Limited regional cerebellar dysfunction induces focal dystonia in mice. Neurobiol Dis. 2012;49C:200–10.
51.
Zurück zum Zitat Fan X et al. Selective and sustained alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor activation in cerebellum induces dystonia in mice. J Pharmacol Exp Ther. 2012;340(3):733–41.PubMedPubMedCentralCrossRef Fan X et al. Selective and sustained alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor activation in cerebellum induces dystonia in mice. J Pharmacol Exp Ther. 2012;340(3):733–41.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Pizoli CE et al. Abnormal cerebellar signaling induces dystonia in mice. J Neurosci. 2002;22(17):7825–33.PubMed Pizoli CE et al. Abnormal cerebellar signaling induces dystonia in mice. J Neurosci. 2002;22(17):7825–33.PubMed
53.
Zurück zum Zitat Alvarez-Fischer D et al. Prolonged generalized dystonia after chronic cerebellar application of kainic acid. Brain Res. 2012;1464:82–8.PubMedCrossRef Alvarez-Fischer D et al. Prolonged generalized dystonia after chronic cerebellar application of kainic acid. Brain Res. 2012;1464:82–8.PubMedCrossRef
55.
Zurück zum Zitat Cooper IS, Upton AR. Use of chronic cerebellar stimulation for disorders of disinhibition. Lancet. 1978;1(8064):595–600.PubMedCrossRef Cooper IS, Upton AR. Use of chronic cerebellar stimulation for disorders of disinhibition. Lancet. 1978;1(8064):595–600.PubMedCrossRef
56.
Zurück zum Zitat Bradnam LV et al. Anodal transcranial direct current stimulation to the cerebellum improves handwriting and cyclic drawing kinematics in focal hand dystonia. Front Hum Neurosci. 2015;9:286.PubMedPubMedCentralCrossRef Bradnam LV et al. Anodal transcranial direct current stimulation to the cerebellum improves handwriting and cyclic drawing kinematics in focal hand dystonia. Front Hum Neurosci. 2015;9:286.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Sokal P et al. Deep anterior cerebellar stimulation reduces symptoms of secondary dystonia in patients with cerebral palsy treated due to spasticity. Clin Neurol Neurosurg. 2015;135:62–8.PubMedCrossRef Sokal P et al. Deep anterior cerebellar stimulation reduces symptoms of secondary dystonia in patients with cerebral palsy treated due to spasticity. Clin Neurol Neurosurg. 2015;135:62–8.PubMedCrossRef
58.
Zurück zum Zitat Eidelberg D et al. Functional brain networks in DYT1 dystonia. Ann Neurol. 1998;44(3):303–12.PubMedCrossRef Eidelberg D et al. Functional brain networks in DYT1 dystonia. Ann Neurol. 1998;44(3):303–12.PubMedCrossRef
59.
Zurück zum Zitat Le Ber I et al. Predominant dystonia with marked cerebellar atrophy: a rare phenotype in familial dystonia. Neurology. 2006;67(10):1769–73.PubMedCrossRef Le Ber I et al. Predominant dystonia with marked cerebellar atrophy: a rare phenotype in familial dystonia. Neurology. 2006;67(10):1769–73.PubMedCrossRef
60.
Zurück zum Zitat Dow RS, Moruzzi G. The physiology and pathology of the cerebellum. Minneapolis: University of Minnesota Press ; 1958.675 p Dow RS, Moruzzi G. The physiology and pathology of the cerebellum. Minneapolis: University of Minnesota Press ; 1958.675 p
61.
Zurück zum Zitat Mottolese C et al. Mapping motor representations in the human cerebellum. Brain. 2013;136(Pt 1):330–42.PubMedCrossRef Mottolese C et al. Mapping motor representations in the human cerebellum. Brain. 2013;136(Pt 1):330–42.PubMedCrossRef
62.
Zurück zum Zitat Nashold Jr BS, Slaughter DG. Effects of stimulating or destroying the deep cerebellar regions in man. J Neurosurg. 1969;31(2):172–86.PubMedCrossRef Nashold Jr BS, Slaughter DG. Effects of stimulating or destroying the deep cerebellar regions in man. J Neurosurg. 1969;31(2):172–86.PubMedCrossRef
63.
64.
Zurück zum Zitat LeDoux MS. Animal models of dystonia: lessons from a mutant rat. Neurobiol Dis. 2011;42(2):152–61.PubMedCrossRef LeDoux MS. Animal models of dystonia: lessons from a mutant rat. Neurobiol Dis. 2011;42(2):152–61.PubMedCrossRef
65.
Zurück zum Zitat Xiao J, Ledoux MS. Caytaxin deficiency causes generalized dystonia in rats. Brain Res Mol Brain Res. 2005;141(2):181–92.PubMedCrossRef Xiao J, Ledoux MS. Caytaxin deficiency causes generalized dystonia in rats. Brain Res Mol Brain Res. 2005;141(2):181–92.PubMedCrossRef
66.
Zurück zum Zitat Fremont R, Tewari A, Khodakhah K. Aberrant Purkinje cell activity is the cause of dystonia in a shRNA-based mouse model of rapid onset dystonia-parkinsonism. Neurobiol Dis. 2015;82:200–12.PubMedPubMedCentralCrossRef Fremont R, Tewari A, Khodakhah K. Aberrant Purkinje cell activity is the cause of dystonia in a shRNA-based mouse model of rapid onset dystonia-parkinsonism. Neurobiol Dis. 2015;82:200–12.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Harries AM et al. Unilateral pallidal deep brain stimulation in a patient with dystonia secondary to episodic ataxia type 2. Stereotact Funct Neurosurg. 2013;91(4):233–5.PubMedCrossRef Harries AM et al. Unilateral pallidal deep brain stimulation in a patient with dystonia secondary to episodic ataxia type 2. Stereotact Funct Neurosurg. 2013;91(4):233–5.PubMedCrossRef
68.
Zurück zum Zitat Hu, Y., et al., Identification of a novel nonsense mutation p.Tyr1957Ter of CACNA1A in a Chinese family with episodic ataxia 2. PLoS One, 2013. 8(2): p. e56362. Hu, Y., et al., Identification of a novel nonsense mutation p.Tyr1957Ter of CACNA1A in a Chinese family with episodic ataxia 2. PLoS One, 2013. 8(2): p. e56362.
69.
Zurück zum Zitat Weisz CJ et al. Potassium channel blockers inhibit the triggers of attacks in the calcium channel mouse mutant tottering. J Neurosci. 2005;25(16):4141–5.PubMedCrossRef Weisz CJ et al. Potassium channel blockers inhibit the triggers of attacks in the calcium channel mouse mutant tottering. J Neurosci. 2005;25(16):4141–5.PubMedCrossRef
72.
Zurück zum Zitat Starr PA et al. Spontaneous pallidal neuronal activity in human dystonia: comparison with Parkinson's disease and normal macaque. J Neurophysiol. 2005;93(6):3165–76.PubMedCrossRef Starr PA et al. Spontaneous pallidal neuronal activity in human dystonia: comparison with Parkinson's disease and normal macaque. J Neurophysiol. 2005;93(6):3165–76.PubMedCrossRef
73.
Zurück zum Zitat Meunier S et al. Plasticity of cortical inhibition in dystonia is impaired after motor learning and paired-associative stimulation. Eur J Neurosci. 2012;35(6):975–86.PubMedPubMedCentralCrossRef Meunier S et al. Plasticity of cortical inhibition in dystonia is impaired after motor learning and paired-associative stimulation. Eur J Neurosci. 2012;35(6):975–86.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Castrop F et al. Basal ganglia-premotor dysfunction during movement imagination in writer's cramp. Mov Disord. 2012;27(11):1432–9.PubMedCrossRef Castrop F et al. Basal ganglia-premotor dysfunction during movement imagination in writer's cramp. Mov Disord. 2012;27(11):1432–9.PubMedCrossRef
75.
Zurück zum Zitat Mure H et al. Deep brain stimulation of the thalamic ventral lateral anterior nucleus for DYT6 dystonia. Stereotact Funct Neurosurg. 2014;92(6):393–6.PubMedCrossRef Mure H et al. Deep brain stimulation of the thalamic ventral lateral anterior nucleus for DYT6 dystonia. Stereotact Funct Neurosurg. 2014;92(6):393–6.PubMedCrossRef
76.
Zurück zum Zitat Koy A et al. Young adults with dyskinetic cerebral palsy improve subjectively on pallidal stimulation, but not in formal dystonia, gait, speech and swallowing testing. Eur Neurol. 2014;72(5–6):340–8.PubMedCrossRef Koy A et al. Young adults with dyskinetic cerebral palsy improve subjectively on pallidal stimulation, but not in formal dystonia, gait, speech and swallowing testing. Eur Neurol. 2014;72(5–6):340–8.PubMedCrossRef
77.
Zurück zum Zitat Volkmann J et al. Pallidal neurostimulation in patients with medication-refractory cervical dystonia: a randomised, sham-controlled trial. Lancet Neurol. 2014;13(9):875–84.PubMedCrossRef Volkmann J et al. Pallidal neurostimulation in patients with medication-refractory cervical dystonia: a randomised, sham-controlled trial. Lancet Neurol. 2014;13(9):875–84.PubMedCrossRef
78.
Zurück zum Zitat Ozelius LJ et al. The early-onset torsion dystonia gene (DYT1) encodes an ATP-binding protein. Nat Genet. 1997;17(1):40–8.PubMedCrossRef Ozelius LJ et al. The early-onset torsion dystonia gene (DYT1) encodes an ATP-binding protein. Nat Genet. 1997;17(1):40–8.PubMedCrossRef
79.
Zurück zum Zitat LeDoux MS et al. Genotype-phenotype correlations in THAP1 dystonia: molecular foundations and description of new cases. Parkinsonism Relat Disord. 2012;18(5):414–25.PubMedPubMedCentralCrossRef LeDoux MS et al. Genotype-phenotype correlations in THAP1 dystonia: molecular foundations and description of new cases. Parkinsonism Relat Disord. 2012;18(5):414–25.PubMedPubMedCentralCrossRef
81.
Zurück zum Zitat Zhao Y et al. Neural expression of the transcription factor THAP1 during development in rat. Neuroscience. 2013;231:282–95.PubMedCrossRef Zhao Y et al. Neural expression of the transcription factor THAP1 during development in rat. Neuroscience. 2013;231:282–95.PubMedCrossRef
82.
Zurück zum Zitat Xiao J et al. Developmental expression of rat torsinA transcript and protein. Brain Res Dev Brain Res. 2004;152(1):47–60.PubMedCrossRef Xiao J et al. Developmental expression of rat torsinA transcript and protein. Brain Res Dev Brain Res. 2004;152(1):47–60.PubMedCrossRef
83.
84.
Zurück zum Zitat Jinnah HA, Hess EJ. A new twist on the anatomy of dystonia: the basal ganglia and the cerebellum? Neurology. 2006;67(10):1740–1.PubMedCrossRef Jinnah HA, Hess EJ. A new twist on the anatomy of dystonia: the basal ganglia and the cerebellum? Neurology. 2006;67(10):1740–1.PubMedCrossRef
85.
Zurück zum Zitat Perlmutter JS, Thach WT. Writer's cramp: questions of causation. Neurology. 2007;69(4):331–2.PubMedCrossRef Perlmutter JS, Thach WT. Writer's cramp: questions of causation. Neurology. 2007;69(4):331–2.PubMedCrossRef
86.
Zurück zum Zitat LeDoux MS, Brady KA. Secondary cervical dystonia associated with structural lesions of the central nervous system. Mov Disord. 2003;18(1):60–9.PubMedCrossRef LeDoux MS, Brady KA. Secondary cervical dystonia associated with structural lesions of the central nervous system. Mov Disord. 2003;18(1):60–9.PubMedCrossRef
87.
Zurück zum Zitat Waln O, LeDoux MS. Delayed-onset oromandibular dystonia after a cerebellar hemorrhagic stroke. Parkinsonism Relat Disord. 2010;16(9):623–5.PubMedCrossRef Waln O, LeDoux MS. Delayed-onset oromandibular dystonia after a cerebellar hemorrhagic stroke. Parkinsonism Relat Disord. 2010;16(9):623–5.PubMedCrossRef
88.
89.
Zurück zum Zitat LeDoux MS, Hurst DC, Lorden JF. Single-unit activity of cerebellar nuclear cells in the awake genetically dystonic rat. Neuroscience. 1998;86(2):533–45.PubMedCrossRef LeDoux MS, Hurst DC, Lorden JF. Single-unit activity of cerebellar nuclear cells in the awake genetically dystonic rat. Neuroscience. 1998;86(2):533–45.PubMedCrossRef
90.
Zurück zum Zitat Sawada K et al. Striking pattern of Purkinje cell loss in cerebellum of an ataxic mutant mouse, tottering. Acta Neurobiol Exp (Wars). 2009;69(1):138–45. Sawada K et al. Striking pattern of Purkinje cell loss in cerebellum of an ataxic mutant mouse, tottering. Acta Neurobiol Exp (Wars). 2009;69(1):138–45.
91.
Zurück zum Zitat Zhang L et al. Altered dendritic morphology of Purkinje cells in Dyt1 DeltaGAG knock-in and purkinje cell-specific Dyt1 conditional knockout mice. PLoS One. 2011;6(3):e18357.PubMedPubMedCentralCrossRef Zhang L et al. Altered dendritic morphology of Purkinje cells in Dyt1 DeltaGAG knock-in and purkinje cell-specific Dyt1 conditional knockout mice. PLoS One. 2011;6(3):e18357.PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Hirasawa M et al. Carbonic anhydrase related protein 8 mutation results in aberrant synaptic morphology and excitatory synaptic function in the cerebellum. Mol Cell Neurosci. 2007;35(1):161–70.PubMedPubMedCentralCrossRef Hirasawa M et al. Carbonic anhydrase related protein 8 mutation results in aberrant synaptic morphology and excitatory synaptic function in the cerebellum. Mol Cell Neurosci. 2007;35(1):161–70.PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Xiao J, Gong S, Ledoux MS. Caytaxin deficiency disrupts signaling pathways in cerebellar cortex. Neuroscience. 2007;144(2):439–61.PubMedCrossRef Xiao J, Gong S, Ledoux MS. Caytaxin deficiency disrupts signaling pathways in cerebellar cortex. Neuroscience. 2007;144(2):439–61.PubMedCrossRef
95.
Zurück zum Zitat Tzingounis AV et al. Hippocalcin gates the calcium activation of the slow afterhyperpolarization in hippocampal pyramidal cells. Neuron. 2007;53(4):487–93.PubMedPubMedCentralCrossRef Tzingounis AV et al. Hippocalcin gates the calcium activation of the slow afterhyperpolarization in hippocampal pyramidal cells. Neuron. 2007;53(4):487–93.PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat Raike RS et al. Stress, caffeine and ethanol trigger transient neurological dysfunction through shared mechanisms in a mouse calcium channelopathy. Neurobiol Dis. 2013;50:151–9.PubMedCrossRef Raike RS et al. Stress, caffeine and ethanol trigger transient neurological dysfunction through shared mechanisms in a mouse calcium channelopathy. Neurobiol Dis. 2013;50:151–9.PubMedCrossRef
97.
Zurück zum Zitat Maejima T et al. Postnatal loss of P/Q-type channels confined to rhombic-lip-derived neurons alters synaptic transmission at the parallel fiber to purkinje cell synapse and replicates genomic Cacna1a mutation phenotype of ataxia and seizures in mice. J Neurosci. 2013;33(12):5162–74.PubMedPubMedCentralCrossRef Maejima T et al. Postnatal loss of P/Q-type channels confined to rhombic-lip-derived neurons alters synaptic transmission at the parallel fiber to purkinje cell synapse and replicates genomic Cacna1a mutation phenotype of ataxia and seizures in mice. J Neurosci. 2013;33(12):5162–74.PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat LeDoux MS, Lorden JF. Abnormal spontaneous and harmaline-stimulated Purkinje cell activity in the awake genetically dystonic rat. Exp Brain Res. 2002;145(4):457–67.PubMedCrossRef LeDoux MS, Lorden JF. Abnormal spontaneous and harmaline-stimulated Purkinje cell activity in the awake genetically dystonic rat. Exp Brain Res. 2002;145(4):457–67.PubMedCrossRef
100.
Zurück zum Zitat Asanuma K et al. The metabolic pathology of dopa-responsive dystonia. Ann Neurol. 2005;57(4):596–600.PubMedCrossRef Asanuma K et al. The metabolic pathology of dopa-responsive dystonia. Ann Neurol. 2005;57(4):596–600.PubMedCrossRef
101.
Zurück zum Zitat Hutchinson M et al. The metabolic topography of essential blepharospasm: a focal dystonia with general implications. Neurology. 2000;55(5):673–7.PubMedCrossRef Hutchinson M et al. The metabolic topography of essential blepharospasm: a focal dystonia with general implications. Neurology. 2000;55(5):673–7.PubMedCrossRef
102.
Zurück zum Zitat Carbon M et al. Regional metabolism in primary torsion dystonia: effects of penetrance and genotype. Neurology. 2004;62(8):1384–90.PubMedCrossRef Carbon M et al. Regional metabolism in primary torsion dystonia: effects of penetrance and genotype. Neurology. 2004;62(8):1384–90.PubMedCrossRef
104.
Zurück zum Zitat Eidelberg D et al. The metabolic topography of idiopathic torsion dystonia. Brain. 1995;118(Pt 6):1473–84.PubMedCrossRef Eidelberg D et al. The metabolic topography of idiopathic torsion dystonia. Brain. 1995;118(Pt 6):1473–84.PubMedCrossRef
105.
Zurück zum Zitat Niethammer M et al. Hereditary dystonia as a neurodevelopmental circuit disorder: evidence from neuroimaging. Neurobiol Dis. 2011;42(2):202–9.PubMedCrossRef Niethammer M et al. Hereditary dystonia as a neurodevelopmental circuit disorder: evidence from neuroimaging. Neurobiol Dis. 2011;42(2):202–9.PubMedCrossRef
107.
Zurück zum Zitat Odergren T, Stone-Elander S, Ingvar M. Cerebral and cerebellar activation in correlation to the action-induced dystonia in writer's cramp. Mov Disord. 1998;13(3):497–508.PubMedCrossRef Odergren T, Stone-Elander S, Ingvar M. Cerebral and cerebellar activation in correlation to the action-induced dystonia in writer's cramp. Mov Disord. 1998;13(3):497–508.PubMedCrossRef
109.
Zurück zum Zitat Carbon M et al. Increased cerebellar activation during sequence learning in DYT1 carriers: an equiperformance study. Brain. 2008;131(Pt 1):146–54.PubMed Carbon M et al. Increased cerebellar activation during sequence learning in DYT1 carriers: an equiperformance study. Brain. 2008;131(Pt 1):146–54.PubMed
110.
Zurück zum Zitat Thobois S et al. Globus pallidus stimulation reduces frontal hyperactivity in tardive dystonia. J Cereb Blood Flow Metab. 2008;28(6):1127–38.PubMedCrossRef Thobois S et al. Globus pallidus stimulation reduces frontal hyperactivity in tardive dystonia. J Cereb Blood Flow Metab. 2008;28(6):1127–38.PubMedCrossRef
111.
Zurück zum Zitat Delmaire C et al. Structural abnormalities in the cerebellum and sensorimotor circuit in writer's cramp. Neurology. 2007;69(4):376–80.PubMedCrossRef Delmaire C et al. Structural abnormalities in the cerebellum and sensorimotor circuit in writer's cramp. Neurology. 2007;69(4):376–80.PubMedCrossRef
113.
Zurück zum Zitat Vo A et al. Thalamocortical connectivity correlates with phenotypic variability in dystonia. Cereb Cortex. 2015;25(9):3086–94.PubMedCrossRef Vo A et al. Thalamocortical connectivity correlates with phenotypic variability in dystonia. Cereb Cortex. 2015;25(9):3086–94.PubMedCrossRef
114.
Zurück zum Zitat Sako, W., et al., The visual perception of natural motion: abnormal task-related neural activity in DYT1 dystonia. Brain, 2015. Sako, W., et al., The visual perception of natural motion: abnormal task-related neural activity in DYT1 dystonia. Brain, 2015.
115.
Zurück zum Zitat Dresel C et al. Multiple changes of functional connectivity between sensorimotor areas in focal hand dystonia. J Neurol Neurosurg Psychiatry. 2014;85(11):1245–52.PubMedCrossRef Dresel C et al. Multiple changes of functional connectivity between sensorimotor areas in focal hand dystonia. J Neurol Neurosurg Psychiatry. 2014;85(11):1245–52.PubMedCrossRef
116.
Zurück zum Zitat Draganski B et al. "Motor circuit" gray matter changes in idiopathic cervical dystonia. Neurology. 2003;61(9):1228–31.PubMedCrossRef Draganski B et al. "Motor circuit" gray matter changes in idiopathic cervical dystonia. Neurology. 2003;61(9):1228–31.PubMedCrossRef
117.
Zurück zum Zitat Obermann M et al. Morphometric changes of sensorimotor structures in focal dystonia. Mov Disord. 2007;22(8):1117–23.PubMedCrossRef Obermann M et al. Morphometric changes of sensorimotor structures in focal dystonia. Mov Disord. 2007;22(8):1117–23.PubMedCrossRef
118.
Zurück zum Zitat Ramdhani RA et al. What's special about task in dystonia? A voxel-based morphometry and diffusion weighted imaging study. Mov Disord. 2014;29(9):1141–50.PubMedPubMedCentralCrossRef Ramdhani RA et al. What's special about task in dystonia? A voxel-based morphometry and diffusion weighted imaging study. Mov Disord. 2014;29(9):1141–50.PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat Draganski B et al. Genotype-phenotype interactions in primary dystonias revealed by differential changes in brain structure. NeuroImage. 2009;47(4):1141–7.PubMedPubMedCentralCrossRef Draganski B et al. Genotype-phenotype interactions in primary dystonias revealed by differential changes in brain structure. NeuroImage. 2009;47(4):1141–7.PubMedPubMedCentralCrossRef
120.
Zurück zum Zitat Zeuner KE et al. Increased volume and impaired function: the role of the basal ganglia in writer's cramp. Brain Behav. 2015;5(2):e00301.PubMedCrossRef Zeuner KE et al. Increased volume and impaired function: the role of the basal ganglia in writer's cramp. Brain Behav. 2015;5(2):e00301.PubMedCrossRef
121.
Zurück zum Zitat Baker RS et al. A functional magnetic resonance imaging study in patients with benign essential blepharospasm. J Neuroophthalmol. 2003;23(1):11–5.PubMedCrossRef Baker RS et al. A functional magnetic resonance imaging study in patients with benign essential blepharospasm. J Neuroophthalmol. 2003;23(1):11–5.PubMedCrossRef
122.
Zurück zum Zitat Schmidt KE et al. Striatal activation during blepharospasm revealed by fMRI. Neurology. 2003;60(11):1738–43.PubMedCrossRef Schmidt KE et al. Striatal activation during blepharospasm revealed by fMRI. Neurology. 2003;60(11):1738–43.PubMedCrossRef
123.
Zurück zum Zitat Zhou B et al. A resting state functional magnetic resonance imaging study of patients with benign essential blepharospasm. J Neuroophthalmol. 2013;33(3):235–40.PubMedCrossRef Zhou B et al. A resting state functional magnetic resonance imaging study of patients with benign essential blepharospasm. J Neuroophthalmol. 2013;33(3):235–40.PubMedCrossRef
124.
Zurück zum Zitat Hu XY et al. Functional magnetic resonance imaging study of writer's cramp. Chin Med J. 2006;119(15):1263–71.PubMed Hu XY et al. Functional magnetic resonance imaging study of writer's cramp. Chin Med J. 2006;119(15):1263–71.PubMed
125.
Zurück zum Zitat Gallea C et al. Increased cortico-striatal connectivity during motor practice contributes to the consolidation of motor memory in writer's cramp patients. Neuroimage Clin. 2015;8:180–92.PubMedPubMedCentralCrossRef Gallea C et al. Increased cortico-striatal connectivity during motor practice contributes to the consolidation of motor memory in writer's cramp patients. Neuroimage Clin. 2015;8:180–92.PubMedPubMedCentralCrossRef
126.
Zurück zum Zitat Fiorio M et al. The role of the cerebellum in dynamic changes of the sense of body ownership: a study in patients with cerebellar degeneration. J Cogn Neurosci. 2014;26(4):712–21.PubMedCrossRef Fiorio M et al. The role of the cerebellum in dynamic changes of the sense of body ownership: a study in patients with cerebellar degeneration. J Cogn Neurosci. 2014;26(4):712–21.PubMedCrossRef
128.
Zurück zum Zitat Delnooz CC et al. Task-free functional MRI in cervical dystonia reveals multi-network changes that partially normalize with botulinum toxin. PLoS One. 2013;8(5):e62877.PubMedPubMedCentralCrossRef Delnooz CC et al. Task-free functional MRI in cervical dystonia reveals multi-network changes that partially normalize with botulinum toxin. PLoS One. 2013;8(5):e62877.PubMedPubMedCentralCrossRef
129.
Zurück zum Zitat Mohammadi B et al. Changes in resting-state brain networks in writer's cramp. Hum Brain Mapp. 2012;33(4):840–8.PubMedCrossRef Mohammadi B et al. Changes in resting-state brain networks in writer's cramp. Hum Brain Mapp. 2012;33(4):840–8.PubMedCrossRef
130.
Zurück zum Zitat Lehericy S et al. The anatomical basis of dystonia: current view using neuroimaging. Mov Disord. 2013;28(7):944–57.PubMedCrossRef Lehericy S et al. The anatomical basis of dystonia: current view using neuroimaging. Mov Disord. 2013;28(7):944–57.PubMedCrossRef
131.
Zurück zum Zitat Popa T et al. Cerebellar processing of sensory inputs primes motor cortex plasticity. Cereb Cortex. 2013;23(2):305–14.PubMedCrossRef Popa T et al. Cerebellar processing of sensory inputs primes motor cortex plasticity. Cereb Cortex. 2013;23(2):305–14.PubMedCrossRef
134.
136.
Zurück zum Zitat Blakemore SJ, Wolpert DM, Frith CD. The cerebellum contributes to somatosensory cortical activity during self-produced tactile stimulation. NeuroImage. 1999;10(4):448–59.PubMedCrossRef Blakemore SJ, Wolpert DM, Frith CD. The cerebellum contributes to somatosensory cortical activity during self-produced tactile stimulation. NeuroImage. 1999;10(4):448–59.PubMedCrossRef
137.
Zurück zum Zitat Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46(7):831–44.PubMedPubMedCentralCrossRef Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46(7):831–44.PubMedPubMedCentralCrossRef
138.
Zurück zum Zitat Batla, A., et al., The role of cerebellum in patients with late onset cervical/segmental dystonia?-Evidence from the clinic. Parkinsonism Relat Disord, 2015. Batla, A., et al., The role of cerebellum in patients with late onset cervical/segmental dystonia?-Evidence from the clinic. Parkinsonism Relat Disord, 2015.
139.
Zurück zum Zitat Cancel G et al. Molecular and clinical correlations in spinocerebellar ataxia 2: a study of 32 families. Hum Mol Genet. 1997;6(5):709–15.PubMedCrossRef Cancel G et al. Molecular and clinical correlations in spinocerebellar ataxia 2: a study of 32 families. Hum Mol Genet. 1997;6(5):709–15.PubMedCrossRef
140.
Zurück zum Zitat Hagenah JM et al. Focal dystonia as a presenting sign of spinocerebellar ataxia 17. Mov Disord. 2004;19(2):217–20.PubMedCrossRef Hagenah JM et al. Focal dystonia as a presenting sign of spinocerebellar ataxia 17. Mov Disord. 2004;19(2):217–20.PubMedCrossRef
141.
Zurück zum Zitat Lang AE et al. Homozygous inheritance of the Machado-Joseph disease gene. Ann Neurol. 1994;36(3):443–7.PubMedCrossRef Lang AE et al. Homozygous inheritance of the Machado-Joseph disease gene. Ann Neurol. 1994;36(3):443–7.PubMedCrossRef
142.
Zurück zum Zitat van de Warrenburg BP et al. The syndrome of (predominantly cervical) dystonia and cerebellar ataxia: new cases indicate a distinct but heterogeneous entity. J Neurol Neurosurg Psychiatry. 2007;78(7):774–5.PubMedPubMedCentralCrossRef van de Warrenburg BP et al. The syndrome of (predominantly cervical) dystonia and cerebellar ataxia: new cases indicate a distinct but heterogeneous entity. J Neurol Neurosurg Psychiatry. 2007;78(7):774–5.PubMedPubMedCentralCrossRef
143.
Zurück zum Zitat Kuoppamaki M et al. Slowly progressive cerebellar ataxia and cervical dystonia: clinical presentation of a new form of spinocerebellar ataxia? Mov Disord. 2003;18(2):200–6.PubMedCrossRef Kuoppamaki M et al. Slowly progressive cerebellar ataxia and cervical dystonia: clinical presentation of a new form of spinocerebellar ataxia? Mov Disord. 2003;18(2):200–6.PubMedCrossRef
144.
Zurück zum Zitat Kumandas S et al. Torticollis secondary to posterior fossa and cervical spinal cord tumors: report of five cases and literature review. Neurosurg Rev. 2006;29(4):333–8 discussion 338.PubMedCrossRef Kumandas S et al. Torticollis secondary to posterior fossa and cervical spinal cord tumors: report of five cases and literature review. Neurosurg Rev. 2006;29(4):333–8 discussion 338.PubMedCrossRef
145.
Zurück zum Zitat Teo JT et al. Neurophysiological evidence for cerebellar dysfunction in primary focal dystonia. J Neurol Neurosurg Psychiatry. 2009;80(1):80–3.PubMedCrossRef Teo JT et al. Neurophysiological evidence for cerebellar dysfunction in primary focal dystonia. J Neurol Neurosurg Psychiatry. 2009;80(1):80–3.PubMedCrossRef
146.
Zurück zum Zitat Sommer M et al. Learning in Parkinson's disease: eyeblink conditioning, declarative learning, and procedural learning. J Neurol Neurosurg Psychiatry. 1999;67(1):27–34.PubMedPubMedCentralCrossRef Sommer M et al. Learning in Parkinson's disease: eyeblink conditioning, declarative learning, and procedural learning. J Neurol Neurosurg Psychiatry. 1999;67(1):27–34.PubMedPubMedCentralCrossRef
147.
Zurück zum Zitat Paudel R et al. Neuropathological features of genetically confirmed DYT1 dystonia: investigating disease-specific inclusions. Acta Neuropathol Commun. 2014;2:159.PubMedPubMedCentralCrossRef Paudel R et al. Neuropathological features of genetically confirmed DYT1 dystonia: investigating disease-specific inclusions. Acta Neuropathol Commun. 2014;2:159.PubMedPubMedCentralCrossRef
148.
149.
Zurück zum Zitat Paudel R et al. Review: genetics and neuropathology of primary pure dystonia. Neuropathol Appl Neurobiol. 2012;38(6):520–34.PubMedCrossRef Paudel R et al. Review: genetics and neuropathology of primary pure dystonia. Neuropathol Appl Neurobiol. 2012;38(6):520–34.PubMedCrossRef
150.
Zurück zum Zitat Iwata NK, Ugawa Y. The effects of cerebellar stimulation on the motor cortical excitability in neurological disorders: a review. Cerebellum. 2005;4(4):218–23.PubMedCrossRef Iwata NK, Ugawa Y. The effects of cerebellar stimulation on the motor cortical excitability in neurological disorders: a review. Cerebellum. 2005;4(4):218–23.PubMedCrossRef
151.
Zurück zum Zitat Brighina F et al. Effects of cerebellar TMS on motor cortex of patients with focal dystonia: a preliminary report. Exp Brain Res. 2009;192(4):651–6.PubMedCrossRef Brighina F et al. Effects of cerebellar TMS on motor cortex of patients with focal dystonia: a preliminary report. Exp Brain Res. 2009;192(4):651–6.PubMedCrossRef
152.
Zurück zum Zitat Koch G et al. Effects of two weeks of cerebellar theta burst stimulation in cervical dystonia patients. Brain Stimul. 2014;7(4):564–72.PubMedCrossRef Koch G et al. Effects of two weeks of cerebellar theta burst stimulation in cervical dystonia patients. Brain Stimul. 2014;7(4):564–72.PubMedCrossRef
154.
Zurück zum Zitat Sadnicka A et al. Cerebellar stimulation fails to modulate motor cortex plasticity in writing dystonia. Mov Disord. 2014;29(10):1304–7.PubMedCrossRef Sadnicka A et al. Cerebellar stimulation fails to modulate motor cortex plasticity in writing dystonia. Mov Disord. 2014;29(10):1304–7.PubMedCrossRef
155.
Zurück zum Zitat Hubsch C et al. Impaired saccadic adaptation in DYT11 dystonia. J Neurol Neurosurg Psychiatry. 2011;82(10):1103–6.PubMedCrossRef Hubsch C et al. Impaired saccadic adaptation in DYT11 dystonia. J Neurol Neurosurg Psychiatry. 2011;82(10):1103–6.PubMedCrossRef
156.
Zurück zum Zitat Hoffland BS et al. Cerebellum-dependent associative learning deficits in primary dystonia are normalized by rTMS and practice. Eur J Neurosci. 2013;38(1):2166–71.PubMedCrossRef Hoffland BS et al. Cerebellum-dependent associative learning deficits in primary dystonia are normalized by rTMS and practice. Eur J Neurosci. 2013;38(1):2166–71.PubMedCrossRef
157.
Zurück zum Zitat Hoffland BS et al. Cerebellar theta burst stimulation impairs eyeblink classical conditioning. J Physiol. 2012;590(Pt 4):887–97.PubMedCrossRef Hoffland BS et al. Cerebellar theta burst stimulation impairs eyeblink classical conditioning. J Physiol. 2012;590(Pt 4):887–97.PubMedCrossRef
158.
Zurück zum Zitat Linssen MW et al. A single session of cerebellar theta burst stimulation does not alter writing performance in writer's cramp. Brain. 2015;138(Pt 6):e355.PubMedCrossRef Linssen MW et al. A single session of cerebellar theta burst stimulation does not alter writing performance in writer's cramp. Brain. 2015;138(Pt 6):e355.PubMedCrossRef
Metadaten
Titel
Current Opinions and Areas of Consensus on the Role of the Cerebellum in Dystonia
verfasst von
Vikram G. Shakkottai
Amit Batla
Kailash Bhatia
William T Dauer
Christian Dresel
Martin Niethammer
David Eidelberg
Robert S. Raike
Yoland Smith
H. A. Jinnah
Ellen J. Hess
Sabine Meunier
Mark Hallett
Rachel Fremont
Kamran Khodakhah
Mark S. LeDoux
Traian Popa
Cécile Gallea
Stéphane Lehericy
Andreea C. Bostan
Peter L. Strick
Publikationsdatum
01.04.2017
Verlag
Springer US
Erschienen in
The Cerebellum / Ausgabe 2/2017
Print ISSN: 1473-4222
Elektronische ISSN: 1473-4230
DOI
https://doi.org/10.1007/s12311-016-0825-6

Weitere Artikel der Ausgabe 2/2017

The Cerebellum 2/2017 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.