Skip to main content
Erschienen in: Anatomical Science International 2/2017

20.02.2016 | Original Article

Mapping of enkephalins and adrenocorticotropic hormone in the squirrel monkey brainstem

verfasst von: Ewing Duque-Díaz, Zaida Díaz-Cabiale, José Angel Narváez, Rafael Coveñas

Erschienen in: Anatomical Science International | Ausgabe 2/2017

Einloggen, um Zugang zu erhalten

Abstract

An immunocytochemical technique has been used to study for the first time the distribution of fibers and cell bodies containing leucine–enkephalin (leu-enk), methionine–enkephalin (met-enk) or adrenocorticotropic hormone (ACTH) in the whole brainstem of the squirrel monkey Saimiri sciureus. Cell bodies containing leu-enk or met-enk were found in the superior colliculus and the formatio reticularis tegmenti mesencephali, respectively. No immunoreactive cell bodies containing ACTH were observed. Leu-enk-immunoreactive fibers were observed in 40 brainstem nuclei/tracts/regions, fibers containing met-enk were found in 38 brainstem nuclei/tracts/regions and fibers containing ACTH were found in 26 nuclei/tracts/regions. In the latter case, the density of immunoreactive fibers was always low. A high/moderate density of leu-enk- or met-enk-immunoreactive fibers were found in 18 and 16 brainstem nuclei/tracts/regions, respectively. The distribution of immunoreactive fibers containing leu-enk or met-enk was quite similar, with both leu-enk and met-enk observed in 82.5 % of the squirrel monkey brainstem nuclei/tracts/regions. This relationship is less marked for met-enk and ACTH (60.5 %) and even lower for leu-enk and ACTH (52.5 %). In 42.5 % of the nuclei/tracts/regions of the squirrel monkey brainstem (colliculus superior, substantia grisea centralis, nucleus interpeduncularis, nucleus tractus spinalis nervi trigemini, nucleus tractus solitarii, nucleus parabrachialis, formatio reticularis, substantia nigra), we observed fibers containing all three neuropeptides. The widespread distribution reported here suggests that enkephalins and ACTH can be involved in several physiological functions. The distribution of the immunoreactive fibers reported here is quite similar to that previously reported for enkephalins and ACTH in Macaca species and humans.
Literatur
Zurück zum Zitat Abrams GM, Nilaver G, Hoffman D, Zimmerman EA, Ferin M, Krieger DT et al (1980) Immunocytochemical distribution of corticotropin (ACTH) in monkey brain. Neurology 30:1106–1110CrossRefPubMed Abrams GM, Nilaver G, Hoffman D, Zimmerman EA, Ferin M, Krieger DT et al (1980) Immunocytochemical distribution of corticotropin (ACTH) in monkey brain. Neurology 30:1106–1110CrossRefPubMed
Zurück zum Zitat Arvidsson U, Cullheim S, Ulfhake B, Ramírez V, Dagerlind A, Luppi PH et al (1992) Distribution of enkephalin and its relation to serotonin in cat and monkey spinal cord and brain stem. Synapse 11:85–104CrossRefPubMed Arvidsson U, Cullheim S, Ulfhake B, Ramírez V, Dagerlind A, Luppi PH et al (1992) Distribution of enkephalin and its relation to serotonin in cat and monkey spinal cord and brain stem. Synapse 11:85–104CrossRefPubMed
Zurück zum Zitat Bouras C, Taban CH, Constantinidis J (1984) Mapping of enkephalins in the human brain. An immunohistofluorescence study on brains from patients with senile and presenile dementia. Neuroscience 12:179–190CrossRefPubMed Bouras C, Taban CH, Constantinidis J (1984) Mapping of enkephalins in the human brain. An immunohistofluorescence study on brains from patients with senile and presenile dementia. Neuroscience 12:179–190CrossRefPubMed
Zurück zum Zitat Carpenter MB, Chang L, Pereira AB, Hersh LB, Bruce G, Wu JY (1987) Vestibular and cochlear efferent neurons in the monkey identified by immunocytochemical methods. Brain Res 408:275–280CrossRefPubMed Carpenter MB, Chang L, Pereira AB, Hersh LB, Bruce G, Wu JY (1987) Vestibular and cochlear efferent neurons in the monkey identified by immunocytochemical methods. Brain Res 408:275–280CrossRefPubMed
Zurück zum Zitat Cheng-Shu L, Davis BJ, Smith DV (2003) Opioid modulation of taste responses in the nucleus of the solitary tract. Brain Res 965:21–34CrossRef Cheng-Shu L, Davis BJ, Smith DV (2003) Opioid modulation of taste responses in the nucleus of the solitary tract. Brain Res 965:21–34CrossRef
Zurück zum Zitat Coveñas R, de León M, Narváez JA, Tramu G, Aguirre JA, González-Barón S (1996) An immunocytochemical mapping of ACTH/CLIP in the cat diencephalon. J Chem Neuroanat 11:191–197CrossRefPubMed Coveñas R, de León M, Narváez JA, Tramu G, Aguirre JA, González-Barón S (1996) An immunocytochemical mapping of ACTH/CLIP in the cat diencephalon. J Chem Neuroanat 11:191–197CrossRefPubMed
Zurück zum Zitat Coveñas R, de León M, Narváez JA, Aguirre JA, Tramu G, González-Barón S (1997) ACTH/CLIP immunoreactivity in the cat brain stem. Peptides 18:965–970CrossRefPubMed Coveñas R, de León M, Narváez JA, Aguirre JA, Tramu G, González-Barón S (1997) ACTH/CLIP immunoreactivity in the cat brain stem. Peptides 18:965–970CrossRefPubMed
Zurück zum Zitat Coveñas R, Mangas A, Narváez JA (2007) Introduction to neuropeptides. In: Coveñas R, Mangas A, Narváez JA (eds) Focus on neuropeptide research. Transworld Research Network, Trivandrum, pp 1–26 Coveñas R, Mangas A, Narváez JA (2007) Introduction to neuropeptides. In: Coveñas R, Mangas A, Narváez JA (eds) Focus on neuropeptide research. Transworld Research Network, Trivandrum, pp 1–26
Zurück zum Zitat Coveñas R, Duque E, Mangas A, Marcos P, Narváez JA (2008) Neuropeptides in the monkey (Macaca fascicularis) brainstem. In: Mangas A, Coveñas R, Geffard M (eds) Brain molecules: from vitamins to molecules for axonal guidance. Transworld Research Network, Trivandrum, pp 131–156 Coveñas R, Duque E, Mangas A, Marcos P, Narváez JA (2008) Neuropeptides in the monkey (Macaca fascicularis) brainstem. In: Mangas A, Coveñas R, Geffard M (eds) Brain molecules: from vitamins to molecules for axonal guidance. Transworld Research Network, Trivandrum, pp 131–156
Zurück zum Zitat Coveñas R, Mangas A, Bodet D, Duleu S, Marcos P, Karakas B et al (2011) Frontiers in vitamin research: new antibodies, new data. Sci World J 11:1226–1242CrossRef Coveñas R, Mangas A, Bodet D, Duleu S, Marcos P, Karakas B et al (2011) Frontiers in vitamin research: new antibodies, new data. Sci World J 11:1226–1242CrossRef
Zurück zum Zitat de Souza E, Yi P, Aguilar LA, Coveñas R, Lerma L, Andrade R et al (2007) Mapping of leucine–enkephalin in the alpaca (Lama pacos) brainstem. In: Coveñas R, Mangas A, Narváez JA (eds) Focus on neuropeptide research. Transworld Research Network, Trivandrum, pp 103–114 de Souza E, Yi P, Aguilar LA, Coveñas R, Lerma L, Andrade R et al (2007) Mapping of leucine–enkephalin in the alpaca (Lama pacos) brainstem. In: Coveñas R, Mangas A, Narváez JA (eds) Focus on neuropeptide research. Transworld Research Network, Trivandrum, pp 103–114
Zurück zum Zitat del Pozo E, Martín-Pérez J, Stadelmann A, Girard J, Brownell J (1980) Inhibiting action of met-enkephalin on ACTH release in man. J Clin Investig 65:1531–1534CrossRefPubMedPubMedCentral del Pozo E, Martín-Pérez J, Stadelmann A, Girard J, Brownell J (1980) Inhibiting action of met-enkephalin on ACTH release in man. J Clin Investig 65:1531–1534CrossRefPubMedPubMedCentral
Zurück zum Zitat Duque E, Mangas A, Díaz-Cabiale Z, Narváez JA, Coveñas R (2011) Neuropeptides in the monkey brainstem. In: Williams RM (ed) Monkeys: biology, behavior and disorders. Nova Science Publishers, New York, pp 151–166 Duque E, Mangas A, Díaz-Cabiale Z, Narváez JA, Coveñas R (2011) Neuropeptides in the monkey brainstem. In: Williams RM (ed) Monkeys: biology, behavior and disorders. Nova Science Publishers, New York, pp 151–166
Zurück zum Zitat Edwards DL, Poletti CE, Foote WE (1987) Evidence for leucine–enkephalin immunoreactive neurons in the medulla which project to spinal cord in squirrel monkey. Brain Res 437:197–203CrossRefPubMed Edwards DL, Poletti CE, Foote WE (1987) Evidence for leucine–enkephalin immunoreactive neurons in the medulla which project to spinal cord in squirrel monkey. Brain Res 437:197–203CrossRefPubMed
Zurück zum Zitat Emmers R, Aker K (1963) A stereotaxic atlas of the brain of the squirrel monkey (Saimiri sciureus). The University of Wisconsin Press, Madison Emmers R, Aker K (1963) A stereotaxic atlas of the brain of the squirrel monkey (Saimiri sciureus). The University of Wisconsin Press, Madison
Zurück zum Zitat Gaspar P, Berger B, Gay M, Hamon M, Cesselin F, Vigny A et al (1983) Tyrosine hydroxylase and methionine–enkephalin in the human mesencephalon. J Neurol Sci 58:247–267CrossRefPubMed Gaspar P, Berger B, Gay M, Hamon M, Cesselin F, Vigny A et al (1983) Tyrosine hydroxylase and methionine–enkephalin in the human mesencephalon. J Neurol Sci 58:247–267CrossRefPubMed
Zurück zum Zitat Guntern R, Vellet PG, Bouras C, Constantinidis J (1989) An improved inmunohistostaining procedure for peptides in human brain. Experientia 45:159–161CrossRefPubMed Guntern R, Vellet PG, Bouras C, Constantinidis J (1989) An improved inmunohistostaining procedure for peptides in human brain. Experientia 45:159–161CrossRefPubMed
Zurück zum Zitat Haber S, Elde R (1982a) The distribution of enkephalin immunoreactive fibers and terminals in the monkey central nervous system: an immunohistochemical study. Neuroscience 7:1049–1095CrossRefPubMed Haber S, Elde R (1982a) The distribution of enkephalin immunoreactive fibers and terminals in the monkey central nervous system: an immunohistochemical study. Neuroscience 7:1049–1095CrossRefPubMed
Zurück zum Zitat Haber S, Elde R (1982b) The distribution of enkephalin immunoreactive neural cell bodies in the monkey brain: preliminary observations. Neurosci Lett 32:247–252CrossRefPubMed Haber S, Elde R (1982b) The distribution of enkephalin immunoreactive neural cell bodies in the monkey brain: preliminary observations. Neurosci Lett 32:247–252CrossRefPubMed
Zurück zum Zitat Haber SN, Watson SJ (1985) The comparative distribution of enkephalin, dynorphin and substance P in the human globus pallidus and basal forebrain. Neuroscience 14:1011–1024CrossRefPubMed Haber SN, Watson SJ (1985) The comparative distribution of enkephalin, dynorphin and substance P in the human globus pallidus and basal forebrain. Neuroscience 14:1011–1024CrossRefPubMed
Zurück zum Zitat Ibuki T, Okamura H, Miyazaki M, Yanaihara N, Zimmerman EA, Ibata Y (1989) Comparative distribution of three opioid systems in the lower brainstem of the monkey (Macaca fuscata). J Comp Neurol 279:445–456CrossRefPubMed Ibuki T, Okamura H, Miyazaki M, Yanaihara N, Zimmerman EA, Ibata Y (1989) Comparative distribution of three opioid systems in the lower brainstem of the monkey (Macaca fuscata). J Comp Neurol 279:445–456CrossRefPubMed
Zurück zum Zitat Inagaki S, Parent A (1984) Distribution of substance P and enkephalin-like immunoreactivity in the substantia nigra of rat, cat and monkey. Brain Res Bull 13:319–329CrossRefPubMed Inagaki S, Parent A (1984) Distribution of substance P and enkephalin-like immunoreactivity in the substantia nigra of rat, cat and monkey. Brain Res Bull 13:319–329CrossRefPubMed
Zurück zum Zitat Inagaki S, Parent A (1985) Distribution of enkephalin-immunoreactive neurons in the forebrain and the upper brainstem of the squirrel monkey. Brain Res 359:267–280CrossRefPubMed Inagaki S, Parent A (1985) Distribution of enkephalin-immunoreactive neurons in the forebrain and the upper brainstem of the squirrel monkey. Brain Res 359:267–280CrossRefPubMed
Zurück zum Zitat Khachaturian H, Lewis ME, Haber SN, Akil H, Watson SJ (1984) Pro-opiomelanocortin peptide immunocytochemistry in rhesus monkey brain. Brain Res Bull 13:785–800CrossRefPubMed Khachaturian H, Lewis ME, Haber SN, Akil H, Watson SJ (1984) Pro-opiomelanocortin peptide immunocytochemistry in rhesus monkey brain. Brain Res Bull 13:785–800CrossRefPubMed
Zurück zum Zitat Kubek MJ, Wilber JF (1980) Regional distribution of leucine–enkephalin in hypothalamic and extrahypothalamic loci of the human nervous system. Neurosci Lett 18:155–161CrossRefPubMed Kubek MJ, Wilber JF (1980) Regional distribution of leucine–enkephalin in hypothalamic and extrahypothalamic loci of the human nervous system. Neurosci Lett 18:155–161CrossRefPubMed
Zurück zum Zitat Lewis ME, Khachaturian H, Watson SJ (1983) Comparative distribution of opiate receptors and three opioid peptide neuronal systems in Rhesus monkey central nervous system. Life Sci 33:239–242CrossRefPubMed Lewis ME, Khachaturian H, Watson SJ (1983) Comparative distribution of opiate receptors and three opioid peptide neuronal systems in Rhesus monkey central nervous system. Life Sci 33:239–242CrossRefPubMed
Zurück zum Zitat Mangas A, Coveñas R, Geffard K, Geffard M, Marcos P, Insausti R et al (2006) Riboflavin-like immunoreactive fibers in the monkey brain. Anat Embryol 211:267–272CrossRefPubMed Mangas A, Coveñas R, Geffard K, Geffard M, Marcos P, Insausti R et al (2006) Riboflavin-like immunoreactive fibers in the monkey brain. Anat Embryol 211:267–272CrossRefPubMed
Zurück zum Zitat Manso B, Sánchez ML, Medina LE, Aguilar LA, Díaz-Cabiale Z, Narváez JA et al (2014) Immunohistochemical mapping of pro-opiomelanocortin- and pro-dynorphin-derived peptides in the alpaca (Lama pacos) diencephalon. J Chem Neuroanat 59:36–50CrossRefPubMed Manso B, Sánchez ML, Medina LE, Aguilar LA, Díaz-Cabiale Z, Narváez JA et al (2014) Immunohistochemical mapping of pro-opiomelanocortin- and pro-dynorphin-derived peptides in the alpaca (Lama pacos) diencephalon. J Chem Neuroanat 59:36–50CrossRefPubMed
Zurück zum Zitat Marcos P, Coveñas R, Narváez JA, Aguirre JA, Tramu G, González-Barón S (1999) Immunohistochemical mapping of enkephalins, NPY, CGRP and GRP in the cat amygdale. Peptides 20:635–644CrossRefPubMed Marcos P, Coveñas R, Narváez JA, Aguirre JA, Tramu G, González-Barón S (1999) Immunohistochemical mapping of enkephalins, NPY, CGRP and GRP in the cat amygdale. Peptides 20:635–644CrossRefPubMed
Zurück zum Zitat Neil A, Terenius L, Ternes JW, Ehrman RN, O’Brien CP (1986) Opiate receptors, neuropeptides in CNS and CSF of two Macaca species with different responsiveness to opiates. Eur J Pharmacol 122:143–147CrossRefPubMed Neil A, Terenius L, Ternes JW, Ehrman RN, O’Brien CP (1986) Opiate receptors, neuropeptides in CNS and CSF of two Macaca species with different responsiveness to opiates. Eur J Pharmacol 122:143–147CrossRefPubMed
Zurück zum Zitat Palkovits M (1988) Neuropeptides in the brain. In: Martini L, Ganong WF (eds) Frontiers in neuroendocrinology, vol 10. Raven Press, New York, pp 1–44 Palkovits M (1988) Neuropeptides in the brain. In: Martini L, Ganong WF (eds) Frontiers in neuroendocrinology, vol 10. Raven Press, New York, pp 1–44
Zurück zum Zitat Palkovits M, Fodor M (1995) Distribution of neuropeptides in the human lower brainstem (pons and medulla oblongata). In: Tracy DJ, Paxinos G, Stone J (eds) Neurotransmitters in the human brain. Plenum Press, New York, pp 101–113CrossRef Palkovits M, Fodor M (1995) Distribution of neuropeptides in the human lower brainstem (pons and medulla oblongata). In: Tracy DJ, Paxinos G, Stone J (eds) Neurotransmitters in the human brain. Plenum Press, New York, pp 101–113CrossRef
Zurück zum Zitat Pego-Reigosa R, Coveñas R, Tramu G, Pesini P (2000) Distribution of met-enkephalin immunoreactivity in the diencephalon and the brainstem of the dog. J Chem Neuroanat 19:243–258CrossRefPubMed Pego-Reigosa R, Coveñas R, Tramu G, Pesini P (2000) Distribution of met-enkephalin immunoreactivity in the diencephalon and the brainstem of the dog. J Chem Neuroanat 19:243–258CrossRefPubMed
Zurück zum Zitat Pesini P, Pego-Reigosa R, Tramu G, Coveñas R (2004) Distribution of ACTH immunoreactivity in the diencephalon and the brainstem of the dog. J Chem Neuroanat 27:275–282CrossRefPubMed Pesini P, Pego-Reigosa R, Tramu G, Coveñas R (2004) Distribution of ACTH immunoreactivity in the diencephalon and the brainstem of the dog. J Chem Neuroanat 27:275–282CrossRefPubMed
Zurück zum Zitat Pioro EP, Mai JK, Cuello AC (1990) Distribution of substance P- and enkephalin-immunoreactive neurons and fibers. In: Paxinos G (ed) The human nervous system. Academic Press, San Diego, pp 1051–1094CrossRef Pioro EP, Mai JK, Cuello AC (1990) Distribution of substance P- and enkephalin-immunoreactive neurons and fibers. In: Paxinos G (ed) The human nervous system. Academic Press, San Diego, pp 1051–1094CrossRef
Zurück zum Zitat Ploska A, Taquet H, Javoy-Agid F, Gaspar P, Cesselin F, Berger B et al (1982) Dopamine and methionine–enkephalin in human brain. Neurosci Lett 33:191–196CrossRefPubMed Ploska A, Taquet H, Javoy-Agid F, Gaspar P, Cesselin F, Berger B et al (1982) Dopamine and methionine–enkephalin in human brain. Neurosci Lett 33:191–196CrossRefPubMed
Zurück zum Zitat Reiner A, Medina L, Haber SN (1999) The distribution of dynorphinergic terminals in striatal target regions in comparison to the distribution of substance P-containing and enkephalinergic terminals in monkeys and humans. Neuroscience 88:775–793CrossRefPubMed Reiner A, Medina L, Haber SN (1999) The distribution of dynorphinergic terminals in striatal target regions in comparison to the distribution of substance P-containing and enkephalinergic terminals in monkeys and humans. Neuroscience 88:775–793CrossRefPubMed
Zurück zum Zitat Sánchez ML, Vecino E, Coveñas R (2013) Distribution of methionine–enkephalin in the minipig brainstem. J Chem Neuroanat 50–51:1–10CrossRefPubMed Sánchez ML, Vecino E, Coveñas R (2013) Distribution of methionine–enkephalin in the minipig brainstem. J Chem Neuroanat 50–51:1–10CrossRefPubMed
Zurück zum Zitat Sánchez ML, Vecino E, Coveñas R (2015) Distribution of neurotensin and somatostatin-28 (1-12) in the minipig brainstem. Anat Histol Embryol. doi:10.1111/ahe.12194 PubMed Sánchez ML, Vecino E, Coveñas R (2015) Distribution of neurotensin and somatostatin-28 (1-12) in the minipig brainstem. Anat Histol Embryol. doi:10.​1111/​ahe.​12194 PubMed
Zurück zum Zitat Zaphiropoulos A, Charnay Y, Vallet P, Constantinidis J, Bouras C (1991) Immunohistochemical distribution of corticotrophin-like intermediate lobe peptide (CLIP) immunoreactivity in the human brain. Brain Res Bull 26:99–111CrossRefPubMed Zaphiropoulos A, Charnay Y, Vallet P, Constantinidis J, Bouras C (1991) Immunohistochemical distribution of corticotrophin-like intermediate lobe peptide (CLIP) immunoreactivity in the human brain. Brain Res Bull 26:99–111CrossRefPubMed
Metadaten
Titel
Mapping of enkephalins and adrenocorticotropic hormone in the squirrel monkey brainstem
verfasst von
Ewing Duque-Díaz
Zaida Díaz-Cabiale
José Angel Narváez
Rafael Coveñas
Publikationsdatum
20.02.2016
Verlag
Springer Japan
Erschienen in
Anatomical Science International / Ausgabe 2/2017
Print ISSN: 1447-6959
Elektronische ISSN: 1447-073X
DOI
https://doi.org/10.1007/s12565-016-0333-2

Weitere Artikel der Ausgabe 2/2017

Anatomical Science International 2/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

„Jeder Fall von plötzlichem Tod muss obduziert werden!“

17.05.2024 Plötzlicher Herztod Nachrichten

Ein signifikanter Anteil der Fälle von plötzlichem Herztod ist genetisch bedingt. Um ihre Verwandten vor diesem Schicksal zu bewahren, sollten jüngere Personen, die plötzlich unerwartet versterben, ausnahmslos einer Autopsie unterzogen werden.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Schlechtere Vorhofflimmern-Prognose bei kleinem linken Ventrikel

17.05.2024 Vorhofflimmern Nachrichten

Nicht nur ein vergrößerter, sondern auch ein kleiner linker Ventrikel ist bei Vorhofflimmern mit einer erhöhten Komplikationsrate assoziiert. Der Zusammenhang besteht nach Daten aus China unabhängig von anderen Risikofaktoren.

Semaglutid bei Herzinsuffizienz: Wie erklärt sich die Wirksamkeit?

17.05.2024 Herzinsuffizienz Nachrichten

Bei adipösen Patienten mit Herzinsuffizienz des HFpEF-Phänotyps ist Semaglutid von symptomatischem Nutzen. Resultiert dieser Benefit allein aus der Gewichtsreduktion oder auch aus spezifischen Effekten auf die Herzinsuffizienz-Pathogenese? Eine neue Analyse gibt Aufschluss.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.