Skip to main content
Erschienen in: Tumor Biology 10/2016

28.07.2016 | Review

Molecular targets of curcumin for cancer therapy: an updated review

verfasst von: Pandima Devi Kasi, Rajavel Tamilselvam, Krystyna Skalicka-Woźniak, Seyed Fazel Nabavi, Maria Daglia, Anupam Bishayee, Hamidreza Pazoki-toroudi, Seyed Mohammad Nabavi

Erschienen in: Tumor Biology | Ausgabe 10/2016

Einloggen, um Zugang zu erhalten

Abstract

In recent years, natural edible products have been found to be important therapeutic agents for the treatment of chronic human diseases including cancer, cardiovascular disease, and neurodegeneration. Curcumin is a well-known diarylheptanoid constituent of turmeric which possesses anticancer effects under both pre-clinical and clinical conditions. Moreover, it is well known that the anticancer effects of curcumin are primarily due to the activation of apoptotic pathways in the cancer cells as well as inhibition of tumor microenvironments like inflammation, angiogenesis, and tumor metastasis. In particular, extensive studies have demonstrated that curcumin targets numerous therapeutically important cancer signaling pathways such as p53, Ras, PI3K, AKT, Wnt-β catenin, mTOR and so on. Clinical studies also suggested that either curcumin alone or as combination with other drugs possess promising anticancer effect in cancer patients without causing any adverse effects. In this article, we critically review the available scientific evidence on the molecular targets of curcumin for the treatment of different types of cancer. In addition, we also discuss its chemistry, sources, bioavailability, and future research directions.
Literatur
1.
Zurück zum Zitat Ruddon RW. Cancer biology. New York: Oxford University Press; 2007. Ruddon RW. Cancer biology. New York: Oxford University Press; 2007.
2.
Zurück zum Zitat Russo M, Russo GL, Daglia M, Kasi PD, Ravi S, Nabavi SF, et al. Understanding genistein in cancer: the “good” and the “bad” effects: a review. Food Chem. 2016;196:589–600.PubMedCrossRef Russo M, Russo GL, Daglia M, Kasi PD, Ravi S, Nabavi SF, et al. Understanding genistein in cancer: the “good” and the “bad” effects: a review. Food Chem. 2016;196:589–600.PubMedCrossRef
3.
Zurück zum Zitat Saranath D, Khanna A. Current status of cancer burden: global and Indian scenario. Biomed Res J. 2014;1(1):1–5. Saranath D, Khanna A. Current status of cancer burden: global and Indian scenario. Biomed Res J. 2014;1(1):1–5.
4.
Zurück zum Zitat Devi KP, Rajavel T, Nabavi SF, Setzer WN, Ahmadi A, Mansouri K, et al. Hesperidin: a promising anticancer agent from nature. Ind Crop Prod. 2015;76:582–9.CrossRef Devi KP, Rajavel T, Nabavi SF, Setzer WN, Ahmadi A, Mansouri K, et al. Hesperidin: a promising anticancer agent from nature. Ind Crop Prod. 2015;76:582–9.CrossRef
5.
Zurück zum Zitat Anand P, Kunnumakara AB, Sundaram C, Harikumar KB, Tharakan ST, Lai OS, et al. Cancer is a preventable disease that requires major lifestyle changes. Pharm Res. 2008;25(9):2097–116.PubMedPubMedCentralCrossRef Anand P, Kunnumakara AB, Sundaram C, Harikumar KB, Tharakan ST, Lai OS, et al. Cancer is a preventable disease that requires major lifestyle changes. Pharm Res. 2008;25(9):2097–116.PubMedPubMedCentralCrossRef
8.
10.
Zurück zum Zitat Boffetta P. Human cancer from environmental pollutants: the epidemiological evidence. Mutat Res Genet Toxicol Environ Mutagen. 2006;608(2):157–62.CrossRef Boffetta P. Human cancer from environmental pollutants: the epidemiological evidence. Mutat Res Genet Toxicol Environ Mutagen. 2006;608(2):157–62.CrossRef
11.
12.
Zurück zum Zitat Vermeulen K, Van Bockstaele DR, Berneman ZN. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 2003;36(3):131–49.PubMedCrossRef Vermeulen K, Van Bockstaele DR, Berneman ZN. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 2003;36(3):131–49.PubMedCrossRef
13.
Zurück zum Zitat Curti V, Capelli E, Boschi F, Nabavi SF, Bongiorno AI, Habtemariam S, et al. Modulation of human miR-17–3p expression by methyl 3-O-methyl gallate as explanation of its in vivo protective activities. Mol Nutr Food Res. 2014;58(9):1776–84.PubMedCrossRef Curti V, Capelli E, Boschi F, Nabavi SF, Bongiorno AI, Habtemariam S, et al. Modulation of human miR-17–3p expression by methyl 3-O-methyl gallate as explanation of its in vivo protective activities. Mol Nutr Food Res. 2014;58(9):1776–84.PubMedCrossRef
14.
15.
Zurück zum Zitat Fulda S. Modulation of apoptosis by natural products for cancer therapy. Planta Med. 2010;76(11):1075–9.PubMedCrossRef Fulda S. Modulation of apoptosis by natural products for cancer therapy. Planta Med. 2010;76(11):1075–9.PubMedCrossRef
16.
17.
Zurück zum Zitat Cragg GM, Kingston DG, Newman DJ. Anticancer agents from natural products. Boca Raton: CRC Press; 2011.CrossRef Cragg GM, Kingston DG, Newman DJ. Anticancer agents from natural products. Boca Raton: CRC Press; 2011.CrossRef
19.
Zurück zum Zitat Mehta RG, Murillo G, Naithani R, Peng X. Cancer chemoprevention by natural products: how far have we come? Pharm Res. 2010;27(6):950–61.PubMedCrossRef Mehta RG, Murillo G, Naithani R, Peng X. Cancer chemoprevention by natural products: how far have we come? Pharm Res. 2010;27(6):950–61.PubMedCrossRef
20.
Zurück zum Zitat Nabavi SM, Nabavi SF, Eslami S, Moghaddam AH. In vivo protective effects of quercetin against sodium fluoride-induced oxidative stress in the hepatic tissue. Food Chem. 2012;132(2):931–5.CrossRef Nabavi SM, Nabavi SF, Eslami S, Moghaddam AH. In vivo protective effects of quercetin against sodium fluoride-induced oxidative stress in the hepatic tissue. Food Chem. 2012;132(2):931–5.CrossRef
21.
Zurück zum Zitat Nabavi SF, Nabavi SM, Habtemariam S, Moghaddam AH, Sureda A, Jafari M, et al. Hepatoprotective effect of gallic acid isolated from Peltiphyllum peltatum against sodium fluoride-induced oxidative stress. Ind Crop Prod. 2013;44:50–5.CrossRef Nabavi SF, Nabavi SM, Habtemariam S, Moghaddam AH, Sureda A, Jafari M, et al. Hepatoprotective effect of gallic acid isolated from Peltiphyllum peltatum against sodium fluoride-induced oxidative stress. Ind Crop Prod. 2013;44:50–5.CrossRef
22.
Zurück zum Zitat Nabavi SM, Marchese A, Izadi M, Curti V, Daglia M, Nabavi SF. Plants belonging to the genus Thymus as antibacterial agents: from farm to pharmacy. Food Chem. 2015;173:339–47.PubMedCrossRef Nabavi SM, Marchese A, Izadi M, Curti V, Daglia M, Nabavi SF. Plants belonging to the genus Thymus as antibacterial agents: from farm to pharmacy. Food Chem. 2015;173:339–47.PubMedCrossRef
23.
Zurück zum Zitat Alinezhad H, Azimi R, Zare M, Ebrahimzadeh MA, Eslami S, Nabavi SF, et al. Antioxidant and antihemolytic activities of ethanolic extract of flowers, leaves, and stems of Hyssopus officinalis L. Var. Angustifolius. Int J Food Prop. 2013;16(5):1169–78.CrossRef Alinezhad H, Azimi R, Zare M, Ebrahimzadeh MA, Eslami S, Nabavi SF, et al. Antioxidant and antihemolytic activities of ethanolic extract of flowers, leaves, and stems of Hyssopus officinalis L. Var. Angustifolius. Int J Food Prop. 2013;16(5):1169–78.CrossRef
24.
Zurück zum Zitat Nabavi SF, Nabavi SM, Mirzaei M, Moghaddam AH. Protective effect of quercetin against sodium fluoride induced oxidative stress in rat’s heart. Food Funct. 2012;3(4):437–41.PubMedCrossRef Nabavi SF, Nabavi SM, Mirzaei M, Moghaddam AH. Protective effect of quercetin against sodium fluoride induced oxidative stress in rat’s heart. Food Funct. 2012;3(4):437–41.PubMedCrossRef
25.
Zurück zum Zitat Nabavi SF, Nabavi SM, Ebrahimzadeh MA, Eslami B, Jafari N. In vitro antioxidant and antihemolytic activities of hydroalcoholic extracts of Allium scabriscapum Boiss. & Ky. Aerial parts and bulbs. Int J Food Prop. 2013;16(4):713–22.CrossRef Nabavi SF, Nabavi SM, Ebrahimzadeh MA, Eslami B, Jafari N. In vitro antioxidant and antihemolytic activities of hydroalcoholic extracts of Allium scabriscapum Boiss. & Ky. Aerial parts and bulbs. Int J Food Prop. 2013;16(4):713–22.CrossRef
26.
Zurück zum Zitat Nabavi SF, Russo GL, Daglia M, Nabavi SM. Role of quercetin as an alternative for obesity treatment: you are what you eat! Food Chem. 2015;179:305–10.PubMedCrossRef Nabavi SF, Russo GL, Daglia M, Nabavi SM. Role of quercetin as an alternative for obesity treatment: you are what you eat! Food Chem. 2015;179:305–10.PubMedCrossRef
27.
Zurück zum Zitat Di Lorenzo A, Nabavi SF, Sureda A, Moghaddam AH, Khanjani S, Arcidiaco P, et al. Antidepressive-like effects and antioxidant activity of green tea and GABA green tea in a mouse model of post-stroke depression. Mol Nutr Food Res. 2016;60:566–79. Di Lorenzo A, Nabavi SF, Sureda A, Moghaddam AH, Khanjani S, Arcidiaco P, et al. Antidepressive-like effects and antioxidant activity of green tea and GABA green tea in a mouse model of post-stroke depression. Mol Nutr Food Res. 2016;60:566–79.
28.
Zurück zum Zitat Nabavi SF, Nabavi SM, Moghaddam AH, Naqinezhad A, Bigdellou R, Mohammadzadeh S. Protective effects of Allium paradoxum against gentamicin-induced nephrotoxicity in mice. Food Funct. 2012;3(1):28–9.PubMedCrossRef Nabavi SF, Nabavi SM, Moghaddam AH, Naqinezhad A, Bigdellou R, Mohammadzadeh S. Protective effects of Allium paradoxum against gentamicin-induced nephrotoxicity in mice. Food Funct. 2012;3(1):28–9.PubMedCrossRef
29.
Zurück zum Zitat Nabavi SF, Nabavi SM, Ebrahimzadeh MA, Jafari N, Yazdanpanah S. Biological activities of freshwater algae, Spirogyra singularis Nordstedt. J Aquat Food Prod Technol. 2013;22(1):58–65.CrossRef Nabavi SF, Nabavi SM, Ebrahimzadeh MA, Jafari N, Yazdanpanah S. Biological activities of freshwater algae, Spirogyra singularis Nordstedt. J Aquat Food Prod Technol. 2013;22(1):58–65.CrossRef
30.
Zurück zum Zitat Nabavi SF, Daglia M, Moghaddam AH, Habtemariam S, Nabavi SM. Curcumin and liver disease: from chemistry to medicine. Compr Rev Food Sci Food Saf. 2014;13(1):62–77.CrossRef Nabavi SF, Daglia M, Moghaddam AH, Habtemariam S, Nabavi SM. Curcumin and liver disease: from chemistry to medicine. Compr Rev Food Sci Food Saf. 2014;13(1):62–77.CrossRef
31.
Zurück zum Zitat Ghosh S, Banerjee S, Sil PC. The beneficial role of curcumin on inflammation, diabetes and neurodegenerative disease: a recent update. Food Chem Toxicol. 2015;83:111–24.PubMedCrossRef Ghosh S, Banerjee S, Sil PC. The beneficial role of curcumin on inflammation, diabetes and neurodegenerative disease: a recent update. Food Chem Toxicol. 2015;83:111–24.PubMedCrossRef
32.
Zurück zum Zitat Aggarwal BB, Harikumar KB. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol. 2009;41(1):40–59.PubMedCrossRef Aggarwal BB, Harikumar KB. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol. 2009;41(1):40–59.PubMedCrossRef
33.
Zurück zum Zitat Darvesh AS, Carroll RT, Bishayee A, Novotny NA, Geldenhuys WJ, Van der Schyf CJ. Curcumin and neurodegenerative diseases: a perspective. Expert Opin Investig Drugs. 2012;21(8):1123–40.PubMedCrossRef Darvesh AS, Carroll RT, Bishayee A, Novotny NA, Geldenhuys WJ, Van der Schyf CJ. Curcumin and neurodegenerative diseases: a perspective. Expert Opin Investig Drugs. 2012;21(8):1123–40.PubMedCrossRef
34.
Zurück zum Zitat Darvesh AS, Aggarwal BB, Bishayee A. Curcumin and liver cancer: a review. Curr Pharm Biotechnol. 2012;13(1):218–28.PubMedCrossRef Darvesh AS, Aggarwal BB, Bishayee A. Curcumin and liver cancer: a review. Curr Pharm Biotechnol. 2012;13(1):218–28.PubMedCrossRef
35.
Zurück zum Zitat Sinha D, Biswas J, Sung B, Aggarwal BB, Bishayee A. Chemopreventive and chemotherapeutic potential of curcumin in breast cancer. Curr Drug Targets. 2012;13(14):1799–819.PubMedCrossRef Sinha D, Biswas J, Sung B, Aggarwal BB, Bishayee A. Chemopreventive and chemotherapeutic potential of curcumin in breast cancer. Curr Drug Targets. 2012;13(14):1799–819.PubMedCrossRef
36.
Zurück zum Zitat Block KI, Gyllenhaal C, Lowe L, Amedei A, Amin AR, Amin A, et al. Designing a broad-spectrum integrative approach for cancer prevention and treatment. Semin Cancer Biol. 2015;35(Suppl):S276-–304.PubMedPubMedCentralCrossRef Block KI, Gyllenhaal C, Lowe L, Amedei A, Amin AR, Amin A, et al. Designing a broad-spectrum integrative approach for cancer prevention and treatment. Semin Cancer Biol. 2015;35(Suppl):S276-–304.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Shehzad A, Wahid F, Lee YS. Curcumin in cancer chemoprevention: molecular targets, pharmacokinetics, bioavailability, and clinical trials. Arch Pharm. 2010;343(9):489–99.CrossRef Shehzad A, Wahid F, Lee YS. Curcumin in cancer chemoprevention: molecular targets, pharmacokinetics, bioavailability, and clinical trials. Arch Pharm. 2010;343(9):489–99.CrossRef
38.
Zurück zum Zitat Oyagbemi AA, Saba AB, Ibraheem AO. Curcumin: from food spice to cancer prevention. Asian Pac J Cancer Prev. 2009;10(6):963–7.PubMed Oyagbemi AA, Saba AB, Ibraheem AO. Curcumin: from food spice to cancer prevention. Asian Pac J Cancer Prev. 2009;10(6):963–7.PubMed
39.
Zurück zum Zitat Goel A, Jhurani S, Aggarwal BB. Multi-targeted therapy by curcumin: how spicy is it? Mol Nutr Food Res. 2008;52(9):1010–30.PubMedCrossRef Goel A, Jhurani S, Aggarwal BB. Multi-targeted therapy by curcumin: how spicy is it? Mol Nutr Food Res. 2008;52(9):1010–30.PubMedCrossRef
40.
41.
Zurück zum Zitat Shehzad A, Lee YS. Molecular mechanisms of curcumin action: signal transduction. Biofactors. 2013;39(1):27–36.PubMedCrossRef Shehzad A, Lee YS. Molecular mechanisms of curcumin action: signal transduction. Biofactors. 2013;39(1):27–36.PubMedCrossRef
42.
Zurück zum Zitat Tuorkey M. Curcumin a potent cancer preventive agent: mechanisms of cancer cell killing. Interv Med Appl Sci. 2014;6(4):139–46.PubMedPubMedCentral Tuorkey M. Curcumin a potent cancer preventive agent: mechanisms of cancer cell killing. Interv Med Appl Sci. 2014;6(4):139–46.PubMedPubMedCentral
43.
Zurück zum Zitat Schneider C, Gordon ON, Edwards RL, Luis PB. Degradation of curcumin: from mechanism to biological implications. J Agric Food Chem. 2015;63(35):7606–14.PubMedPubMedCentralCrossRef Schneider C, Gordon ON, Edwards RL, Luis PB. Degradation of curcumin: from mechanism to biological implications. J Agric Food Chem. 2015;63(35):7606–14.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Ahmed K, Li Y, McClements DJ, Xiao H. Nanoemulsion-and emulsion-based delivery systems for curcumin: encapsulation and release properties. Food Chem. 2012;132(2):799–807.CrossRef Ahmed K, Li Y, McClements DJ, Xiao H. Nanoemulsion-and emulsion-based delivery systems for curcumin: encapsulation and release properties. Food Chem. 2012;132(2):799–807.CrossRef
45.
Zurück zum Zitat Tønnesen HH, Karlsen J. Studies on curcumin and curcuminoids. Z Lebensm Unters Forsch. 1985;180(5):402–4.PubMedCrossRef Tønnesen HH, Karlsen J. Studies on curcumin and curcuminoids. Z Lebensm Unters Forsch. 1985;180(5):402–4.PubMedCrossRef
46.
Zurück zum Zitat Tønnesen HH, Másson M, Loftsson T. Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: solubility, chemical and photochemical stability. Int J Pharm. 2002;244(1):127–35.PubMedCrossRef Tønnesen HH, Másson M, Loftsson T. Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: solubility, chemical and photochemical stability. Int J Pharm. 2002;244(1):127–35.PubMedCrossRef
47.
Zurück zum Zitat Leung MH, Colangelo H, Kee TW. Encapsulation of curcumin in cationic micelles suppresses alkaline hydrolysis. Langmuir. 2008;24(11):5672–5.PubMedCrossRef Leung MH, Colangelo H, Kee TW. Encapsulation of curcumin in cationic micelles suppresses alkaline hydrolysis. Langmuir. 2008;24(11):5672–5.PubMedCrossRef
48.
Zurück zum Zitat Liu A, Lou H, Zhao L, Fan P. Validated LC/MS/MS assay for curcumin and tetrahydrocurcumin in rat plasma and application to pharmacokinetic study of phospholipid complex of curcumin. J Pharm Biomed Anal. 2006;40(3):720–7.PubMedCrossRef Liu A, Lou H, Zhao L, Fan P. Validated LC/MS/MS assay for curcumin and tetrahydrocurcumin in rat plasma and application to pharmacokinetic study of phospholipid complex of curcumin. J Pharm Biomed Anal. 2006;40(3):720–7.PubMedCrossRef
49.
Zurück zum Zitat Maiti K, Mukherjee K, Gantait A, Saha BP, Mukherjee PK. Curcumin–phospholipid complex: preparation, therapeutic evaluation and pharmacokinetic study in rats. Int J Pharm. 2007;330(1):155–63.PubMedCrossRef Maiti K, Mukherjee K, Gantait A, Saha BP, Mukherjee PK. Curcumin–phospholipid complex: preparation, therapeutic evaluation and pharmacokinetic study in rats. Int J Pharm. 2007;330(1):155–63.PubMedCrossRef
50.
Zurück zum Zitat Wang X, Jiang Y, Wang Y-W, Huang M-T, Ho C-T, Huang Q. Enhancing anti-inflammation activity of curcumin through O/W nanoemulsions. Food Chem. 2008;108(2):419–24.PubMedCrossRef Wang X, Jiang Y, Wang Y-W, Huang M-T, Ho C-T, Huang Q. Enhancing anti-inflammation activity of curcumin through O/W nanoemulsions. Food Chem. 2008;108(2):419–24.PubMedCrossRef
51.
Zurück zum Zitat Yu H, Huang Q. Enhanced in vitro anti-cancer activity of curcumin encapsulated in hydrophobically modified starch. Food Chem. 2010;119(2):669–74.CrossRef Yu H, Huang Q. Enhanced in vitro anti-cancer activity of curcumin encapsulated in hydrophobically modified starch. Food Chem. 2010;119(2):669–74.CrossRef
52.
Zurück zum Zitat Borrin TR, Georges EL, Moraes IC, Pinho SC. Curcumin-loaded nanoemulsions produced by the emulsion inversion point (EIP) method: an evaluation of process parameters and physico-chemical stability. J Food Eng. 2016;169:1–9.CrossRef Borrin TR, Georges EL, Moraes IC, Pinho SC. Curcumin-loaded nanoemulsions produced by the emulsion inversion point (EIP) method: an evaluation of process parameters and physico-chemical stability. J Food Eng. 2016;169:1–9.CrossRef
53.
Zurück zum Zitat Li J, Lee IW, Shin GH, Chen X, Park HJ. Curcumin-Eudragit® E PO solid dispersion: a simple and potent method to solve the problems of curcumin. Eur J Pharm Biopharm. 2015;94:322–32.PubMedCrossRef Li J, Lee IW, Shin GH, Chen X, Park HJ. Curcumin-Eudragit® E PO solid dispersion: a simple and potent method to solve the problems of curcumin. Eur J Pharm Biopharm. 2015;94:322–32.PubMedCrossRef
54.
Zurück zum Zitat Patil S, Choudhary B, Rathore A, Roy K, Mahadik K. Enhanced oral bioavailability and anticancer activity of novel curcumin loaded mixed micelles in human lung cancer cells. Phytomedicine. 2015;22(12):1103–11.PubMedCrossRef Patil S, Choudhary B, Rathore A, Roy K, Mahadik K. Enhanced oral bioavailability and anticancer activity of novel curcumin loaded mixed micelles in human lung cancer cells. Phytomedicine. 2015;22(12):1103–11.PubMedCrossRef
55.
Zurück zum Zitat John PC, Mews M, Moore R. Cyclin/Cdk complexes: their involvement in cell cycle progression and mitotic division. Protoplasma. 2001;216(3–4):119–42.PubMedCrossRef John PC, Mews M, Moore R. Cyclin/Cdk complexes: their involvement in cell cycle progression and mitotic division. Protoplasma. 2001;216(3–4):119–42.PubMedCrossRef
56.
Zurück zum Zitat Lim T-G, Lee S-Y, Huang Z, Chen H, Jung SK, Bode AM, et al. Curcumin suppresses proliferation of colon cancer cells by targeting CDK2. Cancer Prev Res. 2014;7(4):466–74.CrossRef Lim T-G, Lee S-Y, Huang Z, Chen H, Jung SK, Bode AM, et al. Curcumin suppresses proliferation of colon cancer cells by targeting CDK2. Cancer Prev Res. 2014;7(4):466–74.CrossRef
57.
Zurück zum Zitat Srivastava RK, Chen Q, Siddiqui I, Sarva K, Shankar S. Linkage of curcumin-induced cell cycle arrest and apoptosis by cyclin-dependent kinase inhibitor p21/WAF1/CIP1. Cell Cycle. 2007;6(23):2953–61.PubMedCrossRef Srivastava RK, Chen Q, Siddiqui I, Sarva K, Shankar S. Linkage of curcumin-induced cell cycle arrest and apoptosis by cyclin-dependent kinase inhibitor p21/WAF1/CIP1. Cell Cycle. 2007;6(23):2953–61.PubMedCrossRef
58.
Zurück zum Zitat Choi BH, Kim CG, Bae Y-S, Lim Y, Lee YH, Shin SY. p21Waf1/Cip1 expression by curcumin in U-87MG human glioma cells: role of early growth response-1 expression. Cancer Res. 2008;68(5):1369–77.PubMedCrossRef Choi BH, Kim CG, Bae Y-S, Lim Y, Lee YH, Shin SY. p21Waf1/Cip1 expression by curcumin in U-87MG human glioma cells: role of early growth response-1 expression. Cancer Res. 2008;68(5):1369–77.PubMedCrossRef
59.
Zurück zum Zitat Krishnaraju K, Nguyen HQ, Liebermann DA, Hoffman B. The zinc finger transcription factor Egr-1 potentiates macrophage differentiation of hematopoietic cells. Mol Cell Biol. 1995;15(10):5499–507.PubMedPubMedCentralCrossRef Krishnaraju K, Nguyen HQ, Liebermann DA, Hoffman B. The zinc finger transcription factor Egr-1 potentiates macrophage differentiation of hematopoietic cells. Mol Cell Biol. 1995;15(10):5499–507.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Krones-Herzig A, Mittal S, Yule K, Liang H, English C, Urcis R, et al. Early growth response 1 acts as a tumor suppressor in vivo and in vitro via regulation of p53. Cancer Res. 2005;65(12):5133–43.PubMedCrossRef Krones-Herzig A, Mittal S, Yule K, Liang H, English C, Urcis R, et al. Early growth response 1 acts as a tumor suppressor in vivo and in vitro via regulation of p53. Cancer Res. 2005;65(12):5133–43.PubMedCrossRef
61.
Zurück zum Zitat Mazumder S, DuPree E, Almasan A. A dual role of cyclin E in cell proliferation and apotosis may provide a target for cancer therapy. Curr Cancer Drug Targets. 2004;4(1):65–75.PubMedPubMedCentralCrossRef Mazumder S, DuPree E, Almasan A. A dual role of cyclin E in cell proliferation and apotosis may provide a target for cancer therapy. Curr Cancer Drug Targets. 2004;4(1):65–75.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Keyomarsi K, Tucker SL, Buchholz TA, Callister M, Ding Y, Hortobagyi GN, et al. Cyclin E and survival in patients with breast cancer. N Engl J Med. 2002;347(20):1566–75.PubMedCrossRef Keyomarsi K, Tucker SL, Buchholz TA, Callister M, Ding Y, Hortobagyi GN, et al. Cyclin E and survival in patients with breast cancer. N Engl J Med. 2002;347(20):1566–75.PubMedCrossRef
63.
Zurück zum Zitat Aggarwal BB, Banerjee S, Bharadwaj U, Sung B, Shishodia S, Sethi G. Curcumin induces the degradation of cyclin E expression through ubiquitin-dependent pathway and up-regulates cyclin-dependent kinase inhibitors p21 and p27 in multiple human tumor cell lines. Biochem Pharmacol. 2007;73(7):1024–32.PubMedCrossRef Aggarwal BB, Banerjee S, Bharadwaj U, Sung B, Shishodia S, Sethi G. Curcumin induces the degradation of cyclin E expression through ubiquitin-dependent pathway and up-regulates cyclin-dependent kinase inhibitors p21 and p27 in multiple human tumor cell lines. Biochem Pharmacol. 2007;73(7):1024–32.PubMedCrossRef
64.
Zurück zum Zitat Lee DS, Lee MK, Kim JH. Curcumin induces cell cycle arrest and apoptosis in human osteosarcoma (HOS) cells. Anticancer Res. 2009;29(12):5039–44.PubMed Lee DS, Lee MK, Kim JH. Curcumin induces cell cycle arrest and apoptosis in human osteosarcoma (HOS) cells. Anticancer Res. 2009;29(12):5039–44.PubMed
65.
Zurück zum Zitat Park MJ, Kim EH, Park IC, Lee HC, Woo SH, Lee JY, et al. Curcumin inhibits cell cycle progression of immortalized human umbilical vein endothelial (ECV304) cells by up-regulating cyclin-dependent kinase inhibitor, p21WAF1/CIP1, p27KIP1 and p53. Int J Oncol. 2002;21(2):379–83.PubMed Park MJ, Kim EH, Park IC, Lee HC, Woo SH, Lee JY, et al. Curcumin inhibits cell cycle progression of immortalized human umbilical vein endothelial (ECV304) cells by up-regulating cyclin-dependent kinase inhibitor, p21WAF1/CIP1, p27KIP1 and p53. Int J Oncol. 2002;21(2):379–83.PubMed
66.
Zurück zum Zitat Choudhuri T, Pal S, Das T, Sa G. Curcumin selectively induces apoptosis in deregulated cyclin D1-expressed cells at G2 phase of cell cycle in a p53-dependent manner. J Biol Chem. 2005;280(20):20059–68.PubMedCrossRef Choudhuri T, Pal S, Das T, Sa G. Curcumin selectively induces apoptosis in deregulated cyclin D1-expressed cells at G2 phase of cell cycle in a p53-dependent manner. J Biol Chem. 2005;280(20):20059–68.PubMedCrossRef
67.
Zurück zum Zitat Li X, Kikuchi K, Takano Y. ING genes work as tumor suppressor genes in the carcinogenesis of head and neck squamous cell carcinoma. J Oncol. 2010;2011:963614.PubMedPubMedCentral Li X, Kikuchi K, Takano Y. ING genes work as tumor suppressor genes in the carcinogenesis of head and neck squamous cell carcinoma. J Oncol. 2010;2011:963614.PubMedPubMedCentral
68.
Zurück zum Zitat Wang Y, Wang T, Han Y, Wu H, Zhao W, Tong D, et al. Reduced ING4 expression is associated with the malignancy of human bladder. Urol Int. 2015;94(4):464–71.PubMedCrossRef Wang Y, Wang T, Han Y, Wu H, Zhao W, Tong D, et al. Reduced ING4 expression is associated with the malignancy of human bladder. Urol Int. 2015;94(4):464–71.PubMedCrossRef
69.
Zurück zum Zitat Liu E, Wu J, Cao W, Zhang J, Liu W, Jiang X, et al. Curcumin induces G2/M cell cycle arrest in a p53-dependent manner and upregulates ING4 expression in human glioma. J Neuro-Oncol. 2007;85(3):263–70.CrossRef Liu E, Wu J, Cao W, Zhang J, Liu W, Jiang X, et al. Curcumin induces G2/M cell cycle arrest in a p53-dependent manner and upregulates ING4 expression in human glioma. J Neuro-Oncol. 2007;85(3):263–70.CrossRef
70.
Zurück zum Zitat Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, et al. Mutational landscape and significance across 12 major cancer types. Nature. 2013;502(7471):333–9.PubMedPubMedCentralCrossRef Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, et al. Mutational landscape and significance across 12 major cancer types. Nature. 2013;502(7471):333–9.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Choudhuri T, Pal S, Agwarwal ML, Das T, Sa G. Curcumin induces apoptosis in human breast cancer cells through p53-dependent Bax induction. FEBS Lett. 2002;512(1–3):334–40.PubMedCrossRef Choudhuri T, Pal S, Agwarwal ML, Das T, Sa G. Curcumin induces apoptosis in human breast cancer cells through p53-dependent Bax induction. FEBS Lett. 2002;512(1–3):334–40.PubMedCrossRef
73.
Zurück zum Zitat Jee SH, Shen SC, Kuo ML, Tseng CR, Chiu HC. Curcumin induces a p53-dependent apoptosis in human basal cell carcinoma cells. J Investig Dermatol. 1998;111(4):656–61.PubMedCrossRef Jee SH, Shen SC, Kuo ML, Tseng CR, Chiu HC. Curcumin induces a p53-dependent apoptosis in human basal cell carcinoma cells. J Investig Dermatol. 1998;111(4):656–61.PubMedCrossRef
74.
Zurück zum Zitat Jiang MC, Yang-Yen HF, Yen JJY, Lin JK. Curcumin induces apoptosis in immortalized NIH 3 T3 and malignant cancer cell lines. Nutr Cancer. 1996;26(1):111–20.PubMedCrossRef Jiang MC, Yang-Yen HF, Yen JJY, Lin JK. Curcumin induces apoptosis in immortalized NIH 3 T3 and malignant cancer cell lines. Nutr Cancer. 1996;26(1):111–20.PubMedCrossRef
75.
Zurück zum Zitat Watson JL, Hill R, Yaffe PB, Greenshields A, Walsh M, Lee PW, et al. Curcumin causes superoxide anion production and p53-independent apoptosis in human colon cancer cells. Cancer Lett. 2010;297(1):1–8.PubMedCrossRef Watson JL, Hill R, Yaffe PB, Greenshields A, Walsh M, Lee PW, et al. Curcumin causes superoxide anion production and p53-independent apoptosis in human colon cancer cells. Cancer Lett. 2010;297(1):1–8.PubMedCrossRef
76.
Zurück zum Zitat Kohno M, Pouyssegur J. Targeting the ERK signaling pathway in cancer therapy. Ann Med. 2006;38(3):200–11.PubMedCrossRef Kohno M, Pouyssegur J. Targeting the ERK signaling pathway in cancer therapy. Ann Med. 2006;38(3):200–11.PubMedCrossRef
77.
Zurück zum Zitat Adjei AA. Blocking oncogenic ras signaling for cancer therapy. J Natl Cancer Inst. 2001;93(14):1062–74.PubMedCrossRef Adjei AA. Blocking oncogenic ras signaling for cancer therapy. J Natl Cancer Inst. 2001;93(14):1062–74.PubMedCrossRef
78.
Zurück zum Zitat Cao AL, Tang QF, Zhou WC, Qiu YY, Hu SJ, Yin PH. Ras/ERK signaling pathway is involved in curcumin-induced cell cycle arrest and apoptosis in human gastric carcinoma AGS cells. J Asian Nat Prod Res. 2015;17(1):56–63.PubMedCrossRef Cao AL, Tang QF, Zhou WC, Qiu YY, Hu SJ, Yin PH. Ras/ERK signaling pathway is involved in curcumin-induced cell cycle arrest and apoptosis in human gastric carcinoma AGS cells. J Asian Nat Prod Res. 2015;17(1):56–63.PubMedCrossRef
79.
Zurück zum Zitat Ono M, Higuchi T, Takeshima M, Chen C, Nakano S. Differential anti-tumor activities of curcumin against ras-and src-activated human adenocarcinoma cells. Biochem Biophys Res Commun. 2013;436(2):186–91.PubMedCrossRef Ono M, Higuchi T, Takeshima M, Chen C, Nakano S. Differential anti-tumor activities of curcumin against ras-and src-activated human adenocarcinoma cells. Biochem Biophys Res Commun. 2013;436(2):186–91.PubMedCrossRef
80.
Zurück zum Zitat Kim M-S, Kang H-J, Moon A. Inhibition of invasion and induction of apoptosis by curcumin in H-ras-transformed MCF10A human breast epithelial cells. Arch Pharm Res. 2001;24(4):349–54.PubMedCrossRef Kim M-S, Kang H-J, Moon A. Inhibition of invasion and induction of apoptosis by curcumin in H-ras-transformed MCF10A human breast epithelial cells. Arch Pharm Res. 2001;24(4):349–54.PubMedCrossRef
81.
Zurück zum Zitat Limtrakul PN, Anuchapreeda S, Lipigorngoson S, Dunn FW. Inhibition of carcinogen induced c-Ha-ras and c-fos proto-oncogenes expression by dietary curcumin. BMC Cancer. 2001;1(1):1.PubMedPubMedCentralCrossRef Limtrakul PN, Anuchapreeda S, Lipigorngoson S, Dunn FW. Inhibition of carcinogen induced c-Ha-ras and c-fos proto-oncogenes expression by dietary curcumin. BMC Cancer. 2001;1(1):1.PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Vara JÁF, Casado E, de Castro J, Cejas P, Belda-Iniesta C, González-Barón M. PI3K/Akt signalling pathway and cancer. Cancer Treat Rev. 2004;30(2):193–204.CrossRef Vara JÁF, Casado E, de Castro J, Cejas P, Belda-Iniesta C, González-Barón M. PI3K/Akt signalling pathway and cancer. Cancer Treat Rev. 2004;30(2):193–204.CrossRef
83.
Zurück zum Zitat Wyatt LA, Filbin MT, Keirstead HS. PTEN inhibition enhances neurite outgrowth in human embryonic stem cell–derived neuronal progenitor cells. J Comp Neurol. 2014;522(12):2741–55.PubMedCrossRef Wyatt LA, Filbin MT, Keirstead HS. PTEN inhibition enhances neurite outgrowth in human embryonic stem cell–derived neuronal progenitor cells. J Comp Neurol. 2014;522(12):2741–55.PubMedCrossRef
84.
Zurück zum Zitat Polivka J, Janku F. Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol Ther. 2014;142(2):164–75.PubMedCrossRef Polivka J, Janku F. Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol Ther. 2014;142(2):164–75.PubMedCrossRef
85.
Zurück zum Zitat Qiao Q, Jiang Y, Li G. Inhibition of the PI3K/AKT-NF-κB pathway with curcumin enhanced radiation-induced apoptosis in human Burkitt’s lymphoma. J Pharmacol Sci. 2013;121(4):247–56.PubMedCrossRef Qiao Q, Jiang Y, Li G. Inhibition of the PI3K/AKT-NF-κB pathway with curcumin enhanced radiation-induced apoptosis in human Burkitt’s lymphoma. J Pharmacol Sci. 2013;121(4):247–56.PubMedCrossRef
86.
Zurück zum Zitat Yu S, Shen G, Khor TO, Kim J-H, Kong A-NT. Curcumin inhibits Akt/mammalian target of rapamycin signaling through protein phosphatase-dependent mechanism. Mol Cancer Ther. 2008;7(9):2609–20.PubMedPubMedCentralCrossRef Yu S, Shen G, Khor TO, Kim J-H, Kong A-NT. Curcumin inhibits Akt/mammalian target of rapamycin signaling through protein phosphatase-dependent mechanism. Mol Cancer Ther. 2008;7(9):2609–20.PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Akkoç Y, Berrak Ö, Arısan ED, Obakan P, Çoker-Gürkan A, Palavan-Ünsal N. Inhibition of PI3K signaling triggered apoptotic potential of curcumin which is hindered by Bcl-2 through activation of autophagy in MCF-7 cells. Biochem Pharmacol. 2015;71:161–71. Akkoç Y, Berrak Ö, Arısan ED, Obakan P, Çoker-Gürkan A, Palavan-Ünsal N. Inhibition of PI3K signaling triggered apoptotic potential of curcumin which is hindered by Bcl-2 through activation of autophagy in MCF-7 cells. Biochem Pharmacol. 2015;71:161–71.
90.
Zurück zum Zitat Kim HJ, Park SY, Park OJ, Kim YM. Curcumin suppresses migration and proliferation of Hep3B hepatocarcinoma cells through inhibition of the Wnt signaling pathway. Mol Med Rep. 2013;8(1):282–6.PubMed Kim HJ, Park SY, Park OJ, Kim YM. Curcumin suppresses migration and proliferation of Hep3B hepatocarcinoma cells through inhibition of the Wnt signaling pathway. Mol Med Rep. 2013;8(1):282–6.PubMed
91.
Zurück zum Zitat Leow P-C, Bahety P, Boon CP, Lee CY, Tan KL, Yang T, et al. Functionalized curcumin analogs as potent modulators of the Wnt/β-catenin signaling pathway. Eur J Med Chem. 2014;71:67–80.PubMedCrossRef Leow P-C, Bahety P, Boon CP, Lee CY, Tan KL, Yang T, et al. Functionalized curcumin analogs as potent modulators of the Wnt/β-catenin signaling pathway. Eur J Med Chem. 2014;71:67–80.PubMedCrossRef
92.
Zurück zum Zitat Kolb TM, Davis MA. The tumor promoter 12-O-tetradecanoylphorbol 13-acetate (TPA) provokes a prolonged morphologic response and ERK activation in Tsc2-null renal tumor cells. Toxicol Sci. 2004;81(1):233–42.PubMedCrossRef Kolb TM, Davis MA. The tumor promoter 12-O-tetradecanoylphorbol 13-acetate (TPA) provokes a prolonged morphologic response and ERK activation in Tsc2-null renal tumor cells. Toxicol Sci. 2004;81(1):233–42.PubMedCrossRef
93.
Zurück zum Zitat Libermann TA, Zerbini LF. Targeting transcription factors for cancer gene therapy. Curr Gene Ther. 2006;6(1):17–33.PubMedCrossRef Libermann TA, Zerbini LF. Targeting transcription factors for cancer gene therapy. Curr Gene Ther. 2006;6(1):17–33.PubMedCrossRef
94.
Zurück zum Zitat Dolcet X, Llobet D, Pallares J, Matias-Guiu X. NF-kB in development and progression of human cancer. Virchows Arch. 2005;446(5):475–82.PubMedCrossRef Dolcet X, Llobet D, Pallares J, Matias-Guiu X. NF-kB in development and progression of human cancer. Virchows Arch. 2005;446(5):475–82.PubMedCrossRef
95.
Zurück zum Zitat Mishra A, Kumar R, Tyagi A, Kohaar I, Hedau S, Bharti AC et al. Curcumin modulates cellular AP-1, NF-kB, and HPV16 E6 proteins in oral cancer. ecancermedicalscience. 2015;9. Mishra A, Kumar R, Tyagi A, Kohaar I, Hedau S, Bharti AC et al. Curcumin modulates cellular AP-1, NF-kB, and HPV16 E6 proteins in oral cancer. ecancermedicalscience. 2015;9.
96.
Zurück zum Zitat Singh S, Aggarwal BB. Activation of transcription factor NF-κB is suppressed by curcumin (diferuloylmethane). J Biol Chem. 1995;270(42):24995–5000.PubMedCrossRef Singh S, Aggarwal BB. Activation of transcription factor NF-κB is suppressed by curcumin (diferuloylmethane). J Biol Chem. 1995;270(42):24995–5000.PubMedCrossRef
97.
Zurück zum Zitat Marín YE, Wall BA, Wang S, Namkoong J, Martino JJ, Suh J, et al. Curcumin downregulates the constitutive activity of NF-κB and induces apoptosis in novel mouse melanoma cells. Melanoma Res. 2007;17(5):274–83.PubMedCrossRef Marín YE, Wall BA, Wang S, Namkoong J, Martino JJ, Suh J, et al. Curcumin downregulates the constitutive activity of NF-κB and induces apoptosis in novel mouse melanoma cells. Melanoma Res. 2007;17(5):274–83.PubMedCrossRef
98.
Zurück zum Zitat Marquardt JU, Gomez-Quiroz L, Camacho LOA, Pinna F, Lee Y-H, Kitade M, et al. Curcumin effectively inhibits oncogenic NF-κB signaling and restrains stemness features in liver cancer. J Hepatol. 2015;63(3):661–9.PubMedPubMedCentralCrossRef Marquardt JU, Gomez-Quiroz L, Camacho LOA, Pinna F, Lee Y-H, Kitade M, et al. Curcumin effectively inhibits oncogenic NF-κB signaling and restrains stemness features in liver cancer. J Hepatol. 2015;63(3):661–9.PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat Furqan M, Akinleye A, Mukhi N, Mittal V, Chen Y, Liu D. STAT inhibitors for cancer therapy. J Hematol Oncol. 2013;6(1):1–11.CrossRef Furqan M, Akinleye A, Mukhi N, Mittal V, Chen Y, Liu D. STAT inhibitors for cancer therapy. J Hematol Oncol. 2013;6(1):1–11.CrossRef
100.
Zurück zum Zitat Lavecchia A, Di Giovanni C, Novellino E. STAT-3 inhibitors: state of the art and new horizons for cancer treatment. Curr Med Chem. 2011;18(16):2359–75.PubMedCrossRef Lavecchia A, Di Giovanni C, Novellino E. STAT-3 inhibitors: state of the art and new horizons for cancer treatment. Curr Med Chem. 2011;18(16):2359–75.PubMedCrossRef
101.
Zurück zum Zitat Yu H, Jove R. The STATs of cancer—new molecular targets come of age. Nat Rev Cancer. 2004;4(2):97–105.PubMedCrossRef Yu H, Jove R. The STATs of cancer—new molecular targets come of age. Nat Rev Cancer. 2004;4(2):97–105.PubMedCrossRef
102.
Zurück zum Zitat Blasius R, Reuter S, Henry E, Dicato M, Diederich M. Curcumin regulates signal transducer and activator of transcription (STAT) expression in K562 cells. Biochem Pharmacol. 2006;72(11):1547–54.PubMedCrossRef Blasius R, Reuter S, Henry E, Dicato M, Diederich M. Curcumin regulates signal transducer and activator of transcription (STAT) expression in K562 cells. Biochem Pharmacol. 2006;72(11):1547–54.PubMedCrossRef
103.
Zurück zum Zitat Saydmohammed M, Joseph D, Syed V. Curcumin suppresses constitutive activation of STAT-3 by up-regulating protein inhibitor of activated STAT-3 (PIAS-3) in ovarian and endometrial cancer cells. J Cell Biochem. 2010;110(2):447–56.PubMed Saydmohammed M, Joseph D, Syed V. Curcumin suppresses constitutive activation of STAT-3 by up-regulating protein inhibitor of activated STAT-3 (PIAS-3) in ovarian and endometrial cancer cells. J Cell Biochem. 2010;110(2):447–56.PubMed
104.
Zurück zum Zitat Aggarwal BB, Surh Y-J, Shishodia, S. The molecular targets and therapeutic uses of curcumin in health and disease. Springer Science & Business Media; 2007. Aggarwal BB, Surh Y-J, Shishodia, S. The molecular targets and therapeutic uses of curcumin in health and disease. Springer Science & Business Media; 2007.
105.
Zurück zum Zitat Ferreira LC, Arbab AS, Jardim-Perassi BV, Borin TF, Gonçalves NN, Nadimpalli RSV, et al. Abstract A02: effect of curcumin on the tumor growth and angiogenesis of breast cancer. Cancer Res. 2015;75(1 Supplement):A02-A.CrossRef Ferreira LC, Arbab AS, Jardim-Perassi BV, Borin TF, Gonçalves NN, Nadimpalli RSV, et al. Abstract A02: effect of curcumin on the tumor growth and angiogenesis of breast cancer. Cancer Res. 2015;75(1 Supplement):A02-A.CrossRef
106.
Zurück zum Zitat Chakraborty G, Jain S, Kale S, Raja R, Kumar S, Mishra R, et al. Curcumin suppresses breast tumor angiogenesis by abrogating osteopontin-induced VEGF expression. Mol Med Rep. 2008;1(5):641–6.PubMed Chakraborty G, Jain S, Kale S, Raja R, Kumar S, Mishra R, et al. Curcumin suppresses breast tumor angiogenesis by abrogating osteopontin-induced VEGF expression. Mol Med Rep. 2008;1(5):641–6.PubMed
107.
Zurück zum Zitat Yoysungnoen P, Wirachwong P, Changtam C, Suksamrarn A, Patumraj S. Anti-cancer and anti-angiogenic effects of curcumin and tetrahydrocurcumin on implanted hepatocellular carcinoma in nude mice. World J Gastroenterol. 2008;14(13):2003.PubMedPubMedCentralCrossRef Yoysungnoen P, Wirachwong P, Changtam C, Suksamrarn A, Patumraj S. Anti-cancer and anti-angiogenic effects of curcumin and tetrahydrocurcumin on implanted hepatocellular carcinoma in nude mice. World J Gastroenterol. 2008;14(13):2003.PubMedPubMedCentralCrossRef
108.
Zurück zum Zitat Arbiser JL, Klauber N, Rohan R, van Leeuwen R, Huang M-T, Fisher C, et al. Curcumin is an in vivo inhibitor of angiogenesis. Mol Med. 1998;4(6):376.PubMedPubMedCentral Arbiser JL, Klauber N, Rohan R, van Leeuwen R, Huang M-T, Fisher C, et al. Curcumin is an in vivo inhibitor of angiogenesis. Mol Med. 1998;4(6):376.PubMedPubMedCentral
109.
Zurück zum Zitat Arbiser J. Antiangiogenic therapy and dermatology: a review. Med Actual. 1997;33(10):687–96. Arbiser J. Antiangiogenic therapy and dermatology: a review. Med Actual. 1997;33(10):687–96.
110.
Zurück zum Zitat Steeg PS. Tumor metastasis: mechanistic insights and clinical challenges. Nat Med. 2006;12(8):895–904.PubMedCrossRef Steeg PS. Tumor metastasis: mechanistic insights and clinical challenges. Nat Med. 2006;12(8):895–904.PubMedCrossRef
112.
Zurück zum Zitat Woo MS, Jung SH, Kim SY, Hyun JW, Ko KH, Kim WK, et al. Curcumin suppresses phorbol ester-induced matrix metalloproteinase-9 expression by inhibiting the PKC to MAPK signaling pathways in human astroglioma cells. Biochem Biophys Res Commun. 2005;335(4):1017–25.PubMedCrossRef Woo MS, Jung SH, Kim SY, Hyun JW, Ko KH, Kim WK, et al. Curcumin suppresses phorbol ester-induced matrix metalloproteinase-9 expression by inhibiting the PKC to MAPK signaling pathways in human astroglioma cells. Biochem Biophys Res Commun. 2005;335(4):1017–25.PubMedCrossRef
113.
Zurück zum Zitat Radhakrishnan VM, Kojs P, Young G, Ramalingam R, Jagadish B, Mash EA, et al. pTyr 421 cortactin is overexpressed in colon cancer and is dephosphorylated by curcumin: involvement of non-receptor type 1 protein tyrosine phosphatase (PTPN1). PLoS One. 2014;9(1):e85796.PubMedPubMedCentralCrossRef Radhakrishnan VM, Kojs P, Young G, Ramalingam R, Jagadish B, Mash EA, et al. pTyr 421 cortactin is overexpressed in colon cancer and is dephosphorylated by curcumin: involvement of non-receptor type 1 protein tyrosine phosphatase (PTPN1). PLoS One. 2014;9(1):e85796.PubMedPubMedCentralCrossRef
114.
Zurück zum Zitat Killian PH, Kronski E, Michalik KM, Barbieri O, Astigiano S, Sommerhoff CP, et al. Curcumin inhibits prostate cancer metastasis in vivo by targeting the inflammatory cytokines CXCL1 and-2. Carcinogenesis. 2012;33(12):2507–19.PubMedCrossRef Killian PH, Kronski E, Michalik KM, Barbieri O, Astigiano S, Sommerhoff CP, et al. Curcumin inhibits prostate cancer metastasis in vivo by targeting the inflammatory cytokines CXCL1 and-2. Carcinogenesis. 2012;33(12):2507–19.PubMedCrossRef
Metadaten
Titel
Molecular targets of curcumin for cancer therapy: an updated review
verfasst von
Pandima Devi Kasi
Rajavel Tamilselvam
Krystyna Skalicka-Woźniak
Seyed Fazel Nabavi
Maria Daglia
Anupam Bishayee
Hamidreza Pazoki-toroudi
Seyed Mohammad Nabavi
Publikationsdatum
28.07.2016
Verlag
Springer Netherlands
Erschienen in
Tumor Biology / Ausgabe 10/2016
Print ISSN: 1010-4283
Elektronische ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-016-5183-y

Weitere Artikel der Ausgabe 10/2016

Tumor Biology 10/2016 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.