Skip to main content
Erschienen in: Clinical Pharmacokinetics 8/2017

16.02.2017 | Review Article

Renal Drug Transporters and Drug Interactions

verfasst von: Anton Ivanyuk, Françoise Livio, Jérôme Biollaz, Thierry Buclin

Erschienen in: Clinical Pharmacokinetics | Ausgabe 8/2017

Einloggen, um Zugang zu erhalten

Abstract

Transporters in proximal renal tubules contribute to the disposition of numerous drugs. Furthermore, the molecular mechanisms of tubular secretion have been progressively elucidated during the past decades. Organic anions tend to be secreted by the transport proteins OAT1, OAT3 and OATP4C1 on the basolateral side of tubular cells, and multidrug resistance protein (MRP) 2, MRP4, OATP1A2 and breast cancer resistance protein (BCRP) on the apical side. Organic cations are secreted by organic cation transporter (OCT) 2 on the basolateral side, and multidrug and toxic compound extrusion (MATE) proteins MATE1, MATE2/2-K, P-glycoprotein, organic cation and carnitine transporter (OCTN) 1 and OCTN2 on the apical side. Significant drug–drug interactions (DDIs) may affect any of these transporters, altering the clearance and, consequently, the efficacy and/or toxicity of substrate drugs. Interactions at the level of basolateral transporters typically decrease the clearance of the victim drug, causing higher systemic exposure. Interactions at the apical level can also lower drug clearance, but may be associated with higher renal toxicity, due to intracellular accumulation. Whereas the importance of glomerular filtration in drug disposition is largely appreciated among clinicians, DDIs involving renal transporters are less well recognized. This review summarizes current knowledge on the roles, quantitative importance and clinical relevance of these transporters in drug therapy. It proposes an approach based on substrate–inhibitor associations for predicting potential tubular-based DDIs and preventing their adverse consequences. We provide a comprehensive list of known drug interactions with renally-expressed transporters. While many of these interactions have limited clinical consequences, some involving high-risk drugs (e.g. methotrexate) definitely deserve the attention of prescribers.
Literatur
1.
Zurück zum Zitat Kell DB, Dobson PD, Bilsland E, Oliver SG. The promiscuous binding of pharmaceutical drugs and their transporter-mediated uptake into cells: what we (need to) know and how we can do so. Drug Discov Today. 2013;18(5–6):218–39.PubMedCrossRef Kell DB, Dobson PD, Bilsland E, Oliver SG. The promiscuous binding of pharmaceutical drugs and their transporter-mediated uptake into cells: what we (need to) know and how we can do so. Drug Discov Today. 2013;18(5–6):218–39.PubMedCrossRef
2.
Zurück zum Zitat Di L, Artursson P, Avdeef A, Ecker GF, Faller B, Fischer H, et al. Evidence-based approach to assess passive diffusion and carrier-mediated drug transport. Drug Discov Today. 2012;17(15–16):905–12.PubMedCrossRef Di L, Artursson P, Avdeef A, Ecker GF, Faller B, Fischer H, et al. Evidence-based approach to assess passive diffusion and carrier-mediated drug transport. Drug Discov Today. 2012;17(15–16):905–12.PubMedCrossRef
3.
Zurück zum Zitat Pritchard JB, Miller DS. Mechanisms mediating renal secretion of organic anions and cations. Physiol Rev. 1993;73(4):765–96.PubMed Pritchard JB, Miller DS. Mechanisms mediating renal secretion of organic anions and cations. Physiol Rev. 1993;73(4):765–96.PubMed
4.
Zurück zum Zitat Koepsell H. The SLC22 family with transporters of organic cations, anions and zwitterions. Mol Aspects Med. 2013;34(2–3):413–35.PubMedCrossRef Koepsell H. The SLC22 family with transporters of organic cations, anions and zwitterions. Mol Aspects Med. 2013;34(2–3):413–35.PubMedCrossRef
5.
Zurück zum Zitat Motohashi H, Inui K-I. Multidrug and toxin extrusion family SLC47: physiological, pharmacokinetic and toxicokinetic importance of MATE1 and MATE2-K. Mol Aspects Med. 2013;34(2–3):661–8.PubMedCrossRef Motohashi H, Inui K-I. Multidrug and toxin extrusion family SLC47: physiological, pharmacokinetic and toxicokinetic importance of MATE1 and MATE2-K. Mol Aspects Med. 2013;34(2–3):661–8.PubMedCrossRef
6.
Zurück zum Zitat Robertson EE, Rankin GO. Human renal organic anion transporters: characteristics and contributions to drug and drug metabolite excretion. Pharmacol Ther. 2006;109(3):399–412.PubMedCrossRef Robertson EE, Rankin GO. Human renal organic anion transporters: characteristics and contributions to drug and drug metabolite excretion. Pharmacol Ther. 2006;109(3):399–412.PubMedCrossRef
7.
Zurück zum Zitat Masereeuw R, Russel FGM. Therapeutic implications of renal anionic drug transporters. Pharmacol Ther. 2010;126(2):200–16.PubMedCrossRef Masereeuw R, Russel FGM. Therapeutic implications of renal anionic drug transporters. Pharmacol Ther. 2010;126(2):200–16.PubMedCrossRef
8.
Zurück zum Zitat El-Sheikh AAK, Masereeuw R, Russel FGM. Mechanisms of renal anionic drug transport. Eur J Pharmacol. 2008;585(2–3):245–55.PubMedCrossRef El-Sheikh AAK, Masereeuw R, Russel FGM. Mechanisms of renal anionic drug transport. Eur J Pharmacol. 2008;585(2–3):245–55.PubMedCrossRef
9.
Zurück zum Zitat Sekine T, Miyazaki H, Endou H. Molecular physiology of renal organic anion transporters. AJP Renal Physiol. 2006;290(2):F251–61.CrossRef Sekine T, Miyazaki H, Endou H. Molecular physiology of renal organic anion transporters. AJP Renal Physiol. 2006;290(2):F251–61.CrossRef
10.
Zurück zum Zitat Hosoyamada M, Sekine T, Kanai Y, Endou H. Molecular cloning and functional expression of a multispecific organic anion transporter from human kidney. AJP Renal Physiol. 1999;276(1):F122–8. Hosoyamada M, Sekine T, Kanai Y, Endou H. Molecular cloning and functional expression of a multispecific organic anion transporter from human kidney. AJP Renal Physiol. 1999;276(1):F122–8.
11.
Zurück zum Zitat Rizwan A, Burckhardt G. Organic anion transporters of the SLC22 family: biopharmaceutical, physiological, and pathological roles. Pharm Res. 2007;24(3):450–70.PubMedCrossRef Rizwan A, Burckhardt G. Organic anion transporters of the SLC22 family: biopharmaceutical, physiological, and pathological roles. Pharm Res. 2007;24(3):450–70.PubMedCrossRef
12.
Zurück zum Zitat Russel FGM, Masereeuw R, van Aubel RAMH. Molecular aspects of renal anionic drug transport. Annu Rev Physiol. 2002;64(1):563–94.PubMedCrossRef Russel FGM, Masereeuw R, van Aubel RAMH. Molecular aspects of renal anionic drug transport. Annu Rev Physiol. 2002;64(1):563–94.PubMedCrossRef
13.
Zurück zum Zitat Jutabha P, Anzai N, Wempe MF, Wakui S, Endou H, Sakurai H. Apical voltage-driven urate efflux transporter NPT4 in renal proximal tubule. Nucleosides, Nucleotides Nucleic Acids. 2011;30(12):1302–11.PubMedCrossRef Jutabha P, Anzai N, Wempe MF, Wakui S, Endou H, Sakurai H. Apical voltage-driven urate efflux transporter NPT4 in renal proximal tubule. Nucleosides, Nucleotides Nucleic Acids. 2011;30(12):1302–11.PubMedCrossRef
14.
Zurück zum Zitat Aslamkhan A, Han YH, Walden R, Sweet DH, Pritchard JB. Stoichiometry of organic anion/dicarboxylate exchange in membrane vesicles from rat renal cortex and hOAT1-expressing cells. AJP Renal Physiol. 2003;285(4):F775–83.CrossRef Aslamkhan A, Han YH, Walden R, Sweet DH, Pritchard JB. Stoichiometry of organic anion/dicarboxylate exchange in membrane vesicles from rat renal cortex and hOAT1-expressing cells. AJP Renal Physiol. 2003;285(4):F775–83.CrossRef
15.
Zurück zum Zitat Sekine T, Watanabe N, Hosoyamada M, Kanai Y, Endou H. Expression cloning and characterization of a novel multispecific organic anion transporter. J Biol Chem. 1997;272(30):18526–9.PubMedCrossRef Sekine T, Watanabe N, Hosoyamada M, Kanai Y, Endou H. Expression cloning and characterization of a novel multispecific organic anion transporter. J Biol Chem. 1997;272(30):18526–9.PubMedCrossRef
16.
Zurück zum Zitat Srimaroeng C, Perry JL, Pritchard JB. Physiology, structure, and regulation of the cloned organic anion transporters. Xenobiotica. 2008;38(7–8):889–935.PubMedPubMedCentralCrossRef Srimaroeng C, Perry JL, Pritchard JB. Physiology, structure, and regulation of the cloned organic anion transporters. Xenobiotica. 2008;38(7–8):889–935.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Sweet DH, Wolff NA, Pritchard JB. Expression cloning and characterization of ROAT1. The basolateral organic anion transporter in rat kidney. J Biol Chem. 1997;272(48):30088–95.PubMedCrossRef Sweet DH, Wolff NA, Pritchard JB. Expression cloning and characterization of ROAT1. The basolateral organic anion transporter in rat kidney. J Biol Chem. 1997;272(48):30088–95.PubMedCrossRef
18.
Zurück zum Zitat Sweet DH, Chan LMS, Walden R, Yang XP, Miller DS, Pritchard JB. Organic anion transporter 3 (Slc22a8) is a dicarboxylate exchanger indirectly coupled to the Na+ gradient. AJP Renal Physiol. 2003;284(4):F763–9.CrossRef Sweet DH, Chan LMS, Walden R, Yang XP, Miller DS, Pritchard JB. Organic anion transporter 3 (Slc22a8) is a dicarboxylate exchanger indirectly coupled to the Na+ gradient. AJP Renal Physiol. 2003;284(4):F763–9.CrossRef
19.
Zurück zum Zitat Ahn S-Y, Bhatnagar V. Update on the molecular physiology of organic anion transporters. Curr Opin Nephrol Hypertens. 2008;17(5):499–505.PubMedCrossRef Ahn S-Y, Bhatnagar V. Update on the molecular physiology of organic anion transporters. Curr Opin Nephrol Hypertens. 2008;17(5):499–505.PubMedCrossRef
20.
Zurück zum Zitat Cha SH, Sekine T, Ji Fukushima, Kanai Y, Kobayashi Y, Goya T, et al. Identification and characterization of human organic anion transporter 3 expressing predominantly in the kidney. Mol Pharmacol. 2001;59(5):1277–86.PubMed Cha SH, Sekine T, Ji Fukushima, Kanai Y, Kobayashi Y, Goya T, et al. Identification and characterization of human organic anion transporter 3 expressing predominantly in the kidney. Mol Pharmacol. 2001;59(5):1277–86.PubMed
21.
Zurück zum Zitat Motojima M, Hosokawa A, Yamato H, Muraki T, Yoshioka T. Uraemic toxins induce proximal tubular injury via organic anion transporter 1-mediated uptake. Br J Pharmacol. 2002;135(2):555–63.PubMedPubMedCentralCrossRef Motojima M, Hosokawa A, Yamato H, Muraki T, Yoshioka T. Uraemic toxins induce proximal tubular injury via organic anion transporter 1-mediated uptake. Br J Pharmacol. 2002;135(2):555–63.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Nozaki Y, Kusuhara H, Endou H, Sugiyama Y. Quantitative evaluation of the drug–drug interactions between methotrexate and nonsteroidal anti-inflammatory drugs in the renal uptake process based on the contribution of organic anion transporters and reduced folate carrier. J Pharmacol Exp Ther. 2004;309(1):226–34.PubMedCrossRef Nozaki Y, Kusuhara H, Endou H, Sugiyama Y. Quantitative evaluation of the drug–drug interactions between methotrexate and nonsteroidal anti-inflammatory drugs in the renal uptake process based on the contribution of organic anion transporters and reduced folate carrier. J Pharmacol Exp Ther. 2004;309(1):226–34.PubMedCrossRef
23.
Zurück zum Zitat Khamdang S, Takeda M, Noshiro R, Narikawa S, Enomoto A, Anzai N, et al. Interactions of human organic anion transporters and human organic cation transporters with nonsteroidal anti-inflammatory drugs. J Pharmacol Exp Ther. 2002;303(2):534–9.PubMedCrossRef Khamdang S, Takeda M, Noshiro R, Narikawa S, Enomoto A, Anzai N, et al. Interactions of human organic anion transporters and human organic cation transporters with nonsteroidal anti-inflammatory drugs. J Pharmacol Exp Ther. 2002;303(2):534–9.PubMedCrossRef
24.
Zurück zum Zitat Apiwattanakul N, Sekine T, Chairoungdua A, Kanai Y, Nakajima N, Sophasan S, et al. Transport properties of nonsteroidal anti-inflammatory drugs by organic anion transporter 1 expressed in Xenopus laevis oocytes. Mol Pharmacol. 1999;55(5):847–54.PubMed Apiwattanakul N, Sekine T, Chairoungdua A, Kanai Y, Nakajima N, Sophasan S, et al. Transport properties of nonsteroidal anti-inflammatory drugs by organic anion transporter 1 expressed in Xenopus laevis oocytes. Mol Pharmacol. 1999;55(5):847–54.PubMed
25.
Zurück zum Zitat Nozaki Y, Kusuhara H, Kondo T, Iwaki M, Shiroyanagi Y, Nakayama H, et al. Species difference in the inhibitory effect of nonsteroidal anti-inflammatory drugs on the uptake of methotrexate by human kidney slices. J Pharmacol Exp Ther. 2007;322(3):1162–70.PubMedCrossRef Nozaki Y, Kusuhara H, Kondo T, Iwaki M, Shiroyanagi Y, Nakayama H, et al. Species difference in the inhibitory effect of nonsteroidal anti-inflammatory drugs on the uptake of methotrexate by human kidney slices. J Pharmacol Exp Ther. 2007;322(3):1162–70.PubMedCrossRef
26.
Zurück zum Zitat Hasannejad H, Takeda M, Narikawa S, Huang XL, Enomoto A, Taki K, et al. Human organic cation transporter 3 mediates the transport of antiarrhythmic drugs. Eur J Pharmacol. 2004;499(1–2):45–51.PubMedCrossRef Hasannejad H, Takeda M, Narikawa S, Huang XL, Enomoto A, Taki K, et al. Human organic cation transporter 3 mediates the transport of antiarrhythmic drugs. Eur J Pharmacol. 2004;499(1–2):45–51.PubMedCrossRef
27.
Zurück zum Zitat Sato M, Iwanaga T, Mamada H, Ogihara T, Yabuuchi H, Maeda T, et al. Involvement of uric acid transporters in alteration of serum uric acid level by angiotensin II receptor blockers. Pharm Res. 2008;25(3):639–46.PubMedCrossRef Sato M, Iwanaga T, Mamada H, Ogihara T, Yabuuchi H, Maeda T, et al. Involvement of uric acid transporters in alteration of serum uric acid level by angiotensin II receptor blockers. Pharm Res. 2008;25(3):639–46.PubMedCrossRef
28.
Zurück zum Zitat Ueo H, Motohashi H, Katsura T, Inui KI. Human organic anion transporter hOAT3 is a potent transporter of cephalosporin antibiotics, in comparison with hOAT1. Biochem Pharmacol. 2005;70(7):1104–13.PubMedCrossRef Ueo H, Motohashi H, Katsura T, Inui KI. Human organic anion transporter hOAT3 is a potent transporter of cephalosporin antibiotics, in comparison with hOAT1. Biochem Pharmacol. 2005;70(7):1104–13.PubMedCrossRef
29.
Zurück zum Zitat Takeda M, Babu E, Narikawa S, Endou H. Interaction of human organic anion transporters with various cephalosporin antibiotics. Eur J Pharmacol. 2002;438(3):137–42.PubMedCrossRef Takeda M, Babu E, Narikawa S, Endou H. Interaction of human organic anion transporters with various cephalosporin antibiotics. Eur J Pharmacol. 2002;438(3):137–42.PubMedCrossRef
30.
Zurück zum Zitat VanWert AL, Bailey RM, Sweet DH. Organic anion transporter 3 (Oat3/Slc22a8) knockout mice exhibit altered clearance and distribution of penicillin G. AJP Renal Physiol. 2007;293(4):F1332–41.CrossRef VanWert AL, Bailey RM, Sweet DH. Organic anion transporter 3 (Oat3/Slc22a8) knockout mice exhibit altered clearance and distribution of penicillin G. AJP Renal Physiol. 2007;293(4):F1332–41.CrossRef
31.
Zurück zum Zitat Takeda M, Khamdang S, Narikawa S, Kimura H, Hosoyamada M, Cha SH, et al. Characterization of methotrexate transport and its drug interactions with human organic anion transporters. J Pharmacol Exp Ther. 2002;302(2):666–71.PubMedCrossRef Takeda M, Khamdang S, Narikawa S, Kimura H, Hosoyamada M, Cha SH, et al. Characterization of methotrexate transport and its drug interactions with human organic anion transporters. J Pharmacol Exp Ther. 2002;302(2):666–71.PubMedCrossRef
32.
Zurück zum Zitat Uwai Y, Ida H, Tsuji Y, Katsura T, Inui KI. Renal transport of adefovir, cidofovir, and tenofovir by SLC22A family members (hOAT1, hOAT3, and hOCT2). Pharm Res. 2007;24(4):811–5.PubMedCrossRef Uwai Y, Ida H, Tsuji Y, Katsura T, Inui KI. Renal transport of adefovir, cidofovir, and tenofovir by SLC22A family members (hOAT1, hOAT3, and hOCT2). Pharm Res. 2007;24(4):811–5.PubMedCrossRef
33.
Zurück zum Zitat Truong DM, Kaler G, Khandelwal A, Swaan PW, Nigam SK. Multi-level analysis of organic anion transporters 1, 3, and 6 reveals major differences in structural determinants of antiviral discrimination. J Biol Chem. 2008;283(13):8654–63.PubMedPubMedCentralCrossRef Truong DM, Kaler G, Khandelwal A, Swaan PW, Nigam SK. Multi-level analysis of organic anion transporters 1, 3, and 6 reveals major differences in structural determinants of antiviral discrimination. J Biol Chem. 2008;283(13):8654–63.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Takeda M, Khamdang S, Narikawa S, Kimura H, Kobayashi Y, Yamamoto T, et al. Human organic anion transporters and human organic cation transporters mediate renal antiviral transport. J Pharmacol Exp Ther. 2002;300(3):918–24.PubMedCrossRef Takeda M, Khamdang S, Narikawa S, Kimura H, Kobayashi Y, Yamamoto T, et al. Human organic anion transporters and human organic cation transporters mediate renal antiviral transport. J Pharmacol Exp Ther. 2002;300(3):918–24.PubMedCrossRef
35.
Zurück zum Zitat Burckhardt BC, Burckhardt G. Transport of organic anions across the basolateral membrane of proximal tubule cells. Rev Physiol Biochem Pharmacol. 2003;146:95–158.PubMedCrossRef Burckhardt BC, Burckhardt G. Transport of organic anions across the basolateral membrane of proximal tubule cells. Rev Physiol Biochem Pharmacol. 2003;146:95–158.PubMedCrossRef
36.
Zurück zum Zitat Mikkaichi T, Suzuki T, Onogawa T, Tanemoto M, Mizutamari H, Okada M, et al. Isolation and characterization of a digoxin transporter and its rat homologue expressed in the kidney. Proc Natl Acad Sci USA. 2004;101(10):3569–74.PubMedPubMedCentralCrossRef Mikkaichi T, Suzuki T, Onogawa T, Tanemoto M, Mizutamari H, Okada M, et al. Isolation and characterization of a digoxin transporter and its rat homologue expressed in the kidney. Proc Natl Acad Sci USA. 2004;101(10):3569–74.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Chu XY, Bleasby K, Yabut J, Cai X, Chan GH, Hafey MJ, et al. Transport of the dipeptidyl peptidase-4 inhibitor sitagliptin by human organic anion transporter 3, organic anion transporting polypeptide 4C1, and multidrug resistance p-glycoprotein. J Pharmacol Exp Ther. 2007;321(2):673–83.PubMedCrossRef Chu XY, Bleasby K, Yabut J, Cai X, Chan GH, Hafey MJ, et al. Transport of the dipeptidyl peptidase-4 inhibitor sitagliptin by human organic anion transporter 3, organic anion transporting polypeptide 4C1, and multidrug resistance p-glycoprotein. J Pharmacol Exp Ther. 2007;321(2):673–83.PubMedCrossRef
38.
Zurück zum Zitat Yamaguchi H, Sugie M, Okada M, Mikkaichi T, Toyohara T, Abe T, et al. Transport of Estrone 3-sulfate mediated by organic anion transporter OATP4C1: Estrone 3-sulfate binds to the different recognition site for digoxin in OATP4C1. Drug Metab Pharmacokinet. 2010;25(3):314–7.PubMedCrossRef Yamaguchi H, Sugie M, Okada M, Mikkaichi T, Toyohara T, Abe T, et al. Transport of Estrone 3-sulfate mediated by organic anion transporter OATP4C1: Estrone 3-sulfate binds to the different recognition site for digoxin in OATP4C1. Drug Metab Pharmacokinet. 2010;25(3):314–7.PubMedCrossRef
39.
Zurück zum Zitat Cheng Y, Vapurcuyan A, Shahidullah M, Aleksunes LM, Pelis RM. Expression of organic anion transporter 2 in the human kidney and its potential role in the tubular secretion of guanine-containing antiviral drugs. Drug Metab Dispos. 2012;40(3):617–24.PubMedCrossRef Cheng Y, Vapurcuyan A, Shahidullah M, Aleksunes LM, Pelis RM. Expression of organic anion transporter 2 in the human kidney and its potential role in the tubular secretion of guanine-containing antiviral drugs. Drug Metab Dispos. 2012;40(3):617–24.PubMedCrossRef
40.
Zurück zum Zitat Sato M, Mamada H, Anzai N, Shirasaka Y, Nakanishi T, Tamai I. Renal secretion of uric acid by organic anion transporter 2 (OAT2/SLC22A7) in human. Biol Pharm Bull. 2010;33(3):498–503.PubMedCrossRef Sato M, Mamada H, Anzai N, Shirasaka Y, Nakanishi T, Tamai I. Renal secretion of uric acid by organic anion transporter 2 (OAT2/SLC22A7) in human. Biol Pharm Bull. 2010;33(3):498–503.PubMedCrossRef
41.
Zurück zum Zitat Leier I, Hummel-Eisenbeiss J, Cui Y, Keppler D. ATP-dependent para-aminohippurate transport by apical multidrug resistance protein MRP2. Kidney Int. 2000;57(4):1636–42.PubMedCrossRef Leier I, Hummel-Eisenbeiss J, Cui Y, Keppler D. ATP-dependent para-aminohippurate transport by apical multidrug resistance protein MRP2. Kidney Int. 2000;57(4):1636–42.PubMedCrossRef
42.
Zurück zum Zitat Huls M, Brown CDA, Windass AS, Sayer R, van den Heuvel JJMW, Heemskerk S, et al. The breast cancer resistance protein transporter ABCG2 is expressed in the human kidney proximal tubule apical membrane. Kidney Int. 2007;73(2):220–5.PubMedCrossRef Huls M, Brown CDA, Windass AS, Sayer R, van den Heuvel JJMW, Heemskerk S, et al. The breast cancer resistance protein transporter ABCG2 is expressed in the human kidney proximal tubule apical membrane. Kidney Int. 2007;73(2):220–5.PubMedCrossRef
43.
Zurück zum Zitat Smeets PHE, Van Aubel RAMH, Wouterse AC, van den Heuvel JJMW, Russel FGM. Contribution of multidrug resistance protein 2 (MRP2/ABCC2) to the renal excretion of p-aminohippurate (PAH) and identification of MRP4 (ABCC4) as a novel PAH transporter. J Am Soc Nephrol. 2004;15(11):2828–35.PubMedCrossRef Smeets PHE, Van Aubel RAMH, Wouterse AC, van den Heuvel JJMW, Russel FGM. Contribution of multidrug resistance protein 2 (MRP2/ABCC2) to the renal excretion of p-aminohippurate (PAH) and identification of MRP4 (ABCC4) as a novel PAH transporter. J Am Soc Nephrol. 2004;15(11):2828–35.PubMedCrossRef
44.
Zurück zum Zitat Van Aubel RAMH, Peters JGP, Masereeuw R, Van Os CH, Russel FGM. Multidrug resistance protein Mrp2 mediates ATP-dependent transport of classic renal organic anion p-aminohippurate. AJP Renal Physiol. 2000;279(4):F713–7. Van Aubel RAMH, Peters JGP, Masereeuw R, Van Os CH, Russel FGM. Multidrug resistance protein Mrp2 mediates ATP-dependent transport of classic renal organic anion p-aminohippurate. AJP Renal Physiol. 2000;279(4):F713–7.
45.
Zurück zum Zitat Higgins CF. Multiple molecular mechanisms for multidrug resistance transporters. Nature. 2007;446(7137):749–57.PubMedCrossRef Higgins CF. Multiple molecular mechanisms for multidrug resistance transporters. Nature. 2007;446(7137):749–57.PubMedCrossRef
46.
Zurück zum Zitat Bakos E, Evers R, Sinko E, Varadi A, Borst P, Sarkadi B. Interactions of the human multidrug resistance proteins MRP1 and MRP2 with organic anions. Mol Pharmacol. 2000;57(4):760–8.PubMed Bakos E, Evers R, Sinko E, Varadi A, Borst P, Sarkadi B. Interactions of the human multidrug resistance proteins MRP1 and MRP2 with organic anions. Mol Pharmacol. 2000;57(4):760–8.PubMed
47.
Zurück zum Zitat Keppler D, Cui Y, König J, Leier I, Nies A. Export pumps for anionic conjugates encoded by MRP genes. Adv Enzyme Regul. 1999;39(1):237–46.PubMedCrossRef Keppler D, Cui Y, König J, Leier I, Nies A. Export pumps for anionic conjugates encoded by MRP genes. Adv Enzyme Regul. 1999;39(1):237–46.PubMedCrossRef
48.
Zurück zum Zitat El-Sheikh AAK, van den Heuvel JJMW, Koenderink JB, Russel FGM. Interaction of nonsteroidal anti-inflammatory drugs with multidrug resistance protein (MRP) 2/ABCC2- and MRP4/ABCC4-mediated methotrexate transport. J Pharmacol Exp Ther. 2007;320(1):229–35.PubMedCrossRef El-Sheikh AAK, van den Heuvel JJMW, Koenderink JB, Russel FGM. Interaction of nonsteroidal anti-inflammatory drugs with multidrug resistance protein (MRP) 2/ABCC2- and MRP4/ABCC4-mediated methotrexate transport. J Pharmacol Exp Ther. 2007;320(1):229–35.PubMedCrossRef
49.
Zurück zum Zitat Reid G, Wielinga P, Zelcer N, van der Heijden I, Kuil A, de Haas M, et al. The human multidrug resistance protein MRP4 functions as a prostaglandin efflux transporter and is inhibited by nonsteroidal antiinflammatory drugs. Proc Natl Acad Sci USA. 2003;100(16):9244–9.PubMedPubMedCentralCrossRef Reid G, Wielinga P, Zelcer N, van der Heijden I, Kuil A, de Haas M, et al. The human multidrug resistance protein MRP4 functions as a prostaglandin efflux transporter and is inhibited by nonsteroidal antiinflammatory drugs. Proc Natl Acad Sci USA. 2003;100(16):9244–9.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Rius M, Hummel-Eisenbeiss J, Hofmann AF, Keppler D. Substrate specificity of human ABCC4 (MRP4)-mediated cotransport of bile acids and reduced glutathione. AJP Gastrointes Liver Physiol. 2006;290(4):G640–9.CrossRef Rius M, Hummel-Eisenbeiss J, Hofmann AF, Keppler D. Substrate specificity of human ABCC4 (MRP4)-mediated cotransport of bile acids and reduced glutathione. AJP Gastrointes Liver Physiol. 2006;290(4):G640–9.CrossRef
51.
Zurück zum Zitat Russel FGM, Koenderink JB, Masereeuw R. Multidrug resistance protein 4 (MRP4/ABCC4): a versatile efflux transporter for drugs and signalling molecules. Trends Pharmacol Sci. 2008;29(4):200–7.PubMedCrossRef Russel FGM, Koenderink JB, Masereeuw R. Multidrug resistance protein 4 (MRP4/ABCC4): a versatile efflux transporter for drugs and signalling molecules. Trends Pharmacol Sci. 2008;29(4):200–7.PubMedCrossRef
52.
Zurück zum Zitat Van Aubel RAMH, Smeets PHE, Peters JGP, Bindels RJM, Russel FGM. The MRP4/ABCC4 gene encodes a novel apical organic anion transporter in human kidney proximal tubules: putative efflux pump for urinary cAMP and cGMP. J Am Soc Nephrol. 2002;13(3):595–603.PubMed Van Aubel RAMH, Smeets PHE, Peters JGP, Bindels RJM, Russel FGM. The MRP4/ABCC4 gene encodes a novel apical organic anion transporter in human kidney proximal tubules: putative efflux pump for urinary cAMP and cGMP. J Am Soc Nephrol. 2002;13(3):595–603.PubMed
53.
Zurück zum Zitat Chen ZS, Lee K, Walther S, Raftogianis RB, Kuwano M, Zeng H, et al. Analysis of methotrexate and folate transport by multidrug resistance protein 4 (ABCC4): MRP4 is a component of the methotrexate efflux system. Cancer Res. 2002;62(11):3144–50.PubMed Chen ZS, Lee K, Walther S, Raftogianis RB, Kuwano M, Zeng H, et al. Analysis of methotrexate and folate transport by multidrug resistance protein 4 (ABCC4): MRP4 is a component of the methotrexate efflux system. Cancer Res. 2002;62(11):3144–50.PubMed
54.
Zurück zum Zitat Ci L, Kusuhara H, Adachi M, Schuetz JD, Takeuchi K, Sugiyama Y. Involvement of MRP4 (ABCC4) in the luminal efflux of ceftizoxime and cefazolin in the kidney. Mol Pharmacol. 2007;71(6):1591–7.PubMedCrossRef Ci L, Kusuhara H, Adachi M, Schuetz JD, Takeuchi K, Sugiyama Y. Involvement of MRP4 (ABCC4) in the luminal efflux of ceftizoxime and cefazolin in the kidney. Mol Pharmacol. 2007;71(6):1591–7.PubMedCrossRef
55.
Zurück zum Zitat Imaoka T, Kusuhara H, Adachi M, Schuetz JD, Takeuchi K, Sugiyama Y. Functional involvement of multidrug resistance-associated protein 4 (MRP4/ABCC4) in the renal elimination of the antiviral drugs adefovir and tenofovir. Mol Pharmacol. 2007;71(2):619–27.PubMedCrossRef Imaoka T, Kusuhara H, Adachi M, Schuetz JD, Takeuchi K, Sugiyama Y. Functional involvement of multidrug resistance-associated protein 4 (MRP4/ABCC4) in the renal elimination of the antiviral drugs adefovir and tenofovir. Mol Pharmacol. 2007;71(2):619–27.PubMedCrossRef
56.
Zurück zum Zitat Reid G, Wielinga P, Zelcer N, de Haas M, van Deemter L, Wijnholds J, et al. Characterization of the transport of nucleoside analog drugs by the human multidrug resistance proteins MRP4 and MRP5. Mol Pharmacol. 2003;63(5):1094–103.PubMedCrossRef Reid G, Wielinga P, Zelcer N, de Haas M, van Deemter L, Wijnholds J, et al. Characterization of the transport of nucleoside analog drugs by the human multidrug resistance proteins MRP4 and MRP5. Mol Pharmacol. 2003;63(5):1094–103.PubMedCrossRef
57.
Zurück zum Zitat Hilgendorf C, Ahlin G, Seithel A, Artursson P, Ungell AL, Karlsson J. Expression of thirty-six drug transporter genes in human intestine, liver, kidney, and organotypic cell lines. Drug Metab Dispos. 2007;35(8):1333–40.PubMedCrossRef Hilgendorf C, Ahlin G, Seithel A, Artursson P, Ungell AL, Karlsson J. Expression of thirty-six drug transporter genes in human intestine, liver, kidney, and organotypic cell lines. Drug Metab Dispos. 2007;35(8):1333–40.PubMedCrossRef
58.
Zurück zum Zitat Nakayama A, Matsuo H, Takada T, Ichida K, Nakamura T, Ikebuchi Y, et al. ABCG2 is a high-capacity urate transporter and its genetic impairment increases serum uric acid levels in humans. Nucleosides, Nucleotides Nucleic Acids. 2011;30(12):1091–7.PubMedCrossRef Nakayama A, Matsuo H, Takada T, Ichida K, Nakamura T, Ikebuchi Y, et al. ABCG2 is a high-capacity urate transporter and its genetic impairment increases serum uric acid levels in humans. Nucleosides, Nucleotides Nucleic Acids. 2011;30(12):1091–7.PubMedCrossRef
59.
Zurück zum Zitat Ando T, Kusuhara H, Merino G, Alvarez AI, Schinkel AH, Sugiyama Y. Involvement of breast cancer resistance protein (ABCG2) in the biliary excretion mechanism of fluoroquinolones. Drug Metab Dispos. 2007;35(10):1873–9.PubMedCrossRef Ando T, Kusuhara H, Merino G, Alvarez AI, Schinkel AH, Sugiyama Y. Involvement of breast cancer resistance protein (ABCG2) in the biliary excretion mechanism of fluoroquinolones. Drug Metab Dispos. 2007;35(10):1873–9.PubMedCrossRef
60.
Zurück zum Zitat Mizuno N, Takahashi T, Kusuhara H, Schuetz JD, Niwa T, Sugiyama Y. Evaluation of the role of breast cancer resistance protein (BCRP/ABCG2) and multidrug resistance-associated protein 4 (MRP4/ABCC4) in the urinary excretion of sulfate and glucuronide metabolites of edaravone (MCI-186; 3-methyl-1-phenyl-2-pyrazolin-5-one). Drug Metab Dispos. 2007;35(11):2045–52.PubMedCrossRef Mizuno N, Takahashi T, Kusuhara H, Schuetz JD, Niwa T, Sugiyama Y. Evaluation of the role of breast cancer resistance protein (BCRP/ABCG2) and multidrug resistance-associated protein 4 (MRP4/ABCC4) in the urinary excretion of sulfate and glucuronide metabolites of edaravone (MCI-186; 3-methyl-1-phenyl-2-pyrazolin-5-one). Drug Metab Dispos. 2007;35(11):2045–52.PubMedCrossRef
61.
Zurück zum Zitat Chen ZS, Robey RW, Belinsky MG, Shchaveleva I, Ren XQ, Sugimoto Y, et al. Transport of methotrexate, methotrexate polyglutamates, and 17{beta}-estradiol 17-({beta}-d-glucuronide) by ABCG2: effects of acquired mutations at R482 on methotrexate transport. Cancer Res. 2003;63(14):4048–54.PubMed Chen ZS, Robey RW, Belinsky MG, Shchaveleva I, Ren XQ, Sugimoto Y, et al. Transport of methotrexate, methotrexate polyglutamates, and 17{beta}-estradiol 17-({beta}-d-glucuronide) by ABCG2: effects of acquired mutations at R482 on methotrexate transport. Cancer Res. 2003;63(14):4048–54.PubMed
62.
Zurück zum Zitat Krishnamurthy P, Ross DD, Nakanishi T, Bailey-Dell K, Zhou S, Mercer KE, et al. The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme. J Biol Chem. 2004;279(23):24218–25.PubMedCrossRef Krishnamurthy P, Ross DD, Nakanishi T, Bailey-Dell K, Zhou S, Mercer KE, et al. The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme. J Biol Chem. 2004;279(23):24218–25.PubMedCrossRef
64.
Zurück zum Zitat Pan G, Giri N, Elmquist WF. Abcg2/Bcrp1 mediates the polarized transport of antiretroviral nucleosides abacavir and zidovudine. Drug Metab Dispos. 2007;35(7):1165–73.PubMedCrossRef Pan G, Giri N, Elmquist WF. Abcg2/Bcrp1 mediates the polarized transport of antiretroviral nucleosides abacavir and zidovudine. Drug Metab Dispos. 2007;35(7):1165–73.PubMedCrossRef
65.
Zurück zum Zitat van Herwaarden AE, Wagenaar E, Merino G, Jonker JW, Rosing H, Beijnen JH, et al. Multidrug transporter ABCG2/breast cancer resistance protein secretes riboflavin (vitamin B2) into milk. Mol Cell Biol. 2007;27(4):1247–53.PubMedCrossRef van Herwaarden AE, Wagenaar E, Merino G, Jonker JW, Rosing H, Beijnen JH, et al. Multidrug transporter ABCG2/breast cancer resistance protein secretes riboflavin (vitamin B2) into milk. Mol Cell Biol. 2007;27(4):1247–53.PubMedCrossRef
66.
Zurück zum Zitat Velamakanni S, Wei S, Janvilisri T, van Veen H. ABCG transporters: structure, substrate specificities and physiological roles : a brief overview. J Bioenerg Biomembr. 2007;39(5):465–71.PubMedCrossRef Velamakanni S, Wei S, Janvilisri T, van Veen H. ABCG transporters: structure, substrate specificities and physiological roles : a brief overview. J Bioenerg Biomembr. 2007;39(5):465–71.PubMedCrossRef
67.
Zurück zum Zitat Hulot JS, Villard E, Maguy A, Morel V, Mir L, Tostivint I, et al. A mutation in the drug transporter gene ABCC2 associated with impaired methotrexate elimination. Pharmacogenet Genomics. 2005;15(5):277–85.PubMedCrossRef Hulot JS, Villard E, Maguy A, Morel V, Mir L, Tostivint I, et al. A mutation in the drug transporter gene ABCC2 associated with impaired methotrexate elimination. Pharmacogenet Genomics. 2005;15(5):277–85.PubMedCrossRef
68.
Zurück zum Zitat Naesens M, Kuypers DRJ, Verbeke K, Vanrenterghem Y. Multidrug resistance protein 2 genetic polymorphisms influence mycophenolic acid exposure in renal allograft recipients. Transplantation. 2006;82(8):1074–84.PubMedCrossRef Naesens M, Kuypers DRJ, Verbeke K, Vanrenterghem Y. Multidrug resistance protein 2 genetic polymorphisms influence mycophenolic acid exposure in renal allograft recipients. Transplantation. 2006;82(8):1074–84.PubMedCrossRef
69.
Zurück zum Zitat Maeda K, Sugiyama Y. Impact of genetic polymorphisms of transporters on the pharmacokinetic, pharmacodynamic and toxicological properties of anionic drugs. Drug Metab Pharmacokinet. 2008;23(4):223–35.PubMedCrossRef Maeda K, Sugiyama Y. Impact of genetic polymorphisms of transporters on the pharmacokinetic, pharmacodynamic and toxicological properties of anionic drugs. Drug Metab Pharmacokinet. 2008;23(4):223–35.PubMedCrossRef
70.
Zurück zum Zitat Rau T, Erney B, Gores R, Eschenhagen T, Beck J, Langer T. High-dose methotrexate in pediatric acute lymphoblastic leukemia: Impact of ABCC2 polymorphisms on plasma concentrations. Clin Pharmacol Ther. 2006;80(5):468–76.PubMedCrossRef Rau T, Erney B, Gores R, Eschenhagen T, Beck J, Langer T. High-dose methotrexate in pediatric acute lymphoblastic leukemia: Impact of ABCC2 polymorphisms on plasma concentrations. Clin Pharmacol Ther. 2006;80(5):468–76.PubMedCrossRef
71.
Zurück zum Zitat de Jong FA, Scott-Horton TJ, Kroetz DL, McLeod HL, Friberg LE, Mathijssen RH, et al. Irinotecan-induced diarrhea: functional significance of the polymorphic ABCC2 transporter protein. Clin Pharmacol Ther. 2007;81(1):42–9.PubMedCrossRef de Jong FA, Scott-Horton TJ, Kroetz DL, McLeod HL, Friberg LE, Mathijssen RH, et al. Irinotecan-induced diarrhea: functional significance of the polymorphic ABCC2 transporter protein. Clin Pharmacol Ther. 2007;81(1):42–9.PubMedCrossRef
72.
Zurück zum Zitat Anderson PLP, Lamba J, Aquilante CLP, Schuetz E, Fletcher CV. Pharmacogenetic characteristics of indinavir, zidovudine, and lamivudine therapy in HIV-infected adults: a pilot study. J Acquir Immune Defic Syndr. 2006;42(4):441–9.PubMedCrossRef Anderson PLP, Lamba J, Aquilante CLP, Schuetz E, Fletcher CV. Pharmacogenetic characteristics of indinavir, zidovudine, and lamivudine therapy in HIV-infected adults: a pilot study. J Acquir Immune Defic Syndr. 2006;42(4):441–9.PubMedCrossRef
73.
Zurück zum Zitat Kiser JJ, Aquilante CL, Anderson PL, King TM, Carten ML, Fletcher CV. Clinical and genetic determinants of intracellular tenofovir diphosphate concentrations in HIV-infected patients. J Acquir Immune Defic Syndr. 2008;47(3):298–303.PubMedCrossRef Kiser JJ, Aquilante CL, Anderson PL, King TM, Carten ML, Fletcher CV. Clinical and genetic determinants of intracellular tenofovir diphosphate concentrations in HIV-infected patients. J Acquir Immune Defic Syndr. 2008;47(3):298–303.PubMedCrossRef
74.
Zurück zum Zitat Merino G, Alvarez AI, Pulido MM, Molina AJ, Schinkel AH, Prieto JG. Breast cancer resistance protein (BCRP/ABCG2) transports fluoroquinolone antibiotics and affects their oral availability, pharmacokinetics, and milk secretion. Drug Metab Dispos. 2006;34(4):690–5.PubMedCrossRef Merino G, Alvarez AI, Pulido MM, Molina AJ, Schinkel AH, Prieto JG. Breast cancer resistance protein (BCRP/ABCG2) transports fluoroquinolone antibiotics and affects their oral availability, pharmacokinetics, and milk secretion. Drug Metab Dispos. 2006;34(4):690–5.PubMedCrossRef
75.
Zurück zum Zitat Keskitalo JE, Pasanen MK, Neuvonen PJ, Niemi M. Different effects of the ABCG2 c.421C>A SNP on the pharmacokinetics of fluvastatin, pravastatin and simvastatin. Pharmacogenomics. 2009;10(10):1617–24.PubMedCrossRef Keskitalo JE, Pasanen MK, Neuvonen PJ, Niemi M. Different effects of the ABCG2 c.421C>A SNP on the pharmacokinetics of fluvastatin, pravastatin and simvastatin. Pharmacogenomics. 2009;10(10):1617–24.PubMedCrossRef
76.
Zurück zum Zitat Kim K-A, Joo H-J, Park J-Y. Effect of ABCG2 genotypes on the pharmacokinetics of A771726, an active metabolite of prodrug leflunomide, and association of A771726 exposure with serum uric acid level. Eur J Clin Pharmacol. 2011;67(2):129–34.PubMedCrossRef Kim K-A, Joo H-J, Park J-Y. Effect of ABCG2 genotypes on the pharmacokinetics of A771726, an active metabolite of prodrug leflunomide, and association of A771726 exposure with serum uric acid level. Eur J Clin Pharmacol. 2011;67(2):129–34.PubMedCrossRef
77.
Zurück zum Zitat Matsuo H, Takada T, Ichida K, Nakamura T, Nakayama A, Ikebuchi Y, et al. Common defects of ABCG2, a high-capacity urate exporter, cause gout: a function-based genetic analysis in a Japanese population. Sci Transl Med. 2009;1(5):5ra11. Matsuo H, Takada T, Ichida K, Nakamura T, Nakayama A, Ikebuchi Y, et al. Common defects of ABCG2, a high-capacity urate exporter, cause gout: a function-based genetic analysis in a Japanese population. Sci Transl Med. 2009;1(5):5ra11.
78.
Zurück zum Zitat Matsuo H, Takada T, Ichida K, Nakamura T, Nakayama A, Suzuki H, et al. ABCG2/BCRP dysfunction as a major cause of gout. Nucleosides, Nucleotides Nucleic Acids. 2011;30(12):1117–28.PubMedCrossRef Matsuo H, Takada T, Ichida K, Nakamura T, Nakayama A, Suzuki H, et al. ABCG2/BCRP dysfunction as a major cause of gout. Nucleosides, Nucleotides Nucleic Acids. 2011;30(12):1117–28.PubMedCrossRef
79.
Zurück zum Zitat Matsuo H, Takada T, Ichida K, Nakamura T, Nakayama A, Takada Y, et al. Identification of ABCG2 dysfunction as a major factor contributing to gout. Nucleosides Nucleotides Nucleic Acids. 2011;30(12):1098–104.PubMedCrossRef Matsuo H, Takada T, Ichida K, Nakamura T, Nakayama A, Takada Y, et al. Identification of ABCG2 dysfunction as a major factor contributing to gout. Nucleosides Nucleotides Nucleic Acids. 2011;30(12):1098–104.PubMedCrossRef
80.
Zurück zum Zitat Nishimura M, Koeda A, Morikawa H, Satoh T, Narimatsu S, Naito S. Comparison of inducibility of multidrug resistance (MDR)1, multidrug resistance-associated protein (MRP)1, and MRP2 mRNAs by prototypical microsomal enzyme inducers in primary cultures of human and cynomolgus monkey hepatocytes. Biol Pharm Bull. 2008;31(11):2068–72.PubMedCrossRef Nishimura M, Koeda A, Morikawa H, Satoh T, Narimatsu S, Naito S. Comparison of inducibility of multidrug resistance (MDR)1, multidrug resistance-associated protein (MRP)1, and MRP2 mRNAs by prototypical microsomal enzyme inducers in primary cultures of human and cynomolgus monkey hepatocytes. Biol Pharm Bull. 2008;31(11):2068–72.PubMedCrossRef
81.
Zurück zum Zitat Ekaratanawong S, Anzai N, Jutabha P, Miyazaki H, Noshiro R, Takeda M, et al. Human organic anion transporter 4 is a renal apical organic anion/dicarboxylate exchanger in the proximal tubules. J Pharmacol Sci. 2004;94(3):297–304.PubMedCrossRef Ekaratanawong S, Anzai N, Jutabha P, Miyazaki H, Noshiro R, Takeda M, et al. Human organic anion transporter 4 is a renal apical organic anion/dicarboxylate exchanger in the proximal tubules. J Pharmacol Sci. 2004;94(3):297–304.PubMedCrossRef
82.
Zurück zum Zitat Hagos Y, Krick W, Braulke T, Mühlhausen C, Burckhardt G, Burckhardt B. Organic anion transporters OAT1 and OAT4 mediate the high affinity transport of glutarate derivatives accumulating in patients with glutaric acidurias. Pflügers Arch. 2008;457(1):223–31.PubMedCrossRef Hagos Y, Krick W, Braulke T, Mühlhausen C, Burckhardt G, Burckhardt B. Organic anion transporters OAT1 and OAT4 mediate the high affinity transport of glutarate derivatives accumulating in patients with glutaric acidurias. Pflügers Arch. 2008;457(1):223–31.PubMedCrossRef
83.
Zurück zum Zitat Hagos Y, Stein D, Ugele B, Burckhardt G, Bahn A. Human renal organic anion transporter 4 operates as an asymmetric urate transporter. J Am Soc Nephrol. 2007;18(2):430–9.PubMedCrossRef Hagos Y, Stein D, Ugele B, Burckhardt G, Bahn A. Human renal organic anion transporter 4 operates as an asymmetric urate transporter. J Am Soc Nephrol. 2007;18(2):430–9.PubMedCrossRef
84.
Zurück zum Zitat Vormfelde SV, Schirmer M, Hagos Y, Toliat MR, Engelhardt S, Meineke I, et al. Torsemide renal clearance and genetic variation in luminal and basolateral organic anion transporters. Br J Clin Pharmacol. 2006;62(3):323–35.PubMedPubMedCentralCrossRef Vormfelde SV, Schirmer M, Hagos Y, Toliat MR, Engelhardt S, Meineke I, et al. Torsemide renal clearance and genetic variation in luminal and basolateral organic anion transporters. Br J Clin Pharmacol. 2006;62(3):323–35.PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Shin HJ, Takeda M, Enomoto A, Fujimura M, Miyazaki H, Anzai N, et al. Interactions of urate transporter URAT1 in human kidney with uricosuric drugs. Nephrology. 2011;16(2):156–62.PubMedCrossRef Shin HJ, Takeda M, Enomoto A, Fujimura M, Miyazaki H, Anzai N, et al. Interactions of urate transporter URAT1 in human kidney with uricosuric drugs. Nephrology. 2011;16(2):156–62.PubMedCrossRef
86.
Zurück zum Zitat Endou H, Anzai N. Urate transport across the apical membrane of renal proximal tubules. Nucleosides Nucleotides Nucleic Acids. 2008;27(6):578–84.PubMedCrossRef Endou H, Anzai N. Urate transport across the apical membrane of renal proximal tubules. Nucleosides Nucleotides Nucleic Acids. 2008;27(6):578–84.PubMedCrossRef
87.
Zurück zum Zitat Enomoto A, Kimura H, Chairoungdua A, Shigeta Y, Jutabha P, Ho Cha S, et al. Molecular identification of a renal urate-anion exchanger that regulates blood urate levels. Nature. 2002;417(6887):447–52.PubMed Enomoto A, Kimura H, Chairoungdua A, Shigeta Y, Jutabha P, Ho Cha S, et al. Molecular identification of a renal urate-anion exchanger that regulates blood urate levels. Nature. 2002;417(6887):447–52.PubMed
88.
Zurück zum Zitat Iwanaga T, Kobayashi D, Hirayama M, Maeda T, Tamai I. Involvement of uric acid transporter in increased renal clearance of the xanthine oxidase inhibitor oxypurinol induced by a uricosuric agent, benzbromarone. Drug Metab Dispos. 2005;33(12):1791–5.PubMed Iwanaga T, Kobayashi D, Hirayama M, Maeda T, Tamai I. Involvement of uric acid transporter in increased renal clearance of the xanthine oxidase inhibitor oxypurinol induced by a uricosuric agent, benzbromarone. Drug Metab Dispos. 2005;33(12):1791–5.PubMed
89.
Zurück zum Zitat Miura D, Anzai N, Jutabha P, Chanluang S, He X, Fukutomi T, et al. Human urate transporter 1 (hURAT1) mediates the transport of orotate. J Physiol Sci. 2011;61(3):253–7.PubMedCrossRef Miura D, Anzai N, Jutabha P, Chanluang S, He X, Fukutomi T, et al. Human urate transporter 1 (hURAT1) mediates the transport of orotate. J Physiol Sci. 2011;61(3):253–7.PubMedCrossRef
90.
Zurück zum Zitat Komatsuda A, Iwamoto K, Wakui H, Sawada KI, Yamaguchi A. Analysis of mutations in the urate transporter 1 (URAT1) gene of Japanese patients with hypouricemia in northern Japan and review of the literature. Ren Fail. 2006;28(3):223–7.PubMedCrossRef Komatsuda A, Iwamoto K, Wakui H, Sawada KI, Yamaguchi A. Analysis of mutations in the urate transporter 1 (URAT1) gene of Japanese patients with hypouricemia in northern Japan and review of the literature. Ren Fail. 2006;28(3):223–7.PubMedCrossRef
91.
Zurück zum Zitat Shima Y, Teruya K, Ohta H. Association between intronic SNP in urate-anion exchanger gene, SLC22A12, and serum uric acid levels in Japanese. Life Sci. 2006;79(23):2234–7.PubMedCrossRef Shima Y, Teruya K, Ohta H. Association between intronic SNP in urate-anion exchanger gene, SLC22A12, and serum uric acid levels in Japanese. Life Sci. 2006;79(23):2234–7.PubMedCrossRef
92.
Zurück zum Zitat Anzai N, Kanai Y, Endou H. New insights into renal transport of urate. Curr Opin Rheumatol. 2007;19(2):151–7.PubMedCrossRef Anzai N, Kanai Y, Endou H. New insights into renal transport of urate. Curr Opin Rheumatol. 2007;19(2):151–7.PubMedCrossRef
93.
Zurück zum Zitat Jutabha P, Kanai Y, Hosoyamada M, Chairoungdua A, Kim DK, Iribe Y, et al. Identification of a novel voltage-driven organic anion transporter present at apical membrane of renal proximal tubule. J Biol Chem. 2003;278(30):27930–8.PubMedCrossRef Jutabha P, Kanai Y, Hosoyamada M, Chairoungdua A, Kim DK, Iribe Y, et al. Identification of a novel voltage-driven organic anion transporter present at apical membrane of renal proximal tubule. J Biol Chem. 2003;278(30):27930–8.PubMedCrossRef
94.
Zurück zum Zitat Li M, Anderson GD, Phillips BR, Kong W, Shen DD, Wang J. Interactions of amoxicillin and cefaclor with human renal organic anion and peptide transporters. Drug Metab Dispos. 2006;34(4):547–55.PubMedCrossRef Li M, Anderson GD, Phillips BR, Kong W, Shen DD, Wang J. Interactions of amoxicillin and cefaclor with human renal organic anion and peptide transporters. Drug Metab Dispos. 2006;34(4):547–55.PubMedCrossRef
95.
Zurück zum Zitat Temple CS, Boyd CAR. Proton-coupled oligopeptide transport by rat renal cortical brush border membrane vesicles: a functional analysis using ACE inhibitors to determine the isoform of the transporter. Biochimica et Biophysica Acta (BBA) Biomembr. 1998;1373(1):277–81.CrossRef Temple CS, Boyd CAR. Proton-coupled oligopeptide transport by rat renal cortical brush border membrane vesicles: a functional analysis using ACE inhibitors to determine the isoform of the transporter. Biochimica et Biophysica Acta (BBA) Biomembr. 1998;1373(1):277–81.CrossRef
96.
Zurück zum Zitat Ganapathy ME, Huang W, Wang H, Ganapathy V, Leibach FH. Valacyclovir: a substrate for the intestinal and renal peptide transporters PEPT1 and PEPT2. Biochem Biophys Res Commun. 1998;246(2):470–5.PubMedCrossRef Ganapathy ME, Huang W, Wang H, Ganapathy V, Leibach FH. Valacyclovir: a substrate for the intestinal and renal peptide transporters PEPT1 and PEPT2. Biochem Biophys Res Commun. 1998;246(2):470–5.PubMedCrossRef
97.
Zurück zum Zitat Ganapathy ME, Brandsch M, Prasad PD, Ganapathy V, Leibach FH. Differential recognition of β-lactam antibiotics by intestinal and renal peptide transporters, PEPT 1 and PEPT 2. J Biol Chem. 1995;270(43):25672–7.PubMedCrossRef Ganapathy ME, Brandsch M, Prasad PD, Ganapathy V, Leibach FH. Differential recognition of β-lactam antibiotics by intestinal and renal peptide transporters, PEPT 1 and PEPT 2. J Biol Chem. 1995;270(43):25672–7.PubMedCrossRef
98.
Zurück zum Zitat Tomita Y, Katsura T, Okano T, Inui K, Hori R. Transport mechanisms of bestatin in rabbit intestinal brush-border membranes: role of H+/dipeptide cotransport system. J Pharmacol Exp Ther. 1990;252(2):859–62.PubMed Tomita Y, Katsura T, Okano T, Inui K, Hori R. Transport mechanisms of bestatin in rabbit intestinal brush-border membranes: role of H+/dipeptide cotransport system. J Pharmacol Exp Ther. 1990;252(2):859–62.PubMed
99.
Zurück zum Zitat Sala-Rabanal M, Loo DDF, Hirayama BA, Wright EM. Molecular mechanism of dipeptide and drug transport by the human renal H+/oligopeptide cotransporter hPEPT2. AJP Renal Physiol. 2008;294(6):F1422–32.CrossRef Sala-Rabanal M, Loo DDF, Hirayama BA, Wright EM. Molecular mechanism of dipeptide and drug transport by the human renal H+/oligopeptide cotransporter hPEPT2. AJP Renal Physiol. 2008;294(6):F1422–32.CrossRef
100.
Zurück zum Zitat Urakami Y, Akazawa M, Saito H, Okuda M, Inui KI. cDNA cloning, functional characterization, and tissue distribution of an alternatively spliced variant of organic cation transporter hOCT2 predominantly expressed in the human kidney. J Am Soc Nephrol. 2002;13(7):1703–10.PubMedCrossRef Urakami Y, Akazawa M, Saito H, Okuda M, Inui KI. cDNA cloning, functional characterization, and tissue distribution of an alternatively spliced variant of organic cation transporter hOCT2 predominantly expressed in the human kidney. J Am Soc Nephrol. 2002;13(7):1703–10.PubMedCrossRef
101.
Zurück zum Zitat Kekuda R, Prasad PD, Wu X, Wang H, Fei YJ, Leibach FH, et al. Cloning and functional characterization of a potential-sensitive, polyspecific organic cation transporter (OCT3) most abundantly expressed in placenta. J Biol Chem. 1998;273(26):15971–9.PubMedCrossRef Kekuda R, Prasad PD, Wu X, Wang H, Fei YJ, Leibach FH, et al. Cloning and functional characterization of a potential-sensitive, polyspecific organic cation transporter (OCT3) most abundantly expressed in placenta. J Biol Chem. 1998;273(26):15971–9.PubMedCrossRef
102.
Zurück zum Zitat Koepsell H, Lips K, Volk C. Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm Res. 2007;24(7):1227–51.PubMedCrossRef Koepsell H, Lips K, Volk C. Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm Res. 2007;24(7):1227–51.PubMedCrossRef
103.
104.
Zurück zum Zitat Schmitt BM, Koepsell H. Alkali cation binding and permeation in the rat organic cation transporter rOCT2. J Biol Chem. 2005;280(26):24481–90.PubMedCrossRef Schmitt BM, Koepsell H. Alkali cation binding and permeation in the rat organic cation transporter rOCT2. J Biol Chem. 2005;280(26):24481–90.PubMedCrossRef
105.
Zurück zum Zitat Amphoux A, Vialou V, Drescher E, Brüss M, Mannoury La Cour C, Rochat C, et al. Differential pharmacological in vitro properties of organic cation transporters and regional distribution in rat brain. Neuropharmacology. 2006;50(8):941–52.PubMedCrossRef Amphoux A, Vialou V, Drescher E, Brüss M, Mannoury La Cour C, Rochat C, et al. Differential pharmacological in vitro properties of organic cation transporters and regional distribution in rat brain. Neuropharmacology. 2006;50(8):941–52.PubMedCrossRef
106.
Zurück zum Zitat Busch AE, Karbach U, Miska D, Gorboulev V, Akhoundova A, Volk C, et al. Human neurons express the polyspecific cation transporter hOCT2, which translocates monoamine neurotransmitters, amantadine, and memantine. Mol Pharmacol. 1998;54(2):342–52.PubMed Busch AE, Karbach U, Miska D, Gorboulev V, Akhoundova A, Volk C, et al. Human neurons express the polyspecific cation transporter hOCT2, which translocates monoamine neurotransmitters, amantadine, and memantine. Mol Pharmacol. 1998;54(2):342–52.PubMed
107.
Zurück zum Zitat Gorboulev V, Ulzheimer JC, Akhoundova A, Ulzheimer-Teuber I, Karbach U, Quester S, et al. Cloning and characterization of two human polyspecific organic cation transporters. DNA Cell Biol. 1997;16(7):871–81.PubMedCrossRef Gorboulev V, Ulzheimer JC, Akhoundova A, Ulzheimer-Teuber I, Karbach U, Quester S, et al. Cloning and characterization of two human polyspecific organic cation transporters. DNA Cell Biol. 1997;16(7):871–81.PubMedCrossRef
108.
Zurück zum Zitat Gründemann D, Köster S, Kiefer N, Breidert T, Engelhardt M, Spitzenberger F, et al. Transport of monoamine transmitters by the organic cation transporter type 2, OCT2. J Biol Chem. 1998;273(47):30915–20.PubMedCrossRef Gründemann D, Köster S, Kiefer N, Breidert T, Engelhardt M, Spitzenberger F, et al. Transport of monoamine transmitters by the organic cation transporter type 2, OCT2. J Biol Chem. 1998;273(47):30915–20.PubMedCrossRef
109.
Zurück zum Zitat Lips KS, Volk C, Schmitt BM, Pfeil U, Arndt P, Miska D, et al. Polyspecific cation transporters mediate luminal release of acetylcholine from bronchial epithelium. Am J Respir Cell Mol Biol. 2005;33(1):79–88.PubMedCrossRef Lips KS, Volk C, Schmitt BM, Pfeil U, Arndt P, Miska D, et al. Polyspecific cation transporters mediate luminal release of acetylcholine from bronchial epithelium. Am J Respir Cell Mol Biol. 2005;33(1):79–88.PubMedCrossRef
110.
Zurück zum Zitat Urakami Y, Kimura N, Okuda M, Inui KI. Creatinine transport by basolateral organic cation transporter hOCT2 in the human kidney. Pharm Res. 2004;21(6):976–81.PubMedCrossRef Urakami Y, Kimura N, Okuda M, Inui KI. Creatinine transport by basolateral organic cation transporter hOCT2 in the human kidney. Pharm Res. 2004;21(6):976–81.PubMedCrossRef
111.
Zurück zum Zitat Dudley AJ, Bleasby K, Brown CD. The organic cation transporter OCT2 mediates the uptake of ß-adrenoceptor antagonists across the apical membrane of renal LLC-PK1 cell monolayers. Br J Pharmacol. 2000;131(1):71–9.PubMedPubMedCentralCrossRef Dudley AJ, Bleasby K, Brown CD. The organic cation transporter OCT2 mediates the uptake of ß-adrenoceptor antagonists across the apical membrane of renal LLC-PK1 cell monolayers. Br J Pharmacol. 2000;131(1):71–9.PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Bourdet DL, Pritchard JB, Thakker DR. Differential substrate and inhibitory activities of ranitidine and famotidine toward human organic cation transporter 1 (hOCT1; SLC22A1), hOCT2 (SLC22A2), and hOCT3 (SLC22A3). J Pharmacol Exp Ther. 2005;315(3):1288–97.PubMedCrossRef Bourdet DL, Pritchard JB, Thakker DR. Differential substrate and inhibitory activities of ranitidine and famotidine toward human organic cation transporter 1 (hOCT1; SLC22A1), hOCT2 (SLC22A2), and hOCT3 (SLC22A3). J Pharmacol Exp Ther. 2005;315(3):1288–97.PubMedCrossRef
113.
Zurück zum Zitat Jung N, Lehmann C, Rubbert A, Knispel M, Hartmann P, van Lunzen J, et al. Relevance of the organic cation transporters 1 and 2 for antiretroviral drug therapy in human immunodeficiency virus infection. Drug Metab Dispos. 2008;36(8):1616–23.PubMedCrossRef Jung N, Lehmann C, Rubbert A, Knispel M, Hartmann P, van Lunzen J, et al. Relevance of the organic cation transporters 1 and 2 for antiretroviral drug therapy in human immunodeficiency virus infection. Drug Metab Dispos. 2008;36(8):1616–23.PubMedCrossRef
114.
Zurück zum Zitat Sato T, Masuda S, Yonezawa A, Tanihara Y, Katsura T, Inui K. Transcellular transport of organic cations in double-transfected MDCK cells expressing human organic cation transporters hOCT1/hMATE1 and hOCT2/hMATE1. Biochem Pharmacol. 2008;76(7):894–903.PubMedCrossRef Sato T, Masuda S, Yonezawa A, Tanihara Y, Katsura T, Inui K. Transcellular transport of organic cations in double-transfected MDCK cells expressing human organic cation transporters hOCT1/hMATE1 and hOCT2/hMATE1. Biochem Pharmacol. 2008;76(7):894–903.PubMedCrossRef
115.
Zurück zum Zitat Tahara H, Kusuhara H, Endou H, Koepsell H, Imaoka T, Fuse E, et al. A species difference in the transport activities of H2 receptor antagonists by rat and human renal organic anion and cation transporters. J Pharmacol Exp Ther. 2005;315(1):337–45.PubMedCrossRef Tahara H, Kusuhara H, Endou H, Koepsell H, Imaoka T, Fuse E, et al. A species difference in the transport activities of H2 receptor antagonists by rat and human renal organic anion and cation transporters. J Pharmacol Exp Ther. 2005;315(1):337–45.PubMedCrossRef
116.
Zurück zum Zitat Ciarimboli G, Lancaster CS, Schlatter E, Franke RM, Sprowl JA, Pavenstädt H, et al. Proximal tubular secretion of creatinine by organic cation transporter OCT2 in cancer patients. Clin Cancer Res. 2012;18(4):1101–8.PubMedPubMedCentralCrossRef Ciarimboli G, Lancaster CS, Schlatter E, Franke RM, Sprowl JA, Pavenstädt H, et al. Proximal tubular secretion of creatinine by organic cation transporter OCT2 in cancer patients. Clin Cancer Res. 2012;18(4):1101–8.PubMedPubMedCentralCrossRef
117.
Zurück zum Zitat Lepist EI, Zhang X, Hao J, Huang J, Kosaka A, Birkus G, et al. Contribution of the organic anion transporter OAT2 to the renal active tubular secretion of creatinine and mechanism for serum creatinine elevations caused by cobicistat. Kidney Int. 2014;86(2):350–7.PubMedPubMedCentralCrossRef Lepist EI, Zhang X, Hao J, Huang J, Kosaka A, Birkus G, et al. Contribution of the organic anion transporter OAT2 to the renal active tubular secretion of creatinine and mechanism for serum creatinine elevations caused by cobicistat. Kidney Int. 2014;86(2):350–7.PubMedPubMedCentralCrossRef
118.
Zurück zum Zitat Koteff J, Borland J, Chen S, Song I, Peppercorn A, Koshiba T, et al. A phase 1 study to evaluate the effect of dolutegravir on renal function via measurement of iohexol and para-aminohippurate clearance in healthy subjects. Br J Clin Pharmacol. 2013;75(4):990–6.PubMedCrossRef Koteff J, Borland J, Chen S, Song I, Peppercorn A, Koshiba T, et al. A phase 1 study to evaluate the effect of dolutegravir on renal function via measurement of iohexol and para-aminohippurate clearance in healthy subjects. Br J Clin Pharmacol. 2013;75(4):990–6.PubMedCrossRef
119.
Zurück zum Zitat Song IS, Shin HJ, Shim EJ, Jung IS, Kim WY, Shon JH, et al. Genetic variants of the organic cation transporter 2 influence the disposition of metformin. Clin Pharmacol Ther. 2008;84(5):559–62.PubMedCrossRef Song IS, Shin HJ, Shim EJ, Jung IS, Kim WY, Shon JH, et al. Genetic variants of the organic cation transporter 2 influence the disposition of metformin. Clin Pharmacol Ther. 2008;84(5):559–62.PubMedCrossRef
120.
Zurück zum Zitat Filipski KK, Mathijssen RH, Mikkelsen TS, Schinkel AH, Sparreboom A. Contribution of organic cation transporter 2 (OCT2) to cisplatin-induced nephrotoxicity. Clin Pharmacol Ther. 2009;86(4):396–402.PubMedPubMedCentralCrossRef Filipski KK, Mathijssen RH, Mikkelsen TS, Schinkel AH, Sparreboom A. Contribution of organic cation transporter 2 (OCT2) to cisplatin-induced nephrotoxicity. Clin Pharmacol Ther. 2009;86(4):396–402.PubMedPubMedCentralCrossRef
121.
Zurück zum Zitat Iwata K, Aizawa K, Kamitsu S, Jingami S, Fukunaga E, Yoshida M, et al. Effects of genetic variants in SLC22A2 organic cation transporter 2 and SLC47A1 multidrug and toxin extrusion 1 transporter on cisplatin-induced adverse events. Clin Exp Nephrol. 2012;16(6):843–51.PubMedCrossRef Iwata K, Aizawa K, Kamitsu S, Jingami S, Fukunaga E, Yoshida M, et al. Effects of genetic variants in SLC22A2 organic cation transporter 2 and SLC47A1 multidrug and toxin extrusion 1 transporter on cisplatin-induced adverse events. Clin Exp Nephrol. 2012;16(6):843–51.PubMedCrossRef
122.
Zurück zum Zitat Gai Z, Visentin M, Hiller C, Krajnc E, Li T, Zhen J, et al. Organic cation transporter 2 overexpression may confer an increased risk of gentamicin-induced nephrotoxicity. Antimicrob Agents Chemother. 2016;60(9):5573–80.PubMedPubMedCentralCrossRef Gai Z, Visentin M, Hiller C, Krajnc E, Li T, Zhen J, et al. Organic cation transporter 2 overexpression may confer an increased risk of gentamicin-induced nephrotoxicity. Antimicrob Agents Chemother. 2016;60(9):5573–80.PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat Wang Z-J, Yin OQP, Tomlinson B, Chow MSS. OCT2 polymorphisms and in-vivo renal functional consequence: studies with metformin and cimetidine. Pharmacogenet Genomics. 2008;18(7):637–45.PubMedCrossRef Wang Z-J, Yin OQP, Tomlinson B, Chow MSS. OCT2 polymorphisms and in-vivo renal functional consequence: studies with metformin and cimetidine. Pharmacogenet Genomics. 2008;18(7):637–45.PubMedCrossRef
124.
Zurück zum Zitat Lazar A, Zimmermann T, Koch W, Gründemann D, Schömig A, Kastrati A, et al. Lower prevalence of the OCT2 Ser270 allele in patients with essential hypertension. Clin Exp Hypertens. 2006;28(7):645–53.PubMedCrossRef Lazar A, Zimmermann T, Koch W, Gründemann D, Schömig A, Kastrati A, et al. Lower prevalence of the OCT2 Ser270 allele in patients with essential hypertension. Clin Exp Hypertens. 2006;28(7):645–53.PubMedCrossRef
125.
Zurück zum Zitat Tsuruoka S, Ioka T, Wakaumi M, Sakamoto KI, Ookami H, Fujimura A. Severe arrhythmia as a result of the interaction of cetirizine and pilsicainide in a patient with renal insufficiency: first case presentation showing competition for excretion via renal multidrug resistance protein 1 and organic cation transporter 2. Clin Pharmacol Ther. 2006;79(4):389–96.PubMedCrossRef Tsuruoka S, Ioka T, Wakaumi M, Sakamoto KI, Ookami H, Fujimura A. Severe arrhythmia as a result of the interaction of cetirizine and pilsicainide in a patient with renal insufficiency: first case presentation showing competition for excretion via renal multidrug resistance protein 1 and organic cation transporter 2. Clin Pharmacol Ther. 2006;79(4):389–96.PubMedCrossRef
126.
Zurück zum Zitat Shiga T, Hashiguchi M, Urae A, Kasanuki H, Rikihisa T. Effect of cimetidine and probenecid on pilsicainide renal clearance in humans. Clin Pharmacol Ther. 2000;67(3):222–8.PubMedCrossRef Shiga T, Hashiguchi M, Urae A, Kasanuki H, Rikihisa T. Effect of cimetidine and probenecid on pilsicainide renal clearance in humans. Clin Pharmacol Ther. 2000;67(3):222–8.PubMedCrossRef
127.
Zurück zum Zitat Somogyi A, McLean A, Heinzow B. Cimetidine-procainamide pharmacokinetic interaction in man: evidence of competition for tubular secretion of basic drugs. Eur J Clin Pharmacol. 1983;25(3):339–45.PubMedCrossRef Somogyi A, McLean A, Heinzow B. Cimetidine-procainamide pharmacokinetic interaction in man: evidence of competition for tubular secretion of basic drugs. Eur J Clin Pharmacol. 1983;25(3):339–45.PubMedCrossRef
128.
Zurück zum Zitat Bauer LA, Black DJ, Lill JS, Garrison J, Raisys VA, Hooton TM. Levofloxacin and ciprofloxacin decrease procainamide and n-acetylprocainamide renal clearances. Antimicrob Agents Chemother. 2005;49(4):1649–51.PubMedPubMedCentralCrossRef Bauer LA, Black DJ, Lill JS, Garrison J, Raisys VA, Hooton TM. Levofloxacin and ciprofloxacin decrease procainamide and n-acetylprocainamide renal clearances. Antimicrob Agents Chemother. 2005;49(4):1649–51.PubMedPubMedCentralCrossRef
129.
Zurück zum Zitat Umehara KI, Iwatsubo T, Noguchi K, Usui T, Kamimura H. Effect of cationic drugs on the transporting activity of human and rat OCT/Oct 1–3 in vitro and implications for drug–drug interactions. Xenobiotica. 2008;38(9):1203–18.PubMedCrossRef Umehara KI, Iwatsubo T, Noguchi K, Usui T, Kamimura H. Effect of cationic drugs on the transporting activity of human and rat OCT/Oct 1–3 in vitro and implications for drug–drug interactions. Xenobiotica. 2008;38(9):1203–18.PubMedCrossRef
130.
Zurück zum Zitat Choi MK, Song IS. Organic cation transporters and their pharmacokinetic and pharmacodynamic consequences. Drug Metab Pharmacokinet. 2008;23(4):243–53.PubMedCrossRef Choi MK, Song IS. Organic cation transporters and their pharmacokinetic and pharmacodynamic consequences. Drug Metab Pharmacokinet. 2008;23(4):243–53.PubMedCrossRef
131.
Zurück zum Zitat Moriyama Y, Hiasa M, Matsumoto T, Omote H. Multidrug and toxic compound extrusion (MATE)-type proteins as anchor transporters for the excretion of metabolic waste products and xenobiotics. Xenobiotica. 2008;38(7–8):1107–18.PubMedCrossRef Moriyama Y, Hiasa M, Matsumoto T, Omote H. Multidrug and toxic compound extrusion (MATE)-type proteins as anchor transporters for the excretion of metabolic waste products and xenobiotics. Xenobiotica. 2008;38(7–8):1107–18.PubMedCrossRef
132.
Zurück zum Zitat Terada T, Inui K. Physiological and pharmacokinetic roles of H+/organic cation antiporters (MATE/SLC47A). Biochem Pharmacol. 2008;75(9):1689–96.PubMedCrossRef Terada T, Inui K. Physiological and pharmacokinetic roles of H+/organic cation antiporters (MATE/SLC47A). Biochem Pharmacol. 2008;75(9):1689–96.PubMedCrossRef
133.
Zurück zum Zitat Otsuka M, Matsumoto T, Morimoto R, Arioka S, Omote H, Moriyama Y. A human transporter protein that mediates the final excretion step for toxic organic cations. Proc Natl Acad Sci USA. 2005;102(50):17923–8.PubMedPubMedCentralCrossRef Otsuka M, Matsumoto T, Morimoto R, Arioka S, Omote H, Moriyama Y. A human transporter protein that mediates the final excretion step for toxic organic cations. Proc Natl Acad Sci USA. 2005;102(50):17923–8.PubMedPubMedCentralCrossRef
134.
Zurück zum Zitat Tanihara Y, Masuda S, Sato T, Katsura T, Ogawa O, Inui KI. Substrate specificity of MATE1 and MATE2-K, human multidrug and toxin extrusions/H+-organic cation antiporters. Biochem Pharmacol. 2007;74(2):359–71.PubMedCrossRef Tanihara Y, Masuda S, Sato T, Katsura T, Ogawa O, Inui KI. Substrate specificity of MATE1 and MATE2-K, human multidrug and toxin extrusions/H+-organic cation antiporters. Biochem Pharmacol. 2007;74(2):359–71.PubMedCrossRef
135.
Zurück zum Zitat Omote H, Hiasa M, Matsumoto T, Otsuka M, Moriyama Y. The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations. Trends Pharmacol Sci. 2006;27(11):587–93.PubMedCrossRef Omote H, Hiasa M, Matsumoto T, Otsuka M, Moriyama Y. The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations. Trends Pharmacol Sci. 2006;27(11):587–93.PubMedCrossRef
136.
Zurück zum Zitat Komatsu T, Hiasa M, Miyaji T, Kanamoto T, Matsumoto T, Otsuka M, et al. Characterization of the human MATE2 proton-coupled polyspecific organic cation exporter. Int J Biochem Cell Biol. 2011;43(6):913–8.PubMedCrossRef Komatsu T, Hiasa M, Miyaji T, Kanamoto T, Matsumoto T, Otsuka M, et al. Characterization of the human MATE2 proton-coupled polyspecific organic cation exporter. Int J Biochem Cell Biol. 2011;43(6):913–8.PubMedCrossRef
137.
Zurück zum Zitat Gluck S, Nelson R. The role of the V-ATPase in renal epithelial H+ transport. J Exp Biol. 1992;172(1):205–18.PubMed Gluck S, Nelson R. The role of the V-ATPase in renal epithelial H+ transport. J Exp Biol. 1992;172(1):205–18.PubMed
138.
Zurück zum Zitat Wright SH, Dantzler WH. Molecular and cellular physiology of renal organic cation and anion transport. Physiol Rev. 2004;84(3):987–1049.PubMedCrossRef Wright SH, Dantzler WH. Molecular and cellular physiology of renal organic cation and anion transport. Physiol Rev. 2004;84(3):987–1049.PubMedCrossRef
139.
Zurück zum Zitat Meyer zu Schwabedissen HE, Verstuyft C, Kroemer HK, Becquemont L, Kim RB. Human multidrug and toxin extrusion 1 (MATE1/SLC47A1) transporter: functional characterization, interaction with OCT2 (SLC22A2), and single nucleotide polymorphisms. Am J Physiol Renal Physiol. 2010;298(4):F997–1005.PubMedCrossRef Meyer zu Schwabedissen HE, Verstuyft C, Kroemer HK, Becquemont L, Kim RB. Human multidrug and toxin extrusion 1 (MATE1/SLC47A1) transporter: functional characterization, interaction with OCT2 (SLC22A2), and single nucleotide polymorphisms. Am J Physiol Renal Physiol. 2010;298(4):F997–1005.PubMedCrossRef
140.
Zurück zum Zitat Ohta KY, Imamura Y, Okudaira N, Atsumi R, Inoue K, Yuasa H. Functional characterization of multidrug and toxin extrusion protein 1 as a facilitative transporter for fluoroquinolones. J Pharmacol Exp Ther. 2009;328(2):628–34.PubMedCrossRef Ohta KY, Imamura Y, Okudaira N, Atsumi R, Inoue K, Yuasa H. Functional characterization of multidrug and toxin extrusion protein 1 as a facilitative transporter for fluoroquinolones. J Pharmacol Exp Ther. 2009;328(2):628–34.PubMedCrossRef
141.
Zurück zum Zitat Masuda S, Terada T, Yonezawa A, Tanihara Y, Kishimoto K, Katsura T, et al. Identification and functional characterization of a new human kidney-specific H+/organic cation antiporter, kidney-specific multidrug and toxin extrusion 2. J Am Soc Nephrol. 2006;17(8):2127–35.PubMedCrossRef Masuda S, Terada T, Yonezawa A, Tanihara Y, Kishimoto K, Katsura T, et al. Identification and functional characterization of a new human kidney-specific H+/organic cation antiporter, kidney-specific multidrug and toxin extrusion 2. J Am Soc Nephrol. 2006;17(8):2127–35.PubMedCrossRef
142.
Zurück zum Zitat Ohta KY, Inoue K, Hayashi Y, Yuasa H. Molecular identification and functional characterization of rat multidrug and toxin extrusion type transporter 1 as an organic cation/H+ antiporter in the kidney. Drug Metab Dispos. 2006;34(11):1868–74.PubMedCrossRef Ohta KY, Inoue K, Hayashi Y, Yuasa H. Molecular identification and functional characterization of rat multidrug and toxin extrusion type transporter 1 as an organic cation/H+ antiporter in the kidney. Drug Metab Dispos. 2006;34(11):1868–74.PubMedCrossRef
143.
Zurück zum Zitat Yonezawa A, Masuda S, Yokoo S, Katsura T, Inui KI. Cisplatin and oxaliplatin, but not carboplatin and nedaplatin, are substrates for human organic cation transporters (SLC22A1-3 and multidrug and toxin extrusion family). J Pharmacol Exp Ther. 2006;319(2):879–86.PubMedCrossRef Yonezawa A, Masuda S, Yokoo S, Katsura T, Inui KI. Cisplatin and oxaliplatin, but not carboplatin and nedaplatin, are substrates for human organic cation transporters (SLC22A1-3 and multidrug and toxin extrusion family). J Pharmacol Exp Ther. 2006;319(2):879–86.PubMedCrossRef
144.
Zurück zum Zitat Tsuda M, Terada T, Mizuno T, Katsura T, Shimakura J, Inui KI. Targeted disruption of the multidrug and toxin extrusion 1 (Mate1) gene in mice reduces renal secretion of metformin. Mol Pharmacol. 2009;75(6):1280–6.PubMedCrossRef Tsuda M, Terada T, Mizuno T, Katsura T, Shimakura J, Inui KI. Targeted disruption of the multidrug and toxin extrusion 1 (Mate1) gene in mice reduces renal secretion of metformin. Mol Pharmacol. 2009;75(6):1280–6.PubMedCrossRef
145.
Zurück zum Zitat Yokoo S, Yonezawa A, Masuda S, Fukatsu A, Katsura T, Inui K. Differential contribution of organic cation transporters, OCT2 and MATE1, in platinum agent-induced nephrotoxicity. Biochem Pharmacol. 2007;74(3):477–87.PubMedCrossRef Yokoo S, Yonezawa A, Masuda S, Fukatsu A, Katsura T, Inui K. Differential contribution of organic cation transporters, OCT2 and MATE1, in platinum agent-induced nephrotoxicity. Biochem Pharmacol. 2007;74(3):477–87.PubMedCrossRef
146.
Zurück zum Zitat Yonezawa A, Inui K-I. Organic cation transporter OCT/SLC22A and H+/organic cation antiporter MATE/SLC47A are key molecules for nephrotoxicity of platinum agents. Biochem Pharmacol. 2011;81(5):563–8.PubMedCrossRef Yonezawa A, Inui K-I. Organic cation transporter OCT/SLC22A and H+/organic cation antiporter MATE/SLC47A are key molecules for nephrotoxicity of platinum agents. Biochem Pharmacol. 2011;81(5):563–8.PubMedCrossRef
147.
Zurück zum Zitat Ciarimboli G, Ludwig T, Lang D, Pavenstädt H, Koepsell H, Piechota HJ, et al. Cisplatin nephrotoxicity is critically mediated via the human organic cation transporter 2. Am J Pathol. 2005;167(6):1477–84.PubMedPubMedCentralCrossRef Ciarimboli G, Ludwig T, Lang D, Pavenstädt H, Koepsell H, Piechota HJ, et al. Cisplatin nephrotoxicity is critically mediated via the human organic cation transporter 2. Am J Pathol. 2005;167(6):1477–84.PubMedPubMedCentralCrossRef
148.
Zurück zum Zitat Nakamura T, Yonezawa A, Hashimoto S, Katsura T, Inui K-I. Disruption of multidrug and toxin extrusion MATE1 potentiates cisplatin-induced nephrotoxicity. Biochem Pharmacol. 2010;80(11):1762–7.PubMedCrossRef Nakamura T, Yonezawa A, Hashimoto S, Katsura T, Inui K-I. Disruption of multidrug and toxin extrusion MATE1 potentiates cisplatin-induced nephrotoxicity. Biochem Pharmacol. 2010;80(11):1762–7.PubMedCrossRef
149.
Zurück zum Zitat Li Q, Guo D, Dong Z, Zhang W, Zhang L, Huang S-M, et al. Ondansetron can enhance cisplatin-induced nephrotoxicity via inhibition of multiple toxin and extrusion proteins (MATEs). Toxicol Appl Pharmacol. 2013;273(1):100–9.PubMedCrossRef Li Q, Guo D, Dong Z, Zhang W, Zhang L, Huang S-M, et al. Ondansetron can enhance cisplatin-induced nephrotoxicity via inhibition of multiple toxin and extrusion proteins (MATEs). Toxicol Appl Pharmacol. 2013;273(1):100–9.PubMedCrossRef
150.
Zurück zum Zitat Ito S, Kusuhara H, Yokochi M, Toyoshima J, Inoue K, Yuasa H, et al. Competitive inhibition of the luminal efflux by multidrug and toxin extrusions, but not basolateral uptake by organic cation transporter 2, is the likely mechanism underlying the pharmacokinetic drug–drug interactions caused by cimetidine in the kidney. J Pharmacol Exp Ther. 2012;340(2):393–403.PubMedCrossRef Ito S, Kusuhara H, Yokochi M, Toyoshima J, Inoue K, Yuasa H, et al. Competitive inhibition of the luminal efflux by multidrug and toxin extrusions, but not basolateral uptake by organic cation transporter 2, is the likely mechanism underlying the pharmacokinetic drug–drug interactions caused by cimetidine in the kidney. J Pharmacol Exp Ther. 2012;340(2):393–403.PubMedCrossRef
151.
Zurück zum Zitat Fish DN, Chow AT. The clinical pharmacokinetics of levofloxacin. Clin Pharmacokinet. 1997;32(2):101–19.PubMedCrossRef Fish DN, Chow AT. The clinical pharmacokinetics of levofloxacin. Clin Pharmacokinet. 1997;32(2):101–19.PubMedCrossRef
152.
Zurück zum Zitat Abel S, Nichols D, Brearley C, Eve M. Effect of cimetidine and ranitidine on pharmacokinetics and pharmacodynamics of a single dose of dofetilide. Br J Clin Pharmacol. 2001;49(1):64–71.CrossRef Abel S, Nichols D, Brearley C, Eve M. Effect of cimetidine and ranitidine on pharmacokinetics and pharmacodynamics of a single dose of dofetilide. Br J Clin Pharmacol. 2001;49(1):64–71.CrossRef
153.
Zurück zum Zitat Somogyi A, Stockley C, Keal J, Rolan P, Bochner F. Reduction of metformin renal tubular secretion by cimetidine in man. Br J Clin Pharmacol. 1987;23(5):545–51.PubMedPubMedCentralCrossRef Somogyi A, Stockley C, Keal J, Rolan P, Bochner F. Reduction of metformin renal tubular secretion by cimetidine in man. Br J Clin Pharmacol. 1987;23(5):545–51.PubMedPubMedCentralCrossRef
154.
Zurück zum Zitat Tsuda M, Terada T, Ueba M, Sato T, Masuda S, Katsura T, et al. Involvement of human multidrug and toxin extrusion 1 in the drug interaction between cimetidine and metformin in renal epithelial cells. J Pharmacol Exp Ther. 2009;329(1):185–91.PubMedCrossRef Tsuda M, Terada T, Ueba M, Sato T, Masuda S, Katsura T, et al. Involvement of human multidrug and toxin extrusion 1 in the drug interaction between cimetidine and metformin in renal epithelial cells. J Pharmacol Exp Ther. 2009;329(1):185–91.PubMedCrossRef
155.
Zurück zum Zitat Martin DE, Shen J, Griener J, Raasch R, Patterson JH, Cascio W. Effects of ofloxacin on the pharmacokinetics and pharmacodynamics of procainamide. J Clin Pharmacol. 1996;36(1):85–91.PubMedCrossRef Martin DE, Shen J, Griener J, Raasch R, Patterson JH, Cascio W. Effects of ofloxacin on the pharmacokinetics and pharmacodynamics of procainamide. J Clin Pharmacol. 1996;36(1):85–91.PubMedCrossRef
156.
Zurück zum Zitat Takubo T, Kato T, Kinami J, Hanada K, Ogata H. Effect of trimethoprim on the renal clearance of lamivudine in rats. J Pharm Pharmacol. 2000;52(3):315–20.PubMedCrossRef Takubo T, Kato T, Kinami J, Hanada K, Ogata H. Effect of trimethoprim on the renal clearance of lamivudine in rats. J Pharm Pharmacol. 2000;52(3):315–20.PubMedCrossRef
157.
Zurück zum Zitat Nakatani-Freshwater T, Taft DR. Renal excretion of emtricitabine II. Effect of trimethoprim on emtricitabine excretion: In vitro and in vivo studies. J Pharm Sci. 2008;97(12):5411–20.PubMedCrossRef Nakatani-Freshwater T, Taft DR. Renal excretion of emtricitabine II. Effect of trimethoprim on emtricitabine excretion: In vitro and in vivo studies. J Pharm Sci. 2008;97(12):5411–20.PubMedCrossRef
158.
Zurück zum Zitat van Acker BAC, Koopman MG, Arisz L, Koomen GCM, de Waart DR. Creatinine clearance during cimetidine administration for measurement of glomerular filtration rate. Lancet. 1992;340(8831):1326–9.PubMedCrossRef van Acker BAC, Koopman MG, Arisz L, Koomen GCM, de Waart DR. Creatinine clearance during cimetidine administration for measurement of glomerular filtration rate. Lancet. 1992;340(8831):1326–9.PubMedCrossRef
159.
160.
Zurück zum Zitat Becker ML, Visser LE, van Schaik RH, Hofman A, Uitterlinden AG, et al. Genetic variation in the multidrug and toxin extrusion 1 transporter protein influences the glucose-lowering effect of metformin in patients with diabetes: a preliminary study. Diabetes. 2009;58(3):745–9.PubMedPubMedCentralCrossRef Becker ML, Visser LE, van Schaik RH, Hofman A, Uitterlinden AG, et al. Genetic variation in the multidrug and toxin extrusion 1 transporter protein influences the glucose-lowering effect of metformin in patients with diabetes: a preliminary study. Diabetes. 2009;58(3):745–9.PubMedPubMedCentralCrossRef
161.
Zurück zum Zitat Kajiwara M, Terada T, Ogasawara K, Iwano J, Katsura T, Fukatsu A, et al. Identification of multidrug and toxin extrusion (MATE1 and MATE2-K) variants with complete loss of transport activity. J Hum Genet. 2009;54(1):40–6.PubMedCrossRef Kajiwara M, Terada T, Ogasawara K, Iwano J, Katsura T, Fukatsu A, et al. Identification of multidrug and toxin extrusion (MATE1 and MATE2-K) variants with complete loss of transport activity. J Hum Genet. 2009;54(1):40–6.PubMedCrossRef
162.
Zurück zum Zitat Choi JH, Yee SW, Ramirez AH, Morrissey KM, Jang GH, Joski PJ, et al. A common 5[prime]-UTR variant in MATE2-K is associated with poor response to metformin. Clin Pharmacol Ther. 2011;90(5):674–84.PubMedPubMedCentralCrossRef Choi JH, Yee SW, Ramirez AH, Morrissey KM, Jang GH, Joski PJ, et al. A common 5[prime]-UTR variant in MATE2-K is associated with poor response to metformin. Clin Pharmacol Ther. 2011;90(5):674–84.PubMedPubMedCentralCrossRef
163.
Zurück zum Zitat Chung J-Y, Cho SK, Kim TH, Kim KH, Jang GH, Kim CO, et al. Functional characterization of MATE2-K genetic variants and their effects on metformin pharmacokinetics. Pharmacogenet Genomics. 2013;23(7):365–73.PubMedCrossRef Chung J-Y, Cho SK, Kim TH, Kim KH, Jang GH, Kim CO, et al. Functional characterization of MATE2-K genetic variants and their effects on metformin pharmacokinetics. Pharmacogenet Genomics. 2013;23(7):365–73.PubMedCrossRef
164.
Zurück zum Zitat Stocker SL, Morrissey KM, Yee SW, Castro RA, Xu L, Dahlin A, et al. The effect of novel promoter variants in MATE1 and MATE2 on the pharmacokinetics and pharmacodynamics of metformin. Clin Pharmacol Ther. 2013;93(2):186–94.PubMedCrossRef Stocker SL, Morrissey KM, Yee SW, Castro RA, Xu L, Dahlin A, et al. The effect of novel promoter variants in MATE1 and MATE2 on the pharmacokinetics and pharmacodynamics of metformin. Clin Pharmacol Ther. 2013;93(2):186–94.PubMedCrossRef
165.
Zurück zum Zitat Toyama K, Yonezawa A, Masuda S, Osawa R, Hosokawa M, Fujimoto S, et al. Loss of multidrug and toxin extrusion 1 (MATE1) is associated with metformin-induced lactic acidosis. Br J Pharmacol. 2012;166(3):1183–91.PubMedPubMedCentralCrossRef Toyama K, Yonezawa A, Masuda S, Osawa R, Hosokawa M, Fujimoto S, et al. Loss of multidrug and toxin extrusion 1 (MATE1) is associated with metformin-induced lactic acidosis. Br J Pharmacol. 2012;166(3):1183–91.PubMedPubMedCentralCrossRef
166.
Zurück zum Zitat Zhou SF. Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica. 2008;38(7–8):802–32.PubMedCrossRef Zhou SF. Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica. 2008;38(7–8):802–32.PubMedCrossRef
167.
Zurück zum Zitat Mahar Doan KM, Humphreys JE, Webster LO, Wring SA, Shampine LJ, Serabjit-Singh CJ, et al. Passive permeability and P-glycoprotein-mediated efflux differentiate central nervous system (CNS) and non-CNS marketed drugs. J Pharmacol Exp Ther. 2002;303(3):1029–37.PubMedCrossRef Mahar Doan KM, Humphreys JE, Webster LO, Wring SA, Shampine LJ, Serabjit-Singh CJ, et al. Passive permeability and P-glycoprotein-mediated efflux differentiate central nervous system (CNS) and non-CNS marketed drugs. J Pharmacol Exp Ther. 2002;303(3):1029–37.PubMedCrossRef
168.
Zurück zum Zitat Fromm MF, Kim RB, Stein CM, Wilkinson GR, Roden DM. Inhibition of P-glycoprotein-mediated drug transport : a unifying mechanism to explain the interaction between digoxin and quinidine. Circulation. 1999;99(4):552–7.PubMedCrossRef Fromm MF, Kim RB, Stein CM, Wilkinson GR, Roden DM. Inhibition of P-glycoprotein-mediated drug transport : a unifying mechanism to explain the interaction between digoxin and quinidine. Circulation. 1999;99(4):552–7.PubMedCrossRef
169.
Zurück zum Zitat Hochman JH, Pudvah N, Qiu J, Yamazaki M, Tang C, Lin JH, et al. Interactions of human P-glycoprotein with simvastatin, simvastatin acid, and atorvastatin. Pharm Res. 2004;21(9):1686–91.PubMedCrossRef Hochman JH, Pudvah N, Qiu J, Yamazaki M, Tang C, Lin JH, et al. Interactions of human P-glycoprotein with simvastatin, simvastatin acid, and atorvastatin. Pharm Res. 2004;21(9):1686–91.PubMedCrossRef
170.
Zurück zum Zitat Chen C, Mireles RJ, Campbell SD, Lin J, Mills JB, Xu JJ, et al. Differential interaction of 3-hydroxy-3-methylglutaryl-coa reductase inhibitors with ABCB1, ABCC2, and OATP1B1. Drug Metab Dispos. 2005;33(4):537–46.PubMedCrossRef Chen C, Mireles RJ, Campbell SD, Lin J, Mills JB, Xu JJ, et al. Differential interaction of 3-hydroxy-3-methylglutaryl-coa reductase inhibitors with ABCB1, ABCC2, and OATP1B1. Drug Metab Dispos. 2005;33(4):537–46.PubMedCrossRef
171.
Zurück zum Zitat Yates CR, Chang C, Kearbey JD, Yasuda K, Schuetz EG, Miller DD, et al. Structural determinants of P-glycoprotein-mediated transport of glucocorticoids. Pharm Res. 2003;20(11):1794–803.PubMedCrossRef Yates CR, Chang C, Kearbey JD, Yasuda K, Schuetz EG, Miller DD, et al. Structural determinants of P-glycoprotein-mediated transport of glucocorticoids. Pharm Res. 2003;20(11):1794–803.PubMedCrossRef
172.
Zurück zum Zitat Katoh M, Suzuyama N, Takeuchi T, Yoshitomi S, Asahi S, Yokoi T. Kinetic analyses for species differences in P-glycoprotein-mediated drug transport. J Pharm Sci. 2006;95(12):2673–83.PubMedCrossRef Katoh M, Suzuyama N, Takeuchi T, Yoshitomi S, Asahi S, Yokoi T. Kinetic analyses for species differences in P-glycoprotein-mediated drug transport. J Pharm Sci. 2006;95(12):2673–83.PubMedCrossRef
173.
Zurück zum Zitat Schinkel AH, Wagenaar E, Mol CA, van Deemter L. P-glycoprotein in the blood–brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J Clin Investig. 1996;97(11):2517–24.PubMedPubMedCentralCrossRef Schinkel AH, Wagenaar E, Mol CA, van Deemter L. P-glycoprotein in the blood–brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J Clin Investig. 1996;97(11):2517–24.PubMedPubMedCentralCrossRef
174.
Zurück zum Zitat Sikri V, Pal D, Jain R, Kalyani D, Mitra AK. Cotransport of macrolide and fluoroquinolones, a beneficial interaction reversing P-glycoprotein efflux. Am J Ther. 2004;11(6):433–42.PubMedCrossRef Sikri V, Pal D, Jain R, Kalyani D, Mitra AK. Cotransport of macrolide and fluoroquinolones, a beneficial interaction reversing P-glycoprotein efflux. Am J Ther. 2004;11(6):433–42.PubMedCrossRef
175.
Zurück zum Zitat Kim W, Benet L. P-glycoprotein (P-gp/MDR1)-mediated efflux of sex-steroid hormones and modulation of P-gp expression in vitro. Pharm Res. 2004;21(7):1284–93.PubMedCrossRef Kim W, Benet L. P-glycoprotein (P-gp/MDR1)-mediated efflux of sex-steroid hormones and modulation of P-gp expression in vitro. Pharm Res. 2004;21(7):1284–93.PubMedCrossRef
176.
Zurück zum Zitat Lee CGL, Gottesman MM, Cardarelli CO, Ramachandra M, Jeang KT, Ambudkar SV, et al. HIV-1 protease inhibitors are substrates for the MDR1 multidrug transporter. Biochemistry. 1998;37(11):3594–601.PubMedCrossRef Lee CGL, Gottesman MM, Cardarelli CO, Ramachandra M, Jeang KT, Ambudkar SV, et al. HIV-1 protease inhibitors are substrates for the MDR1 multidrug transporter. Biochemistry. 1998;37(11):3594–601.PubMedCrossRef
177.
Zurück zum Zitat Luna-Tortós C, Fedrowitz M, Löscher W. Several major antiepileptic drugs are substrates for human P-glycoprotein. Neuropharmacology. 2008;55(8):1364–75.PubMedCrossRef Luna-Tortós C, Fedrowitz M, Löscher W. Several major antiepileptic drugs are substrates for human P-glycoprotein. Neuropharmacology. 2008;55(8):1364–75.PubMedCrossRef
178.
Zurück zum Zitat Matsson P, Pedersen J, Norinder U, Bergström C, Artursson P. Identification of novel specific and general inhibitors of the three major human ATP-binding cassette transporters P-gp, BCRP and MRP2 among registered drugs. Pharm Res. 2009;26(8):1816–31.PubMedCrossRef Matsson P, Pedersen J, Norinder U, Bergström C, Artursson P. Identification of novel specific and general inhibitors of the three major human ATP-binding cassette transporters P-gp, BCRP and MRP2 among registered drugs. Pharm Res. 2009;26(8):1816–31.PubMedCrossRef
179.
Zurück zum Zitat Cornwell MM, Pastan I, Gottesman MM. Certain calcium channel blockers bind specifically to multidrug-resistant human KB carcinoma membrane vesicles and inhibit drug binding to P-glycoprotein. J Biol Chem. 1987;262(5):2166–70.PubMed Cornwell MM, Pastan I, Gottesman MM. Certain calcium channel blockers bind specifically to multidrug-resistant human KB carcinoma membrane vesicles and inhibit drug binding to P-glycoprotein. J Biol Chem. 1987;262(5):2166–70.PubMed
180.
Zurück zum Zitat Gutmann H, Fricker G, Drewe J, Toeroek M, Miller DS. Interactions of HIV protease inhibitors with ATP-dependent drug export proteins. Mol Pharmacol. 1999;56(2):383–9.PubMed Gutmann H, Fricker G, Drewe J, Toeroek M, Miller DS. Interactions of HIV protease inhibitors with ATP-dependent drug export proteins. Mol Pharmacol. 1999;56(2):383–9.PubMed
181.
Zurück zum Zitat Kim RB, Wandel C, Leake B, Cvetkovic M, Fromm MF, Dempsey PJ, et al. Interrelationship between substrates and inhibitors of human CYP3A and P-glycoprotein. Pharm Res. 1999;16(3):408–14.PubMedCrossRef Kim RB, Wandel C, Leake B, Cvetkovic M, Fromm MF, Dempsey PJ, et al. Interrelationship between substrates and inhibitors of human CYP3A and P-glycoprotein. Pharm Res. 1999;16(3):408–14.PubMedCrossRef
182.
Zurück zum Zitat Takara K, Tanigawara Y, Komada F, Nishiguchi K, Sakaeda T, Okumura K. Cellular pharmacokinetic aspects of reversal effect of itraconazole on P-glycoprotein-mediated resistance of anticancer drugs. Biol Pharm Bull. 1999;22(12):1355–9.PubMedCrossRef Takara K, Tanigawara Y, Komada F, Nishiguchi K, Sakaeda T, Okumura K. Cellular pharmacokinetic aspects of reversal effect of itraconazole on P-glycoprotein-mediated resistance of anticancer drugs. Biol Pharm Bull. 1999;22(12):1355–9.PubMedCrossRef
183.
Zurück zum Zitat Shimizu M, Uno T, Sugawara K, Tateishi T. Effects of itraconazole and diltiazem on the pharmacokinetics of fexofenadine, a substrate of P-glycoprotein. Br J Clin Pharmacol. 2006;61(5):538–44.PubMedPubMedCentralCrossRef Shimizu M, Uno T, Sugawara K, Tateishi T. Effects of itraconazole and diltiazem on the pharmacokinetics of fexofenadine, a substrate of P-glycoprotein. Br J Clin Pharmacol. 2006;61(5):538–44.PubMedPubMedCentralCrossRef
184.
Zurück zum Zitat Shiraki N, Hamada A, Yasuda K, Fujii J, Arimori K, Nakano M. Inhibitory effect of human immunodeficiency virus protease inhibitors on multidrug resistance transporter P-glycoproteins. Biol Pharm Bull. 2000;23(12):1528–31.PubMedCrossRef Shiraki N, Hamada A, Yasuda K, Fujii J, Arimori K, Nakano M. Inhibitory effect of human immunodeficiency virus protease inhibitors on multidrug resistance transporter P-glycoproteins. Biol Pharm Bull. 2000;23(12):1528–31.PubMedCrossRef
185.
Zurück zum Zitat Pawarode A, Shukla S, Minderman H, Fricke S, Pinder E, O’Loughlin K, et al. Differential effects of the immunosuppressive agents cyclosporin A, tacrolimus and sirolimus on drug transport by multidrug resistance proteins. Cancer Chemother Pharmacol. 2007;60(2):179–88.PubMedCrossRef Pawarode A, Shukla S, Minderman H, Fricke S, Pinder E, O’Loughlin K, et al. Differential effects of the immunosuppressive agents cyclosporin A, tacrolimus and sirolimus on drug transport by multidrug resistance proteins. Cancer Chemother Pharmacol. 2007;60(2):179–88.PubMedCrossRef
186.
Zurück zum Zitat Srinivas RV, Middlemas D, Flynn P, Fridland A. Human immunodeficiency virus protease inhibitors serve as substrates for multidrug transporter proteins MDR1 and MRP1 but retain antiviral efficacy in cell lines expressing these transporters. Antimicrob Agents Chemother. 1998;42(12):3157–62.PubMedPubMedCentral Srinivas RV, Middlemas D, Flynn P, Fridland A. Human immunodeficiency virus protease inhibitors serve as substrates for multidrug transporter proteins MDR1 and MRP1 but retain antiviral efficacy in cell lines expressing these transporters. Antimicrob Agents Chemother. 1998;42(12):3157–62.PubMedPubMedCentral
187.
Zurück zum Zitat Storch CH, Theile D, Lindenmaier H, Haefeli WE, Weiss J. Comparison of the inhibitory activity of anti-HIV drugs on P-glycoprotein. Biochem Pharmacol. 2007;73(10):1573–81.PubMedCrossRef Storch CH, Theile D, Lindenmaier H, Haefeli WE, Weiss J. Comparison of the inhibitory activity of anti-HIV drugs on P-glycoprotein. Biochem Pharmacol. 2007;73(10):1573–81.PubMedCrossRef
188.
Zurück zum Zitat Wang EJ, Lew K, Barecki M, Casciano CN, Clement RP, Johnson WW. Quantitative distinctions of active site molecular recognition by P-glycoprotein and cytochrome P450 3A4. Chem Res Toxicol. 2001;14(12):1596–603.PubMedCrossRef Wang EJ, Lew K, Barecki M, Casciano CN, Clement RP, Johnson WW. Quantitative distinctions of active site molecular recognition by P-glycoprotein and cytochrome P450 3A4. Chem Res Toxicol. 2001;14(12):1596–603.PubMedCrossRef
189.
Zurück zum Zitat Yasuda K, Lan LB, Sanglard D, Furuya K, Schuetz JD, Schuetz EG. Interaction of cytochrome P450 3A inhibitors with P-glycoprotein. J Pharmacol Exp Ther. 2002;303(1):323–32.PubMedCrossRef Yasuda K, Lan LB, Sanglard D, Furuya K, Schuetz JD, Schuetz EG. Interaction of cytochrome P450 3A inhibitors with P-glycoprotein. J Pharmacol Exp Ther. 2002;303(1):323–32.PubMedCrossRef
190.
Zurück zum Zitat Frost CE, Byon W, Song Y, Wang J, Schuster AE, Boyd RA, et al. Effect of ketoconazole and diltiazem on the pharmacokinetics of apixaban, an oral direct factor Xa inhibitor. Br J Clin Pharmacol. 2015;79(5):838–46.PubMedPubMedCentralCrossRef Frost CE, Byon W, Song Y, Wang J, Schuster AE, Boyd RA, et al. Effect of ketoconazole and diltiazem on the pharmacokinetics of apixaban, an oral direct factor Xa inhibitor. Br J Clin Pharmacol. 2015;79(5):838–46.PubMedPubMedCentralCrossRef
191.
Zurück zum Zitat Gurley BJ, Swain A, Williams DK, Barone G, Battu SK. Gauging the clinical significance of P-glycoprotein-mediated herb–drug interactions: comparative effects of St. John’s wort, Echinacea, clarithromycin, and rifampin on digoxin pharmacokinetics. Mol Nutr Food Res. 2008;52(7):772–9.PubMedPubMedCentralCrossRef Gurley BJ, Swain A, Williams DK, Barone G, Battu SK. Gauging the clinical significance of P-glycoprotein-mediated herb–drug interactions: comparative effects of St. John’s wort, Echinacea, clarithromycin, and rifampin on digoxin pharmacokinetics. Mol Nutr Food Res. 2008;52(7):772–9.PubMedPubMedCentralCrossRef
192.
Zurück zum Zitat Haslam IS, Jones K, Coleman T, Simmons NL. Induction of P-glycoprotein expression and function in human intestinal epithelial cells (T84). Biochem Pharmacol. 2008;76(7):850–61.PubMedCrossRef Haslam IS, Jones K, Coleman T, Simmons NL. Induction of P-glycoprotein expression and function in human intestinal epithelial cells (T84). Biochem Pharmacol. 2008;76(7):850–61.PubMedCrossRef
193.
Zurück zum Zitat Haslam IS, Jones K, Coleman T, Simmons NL. Rifampin and digoxin induction of MDR1 expression and function in human intestinal (T84) epithelial cells. Br J Pharmacol. 2008;154(1):246–55.PubMedPubMedCentralCrossRef Haslam IS, Jones K, Coleman T, Simmons NL. Rifampin and digoxin induction of MDR1 expression and function in human intestinal (T84) epithelial cells. Br J Pharmacol. 2008;154(1):246–55.PubMedPubMedCentralCrossRef
194.
Zurück zum Zitat Robieux I, Dorian P, Klein J, Chung D, Zborowska-Sluis D, Ogilvie R, et al. The effects of cardiac transplantation and cyclosporine therapy on digoxin pharmacokinetics. J Clin Pharmacol. 1992;32(4):338–43.PubMedCrossRef Robieux I, Dorian P, Klein J, Chung D, Zborowska-Sluis D, Ogilvie R, et al. The effects of cardiac transplantation and cyclosporine therapy on digoxin pharmacokinetics. J Clin Pharmacol. 1992;32(4):338–43.PubMedCrossRef
195.
Zurück zum Zitat Rengelshausen J, Göggelmann C, Burhenne J, Riedel KD, Ludwig J, Weiss J, et al. Contribution of increased oral bioavailability and reduced nonglomerular renal clearance of digoxin to the digoxin–clarithromycin interaction. Br J Clin Pharmacol. 2003;56(1):32–8.PubMedPubMedCentralCrossRef Rengelshausen J, Göggelmann C, Burhenne J, Riedel KD, Ludwig J, Weiss J, et al. Contribution of increased oral bioavailability and reduced nonglomerular renal clearance of digoxin to the digoxin–clarithromycin interaction. Br J Clin Pharmacol. 2003;56(1):32–8.PubMedPubMedCentralCrossRef
196.
Zurück zum Zitat Ding R, Tayrouz Y, Riedel KD, Burhenne J, Weiss J, Mikus G, et al. Substantial pharmacokinetic interaction between digoxin and ritonavir in healthy volunteers. Clin Pharmacol Ther. 2004;76(1):73–84.PubMedCrossRef Ding R, Tayrouz Y, Riedel KD, Burhenne J, Weiss J, Mikus G, et al. Substantial pharmacokinetic interaction between digoxin and ritonavir in healthy volunteers. Clin Pharmacol Ther. 2004;76(1):73–84.PubMedCrossRef
197.
Zurück zum Zitat Kurata Y, Ieiri I, Kimura M, Morita T, Irie S, Urae A, et al. Role of human MDR1 gene polymorphism in bioavailability and interaction of digoxin, a substrate of P-glycoprotein. Clin Pharmacol Ther. 2002;72(2):209–19.PubMedCrossRef Kurata Y, Ieiri I, Kimura M, Morita T, Irie S, Urae A, et al. Role of human MDR1 gene polymorphism in bioavailability and interaction of digoxin, a substrate of P-glycoprotein. Clin Pharmacol Ther. 2002;72(2):209–19.PubMedCrossRef
198.
Zurück zum Zitat Schinkel AH, Mayer U, Wagenaar E, Mol CAAM, van Deemter L, Smit JJM, et al. Normal viability and altered pharmacokinetics in mice lacking mdr1-type (drug-transporting) P-glycoproteins. Proc Natl Acad Sci USA. 1997;94(8):4028–33.PubMedPubMedCentralCrossRef Schinkel AH, Mayer U, Wagenaar E, Mol CAAM, van Deemter L, Smit JJM, et al. Normal viability and altered pharmacokinetics in mice lacking mdr1-type (drug-transporting) P-glycoproteins. Proc Natl Acad Sci USA. 1997;94(8):4028–33.PubMedPubMedCentralCrossRef
199.
Zurück zum Zitat Ieiri I, Takane H, Otsubo K. The MDR1 (ABCB1) gene polymorphism and its clinical implications. Clin Pharmacokinet. 2004;43(9):553–76.PubMedCrossRef Ieiri I, Takane H, Otsubo K. The MDR1 (ABCB1) gene polymorphism and its clinical implications. Clin Pharmacokinet. 2004;43(9):553–76.PubMedCrossRef
200.
Zurück zum Zitat Marzolini C, Paus E, Buclin T, Kim RB. Polymorphisms in human MDR1 (P-glycoprotein): recent advances and clinical relevance. Clin Pharmacol Ther. 2004;75(1):13–33.PubMedCrossRef Marzolini C, Paus E, Buclin T, Kim RB. Polymorphisms in human MDR1 (P-glycoprotein): recent advances and clinical relevance. Clin Pharmacol Ther. 2004;75(1):13–33.PubMedCrossRef
201.
Zurück zum Zitat Hauser IA, Schaeffeler E, Gauer S, Scheuermann EH, Wegner B, Gossmann J, et al. ABCB1 Genotype of the donor but not of the recipient is a major risk factor for cyclosporine-related nephrotoxicity after renal transplantation. J Am Soc Nephrol. 2005;16(5):1501–11.PubMedCrossRef Hauser IA, Schaeffeler E, Gauer S, Scheuermann EH, Wegner B, Gossmann J, et al. ABCB1 Genotype of the donor but not of the recipient is a major risk factor for cyclosporine-related nephrotoxicity after renal transplantation. J Am Soc Nephrol. 2005;16(5):1501–11.PubMedCrossRef
202.
Zurück zum Zitat Tamai I, Yabuuchi H, Ji Nezu, Sai Y, Oku A, Shimane M, et al. Cloning and characterization of a novel human pH-dependent organic cation transporter, OCTN1. FEBS Lett. 1997;419(1):107–11.PubMedCrossRef Tamai I, Yabuuchi H, Ji Nezu, Sai Y, Oku A, Shimane M, et al. Cloning and characterization of a novel human pH-dependent organic cation transporter, OCTN1. FEBS Lett. 1997;419(1):107–11.PubMedCrossRef
203.
Zurück zum Zitat Urban TJ, Brown C, Castro RA, Shah N, Mercer R, Huang Y, et al. Effects of genetic variation in the novel organic cation transporter, OCTN1, on the renal clearance of gabapentin. Clin Pharmacol Ther. 2007;83(3):416–21.PubMedCrossRef Urban TJ, Brown C, Castro RA, Shah N, Mercer R, Huang Y, et al. Effects of genetic variation in the novel organic cation transporter, OCTN1, on the renal clearance of gabapentin. Clin Pharmacol Ther. 2007;83(3):416–21.PubMedCrossRef
204.
Zurück zum Zitat Yabuuchi H, Tamai I, Ji Nezu, Sakamoto K, Oku A, Shimane M, et al. Novel membrane transporter OCTN1 mediates multispecific, bidirectional, and pH-dependent transport of organic cations. J Pharmacol Exp Ther. 1999;289(2):768–73.PubMed Yabuuchi H, Tamai I, Ji Nezu, Sakamoto K, Oku A, Shimane M, et al. Novel membrane transporter OCTN1 mediates multispecific, bidirectional, and pH-dependent transport of organic cations. J Pharmacol Exp Ther. 1999;289(2):768–73.PubMed
205.
Zurück zum Zitat Gründemann D, Harlfinger S, Golz S, Geerts A, Lazar A, Berkels R, et al. Discovery of the ergothioneine transporter. Proc Natl Acad Sci USA. 2005;102(14):5256–61.PubMedPubMedCentralCrossRef Gründemann D, Harlfinger S, Golz S, Geerts A, Lazar A, Berkels R, et al. Discovery of the ergothioneine transporter. Proc Natl Acad Sci USA. 2005;102(14):5256–61.PubMedPubMedCentralCrossRef
206.
Zurück zum Zitat Noble CL, Nimmo ER, Drummond H, Ho GT, Tenesa A, Smith L, et al. The contribution of OCTN1/2 variants within the IBD5 locus to disease susceptibility and severity in crohn’s disease. Gastroenterology. 2005;129(6):1854–64.PubMedCrossRef Noble CL, Nimmo ER, Drummond H, Ho GT, Tenesa A, Smith L, et al. The contribution of OCTN1/2 variants within the IBD5 locus to disease susceptibility and severity in crohn’s disease. Gastroenterology. 2005;129(6):1854–64.PubMedCrossRef
207.
Zurück zum Zitat Tokuhiro S, Yamada R, Chang X, Suzuki A, Kochi Y, Sawada T, et al. An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis. Nat Genet. 2003;35(4):341–8.PubMedCrossRef Tokuhiro S, Yamada R, Chang X, Suzuki A, Kochi Y, Sawada T, et al. An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis. Nat Genet. 2003;35(4):341–8.PubMedCrossRef
208.
Zurück zum Zitat Tamai I, Ohashi R, Ji Nezu, Yabuuchi H, Oku A, Shimane M, et al. Molecular and functional identification of sodium ion-dependent, high affinity human carnitine transporter OCTN2. J Biol Chem. 1998;273(32):20378–82.PubMedCrossRef Tamai I, Ohashi R, Ji Nezu, Yabuuchi H, Oku A, Shimane M, et al. Molecular and functional identification of sodium ion-dependent, high affinity human carnitine transporter OCTN2. J Biol Chem. 1998;273(32):20378–82.PubMedCrossRef
209.
Zurück zum Zitat Tamai I, China K, Sai Y, Kobayashi D, Ji Nezu, Kawahara E, et al. Na+-coupled transport of L-carnitine via high-affinity carnitine transporter OCTN2 and its subcellular localization in kidney. Biochim Biophys Acta. 2001;1512(2):273–84.PubMedCrossRef Tamai I, China K, Sai Y, Kobayashi D, Ji Nezu, Kawahara E, et al. Na+-coupled transport of L-carnitine via high-affinity carnitine transporter OCTN2 and its subcellular localization in kidney. Biochim Biophys Acta. 2001;1512(2):273–84.PubMedCrossRef
210.
Zurück zum Zitat Grube M, Meyer zu Schwabedissen HEU, Prager D, Haney J, Moritz KU, Meissner K, et al. Uptake of cardiovascular drugs into the human heart: expression, regulation, and function of the carnitine transporter OCTN2 (SLC22A5). Circulation. 2006;113(8):1114–22.PubMedCrossRef Grube M, Meyer zu Schwabedissen HEU, Prager D, Haney J, Moritz KU, Meissner K, et al. Uptake of cardiovascular drugs into the human heart: expression, regulation, and function of the carnitine transporter OCTN2 (SLC22A5). Circulation. 2006;113(8):1114–22.PubMedCrossRef
211.
Zurück zum Zitat Ohashi R, Tamai I, Nezu JI, Nikaido H, Hashimoto N, Oku A, et al. Molecular and physiological evidence for multifunctionality of carnitine/organic cation transporter OCTN2. Mol Pharmacol. 2001;59(2):358–66.PubMed Ohashi R, Tamai I, Nezu JI, Nikaido H, Hashimoto N, Oku A, et al. Molecular and physiological evidence for multifunctionality of carnitine/organic cation transporter OCTN2. Mol Pharmacol. 2001;59(2):358–66.PubMed
212.
Zurück zum Zitat Ohnishi S, Okamura N, Sakamoto S, Hasegawa H, Norikura R, Kanaoka E, et al. Role of Na+/l-carnitine transporter (OCTN2) in renal handling of pivaloylcarnitine and valproylcarnitine formed during pivalic acid-containing prodrugs and valproic acid treatment. Drug Metab Pharmacokinet. 2008;23(4):293–303.PubMedCrossRef Ohnishi S, Okamura N, Sakamoto S, Hasegawa H, Norikura R, Kanaoka E, et al. Role of Na+/l-carnitine transporter (OCTN2) in renal handling of pivaloylcarnitine and valproylcarnitine formed during pivalic acid-containing prodrugs and valproic acid treatment. Drug Metab Pharmacokinet. 2008;23(4):293–303.PubMedCrossRef
213.
Zurück zum Zitat Ganapathy ME, Huang W, Rajan DP, Carter AL, Sugawara M, Iseki K, et al. Beta-lactam antibiotics as substrates for OCTN2, an organic cation/carnitine transporter. J Biol Chem. 2000;275(3):1699–707.PubMedCrossRef Ganapathy ME, Huang W, Rajan DP, Carter AL, Sugawara M, Iseki K, et al. Beta-lactam antibiotics as substrates for OCTN2, an organic cation/carnitine transporter. J Biol Chem. 2000;275(3):1699–707.PubMedCrossRef
214.
Zurück zum Zitat Ohashi R, Tamai I, Yabuuchi H, Nezu JI, Oku A, Sai Y, et al. Na+-dependent carnitine transport by organic cation transporter (OCTN2): its pharmacological and toxicological relevance. J Pharmacol Exp Ther. 1999;291(2):778–84.PubMed Ohashi R, Tamai I, Yabuuchi H, Nezu JI, Oku A, Sai Y, et al. Na+-dependent carnitine transport by organic cation transporter (OCTN2): its pharmacological and toxicological relevance. J Pharmacol Exp Ther. 1999;291(2):778–84.PubMed
215.
Zurück zum Zitat Stanley CA, DeLeeuw S, Coates PM, Vianey-Liaud C, Divry P, Bonnefont J-P, et al. Chronic cardiomyopathy and weakness or acute coma in children with a defect in carnitine uptake. Ann Neurol. 1991;30(5):709–16.PubMedCrossRef Stanley CA, DeLeeuw S, Coates PM, Vianey-Liaud C, Divry P, Bonnefont J-P, et al. Chronic cardiomyopathy and weakness or acute coma in children with a defect in carnitine uptake. Ann Neurol. 1991;30(5):709–16.PubMedCrossRef
216.
Zurück zum Zitat Tang NL, Ganapathy V, Wu X, Hui J, Seth P, Yuen PM, et al. Mutations of OCTN2, an organic cation/carnitine transporter, lead to deficient cellular carnitine uptake in primary carnitine deficiency [published erratum appears in Hum Mol Genet 1999 May; 8(5):943]. Hum Mol Genet. 1999;8(4):655–60.PubMedCrossRef Tang NL, Ganapathy V, Wu X, Hui J, Seth P, Yuen PM, et al. Mutations of OCTN2, an organic cation/carnitine transporter, lead to deficient cellular carnitine uptake in primary carnitine deficiency [published erratum appears in Hum Mol Genet 1999 May; 8(5):943]. Hum Mol Genet. 1999;8(4):655–60.PubMedCrossRef
217.
Zurück zum Zitat Tzvetkov MV, Vormfelde SV, Balen D, Meineke I, Schmidt T, Sehrt D, et al. The effects of genetic polymorphisms in the organic cation transporters OCT1, OCT2, and OCT3 on the renal clearance of metformin. Clin Pharmacol Ther. 2009;86(3):299–306.PubMedCrossRef Tzvetkov MV, Vormfelde SV, Balen D, Meineke I, Schmidt T, Sehrt D, et al. The effects of genetic polymorphisms in the organic cation transporters OCT1, OCT2, and OCT3 on the renal clearance of metformin. Clin Pharmacol Ther. 2009;86(3):299–306.PubMedCrossRef
218.
Zurück zum Zitat Damaraju VL, Elwi AN, Hunter C, Carpenter P, Santos C, Barron GM, et al. Localization of broadly selective equilibrative and concentrative nucleoside transporters, hENT1 and hCNT3, in human kidney. AJP Renal Physiol. 2007;293(1):F200–11.CrossRef Damaraju VL, Elwi AN, Hunter C, Carpenter P, Santos C, Barron GM, et al. Localization of broadly selective equilibrative and concentrative nucleoside transporters, hENT1 and hCNT3, in human kidney. AJP Renal Physiol. 2007;293(1):F200–11.CrossRef
219.
Zurück zum Zitat Young JD, Yao SY, Sun L, Cass CE, Baldwin SA. Human equilibrative nucleoside transporter (ENT) family of nucleoside and nucleobase transporter proteins. Xenobiotica. 2008;38(7–8):995–1021.PubMedCrossRef Young JD, Yao SY, Sun L, Cass CE, Baldwin SA. Human equilibrative nucleoside transporter (ENT) family of nucleoside and nucleobase transporter proteins. Xenobiotica. 2008;38(7–8):995–1021.PubMedCrossRef
220.
Zurück zum Zitat Engel K, Wang J. Interaction of organic cations with a newly identified plasma membrane monoamine transporter. Mol Pharmacol. 2005;68(5):1397–407.PubMedCrossRef Engel K, Wang J. Interaction of organic cations with a newly identified plasma membrane monoamine transporter. Mol Pharmacol. 2005;68(5):1397–407.PubMedCrossRef
221.
Zurück zum Zitat Itagaki S, Ganapathy V, Ho HTB, Zhou M, Babu E, Wang J. Electrophysiological characterization of the polyspecific organic cation transporter plasma membrane monoamine transporter. Drug Metab Dispos. 2012;6:2012. Itagaki S, Ganapathy V, Ho HTB, Zhou M, Babu E, Wang J. Electrophysiological characterization of the polyspecific organic cation transporter plasma membrane monoamine transporter. Drug Metab Dispos. 2012;6:2012.
222.
Zurück zum Zitat Duan H, Wang J. Selective transport of monoamine neurotransmitters by human plasma membrane monoamine transporter and organic cation transporter 3. J Pharmacol Exp Ther. 2010;335(3):743–53.PubMedPubMedCentralCrossRef Duan H, Wang J. Selective transport of monoamine neurotransmitters by human plasma membrane monoamine transporter and organic cation transporter 3. J Pharmacol Exp Ther. 2010;335(3):743–53.PubMedPubMedCentralCrossRef
223.
Zurück zum Zitat Engel K, Zhou M, Wang J. Identification and characterization of a novel monoamine transporter in the human brain. J Biol Chem. 2004;279(48):50042–9.PubMedCrossRef Engel K, Zhou M, Wang J. Identification and characterization of a novel monoamine transporter in the human brain. J Biol Chem. 2004;279(48):50042–9.PubMedCrossRef
225.
Zurück zum Zitat Rammelkamp CH, Bradley SE. Excretion of penicillin in man. Proc Soc Exper Biol Med. 1943;53:30–2.CrossRef Rammelkamp CH, Bradley SE. Excretion of penicillin in man. Proc Soc Exper Biol Med. 1943;53:30–2.CrossRef
226.
Zurück zum Zitat Burnell JM, Kirby WMM. Effectiveness of a new compound, benemid, in elevating serum penicillin concentrations. J Clin Investig. 1951;30(7):697–700.PubMedPubMedCentralCrossRef Burnell JM, Kirby WMM. Effectiveness of a new compound, benemid, in elevating serum penicillin concentrations. J Clin Investig. 1951;30(7):697–700.PubMedPubMedCentralCrossRef
227.
Zurück zum Zitat Robbins N, Koch SE, Tranter M, Rubinstein J. The history and future of probenecid. Cardiovasc Toxicol. 2012;12(1):1–9.PubMedCrossRef Robbins N, Koch SE, Tranter M, Rubinstein J. The history and future of probenecid. Cardiovasc Toxicol. 2012;12(1):1–9.PubMedCrossRef
228.
Zurück zum Zitat Lepist E-I, Ray AS. Renal drug–drug interactions: what we have learned and where we are going. Expert Opin Drug Metab Toxicol. 2012;8(4):433–48.PubMedCrossRef Lepist E-I, Ray AS. Renal drug–drug interactions: what we have learned and where we are going. Expert Opin Drug Metab Toxicol. 2012;8(4):433–48.PubMedCrossRef
229.
Zurück zum Zitat Chu X, Bleasby K, Evers R. Species differences in drug transporters and implications for translating preclinical findings to humans. Expert Opinion Drug Metab Toxicol. 2013;9(3):237–52.CrossRef Chu X, Bleasby K, Evers R. Species differences in drug transporters and implications for translating preclinical findings to humans. Expert Opinion Drug Metab Toxicol. 2013;9(3):237–52.CrossRef
230.
Zurück zum Zitat Guest EJ, Rowland-Yeo K, Rostami-Hodjegan A, Tucker GT, Houston JB, Galetin A. Assessment of algorithms for predicting drug–drug interactions via inhibition mechanisms: comparison of dynamic and static models. Br J Clin Pharmacol. 2011;71(1):72–87.PubMedPubMedCentralCrossRef Guest EJ, Rowland-Yeo K, Rostami-Hodjegan A, Tucker GT, Houston JB, Galetin A. Assessment of algorithms for predicting drug–drug interactions via inhibition mechanisms: comparison of dynamic and static models. Br J Clin Pharmacol. 2011;71(1):72–87.PubMedPubMedCentralCrossRef
231.
Zurück zum Zitat Nomura M, Motohashi H, Sekine H, Katsura T, Inui K-I. Developmental expression of renal organic anion transporters in rat kidney and its effect on renal secretion of phenolsulfonphthalein. Am J Physiol Renal Physiol. 2012;302(12):F1640–9.PubMedCrossRef Nomura M, Motohashi H, Sekine H, Katsura T, Inui K-I. Developmental expression of renal organic anion transporters in rat kidney and its effect on renal secretion of phenolsulfonphthalein. Am J Physiol Renal Physiol. 2012;302(12):F1640–9.PubMedCrossRef
232.
Zurück zum Zitat Chen N, Aleksa K, Woodland C, Rieder M, Koren G. Ontogeny of drug elimination by the human kidney. Pediatr Nephrol. 2006;21(2):160–8.PubMedCrossRef Chen N, Aleksa K, Woodland C, Rieder M, Koren G. Ontogeny of drug elimination by the human kidney. Pediatr Nephrol. 2006;21(2):160–8.PubMedCrossRef
233.
Zurück zum Zitat Gaudry SE, Sitar DS, Smyth DD, McKenzie JK, Aoki FY. Gender and age as factors in the inhibition of renal clearance of amantadine by quinine and quinidine. Clin Pharmacol Ther. 1993;54(1):23–7.PubMedCrossRef Gaudry SE, Sitar DS, Smyth DD, McKenzie JK, Aoki FY. Gender and age as factors in the inhibition of renal clearance of amantadine by quinine and quinidine. Clin Pharmacol Ther. 1993;54(1):23–7.PubMedCrossRef
234.
Zurück zum Zitat Naud J, Michaud J, Leblond FA, Lefrancois S, Bonnardeaux A, Pichette V. Effects of chronic renal failure on liver drug transporters. Drug Metab Dispos. 2008;36(1):124–8.PubMedCrossRef Naud J, Michaud J, Leblond FA, Lefrancois S, Bonnardeaux A, Pichette V. Effects of chronic renal failure on liver drug transporters. Drug Metab Dispos. 2008;36(1):124–8.PubMedCrossRef
235.
Zurück zum Zitat Komazawa H, Yamaguchi H, Hidaka K, Ogura J, Kobayashi M, Iseki K. Renal uptake of substrates for organic anion transporters Oat1 and Oat3 and organic cation transporters Oct1 and Oct2 is altered in rats with adenine-induced chronic renal failure. J Pharm Sci. 2013;102(3):1086–94.PubMedCrossRef Komazawa H, Yamaguchi H, Hidaka K, Ogura J, Kobayashi M, Iseki K. Renal uptake of substrates for organic anion transporters Oat1 and Oat3 and organic cation transporters Oct1 and Oct2 is altered in rats with adenine-induced chronic renal failure. J Pharm Sci. 2013;102(3):1086–94.PubMedCrossRef
236.
Zurück zum Zitat Gaowa A, Motohashi H, Katsura T, Inui K-I. Effects of metabolic acidosis on expression levels of renal drug transporters. Pharm Res. 2011;28(5):1023–30.PubMedCrossRef Gaowa A, Motohashi H, Katsura T, Inui K-I. Effects of metabolic acidosis on expression levels of renal drug transporters. Pharm Res. 2011;28(5):1023–30.PubMedCrossRef
237.
238.
Zurück zum Zitat Brandoni A, Villar SR, Picena JC, Anzai N, Endou H, Torres AM. Expression of rat renal cortical OAT1 and OAT3 in response to acute biliary obstruction. Hepatology. 2006;43(5):1092–100.PubMedCrossRef Brandoni A, Villar SR, Picena JC, Anzai N, Endou H, Torres AM. Expression of rat renal cortical OAT1 and OAT3 in response to acute biliary obstruction. Hepatology. 2006;43(5):1092–100.PubMedCrossRef
239.
Zurück zum Zitat Lee J, Azzaroli F, Wang L, Soroka CJ, Gigliozzi A, Setchell KDR, et al. Adaptive regulation of bile salt transporters in kidney and liver in obstructive cholestasis in the rat. Gastroenterology. 2001;121(6):1473–84.PubMedCrossRef Lee J, Azzaroli F, Wang L, Soroka CJ, Gigliozzi A, Setchell KDR, et al. Adaptive regulation of bile salt transporters in kidney and liver in obstructive cholestasis in the rat. Gastroenterology. 2001;121(6):1473–84.PubMedCrossRef
240.
Zurück zum Zitat Tanaka Y, Kobayashi Y, Gabazza EC, Higuchi K, Kamisako T, Kuroda M, et al. Increased renal expression of bilirubin glucuronide transporters in a rat model of obstructive jaundice. Am J Physiol Gastrointest Liver Physiol. 2002;282(4):G656–62.PubMedCrossRef Tanaka Y, Kobayashi Y, Gabazza EC, Higuchi K, Kamisako T, Kuroda M, et al. Increased renal expression of bilirubin glucuronide transporters in a rat model of obstructive jaundice. Am J Physiol Gastrointest Liver Physiol. 2002;282(4):G656–62.PubMedCrossRef
241.
Zurück zum Zitat Kurata T, Muraki Y, Mizutani H, Iwamoto T, Okuda M. Elevated systemic elimination of cimetidine in rats with acute biliary obstruction: the role of renal organic cation transporter OCT2. Drug Metab Pharmacokinet. 2010;25(4):328–34.PubMedCrossRef Kurata T, Muraki Y, Mizutani H, Iwamoto T, Okuda M. Elevated systemic elimination of cimetidine in rats with acute biliary obstruction: the role of renal organic cation transporter OCT2. Drug Metab Pharmacokinet. 2010;25(4):328–34.PubMedCrossRef
242.
Zurück zum Zitat Grover B, Auberger C, Sarangarajan R, Cacini W. Functional impairment of renal organic cation transport in experimental diabetes. Pharmacol Toxicol. 2002;90(4):181–6.PubMedCrossRef Grover B, Auberger C, Sarangarajan R, Cacini W. Functional impairment of renal organic cation transport in experimental diabetes. Pharmacol Toxicol. 2002;90(4):181–6.PubMedCrossRef
243.
Zurück zum Zitat Grover B, Buckley D, Buckley AR, Cacini W. Reduced expression of organic cation transporters rOCT1 and rOCT2 in experimental diabetes. J Pharmacol Exp Ther. 2004;308(3):949–56.PubMedCrossRef Grover B, Buckley D, Buckley AR, Cacini W. Reduced expression of organic cation transporters rOCT1 and rOCT2 in experimental diabetes. J Pharmacol Exp Ther. 2004;308(3):949–56.PubMedCrossRef
244.
Zurück zum Zitat Titier K, Lagrange F, Pehourcq F, Moore N, Molimard M. Pharmacokinetic interaction between high-dose methotrexate and oxacillin. Ther Drug Monit. 2002;24(4):570–2.PubMedCrossRef Titier K, Lagrange F, Pehourcq F, Moore N, Molimard M. Pharmacokinetic interaction between high-dose methotrexate and oxacillin. Ther Drug Monit. 2002;24(4):570–2.PubMedCrossRef
245.
Zurück zum Zitat Stage TB, Brøsen K, Christensen MMH. A comprehensive review of drug–drug interactions with metformin. Clin Pharmacokinet. 2015;54(8):811–24.PubMedCrossRef Stage TB, Brøsen K, Christensen MMH. A comprehensive review of drug–drug interactions with metformin. Clin Pharmacokinet. 2015;54(8):811–24.PubMedCrossRef
246.
Zurück zum Zitat Zong J, Borland J, Jerva F, Wynne B, Choukour M, Song I. The effect of dolutegravir on the pharmacokinetics of metformin in healthy subjects. J Int AIDS Soc. 2014;17(4 Suppl 3):19584.PubMedPubMedCentral Zong J, Borland J, Jerva F, Wynne B, Choukour M, Song I. The effect of dolutegravir on the pharmacokinetics of metformin in healthy subjects. J Int AIDS Soc. 2014;17(4 Suppl 3):19584.PubMedPubMedCentral
247.
Zurück zum Zitat Arun KP, Meda VS, Kucherlapati VSPR, Dubala A, Deepalakshmi M, Anand VijayaKumar PR, et al. Pharmacokinetic drug interaction between gemfibrozil and sitagliptin in healthy Indian male volunteers. Eur J Clin Pharmacol. 2012;68(5):709–14.CrossRef Arun KP, Meda VS, Kucherlapati VSPR, Dubala A, Deepalakshmi M, Anand VijayaKumar PR, et al. Pharmacokinetic drug interaction between gemfibrozil and sitagliptin in healthy Indian male volunteers. Eur J Clin Pharmacol. 2012;68(5):709–14.CrossRef
248.
Zurück zum Zitat Tanihara Y, Masuda S, Katsura T, Inui K-I. Protective effect of concomitant administration of imatinib on cisplatin-induced nephrotoxicity focusing on renal organic cation transporter OCT2. Biochem Pharmacol. 2009;78(9):1263–71.PubMedCrossRef Tanihara Y, Masuda S, Katsura T, Inui K-I. Protective effect of concomitant administration of imatinib on cisplatin-induced nephrotoxicity focusing on renal organic cation transporter OCT2. Biochem Pharmacol. 2009;78(9):1263–71.PubMedCrossRef
249.
Zurück zum Zitat Kohler JJ, Hosseini SH, Hoying-Brandt A, Green E, Johnson DM, Russ R, et al. Tenofovir renal toxicity targets mitochondria of renal proximal tubules. Lab Invest. 2009;89(5):513–9.PubMedPubMedCentralCrossRef Kohler JJ, Hosseini SH, Hoying-Brandt A, Green E, Johnson DM, Russ R, et al. Tenofovir renal toxicity targets mitochondria of renal proximal tubules. Lab Invest. 2009;89(5):513–9.PubMedPubMedCentralCrossRef
250.
Zurück zum Zitat Morelle JL, Labriola L, Lambert M, Cosyns JP, Jouret F, Jadoul M. Tenofovir-related acute kidney injury and proximal tubule dysfunction precipitated by diclofenac: a case of drug–drug interaction. Clin Nephrol. 2009;71(5):567–70.PubMedCrossRef Morelle JL, Labriola L, Lambert M, Cosyns JP, Jouret F, Jadoul M. Tenofovir-related acute kidney injury and proximal tubule dysfunction precipitated by diclofenac: a case of drug–drug interaction. Clin Nephrol. 2009;71(5):567–70.PubMedCrossRef
251.
Zurück zum Zitat Kohler JJ, Hosseini SH, Green E, Abuin A, Ludaway T, Russ R, et al. Tenofovir renal proximal tubular toxicity is regulated By OAT1 and MRP4 transporters. Lab Invest. 2011;91(6):852–8.PubMedPubMedCentralCrossRef Kohler JJ, Hosseini SH, Green E, Abuin A, Ludaway T, Russ R, et al. Tenofovir renal proximal tubular toxicity is regulated By OAT1 and MRP4 transporters. Lab Invest. 2011;91(6):852–8.PubMedPubMedCentralCrossRef
252.
Zurück zum Zitat Rodríguez-Nóvoa S, Labarga P, Soriano V, Egan D, Albalater M, Morello J, et al. Predictors of kidney tubular dysfunction in HIV-infected patients treated with tenofovir: a pharmacogenetic study. Clin Infect Dis. 2009;48(11):e108–16.PubMedCrossRef Rodríguez-Nóvoa S, Labarga P, Soriano V, Egan D, Albalater M, Morello J, et al. Predictors of kidney tubular dysfunction in HIV-infected patients treated with tenofovir: a pharmacogenetic study. Clin Infect Dis. 2009;48(11):e108–16.PubMedCrossRef
253.
Zurück zum Zitat Izzedine H, Hulot J-S, Villard E, Goyenvalle C, Dominguez S, Ghosn J, et al. Association between ABCC2 gene haplotypes and tenofovir-induced proximal tubulopathy. J Infect Dis. 2006;194(11):1481–91.PubMedCrossRef Izzedine H, Hulot J-S, Villard E, Goyenvalle C, Dominguez S, Ghosn J, et al. Association between ABCC2 gene haplotypes and tenofovir-induced proximal tubulopathy. J Infect Dis. 2006;194(11):1481–91.PubMedCrossRef
254.
Zurück zum Zitat Pushpakom SP, Liptrott NJ, Rodríguez-Nóvoa S, Labarga P, Soriano V, Albalater M, et al. Genetic variants of ABCC10, a novel tenofovir transporter, are associated with kidney tubular dysfunction. J Infect Dis. 2011;204(1):145–53.PubMedPubMedCentralCrossRef Pushpakom SP, Liptrott NJ, Rodríguez-Nóvoa S, Labarga P, Soriano V, Albalater M, et al. Genetic variants of ABCC10, a novel tenofovir transporter, are associated with kidney tubular dysfunction. J Infect Dis. 2011;204(1):145–53.PubMedPubMedCentralCrossRef
255.
Zurück zum Zitat Nishijima T, Komatsu H, Higasa K, Takano M, Tsuchiya K, Hayashida T, et al. Single nucleotide polymorphisms in ABCC2 associate with tenofovir-induced kidney tubular dysfunction in Japanese patients with HIV-1 infection: a pharmacogenetic study. Clin Infect Dis. 2012;55(11):1558–67.PubMedCrossRef Nishijima T, Komatsu H, Higasa K, Takano M, Tsuchiya K, Hayashida T, et al. Single nucleotide polymorphisms in ABCC2 associate with tenofovir-induced kidney tubular dysfunction in Japanese patients with HIV-1 infection: a pharmacogenetic study. Clin Infect Dis. 2012;55(11):1558–67.PubMedCrossRef
256.
Zurück zum Zitat Tschuppert Y, Buclin T, Rothuizen LE, Decosterd LA, Galleyrand J, Gaud C, et al. Effect of dronedarone on renal function in healthy subjects. Br J Clin Pharmacol. 2007;64(6):785–91.PubMedPubMedCentral Tschuppert Y, Buclin T, Rothuizen LE, Decosterd LA, Galleyrand J, Gaud C, et al. Effect of dronedarone on renal function in healthy subjects. Br J Clin Pharmacol. 2007;64(6):785–91.PubMedPubMedCentral
257.
Zurück zum Zitat Huang SM, Zhang L, Giacomini KM. The International Transporter Consortium: a collaborative group of scientists from academia, industry, and the FDA. Clin Pharmacol Ther. 2009;87(1):32–6.CrossRef Huang SM, Zhang L, Giacomini KM. The International Transporter Consortium: a collaborative group of scientists from academia, industry, and the FDA. Clin Pharmacol Ther. 2009;87(1):32–6.CrossRef
258.
Zurück zum Zitat Consortium IT. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9(3):215–36.CrossRef Consortium IT. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9(3):215–36.CrossRef
259.
Zurück zum Zitat Hillgren KM, Keppler D, Zur AA, Giacomini KM, Stieger B, Cass CE, et al. Emerging transporters of clinical importance: an update from the international transporter consortium. Clin Pharmacol Ther. 2013;94(1):52–63.PubMedCrossRef Hillgren KM, Keppler D, Zur AA, Giacomini KM, Stieger B, Cass CE, et al. Emerging transporters of clinical importance: an update from the international transporter consortium. Clin Pharmacol Ther. 2013;94(1):52–63.PubMedCrossRef
261.
Zurück zum Zitat US Department of Health and Human Services, FDA. Guidance for Industry. Drug interaction studies—study design, data analysis, implications for dosing, and labeling recommendations. US FDA; February 2012. US Department of Health and Human Services, FDA. Guidance for Industry. Drug interaction studies—study design, data analysis, implications for dosing, and labeling recommendations. US FDA; February 2012.
262.
Zurück zum Zitat Feng B, LaPerle JL, Chang G, Varma MV. Renal clearance in drug discovery and development: molecular descriptors, drug transporters and disease state. Expert Opin Drug Metabol Toxicol. 2010;6(8):939–52.CrossRef Feng B, LaPerle JL, Chang G, Varma MV. Renal clearance in drug discovery and development: molecular descriptors, drug transporters and disease state. Expert Opin Drug Metabol Toxicol. 2010;6(8):939–52.CrossRef
263.
Zurück zum Zitat Ye J, Liu Q, Wang C, et al. Benzylpenicillin inhibits the renal excretion of acyclovir by OAT1 and OAT3. Pharmacol Rep. 2013;65(2):505–12.PubMedCrossRef Ye J, Liu Q, Wang C, et al. Benzylpenicillin inhibits the renal excretion of acyclovir by OAT1 and OAT3. Pharmacol Rep. 2013;65(2):505–12.PubMedCrossRef
264.
Zurück zum Zitat Laskin OL, de Miranda P, King DH, Page DA, Longstreth JA, Rocco L, et al. Effects of probenecid on the pharmacokinetics and elimination of acyclovir in humans. Antimicrob Agents Chemother. 1982;21(5):804–7.PubMedPubMedCentralCrossRef Laskin OL, de Miranda P, King DH, Page DA, Longstreth JA, Rocco L, et al. Effects of probenecid on the pharmacokinetics and elimination of acyclovir in humans. Antimicrob Agents Chemother. 1982;21(5):804–7.PubMedPubMedCentralCrossRef
265.
Zurück zum Zitat Griffith RS, Black HR, Brier GL, Wolny JD. Effect of probenecid on the blood levels and urinary excretion of cefamandole. Antimicrob Agents Chemother. 1977;11(5):809–12.PubMedPubMedCentralCrossRef Griffith RS, Black HR, Brier GL, Wolny JD. Effect of probenecid on the blood levels and urinary excretion of cefamandole. Antimicrob Agents Chemother. 1977;11(5):809–12.PubMedPubMedCentralCrossRef
266.
Zurück zum Zitat Ko H, Cathcart KS, Griffith DL, Peters GR, Adams WJ. Pharmacokinetics of intravenously administered cefmetazole and cefoxitin and effects of probenecid on cefmetazole elimination. Antimicrob Agents Chemother. 1989;33(3):356–61.PubMedPubMedCentralCrossRef Ko H, Cathcart KS, Griffith DL, Peters GR, Adams WJ. Pharmacokinetics of intravenously administered cefmetazole and cefoxitin and effects of probenecid on cefmetazole elimination. Antimicrob Agents Chemother. 1989;33(3):356–61.PubMedPubMedCentralCrossRef
267.
Zurück zum Zitat Vlasses PH, Holbrook AM, Schrogie JJ, Rogers JD, Ferguson RK, Abrams WB. Effect of orally administered probenecid on the pharmacokinetics of cefoxitin. Antimicrob Agents Chemother. 1980;17(5):847–55.PubMedPubMedCentralCrossRef Vlasses PH, Holbrook AM, Schrogie JJ, Rogers JD, Ferguson RK, Abrams WB. Effect of orally administered probenecid on the pharmacokinetics of cefoxitin. Antimicrob Agents Chemother. 1980;17(5):847–55.PubMedPubMedCentralCrossRef
268.
Zurück zum Zitat Stoeckel K, Trueb V, Dubach UC, McNamara PJ. Effect of probenecid on the elimination and protein binding of ceftriaxone. Eur J Clin Pharmacol. 1988;34(2):151–6.PubMedCrossRef Stoeckel K, Trueb V, Dubach UC, McNamara PJ. Effect of probenecid on the elimination and protein binding of ceftriaxone. Eur J Clin Pharmacol. 1988;34(2):151–6.PubMedCrossRef
269.
Zurück zum Zitat Kagedal M, Nilsson D, Huledal G, Reinholdsson I, Cheng YF, Asenblad N, et al. A study of organic acid transporter mediated pharmacokinetic interaction between NXY-059 and cefuroxime. J Clin Pharmacol. 2007;47(8):1043–8.PubMedCrossRef Kagedal M, Nilsson D, Huledal G, Reinholdsson I, Cheng YF, Asenblad N, et al. A study of organic acid transporter mediated pharmacokinetic interaction between NXY-059 and cefuroxime. J Clin Pharmacol. 2007;47(8):1043–8.PubMedCrossRef
271.
Zurück zum Zitat Cundy KC, Petty BG, Flaherty J, Fisher PE, Polis MA, Wachsman M, et al. Clinical pharmacokinetics of cidofovir in human immunodeficiency virus-infected patients. Antimicrob Agents Chemother. 1995;39(6):1247–52.PubMedPubMedCentralCrossRef Cundy KC, Petty BG, Flaherty J, Fisher PE, Polis MA, Wachsman M, et al. Clinical pharmacokinetics of cidofovir in human immunodeficiency virus-infected patients. Antimicrob Agents Chemother. 1995;39(6):1247–52.PubMedPubMedCentralCrossRef
272.
Zurück zum Zitat Barriere SL, Catlin DH, Orlando PL, Noe A, Frost RW. Alteration in the pharmacokinetic disposition of ciprofloxacin by simultaneous administration of azlocillin. Antimicrob Agents Chemother. 1990;34(5):823–6.PubMedPubMedCentralCrossRef Barriere SL, Catlin DH, Orlando PL, Noe A, Frost RW. Alteration in the pharmacokinetic disposition of ciprofloxacin by simultaneous administration of azlocillin. Antimicrob Agents Chemother. 1990;34(5):823–6.PubMedPubMedCentralCrossRef
273.
Zurück zum Zitat Jaehde U, Sorgel F, Reiter A, Sigl G, Naber KG, Schunack W. Effect of probenecid on the distribution and elimination of ciprofloxacin in humans. Clin Pharmacol Ther. 1995;58(5):532–41.PubMedCrossRef Jaehde U, Sorgel F, Reiter A, Sigl G, Naber KG, Schunack W. Effect of probenecid on the distribution and elimination of ciprofloxacin in humans. Clin Pharmacol Ther. 1995;58(5):532–41.PubMedCrossRef
274.
Zurück zum Zitat Landersdorfer CB, Kirkpatrick CM, Kinzig M, Bulitta JB, Holzgrabe U, Jaehde U, et al. Competitive inhibition of renal tubular secretion of ciprofloxacin and metabolite by probenecid. Br J Clin Pharmacol. 2010;69(2):167–78.PubMedPubMedCentralCrossRef Landersdorfer CB, Kirkpatrick CM, Kinzig M, Bulitta JB, Holzgrabe U, Jaehde U, et al. Competitive inhibition of renal tubular secretion of ciprofloxacin and metabolite by probenecid. Br J Clin Pharmacol. 2010;69(2):167–78.PubMedPubMedCentralCrossRef
275.
Zurück zum Zitat Kearney BP, Sayre JR, Flaherty JF, Chen SS, Kaul S, Cheng AK. Drug–drug and drug–food interactions between tenofovir disoproxil fumarate and didanosine. J Clin Pharmacol. 2005;45(12):1360–7.PubMedCrossRef Kearney BP, Sayre JR, Flaherty JF, Chen SS, Kaul S, Cheng AK. Drug–drug and drug–food interactions between tenofovir disoproxil fumarate and didanosine. J Clin Pharmacol. 2005;45(12):1360–7.PubMedCrossRef
276.
Zurück zum Zitat Verbeeck RK, Macdonald JI, Wallace SM, Herman RJ. Effect of probenecid on the formation and elimination kinetics of the sulphate and glucuronide conjugates of diflunisal. Eur J Clin Pharmacol. 1995;47(6):519–23.PubMedCrossRef Verbeeck RK, Macdonald JI, Wallace SM, Herman RJ. Effect of probenecid on the formation and elimination kinetics of the sulphate and glucuronide conjugates of diflunisal. Eur J Clin Pharmacol. 1995;47(6):519–23.PubMedCrossRef
277.
Zurück zum Zitat Inotsume N, Nishimura M, Nakano M, Fujiyama S, Sato T. The inhibitory effect of probenecid on renal excretion of famotidine in young, healthy volunteers. J Clin Pharmacol. 1990;30(1):50–6.PubMedCrossRef Inotsume N, Nishimura M, Nakano M, Fujiyama S, Sato T. The inhibitory effect of probenecid on renal excretion of famotidine in young, healthy volunteers. J Clin Pharmacol. 1990;30(1):50–6.PubMedCrossRef
278.
Zurück zum Zitat Yasui-Furukori N, Uno T, Sugawara K, Tateishi T. Different effects of three transporting inhibitors, verapamil, cimetidine, and probenecid, on fexofenadine pharmacokinetics. Clin Pharmacol Ther. 2005;77(1):17–23.PubMedCrossRef Yasui-Furukori N, Uno T, Sugawara K, Tateishi T. Different effects of three transporting inhibitors, verapamil, cimetidine, and probenecid, on fexofenadine pharmacokinetics. Clin Pharmacol Ther. 2005;77(1):17–23.PubMedCrossRef
279.
Zurück zum Zitat Liu S, Beringer PM, Hidayat L, Rao AP, Louie S, Burckart GJ, et al. Probenecid, but not cystic fibrosis, alters the total and renal clearance of fexofenadine. J Clin Pharmacol. 2008;48(8):957–65.PubMedCrossRef Liu S, Beringer PM, Hidayat L, Rao AP, Louie S, Burckart GJ, et al. Probenecid, but not cystic fibrosis, alters the total and renal clearance of fexofenadine. J Clin Pharmacol. 2008;48(8):957–65.PubMedCrossRef
280.
Zurück zum Zitat Shiba K, Saito A, Shimada J, Hori S, Kaji M, Miyahara T, et al. Renal handling of fleroxacin in rabbits, dogs, and humans. Antimicrob Agents Chemother. 1990;34(1):58–64.PubMedPubMedCentralCrossRef Shiba K, Saito A, Shimada J, Hori S, Kaji M, Miyahara T, et al. Renal handling of fleroxacin in rabbits, dogs, and humans. Antimicrob Agents Chemother. 1990;34(1):58–64.PubMedPubMedCentralCrossRef
281.
Zurück zum Zitat Landersdorfer CB, Kirkpatrick CM, Kinzig M, Bulitta JB, Holzgrabe U, Sörgel F. Inhibition of flucloxacillin tubular renal secretion by piperacillin. Br J Clin Pharmacol. 2008;66(5):648–59.PubMedPubMedCentral Landersdorfer CB, Kirkpatrick CM, Kinzig M, Bulitta JB, Holzgrabe U, Sörgel F. Inhibition of flucloxacillin tubular renal secretion by piperacillin. Br J Clin Pharmacol. 2008;66(5):648–59.PubMedPubMedCentral
282.
Zurück zum Zitat Chennavasin P, Seiwell R, Brater DC, Liang WMM. Pharmacodynamic analysis of the furosemide-probenecid interaction in man. Kidney Int. 1979;16(2):187–95.PubMedCrossRef Chennavasin P, Seiwell R, Brater DC, Liang WMM. Pharmacodynamic analysis of the furosemide-probenecid interaction in man. Kidney Int. 1979;16(2):187–95.PubMedCrossRef
283.
Zurück zum Zitat Cimoch PJ, Lavelle J, Pollard R, Griffy KG, Wong R, Tarnowski TL, Casserella S, Jung D. Pharmacokinetics of oral ganciclovir alone and in combination with zidovudine, didanosine, and probenecid in HIV-infected subjects. J Acquir Immune Defic Syndr Hum Retrovirol. 1998;17(3):227–34.PubMedCrossRef Cimoch PJ, Lavelle J, Pollard R, Griffy KG, Wong R, Tarnowski TL, Casserella S, Jung D. Pharmacokinetics of oral ganciclovir alone and in combination with zidovudine, didanosine, and probenecid in HIV-infected subjects. J Acquir Immune Defic Syndr Hum Retrovirol. 1998;17(3):227–34.PubMedCrossRef
284.
Zurück zum Zitat Cutler MJ, Urquhart BL, Velenosi TJ, Meyer zu Schwabedissen HE, Dresser GK, Leake BF, et al. In vitro and in vivo assessment of renal drug transporters in the disposition of mesna and dimesna. J Clin Pharmacol. 2012;52(4):530–42.PubMedCrossRef Cutler MJ, Urquhart BL, Velenosi TJ, Meyer zu Schwabedissen HE, Dresser GK, Leake BF, et al. In vitro and in vivo assessment of renal drug transporters in the disposition of mesna and dimesna. J Clin Pharmacol. 2012;52(4):530–42.PubMedCrossRef
285.
Zurück zum Zitat Tracy TS, Krohn K, Jones DR, Bradley JD, Hall SD, Brater DC. The effects of a salicylate, ibuprofen, and naproxen on the disposition of methotrexate in patients with rheumatoid arthritis. Eur J Clin Pharmacol. 1992;42(2):121–5.PubMedCrossRef Tracy TS, Krohn K, Jones DR, Bradley JD, Hall SD, Brater DC. The effects of a salicylate, ibuprofen, and naproxen on the disposition of methotrexate in patients with rheumatoid arthritis. Eur J Clin Pharmacol. 1992;42(2):121–5.PubMedCrossRef
286.
Zurück zum Zitat Kremer JM, Hamilton RA. The effects of nonsteroidal antiinflammatory drugs on methotrexate (MTX) pharmacokinetics: impairment of renal clearance of MTX at weekly maintenance doses but not at 7.5 mg. J Rheumatol. 1995;22(11):2072–7.PubMed Kremer JM, Hamilton RA. The effects of nonsteroidal antiinflammatory drugs on methotrexate (MTX) pharmacokinetics: impairment of renal clearance of MTX at weekly maintenance doses but not at 7.5 mg. J Rheumatol. 1995;22(11):2072–7.PubMed
287.
Zurück zum Zitat Aherne GW, Piall E, Marks V, Mould G, White WF. Prolongation and enhancement of serum methotrexate concentrations by probenecid. BMJ. 1978;1(6120):1097–9.PubMedPubMedCentralCrossRef Aherne GW, Piall E, Marks V, Mould G, White WF. Prolongation and enhancement of serum methotrexate concentrations by probenecid. BMJ. 1978;1(6120):1097–9.PubMedPubMedCentralCrossRef
288.
Zurück zum Zitat Gimenez F, Foeillet E, Bourdon O, Weller S, Garret C, Bidault R, et al. Evaluation of pharmacokinetic interactions after oral administration of mycophenolate mofetil and valaciclovir or aciclovir to healthy subjects. Clin Pharmacokinet. 2004;43(10):685–92.PubMedCrossRef Gimenez F, Foeillet E, Bourdon O, Weller S, Garret C, Bidault R, et al. Evaluation of pharmacokinetic interactions after oral administration of mycophenolate mofetil and valaciclovir or aciclovir to healthy subjects. Clin Pharmacokinet. 2004;43(10):685–92.PubMedCrossRef
289.
Zurück zum Zitat Waller E, Sharanevych M, Yakatan G. The effect of probenecid on nafcillin disposition. J Clin Pharmacol. 1982;22(10):482–9.PubMedCrossRef Waller E, Sharanevych M, Yakatan G. The effect of probenecid on nafcillin disposition. J Clin Pharmacol. 1982;22(10):482–9.PubMedCrossRef
290.
Zurück zum Zitat van Hecken AM, Tjandramaga TB, Verbesselt R, de Schepper PJ. The influence of diflunisal on the pharmacokinetics of oxazepam. Br J Clin Pharmacol. 1985;20(3):225–34.PubMedPubMedCentralCrossRef van Hecken AM, Tjandramaga TB, Verbesselt R, de Schepper PJ. The influence of diflunisal on the pharmacokinetics of oxazepam. Br J Clin Pharmacol. 1985;20(3):225–34.PubMedPubMedCentralCrossRef
291.
Zurück zum Zitat Jacob SS, Franklin ME, Dickinson RG, Hooper WD. The effect of diflunisal on the elimination of triamterene in human volunteers. Drug Metab Drug Interact. 2000;16(3):159–71.CrossRef Jacob SS, Franklin ME, Dickinson RG, Hooper WD. The effect of diflunisal on the elimination of triamterene in human volunteers. Drug Metab Drug Interact. 2000;16(3):159–71.CrossRef
292.
Zurück zum Zitat Tjandramaga TB, Mullie A, Verbesselt R, De Schepper PJ, Verbist L. Piperacillin: human pharmacokinetics after intravenous and intramuscular administration. Antimicrob Agents Chemother. 1978;14(6):829–37.PubMedPubMedCentralCrossRef Tjandramaga TB, Mullie A, Verbesselt R, De Schepper PJ, Verbist L. Piperacillin: human pharmacokinetics after intravenous and intramuscular administration. Antimicrob Agents Chemother. 1978;14(6):829–37.PubMedPubMedCentralCrossRef
293.
Zurück zum Zitat Lai Y, Sampson KE, Balogh LM, Brayman TG, Cox SR, Adams WJ, et al. Preclinical and clinical evidence for the collaborative transport and renal secretion of an oxazolidinone antibiotic by organic anion transporter 3 (OAT3/SLC22A8) and multidrug and toxin extrusion protein 1 (MATE1/SLC47A1). J Pharmacol Exp Ther. 2010. Lai Y, Sampson KE, Balogh LM, Brayman TG, Cox SR, Adams WJ, et al. Preclinical and clinical evidence for the collaborative transport and renal secretion of an oxazolidinone antibiotic by organic anion transporter 3 (OAT3/SLC22A8) and multidrug and toxin extrusion protein 1 (MATE1/SLC47A1). J Pharmacol Exp Ther. 2010.
294.
Zurück zum Zitat Kyrklund C, Backman JT, Neuvonen M, Neuvonen PJ. Gemfibrozil increases plasma pravastatin concentrations and reduces pravastatin renal clearance[ast]. Clin Pharmacol Ther. 2003;73(6):538–44.PubMedCrossRef Kyrklund C, Backman JT, Neuvonen M, Neuvonen PJ. Gemfibrozil increases plasma pravastatin concentrations and reduces pravastatin renal clearance[ast]. Clin Pharmacol Ther. 2003;73(6):538–44.PubMedCrossRef
295.
Zurück zum Zitat Itoh T, Ishida M, Onuki Y, Tsuda Y, Shimada H, Yamada H. Stereoselective renal tubular secretion of carbenicillin. Antimicrob Agents Chemother. 1993;37(11):2327–32.PubMedPubMedCentralCrossRef Itoh T, Ishida M, Onuki Y, Tsuda Y, Shimada H, Yamada H. Stereoselective renal tubular secretion of carbenicillin. Antimicrob Agents Chemother. 1993;37(11):2327–32.PubMedPubMedCentralCrossRef
296.
Zurück zum Zitat Hill G, Cihlar T, Oo C, Ho ES, Prior K, Wiltshire H, et al. The anti-influenza drug oseltamivir exhibits low potential to induce pharmacokinetic drug interactions via renal secretion—correlation of in vivo and in vitro studies. Drug Metab Dispos. 2002;30(1):13–9.PubMedCrossRef Hill G, Cihlar T, Oo C, Ho ES, Prior K, Wiltshire H, et al. The anti-influenza drug oseltamivir exhibits low potential to induce pharmacokinetic drug interactions via renal secretion—correlation of in vivo and in vitro studies. Drug Metab Dispos. 2002;30(1):13–9.PubMedCrossRef
297.
Zurück zum Zitat He G, Massarella J, Ward P. Clinical pharmacokinetics of the prodrug oseltamivir and its active metabolite Ro 64-0802. Clin Pharmacokinet. 1999;37(6):471–84.PubMedCrossRef He G, Massarella J, Ward P. Clinical pharmacokinetics of the prodrug oseltamivir and its active metabolite Ro 64-0802. Clin Pharmacokinet. 1999;37(6):471–84.PubMedCrossRef
298.
Zurück zum Zitat Itoh T, Watanabe N, Ishida M, Tsuda Y, Koyano S, Tsunoi T, et al. Stereoselective disposition of sulbenicillin in humans. Antimicrob Agents Chemother. 1998;42(2):325–31.PubMedPubMedCentral Itoh T, Watanabe N, Ishida M, Tsuda Y, Koyano S, Tsunoi T, et al. Stereoselective disposition of sulbenicillin in humans. Antimicrob Agents Chemother. 1998;42(2):325–31.PubMedPubMedCentral
299.
Zurück zum Zitat Takahara N, Saga T, Inubushi M, Kusuhara H, Seki C, Ito S, et al. Drugs interacting with organic anion transporter-1 affect uptake of Tc-99m-mercaptoacetyl-triglycine (MAG3) in the human kidney: therapeutic drug interaction in Tc-99m-MAG3 diagnosis of renal function and possible application of Tc-99m-MAG3 for drug development. Nucl Med Biol. 2013;40(5):643–50.PubMedCrossRef Takahara N, Saga T, Inubushi M, Kusuhara H, Seki C, Ito S, et al. Drugs interacting with organic anion transporter-1 affect uptake of Tc-99m-mercaptoacetyl-triglycine (MAG3) in the human kidney: therapeutic drug interaction in Tc-99m-MAG3 diagnosis of renal function and possible application of Tc-99m-MAG3 for drug development. Nucl Med Biol. 2013;40(5):643–50.PubMedCrossRef
300.
Zurück zum Zitat Overbosch D, Van Gulpen C, Hermans J, Mattie H. The effect of probenecid on the renal tubular excretion of benzylpenicillin. Br J Clin Pharmacol. 1988;25(1):51–8.PubMedPubMedCentralCrossRef Overbosch D, Van Gulpen C, Hermans J, Mattie H. The effect of probenecid on the renal tubular excretion of benzylpenicillin. Br J Clin Pharmacol. 1988;25(1):51–8.PubMedPubMedCentralCrossRef
301.
Zurück zum Zitat Kiser JJ, Carten ML, Aquilante CL, Anderson PL, Wolfe P, King TM, et al. The effect of lopinavir//ritonavir on the renal clearance of tenofovir in HIV-infected patients. Clin Pharmacol Ther. 2007;83(2):265–72.PubMedCrossRef Kiser JJ, Carten ML, Aquilante CL, Anderson PL, Wolfe P, King TM, et al. The effect of lopinavir//ritonavir on the renal clearance of tenofovir in HIV-infected patients. Clin Pharmacol Ther. 2007;83(2):265–72.PubMedCrossRef
302.
Zurück zum Zitat Massarella JW, Nazareno LA, Passe S, Min B. The Effect of probenecid on the pharmacokinetics of zalcitabine in HIV-positive patients. Pharm Res. 1996;13(3):449–52.PubMedCrossRef Massarella JW, Nazareno LA, Passe S, Min B. The Effect of probenecid on the pharmacokinetics of zalcitabine in HIV-positive patients. Pharm Res. 1996;13(3):449–52.PubMedCrossRef
303.
Zurück zum Zitat Hedaya MA, Elmquist WF, Sawchuk RJ. Probenecid inhibits the metabolic and renal clearances of zidovudine (AZT) in human volunteers. Pharm Res. 1990;7(4):411–7.PubMedCrossRef Hedaya MA, Elmquist WF, Sawchuk RJ. Probenecid inhibits the metabolic and renal clearances of zidovudine (AZT) in human volunteers. Pharm Res. 1990;7(4):411–7.PubMedCrossRef
304.
Zurück zum Zitat de Miranda P, Good SS, Yarchoan R, Thomas RV, Blum MR, Myers CE, et al. Alteration of zidovudine pharmacokinetics by probenecid in patients with AIDS or AIDS-related complex. Clin Pharm Ther. 1989;46(5):494–9.CrossRef de Miranda P, Good SS, Yarchoan R, Thomas RV, Blum MR, Myers CE, et al. Alteration of zidovudine pharmacokinetics by probenecid in patients with AIDS or AIDS-related complex. Clin Pharm Ther. 1989;46(5):494–9.CrossRef
305.
Zurück zum Zitat Somogyi AA, Hovens CM, Muirhead MR, Bochner F. Renal tubular secretion of amiloride and its inhibition by cimetidine in humans and in an animal model. Drug Metab Dispos. 1989;17(2):190–6.PubMed Somogyi AA, Hovens CM, Muirhead MR, Bochner F. Renal tubular secretion of amiloride and its inhibition by cimetidine in humans and in an animal model. Drug Metab Dispos. 1989;17(2):190–6.PubMed
306.
Zurück zum Zitat van Crugten J, Bochner F, Keal J, Somogyi A. Selectivity of the cimetidine-induced alterations in the renal handling of organic substrates in humans Studies with anionic, cationic and zwitterionic drugs. J Pharmacol Exp Ther. 1986;236(2):481–7.PubMed van Crugten J, Bochner F, Keal J, Somogyi A. Selectivity of the cimetidine-induced alterations in the renal handling of organic substrates in humans Studies with anionic, cationic and zwitterionic drugs. J Pharmacol Exp Ther. 1986;236(2):481–7.PubMed
307.
Zurück zum Zitat Jacobs C, Coleman CN, Rich L, Hirst K, Weiner MW. Inhibition of cis-diamminedichloroplatinum secretion by the human kidney with probenecid. Cancer Res. 1984;44(8):3632–5.PubMed Jacobs C, Coleman CN, Rich L, Hirst K, Weiner MW. Inhibition of cis-diamminedichloroplatinum secretion by the human kidney with probenecid. Cancer Res. 1984;44(8):3632–5.PubMed
308.
Zurück zum Zitat Srinivas NR, Knupp CA, Batteiger B, Smith RA, Barbhaiya RH. A pharmacokinetic interaction study of didanosine coadministered with trimethoprim and/or sulphamethoxazole in HIV seropositive asymptomatic male patients. Br J Clin Pharmacol. 1996;41(3):207–15.PubMedCrossRef Srinivas NR, Knupp CA, Batteiger B, Smith RA, Barbhaiya RH. A pharmacokinetic interaction study of didanosine coadministered with trimethoprim and/or sulphamethoxazole in HIV seropositive asymptomatic male patients. Br J Clin Pharmacol. 1996;41(3):207–15.PubMedCrossRef
309.
Zurück zum Zitat Pfizer Inc. Product information: Tikosyn (TM), dofetilide capsules. New York: Pfizer Inc; 1999. Pfizer Inc. Product information: Tikosyn (TM), dofetilide capsules. New York: Pfizer Inc; 1999.
310.
Zurück zum Zitat Misiak PM, Eldon MA, Toothaker RD, Sedman AJ. Effects of oral cimetidine or ranitidine on the pharmacokinetics of intravenous enoxacin. J Clin Pharmacol. 1993;33(1):53–6.PubMedCrossRef Misiak PM, Eldon MA, Toothaker RD, Sedman AJ. Effects of oral cimetidine or ranitidine on the pharmacokinetics of intravenous enoxacin. J Clin Pharmacol. 1993;33(1):53–6.PubMedCrossRef
311.
Zurück zum Zitat Jung D, AbdelHameed MH, Hunter J, Teitelbaum P, Dorr A, Griffy K. The pharmacokinetics and safety profile of oral ganciclovir in combination with trimethoprim in HIV- and CMV-seropositive patients. Br J Clin Pharmacol. 1999;47(3):255–9.PubMedPubMedCentralCrossRef Jung D, AbdelHameed MH, Hunter J, Teitelbaum P, Dorr A, Griffy K. The pharmacokinetics and safety profile of oral ganciclovir in combination with trimethoprim in HIV- and CMV-seropositive patients. Br J Clin Pharmacol. 1999;47(3):255–9.PubMedPubMedCentralCrossRef
312.
Zurück zum Zitat Allen A, Bird N, Dixon R, Hickmott F, Pay V, Smith A, et al. Effect of cimetidine on the pharmacokinetics of oral gemifloxacin in healthy volunteers. Clin Drug Investig. 2001;21(7):519–26.CrossRef Allen A, Bird N, Dixon R, Hickmott F, Pay V, Smith A, et al. Effect of cimetidine on the pharmacokinetics of oral gemifloxacin in healthy volunteers. Clin Drug Investig. 2001;21(7):519–26.CrossRef
313.
Zurück zum Zitat Moore KHP, Yuen GJ, Raasch RH, Eron JJ, Martin D, Mydlow PK, et al. Pharmacokinetics of lamivudine administered alone and with trimethoprim-sulfamethoxazole[ast]. Clin Pharmacol Ther. 1996;59(5):550–8.PubMedCrossRef Moore KHP, Yuen GJ, Raasch RH, Eron JJ, Martin D, Mydlow PK, et al. Pharmacokinetics of lamivudine administered alone and with trimethoprim-sulfamethoxazole[ast]. Clin Pharmacol Ther. 1996;59(5):550–8.PubMedCrossRef
314.
Zurück zum Zitat Sabo JP, Lamson MJ, Leitz G, Yong CL, MacGregor TR. Pharmacokinetics of nevirapine and lamivudine in patients with HIV-1 infection. AAPS Pharm Sci. 2000;2(1):E1.CrossRef Sabo JP, Lamson MJ, Leitz G, Yong CL, MacGregor TR. Pharmacokinetics of nevirapine and lamivudine in patients with HIV-1 infection. AAPS Pharm Sci. 2000;2(1):E1.CrossRef
315.
Zurück zum Zitat Jayasagar G, Krishna Kumar M, Chandrasekhar K, Madhusudan Rao C, Madhusudan Rao Y. Effect of cephalexin on the pharmacokinetics of metformin in healthy human volunteers. Drug Metab Drug Interact. 2011;19(1):41–8. Jayasagar G, Krishna Kumar M, Chandrasekhar K, Madhusudan Rao C, Madhusudan Rao Y. Effect of cephalexin on the pharmacokinetics of metformin in healthy human volunteers. Drug Metab Drug Interact. 2011;19(1):41–8.
316.
Zurück zum Zitat Kusuhara H, Ito S, Kumagai Y, Jiang M, Shiroshita T, Moriyama Y, et al. Effects of a MATE protein inhibitor, pyrimethamine, on the renal elimination of metformin at oral microdose and at therapeutic dose in healthy subjects. Clin Pharmacol Ther. 2011;89(6):837–44.PubMedCrossRef Kusuhara H, Ito S, Kumagai Y, Jiang M, Shiroshita T, Moriyama Y, et al. Effects of a MATE protein inhibitor, pyrimethamine, on the renal elimination of metformin at oral microdose and at therapeutic dose in healthy subjects. Clin Pharmacol Ther. 2011;89(6):837–44.PubMedCrossRef
317.
Zurück zum Zitat Cheng Y-F, Strid S, Borgå O, Nilsson D, Wemer J. Active renal secretion of NXY-059, a novel neuroprotectant, is mediated via an organic acid transporter. J Clin Pharmacol. 2007;47(7):909–14.PubMedCrossRef Cheng Y-F, Strid S, Borgå O, Nilsson D, Wemer J. Active renal secretion of NXY-059, a novel neuroprotectant, is mediated via an organic acid transporter. J Clin Pharmacol. 2007;47(7):909–14.PubMedCrossRef
318.
Zurück zum Zitat Somogyi AA, Bochner F, Sallustio BC. Stereoselective inhibition of pindolol renal clearance by cimetidine in humans. Clin Pharm Ther. 1992;51(4):379–87.CrossRef Somogyi AA, Bochner F, Sallustio BC. Stereoselective inhibition of pindolol renal clearance by cimetidine in humans. Clin Pharm Ther. 1992;51(4):379–87.CrossRef
319.
Zurück zum Zitat Somogyi A, Bochner F. Dose and concentration dependent effect of ranitidine on procainamide disposition and renal clearance in man. Br J Clin Pharmacol. 1984;18(2):175–81.PubMedPubMedCentralCrossRef Somogyi A, Bochner F. Dose and concentration dependent effect of ranitidine on procainamide disposition and renal clearance in man. Br J Clin Pharmacol. 1984;18(2):175–81.PubMedPubMedCentralCrossRef
320.
Zurück zum Zitat Kosoglou T, Rocci ML Jr, Vlasses PH. Trimethoprim alters the disposition of procainamide and N-acetylprocainamide. Clin Pharm Ther. 1988;44(4):467–77.CrossRef Kosoglou T, Rocci ML Jr, Vlasses PH. Trimethoprim alters the disposition of procainamide and N-acetylprocainamide. Clin Pharm Ther. 1988;44(4):467–77.CrossRef
321.
Zurück zum Zitat Vlasses PK, Kosoglou T, Chase SL, et al. Trimethoprim inhibition of the renal clearance of procainamide and n-acetylprocainamide. Arch Intern Med. 1989;149(6):1350–3.PubMedCrossRef Vlasses PK, Kosoglou T, Chase SL, et al. Trimethoprim inhibition of the renal clearance of procainamide and n-acetylprocainamide. Arch Intern Med. 1989;149(6):1350–3.PubMedCrossRef
322.
Zurück zum Zitat Hardy BG, Zador IT, Golden L, Lalka D, Schentag JJ. Effect of cimetidine on the pharmacokinetics and pharmacodynamics of quinidine. Am J Cardiol. 1983;52(1):172–5.PubMedCrossRef Hardy BG, Zador IT, Golden L, Lalka D, Schentag JJ. Effect of cimetidine on the pharmacokinetics and pharmacodynamics of quinidine. Am J Cardiol. 1983;52(1):172–5.PubMedCrossRef
323.
Zurück zum Zitat Kolb KW, Garnett WR, Small RE, Vetrovec GW, Kline BJ, Fox T. Effect of cimetidine on quinidine clearance. Ther Drug Monit. 1984;6(3):306–12.PubMedCrossRef Kolb KW, Garnett WR, Small RE, Vetrovec GW, Kline BJ, Fox T. Effect of cimetidine on quinidine clearance. Ther Drug Monit. 1984;6(3):306–12.PubMedCrossRef
324.
Zurück zum Zitat Hardy BG, Schentag JJ. Lack of effect of cimetidine on the metabolism of quinidine: effect on renal clearance. Int J Clin Pharmacol Ther Toxicol. 1988;26(8):388–91.PubMed Hardy BG, Schentag JJ. Lack of effect of cimetidine on the metabolism of quinidine: effect on renal clearance. Int J Clin Pharmacol Ther Toxicol. 1988;26(8):388–91.PubMed
325.
Zurück zum Zitat Muirhead M, Bochner F, Somogyi A. Pharmacokinetic drug interactions between triamterene and ranitidine in humans: alterations in renal and hepatic clearances and gastrointestinal absorption. J Pharmacol Exp Ther. 1988;244(2):734–9.PubMed Muirhead M, Bochner F, Somogyi A. Pharmacokinetic drug interactions between triamterene and ranitidine in humans: alterations in renal and hepatic clearances and gastrointestinal absorption. J Pharmacol Exp Ther. 1988;244(2):734–9.PubMed
326.
Zurück zum Zitat Muirhead MR, Somogyi AA, Rolan PE, Bochner F. Effect of cimetidine on renal and hepatic drug elimination: studies with triamterene. Clin Pharm Ther. 1986;40(4):400–7.CrossRef Muirhead MR, Somogyi AA, Rolan PE, Bochner F. Effect of cimetidine on renal and hepatic drug elimination: studies with triamterene. Clin Pharm Ther. 1986;40(4):400–7.CrossRef
328.
Zurück zum Zitat Fletcher CV, Henry WK, Noormohamed SE, Rhame FS, Balfour HH. The effect of cimetidine and ranitidine administration with zidovudine. Pharmacother J Hum Pharmacol Drug Therapy. 1995;15(6):701–8. Fletcher CV, Henry WK, Noormohamed SE, Rhame FS, Balfour HH. The effect of cimetidine and ranitidine administration with zidovudine. Pharmacother J Hum Pharmacol Drug Therapy. 1995;15(6):701–8.
329.
Zurück zum Zitat Chatton JY, Munafo A, Chave JP, Steinhäuslin F, Roch-Ramel F, Glauser MP, Biollaz J. Trimethoprim, alone or in combination with sulphamethoxazole, decreases the renal excretion of zidovudine and its glucuronide. Br J Clin Pharmacol. 1992;34(6):551–4.PubMedPubMedCentral Chatton JY, Munafo A, Chave JP, Steinhäuslin F, Roch-Ramel F, Glauser MP, Biollaz J. Trimethoprim, alone or in combination with sulphamethoxazole, decreases the renal excretion of zidovudine and its glucuronide. Br J Clin Pharmacol. 1992;34(6):551–4.PubMedPubMedCentral
330.
Zurück zum Zitat Peytavin G, Gautran C, Otoul C, Cremieux AC, Moulaert B, Delatour F, et al. Evaluation of pharmacokinetic interaction between cetirizine and ritonavir, an HIV-1 protease inhibitor, in healthy male volunteers. Eur J Clin Pharmacol. 2005;61(4):267–73.PubMedCrossRef Peytavin G, Gautran C, Otoul C, Cremieux AC, Moulaert B, Delatour F, et al. Evaluation of pharmacokinetic interaction between cetirizine and ritonavir, an HIV-1 protease inhibitor, in healthy male volunteers. Eur J Clin Pharmacol. 2005;61(4):267–73.PubMedCrossRef
331.
Zurück zum Zitat Karyekar CS, Eddington ND, Briglia A, Gubbins PO, Dowling TC. Renal interaction between itraconazole and cimetidine. J Clin Pharmacol. 2004;44(8):919–27.PubMedCrossRef Karyekar CS, Eddington ND, Briglia A, Gubbins PO, Dowling TC. Renal interaction between itraconazole and cimetidine. J Clin Pharmacol. 2004;44(8):919–27.PubMedCrossRef
332.
Zurück zum Zitat Fenster PE, Powell JR, Graves PE, Conrad KA, Hager WD, Goldman S, et al. Digitoxin-quinidine interaction: pharmacokinetic evaluation. Ann Int Med. 1980;93(5):698.PubMedCrossRef Fenster PE, Powell JR, Graves PE, Conrad KA, Hager WD, Goldman S, et al. Digitoxin-quinidine interaction: pharmacokinetic evaluation. Ann Int Med. 1980;93(5):698.PubMedCrossRef
333.
Zurück zum Zitat Garthy M, Sood P, Rollins DE. Digitoxin elimination reduced during quinidine therapy. Ann Int Med. 1981;94(1):35–7.CrossRef Garthy M, Sood P, Rollins DE. Digitoxin elimination reduced during quinidine therapy. Ann Int Med. 1981;94(1):35–7.CrossRef
334.
Zurück zum Zitat Zapater P, Reus S, Tello A, Torrús D, Pérez-Mateo M, Horga JF. A prospective study of the clarithromycin–digoxin interaction in elderly patients. J Antimicrob Chemother. 2002;50(4):601–6.PubMedCrossRef Zapater P, Reus S, Tello A, Torrús D, Pérez-Mateo M, Horga JF. A prospective study of the clarithromycin–digoxin interaction in elderly patients. J Antimicrob Chemother. 2002;50(4):601–6.PubMedCrossRef
335.
Zurück zum Zitat Dorian P, Strauss M, Cardella C, David T, East S, Ogilvie R. Digoxin–cyclosporine interaction: severe digitalis toxicity after cyclosporine treatment. Clin Invest Med. 1988;11(2):108–12.PubMed Dorian P, Strauss M, Cardella C, David T, East S, Ogilvie R. Digoxin–cyclosporine interaction: severe digitalis toxicity after cyclosporine treatment. Clin Invest Med. 1988;11(2):108–12.PubMed
337.
Zurück zum Zitat Jalava K-M, Partanen J, Neuvonen PJ. Itraconazole decreases renal clearance of digoxin. Ther Drug Monit. 1997;19(6):609–13.PubMedCrossRef Jalava K-M, Partanen J, Neuvonen PJ. Itraconazole decreases renal clearance of digoxin. Ther Drug Monit. 1997;19(6):609–13.PubMedCrossRef
338.
Zurück zum Zitat Belz GG, Doering W, Munkes R, Matthews J. Interaction between digoxin and calcium antagonists and antiarrhythmic drugs. Clin Pharm Ther. 1983;33(4):410–7.CrossRef Belz GG, Doering W, Munkes R, Matthews J. Interaction between digoxin and calcium antagonists and antiarrhythmic drugs. Clin Pharm Ther. 1983;33(4):410–7.CrossRef
339.
Zurück zum Zitat Dahlqvist R, Ejvinsson G, Schenck-Gustafsson K. Effect of quinidine on plasma concentration and renal clearance of digoxin. A clinically important drug interaction. Br J Clin Pharmacol. 1980;9(4):413–8.PubMedPubMedCentralCrossRef Dahlqvist R, Ejvinsson G, Schenck-Gustafsson K. Effect of quinidine on plasma concentration and renal clearance of digoxin. A clinically important drug interaction. Br J Clin Pharmacol. 1980;9(4):413–8.PubMedPubMedCentralCrossRef
340.
Zurück zum Zitat Fenster PE, Hager WD, Goodman MM. Digoxin–quinidine–spironolactone interaction. Clin Pharm Ther. 1984;36(1):70–3.CrossRef Fenster PE, Hager WD, Goodman MM. Digoxin–quinidine–spironolactone interaction. Clin Pharm Ther. 1984;36(1):70–3.CrossRef
341.
Zurück zum Zitat Schmitt C, Kaeser B, Riek M, Bech N, Kreuzer C. Effect of saquinavir/ritonavir on P-glycoprotein activity in healthy volunteers using digoxin as a probe. Int J Clin Pharmacol Ther. 2010;48(3):192–9.PubMedCrossRef Schmitt C, Kaeser B, Riek M, Bech N, Kreuzer C. Effect of saquinavir/ritonavir on P-glycoprotein activity in healthy volunteers using digoxin as a probe. Int J Clin Pharmacol Ther. 2010;48(3):192–9.PubMedCrossRef
342.
Zurück zum Zitat Waldorff S, Hansen PB, Egeblad H, Berning J, Buch J, Kjasrgard H, et al. Interactions between digoxin and potassium-sparing diuretics. Clin Pharm Ther. 1983;33(4):418–23.CrossRef Waldorff S, Hansen PB, Egeblad H, Berning J, Buch J, Kjasrgard H, et al. Interactions between digoxin and potassium-sparing diuretics. Clin Pharm Ther. 1983;33(4):418–23.CrossRef
343.
Zurück zum Zitat Stangier J, Su CA, Hendriks MG, van Lier JJ, Sollie FA, Oosterhuis B, et al. The effect of telmisartan on the steady-state pharmacokinetics of digoxin in healthy male volunteers. J Clin Pharmacol. 2000;40(12):1373–9.PubMed Stangier J, Su CA, Hendriks MG, van Lier JJ, Sollie FA, Oosterhuis B, et al. The effect of telmisartan on the steady-state pharmacokinetics of digoxin in healthy male volunteers. J Clin Pharmacol. 2000;40(12):1373–9.PubMed
344.
Zurück zum Zitat Kovarik JM, Rigaudy L, Guerret M, Gerbeau C, Rost K-L. Longitudinal assessment of a P-glycoprotein-mediated drug interaction of valspodar on digoxin. Clin Pharmacol Ther. 1999;66(4):391–400.PubMedCrossRef Kovarik JM, Rigaudy L, Guerret M, Gerbeau C, Rost K-L. Longitudinal assessment of a P-glycoprotein-mediated drug interaction of valspodar on digoxin. Clin Pharmacol Ther. 1999;66(4):391–400.PubMedCrossRef
345.
Zurück zum Zitat Erik Pedersen K, Dorph-Pedersen A, Hvidt S, Anders Klitgaard N, Nielsen-Kudsk F. Digoxin-verapamil interaction. Clin Pharm Ther. 1981;30(3):311–6.CrossRef Erik Pedersen K, Dorph-Pedersen A, Hvidt S, Anders Klitgaard N, Nielsen-Kudsk F. Digoxin-verapamil interaction. Clin Pharm Ther. 1981;30(3):311–6.CrossRef
346.
Zurück zum Zitat Pedersen KE, Christiansen BD, Kjaer K, Klitgaard NA, Nielsen-Kudsk F. Verapamil-induced changes in digoxin kinetics and intraerythrocytic sodium concentration. Clin Pharm Ther. 1983;34(1):8–13.CrossRef Pedersen KE, Christiansen BD, Kjaer K, Klitgaard NA, Nielsen-Kudsk F. Verapamil-induced changes in digoxin kinetics and intraerythrocytic sodium concentration. Clin Pharm Ther. 1983;34(1):8–13.CrossRef
347.
Zurück zum Zitat Lum BL, Kaubisch S, Yahanda AM, Adler KM, Jew L, Ehsan MN, et al. Alteration of etoposide pharmacokinetics and pharmacodynamics by cyclosporine in a phase I trial to modulate multidrug resistance. J Clin Oncol. 1992;10(10):1635–42.PubMedCrossRef Lum BL, Kaubisch S, Yahanda AM, Adler KM, Jew L, Ehsan MN, et al. Alteration of etoposide pharmacokinetics and pharmacodynamics by cyclosporine in a phase I trial to modulate multidrug resistance. J Clin Oncol. 1992;10(10):1635–42.PubMedCrossRef
348.
Zurück zum Zitat Kaukonen K-M, Olkkola KT, Neuvonen PJ. Itraconazole increases plasma concentrations of quinidine[ast]. Clin Pharmacol Ther. 1997;62(5):510–7.PubMedCrossRef Kaukonen K-M, Olkkola KT, Neuvonen PJ. Itraconazole increases plasma concentrations of quinidine[ast]. Clin Pharmacol Ther. 1997;62(5):510–7.PubMedCrossRef
349.
Zurück zum Zitat Glube N, Langguth P. Caki-1 cells as a model system for the interaction of renally secreted drugs with OCT3. Nephron Physiol. 2008;108(2):p18–28.PubMedCrossRef Glube N, Langguth P. Caki-1 cells as a model system for the interaction of renally secreted drugs with OCT3. Nephron Physiol. 2008;108(2):p18–28.PubMedCrossRef
350.
Zurück zum Zitat Gründemann D, Liebich G, Kiefer N, Köster S, Schömig E. Selective substrates for non-neuronal monoamine transporters. Mol Pharmacol. 1999;56(1):1–10.PubMed Gründemann D, Liebich G, Kiefer N, Köster S, Schömig E. Selective substrates for non-neuronal monoamine transporters. Mol Pharmacol. 1999;56(1):1–10.PubMed
351.
Zurück zum Zitat Khamdang S, Takeda M, Shimoda M, Noshiro R, Narikawa S, Huang XL, et al. Interactions of human- and rat-organic anion transporters with pravastatin and cimetidine. J Pharmacol Sci. 2004;94(2):197–202.PubMedCrossRef Khamdang S, Takeda M, Shimoda M, Noshiro R, Narikawa S, Huang XL, et al. Interactions of human- and rat-organic anion transporters with pravastatin and cimetidine. J Pharmacol Sci. 2004;94(2):197–202.PubMedCrossRef
352.
Zurück zum Zitat Motohashi H, Uwai Y, Hiramoto K, Okuda M, Inui KI. Different transport properties between famotidine and cimetidine by human renal organic ion transporters (SLC22A). Eur J Pharmacol. 2004;503(1–3):25–30.PubMedCrossRef Motohashi H, Uwai Y, Hiramoto K, Okuda M, Inui KI. Different transport properties between famotidine and cimetidine by human renal organic ion transporters (SLC22A). Eur J Pharmacol. 2004;503(1–3):25–30.PubMedCrossRef
353.
Zurück zum Zitat Polli JW, Wring SA, Humphreys JE, Huang L, Morgan JB, Webster LO, et al. Rational use of in vitro P-glycoprotein assays in drug discovery. J Pharmacol Exp Ther. 2001;299(2):620–8.PubMed Polli JW, Wring SA, Humphreys JE, Huang L, Morgan JB, Webster LO, et al. Rational use of in vitro P-glycoprotein assays in drug discovery. J Pharmacol Exp Ther. 2001;299(2):620–8.PubMed
354.
Zurück zum Zitat Umehara K-I, Iwatsubo T, Noguchi K, Kamimura H. Comparison of the kinetic characteristics of inhibitory effects exerted by biguanides and H2-blockers on human and rat organic cation transporter-mediated transport: Insight into the development of drug candidates. Xenobiotica. 2007;37(6):618–34.PubMedCrossRef Umehara K-I, Iwatsubo T, Noguchi K, Kamimura H. Comparison of the kinetic characteristics of inhibitory effects exerted by biguanides and H2-blockers on human and rat organic cation transporter-mediated transport: Insight into the development of drug candidates. Xenobiotica. 2007;37(6):618–34.PubMedCrossRef
355.
Zurück zum Zitat Wu X, Huang W, Prasad PD, Seth P, Rajan DP, Leibach FH, et al. Functional characteristics and tissue distribution pattern of organic cation transporter 2 (OCTN2), an organic cation/carnitine transporter. J Pharmacol Exp Ther. 1999;290(3):1482–92.PubMed Wu X, Huang W, Prasad PD, Seth P, Rajan DP, Leibach FH, et al. Functional characteristics and tissue distribution pattern of organic cation transporter 2 (OCTN2), an organic cation/carnitine transporter. J Pharmacol Exp Ther. 1999;290(3):1482–92.PubMed
356.
Zurück zum Zitat Lentz KA, Polli JW, Wring SA, Humphreys JE, Polli JE. Influence of passive permeability on apparent P-glycoprotein kinetics. Pharm Res. 2000;17(12):1456–60.PubMedCrossRef Lentz KA, Polli JW, Wring SA, Humphreys JE, Polli JE. Influence of passive permeability on apparent P-glycoprotein kinetics. Pharm Res. 2000;17(12):1456–60.PubMedCrossRef
357.
Zurück zum Zitat Ohta KY, Inoue K, Yasujima T, Ishimaru M, Yuasa H. Functional characteristics of two human MATE transporters: kinetics of cimetidine transport and profiles of inhibition by various compounds. J Pharm Pharm Sci Publ Can Soc Pharm Sci Societe canadienne des sciences pharmaceutiques. 2009;12(3):388–96. Ohta KY, Inoue K, Yasujima T, Ishimaru M, Yuasa H. Functional characteristics of two human MATE transporters: kinetics of cimetidine transport and profiles of inhibition by various compounds. J Pharm Pharm Sci Publ Can Soc Pharm Sci Societe canadienne des sciences pharmaceutiques. 2009;12(3):388–96.
358.
Zurück zum Zitat Zhao R, Raub TJ, Sawada GA, Kasper SC, Bacon JA, Bridges AS, et al. Breast cancer resistance protein interacts with various compounds in vitro, but plays a minor role in substrate efflux at the blood–brain barrier. Drug Metab Dispos. 2009;37(6):1251–8.PubMedPubMedCentralCrossRef Zhao R, Raub TJ, Sawada GA, Kasper SC, Bacon JA, Bridges AS, et al. Breast cancer resistance protein interacts with various compounds in vitro, but plays a minor role in substrate efflux at the blood–brain barrier. Drug Metab Dispos. 2009;37(6):1251–8.PubMedPubMedCentralCrossRef
359.
Zurück zum Zitat Dahan A, Amidon GL. Segmental dependent transport of low permeability compounds along the small intestine due to P-glycoprotein: the role of efflux transport in the oral absorption of BCS class III drugs. Mol Pharm. 2009;6(1):19–28.PubMedCrossRef Dahan A, Amidon GL. Segmental dependent transport of low permeability compounds along the small intestine due to P-glycoprotein: the role of efflux transport in the oral absorption of BCS class III drugs. Mol Pharm. 2009;6(1):19–28.PubMedCrossRef
360.
Zurück zum Zitat Wittwer MB, Zur AA, Khuri N, Kido Y, Kosaka A, Zhang X, et al. Discovery of potent, selective multidrug and toxin extrusion transporter 1 (MATE1, SLC47A1) inhibitors through prescription drug profiling and computational modeling. J Med Chem. 2013;56(3):781–95.PubMedPubMedCentralCrossRef Wittwer MB, Zur AA, Khuri N, Kido Y, Kosaka A, Zhang X, et al. Discovery of potent, selective multidrug and toxin extrusion transporter 1 (MATE1, SLC47A1) inhibitors through prescription drug profiling and computational modeling. J Med Chem. 2013;56(3):781–95.PubMedPubMedCentralCrossRef
361.
Zurück zum Zitat Astorga B, Ekins S, Morales M, Wright SH. Molecular determinants of ligand selectivity for the human multidrug and toxin extruder proteins MATE1 and MATE2-K. J Pharmacol Exp Ther. 2012;341(3):743–55.PubMedPubMedCentralCrossRef Astorga B, Ekins S, Morales M, Wright SH. Molecular determinants of ligand selectivity for the human multidrug and toxin extruder proteins MATE1 and MATE2-K. J Pharmacol Exp Ther. 2012;341(3):743–55.PubMedPubMedCentralCrossRef
362.
Zurück zum Zitat Hibma JE, Zur AA, Castro RA, Wittwer MB, Keizer RJ, Yee SW, et al. The effect of famotidine, a MATE1-selective inhibitor, on the pharmacokinetics and pharmacodynamics of metformin. Clin Pharmacokinet. 2016;55(6):711–21.PubMedPubMedCentralCrossRef Hibma JE, Zur AA, Castro RA, Wittwer MB, Keizer RJ, Yee SW, et al. The effect of famotidine, a MATE1-selective inhibitor, on the pharmacokinetics and pharmacodynamics of metformin. Clin Pharmacokinet. 2016;55(6):711–21.PubMedPubMedCentralCrossRef
363.
Zurück zum Zitat Köck K, Ferslew BC, Netterberg I, Yang K, Urban TJ, Swaan PW, et al. Risk factors for development of cholestatic drug-induced liver injury: inhibition of hepatic basolateral bile acid transporters multidrug resistance-associated proteins 3 and 4. Drug Metab Dispos. 2014;42(4):665–74.PubMedPubMedCentralCrossRef Köck K, Ferslew BC, Netterberg I, Yang K, Urban TJ, Swaan PW, et al. Risk factors for development of cholestatic drug-induced liver injury: inhibition of hepatic basolateral bile acid transporters multidrug resistance-associated proteins 3 and 4. Drug Metab Dispos. 2014;42(4):665–74.PubMedPubMedCentralCrossRef
364.
Zurück zum Zitat Pauli-Magnus C, Rekersbrink S, Klotz U, Fromm M. Interaction of omeprazole, lansoprazole and pantoprazole with P-glycoprotein. Naunyn Schmiedebergs Arch Pharmacol. 2001;364(6):551–7.PubMedCrossRef Pauli-Magnus C, Rekersbrink S, Klotz U, Fromm M. Interaction of omeprazole, lansoprazole and pantoprazole with P-glycoprotein. Naunyn Schmiedebergs Arch Pharmacol. 2001;364(6):551–7.PubMedCrossRef
365.
Zurück zum Zitat Nies AT, Hofmann U, Resch C, Schaeffeler E, Rius M, Schwab M. Proton pump inhibitors inhibit metformin uptake by organic cation transporters (OCTs). PLoS One. 2011;6(7):e22163.PubMedPubMedCentralCrossRef Nies AT, Hofmann U, Resch C, Schaeffeler E, Rius M, Schwab M. Proton pump inhibitors inhibit metformin uptake by organic cation transporters (OCTs). PLoS One. 2011;6(7):e22163.PubMedPubMedCentralCrossRef
366.
Zurück zum Zitat R. C, Noel-Hudson M-S, Ribes S, Fournier M, Becquemont L, Verstuyft C. Evaluation of the interaction between methotrexate and proton pump inhibitors using human hOAT1 and hOAT3 HEK transfected cells. 11th Conference of the European Association for Clinical Pharmacology and Therapeutics (EACPT). Geneva, Switzerland, 2013. R. C, Noel-Hudson M-S, Ribes S, Fournier M, Becquemont L, Verstuyft C. Evaluation of the interaction between methotrexate and proton pump inhibitors using human hOAT1 and hOAT3 HEK transfected cells. 11th Conference of the European Association for Clinical Pharmacology and Therapeutics (EACPT). Geneva, Switzerland, 2013.
367.
Zurück zum Zitat Chioukh R, Noel-Hudson MS, Ribes S, Fournier N, Becquemont L, Verstuyft C. Proton pump inhibitors inhibit methotrexate transport by renal basolateral organic anion transporter hOAT3. Drug Metab Dispos. 2014;42(12):2041–8.PubMedCrossRef Chioukh R, Noel-Hudson MS, Ribes S, Fournier N, Becquemont L, Verstuyft C. Proton pump inhibitors inhibit methotrexate transport by renal basolateral organic anion transporter hOAT3. Drug Metab Dispos. 2014;42(12):2041–8.PubMedCrossRef
368.
Zurück zum Zitat Suzuki K, Doki K, Homma M, Tamaki H, Hori S, Ohtani H, et al. Co-administration of proton pump inhibitors delays elimination of plasma methotrexate in high-dose methotrexate therapy. Br J Clin Pharmacol. 2009;67(1):44–9.PubMedPubMedCentralCrossRef Suzuki K, Doki K, Homma M, Tamaki H, Hori S, Ohtani H, et al. Co-administration of proton pump inhibitors delays elimination of plasma methotrexate in high-dose methotrexate therapy. Br J Clin Pharmacol. 2009;67(1):44–9.PubMedPubMedCentralCrossRef
369.
Zurück zum Zitat Hacker K, Maas R, Kornhuber J, Fromm MF, Zolk O. Substrate-dependent inhibition of the human organic cation transporter OCT2: a comparison of metformin with experimental substrates. PLoS One. 2015;10(9):e0136451.PubMedPubMedCentralCrossRef Hacker K, Maas R, Kornhuber J, Fromm MF, Zolk O. Substrate-dependent inhibition of the human organic cation transporter OCT2: a comparison of metformin with experimental substrates. PLoS One. 2015;10(9):e0136451.PubMedPubMedCentralCrossRef
370.
Zurück zum Zitat Zheng X, Diao L, Ekins S, Polli JE. Why we should be vigilant: drug cytotoxicity observed with in vitro transporter inhibition studies. Biochem Pharmacol. 2010;80(7):1087–92.PubMedPubMedCentralCrossRef Zheng X, Diao L, Ekins S, Polli JE. Why we should be vigilant: drug cytotoxicity observed with in vitro transporter inhibition studies. Biochem Pharmacol. 2010;80(7):1087–92.PubMedPubMedCentralCrossRef
371.
Zurück zum Zitat Dahan A, Sabit H, Amidon G. The H2 receptor antagonist nizatidine is a P-glycoprotein substrate: characterization of its intestinal epithelial cell efflux transport. AAPS J. 2009;11(2):205–13.PubMedPubMedCentralCrossRef Dahan A, Sabit H, Amidon G. The H2 receptor antagonist nizatidine is a P-glycoprotein substrate: characterization of its intestinal epithelial cell efflux transport. AAPS J. 2009;11(2):205–13.PubMedPubMedCentralCrossRef
372.
Zurück zum Zitat Morrissey KM, Stocker SL, Chen EC, Castro RA, Brett CM, Giacomini KM. The effect of nizatidine, a MATE2K selective inhibitor, on the pharmacokinetics and pharmacodynamics of metformin in healthy volunteers. Clin Pharmacokinet. 2015;55(4):495–506.CrossRef Morrissey KM, Stocker SL, Chen EC, Castro RA, Brett CM, Giacomini KM. The effect of nizatidine, a MATE2K selective inhibitor, on the pharmacokinetics and pharmacodynamics of metformin in healthy volunteers. Clin Pharmacokinet. 2015;55(4):495–506.CrossRef
373.
Zurück zum Zitat Sugawara M, Mochizuki T, Takekuma Y, Miyazaki K. Structure–affinity relationship in the interactions of human organic anion transporter 1 with caffeine, theophylline, theobromine and their metabolites. Biochim Biophys Acta. 2005;1714(2):85–92.PubMedCrossRef Sugawara M, Mochizuki T, Takekuma Y, Miyazaki K. Structure–affinity relationship in the interactions of human organic anion transporter 1 with caffeine, theophylline, theobromine and their metabolites. Biochim Biophys Acta. 2005;1714(2):85–92.PubMedCrossRef
374.
Zurück zum Zitat Breedveld P, Zelcer N, Pluim D, Sönmezer Ö, Tibben MM, Beijnen JH, et al. Mechanism of the pharmacokinetic interaction between methotrexate and benzimidazoles. Cancer Res. 2004;64(16):5804–11.PubMedCrossRef Breedveld P, Zelcer N, Pluim D, Sönmezer Ö, Tibben MM, Beijnen JH, et al. Mechanism of the pharmacokinetic interaction between methotrexate and benzimidazoles. Cancer Res. 2004;64(16):5804–11.PubMedCrossRef
375.
Zurück zum Zitat Poirier A, Cascais AC, Bader U, Portmann R, Brun ME, Walter I, et al. Calibration of in vitro multidrug resistance protein 1 substrate and inhibition assays as a basis to support the prediction of clinically relevant interactions in vivo. Drug Metab Dispos. 2014;42(9):1411–22.PubMedCrossRef Poirier A, Cascais AC, Bader U, Portmann R, Brun ME, Walter I, et al. Calibration of in vitro multidrug resistance protein 1 substrate and inhibition assays as a basis to support the prediction of clinically relevant interactions in vivo. Drug Metab Dispos. 2014;42(9):1411–22.PubMedCrossRef
376.
Zurück zum Zitat Welch MA, Köck K, Urban TJ, Brouwer KLR, Swaan PW. Toward predicting drug-induced liver injury: parallel computational approaches to identify multidrug resistance protein 4 and bile salt export pump inhibitors. Drug Metab Dispos. 2015;43(5):725–34.PubMedPubMedCentralCrossRef Welch MA, Köck K, Urban TJ, Brouwer KLR, Swaan PW. Toward predicting drug-induced liver injury: parallel computational approaches to identify multidrug resistance protein 4 and bile salt export pump inhibitors. Drug Metab Dispos. 2015;43(5):725–34.PubMedPubMedCentralCrossRef
377.
Zurück zum Zitat Kido Y, Matsson PR, Giacomini KM. Profiling of a prescription drug library for potential renal drug–drug interactions mediated by the organic cation transporter 2. J Med Chem. 2011;54(13):4548–58.PubMedPubMedCentralCrossRef Kido Y, Matsson PR, Giacomini KM. Profiling of a prescription drug library for potential renal drug–drug interactions mediated by the organic cation transporter 2. J Med Chem. 2011;54(13):4548–58.PubMedPubMedCentralCrossRef
378.
379.
Zurück zum Zitat Morgan RE, van Staden CJ, Chen Y, Kalyanaraman N, Kalanzi J, Dunn RT, et al. A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development. Toxicol Sci. 2013;136(1):216–41.PubMedCrossRef Morgan RE, van Staden CJ, Chen Y, Kalyanaraman N, Kalanzi J, Dunn RT, et al. A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development. Toxicol Sci. 2013;136(1):216–41.PubMedCrossRef
380.
Zurück zum Zitat Minuesa G, Volk C, Molina-Arcas M, Gorboulev V, Erkizia I, Arndt P, et al. Transport of lamivudine [(-)-{beta}-L-2’,3’-dideoxy-3’-thiacytidine] and high-affinity interaction of nucleoside reverse transcriptase inhibitors with human organic cation transporters 1, 2, and 3. J Pharmacol Exp Ther. 2009;329(1):252–61.PubMedCrossRef Minuesa G, Volk C, Molina-Arcas M, Gorboulev V, Erkizia I, Arndt P, et al. Transport of lamivudine [(-)-{beta}-L-2’,3’-dideoxy-3’-thiacytidine] and high-affinity interaction of nucleoside reverse transcriptase inhibitors with human organic cation transporters 1, 2, and 3. J Pharmacol Exp Ther. 2009;329(1):252–61.PubMedCrossRef
381.
Zurück zum Zitat Schwab D, Fischer H, Tabatabaei A, Poli S, Huwyler J. Comparison of in vitro P-glycoprotein screening assays: recommendations for their use in drug discovery. J Med Chem. 2003;46(9):1716–25.PubMedCrossRef Schwab D, Fischer H, Tabatabaei A, Poli S, Huwyler J. Comparison of in vitro P-glycoprotein screening assays: recommendations for their use in drug discovery. J Med Chem. 2003;46(9):1716–25.PubMedCrossRef
382.
Zurück zum Zitat Troutman MD, Thakker DR. Novel experimental parameters to quantify the modulation of absorptive and secretory transport of compounds by P-glycoprotein in cell culture models of intestinal epithelium. Pharm Res. 2003;20(8):1210–24.PubMedCrossRef Troutman MD, Thakker DR. Novel experimental parameters to quantify the modulation of absorptive and secretory transport of compounds by P-glycoprotein in cell culture models of intestinal epithelium. Pharm Res. 2003;20(8):1210–24.PubMedCrossRef
383.
Zurück zum Zitat Faassen F, Vogel G, Spanings H, Vromans H. Caco-2 permeability, P-glycoprotein transport ratios and brain penetration of heterocyclic drugs. Int J Pharm. 2003;263(1–2):113–22.PubMedCrossRef Faassen F, Vogel G, Spanings H, Vromans H. Caco-2 permeability, P-glycoprotein transport ratios and brain penetration of heterocyclic drugs. Int J Pharm. 2003;263(1–2):113–22.PubMedCrossRef
384.
Zurück zum Zitat Müller J, Lips KS, Metzner L, Neubert RHH, Koepsell H, Brandsch M. Drug specificity and intestinal membrane localization of human organic cation transporters (OCT). Biochem Pharmacol. 2005;70(12):1851–60.PubMedCrossRef Müller J, Lips KS, Metzner L, Neubert RHH, Koepsell H, Brandsch M. Drug specificity and intestinal membrane localization of human organic cation transporters (OCT). Biochem Pharmacol. 2005;70(12):1851–60.PubMedCrossRef
385.
Zurück zum Zitat Somogyi A, Muirhead M. Pharmacokinetic interactions of cimetidine 1987. Clin Pharmacokinet. 1987;12(5):321–66.PubMedCrossRef Somogyi A, Muirhead M. Pharmacokinetic interactions of cimetidine 1987. Clin Pharmacokinet. 1987;12(5):321–66.PubMedCrossRef
386.
Zurück zum Zitat Diao L, Ekins S, Polli JE. Novel inhibitors of human organic cation/carnitine transporter (hOCTN2) via computational modeling and in vitro testing. Pharm Res. 2009;26(8):1890–900.PubMedPubMedCentralCrossRef Diao L, Ekins S, Polli JE. Novel inhibitors of human organic cation/carnitine transporter (hOCTN2) via computational modeling and in vitro testing. Pharm Res. 2009;26(8):1890–900.PubMedPubMedCentralCrossRef
387.
Zurück zum Zitat Kido Y, Matsson P, Giacomini KM. Profiling of a prescription drug library for potential renal drug–drug interactions mediated by the organic cation transporter 2. J Med Chem. 2011;54(13):4548–58.PubMedPubMedCentralCrossRef Kido Y, Matsson P, Giacomini KM. Profiling of a prescription drug library for potential renal drug–drug interactions mediated by the organic cation transporter 2. J Med Chem. 2011;54(13):4548–58.PubMedPubMedCentralCrossRef
388.
Zurück zum Zitat Pan Y, Chothe PP, Swaan PW. Identification of novel breast cancer resistance protein (BCRP) inhibitors by virtual screening. Mol Pharm. 2013;10(4):1236–48.PubMedCrossRef Pan Y, Chothe PP, Swaan PW. Identification of novel breast cancer resistance protein (BCRP) inhibitors by virtual screening. Mol Pharm. 2013;10(4):1236–48.PubMedCrossRef
389.
Zurück zum Zitat Cheng Z, Liu H, Yu N, Wang F, An G, Xu Y, et al. Hydrophilic anti-migraine triptans are substrates for OATP1A2, a transporter expressed at human blood–brain barrier. Xenobiotica. 2012;42(9):880–90.PubMedCrossRef Cheng Z, Liu H, Yu N, Wang F, An G, Xu Y, et al. Hydrophilic anti-migraine triptans are substrates for OATP1A2, a transporter expressed at human blood–brain barrier. Xenobiotica. 2012;42(9):880–90.PubMedCrossRef
390.
Zurück zum Zitat Zoto T, Kilickap S, Yasar U, Celik I, Bozkurt A, Babaoglu MO. Improved anti-emetic efficacy of 5-HT3 receptor antagonists in cancer patients with genetic polymorphisms of ABCB1 (MDR1) drug transporter. Basic Clin Pharmacol Toxicol. 2015;116(4):354–60.PubMedCrossRef Zoto T, Kilickap S, Yasar U, Celik I, Bozkurt A, Babaoglu MO. Improved anti-emetic efficacy of 5-HT3 receptor antagonists in cancer patients with genetic polymorphisms of ABCB1 (MDR1) drug transporter. Basic Clin Pharmacol Toxicol. 2015;116(4):354–60.PubMedCrossRef
391.
Zurück zum Zitat Ibrahim S, Peggins J, Knapton A, Licht T, Aszalos A. Influence of antipsychotic, antiemetic, and Ca2+ channel blocker drugs on the cellular accumulation of the anticancer drug daunorubicin: P-glycoprotein modulation. J Pharmacol Exp Ther. 2000;295(3):1276–83.PubMed Ibrahim S, Peggins J, Knapton A, Licht T, Aszalos A. Influence of antipsychotic, antiemetic, and Ca2+ channel blocker drugs on the cellular accumulation of the anticancer drug daunorubicin: P-glycoprotein modulation. J Pharmacol Exp Ther. 2000;295(3):1276–83.PubMed
392.
Zurück zum Zitat Ullrich KJ, Rumrich G, David C, Fritzsch G. Bisubstrates: substances that interact with renal contraluminal organic anion and organic cation transport systems. Pflügers Arch. 1993;425(3):280–99.PubMedCrossRef Ullrich KJ, Rumrich G, David C, Fritzsch G. Bisubstrates: substances that interact with renal contraluminal organic anion and organic cation transport systems. Pflügers Arch. 1993;425(3):280–99.PubMedCrossRef
393.
Zurück zum Zitat Pottier G, Marie S, Goutal S, Auvity S, Peyronneau M-A, Stute S, et al. Imaging the impact of the P-glycoprotein (ABCB1) function on the brain kinetics of metoclopramide. J Nucl Med. 2016;57(2):309–14.PubMedCrossRef Pottier G, Marie S, Goutal S, Auvity S, Peyronneau M-A, Stute S, et al. Imaging the impact of the P-glycoprotein (ABCB1) function on the brain kinetics of metoclopramide. J Nucl Med. 2016;57(2):309–14.PubMedCrossRef
394.
Zurück zum Zitat Choi EM, Lee MG, Lee SH, Choi KW, Choi SH. Association of ABCB1 polymorphisms with the efficacy of ondansetron for postoperative nausea and vomiting. Anaesthesia. 2010;65(10):996–1000.PubMedCrossRef Choi EM, Lee MG, Lee SH, Choi KW, Choi SH. Association of ABCB1 polymorphisms with the efficacy of ondansetron for postoperative nausea and vomiting. Anaesthesia. 2010;65(10):996–1000.PubMedCrossRef
395.
Zurück zum Zitat Saitoh H, Aungst BJ. Possible involvement of multiple P-glycoprotein-mediated efflux systems in the transport of verapamil and other organic cations across rat intestine. Pharm Res. 1995;12(9):1304–10.PubMedCrossRef Saitoh H, Aungst BJ. Possible involvement of multiple P-glycoprotein-mediated efflux systems in the transport of verapamil and other organic cations across rat intestine. Pharm Res. 1995;12(9):1304–10.PubMedCrossRef
396.
Zurück zum Zitat Davenport JM, Covington P, Bonifacio L, McIntyre G, Venitz J. Effect of uptake transporters OAT3 and OATP1B1 and efflux transporter MRP2 on the pharmacokinetics of eluxadoline. J Clin Pharmacol. 2015;55(5):534–42.PubMedPubMedCentralCrossRef Davenport JM, Covington P, Bonifacio L, McIntyre G, Venitz J. Effect of uptake transporters OAT3 and OATP1B1 and efflux transporter MRP2 on the pharmacokinetics of eluxadoline. J Clin Pharmacol. 2015;55(5):534–42.PubMedPubMedCentralCrossRef
397.
Zurück zum Zitat Wandel C, Kim R, Wood M, Wood A. Interaction of morphine, fentanyl, sufentanil, alfentanil, and loperamide with the efflux drug transporter P-glycoprotein. Anesthesiology. 2002;96(4):913–20.PubMedCrossRef Wandel C, Kim R, Wood M, Wood A. Interaction of morphine, fentanyl, sufentanil, alfentanil, and loperamide with the efflux drug transporter P-glycoprotein. Anesthesiology. 2002;96(4):913–20.PubMedCrossRef
398.
Zurück zum Zitat Liu HC, Goldenberg A, Chen Y, Lun C, Wu W, Bush KT, et al. Molecular properties of drugs interacting with SLC22 transporters OAT1, OAT3, OCT1, and OCT2: a machine-learning approach. J Pharmacol Exp Ther. 2016;359(1):215–29.PubMedCrossRef Liu HC, Goldenberg A, Chen Y, Lun C, Wu W, Bush KT, et al. Molecular properties of drugs interacting with SLC22 transporters OAT1, OAT3, OCT1, and OCT2: a machine-learning approach. J Pharmacol Exp Ther. 2016;359(1):215–29.PubMedCrossRef
399.
Zurück zum Zitat Kusuhara H, Han YH, Shimoda M, Kokue E, Suzuki H, Sugiyama Y. Reduced folate derivatives are endogenous substrates for cMOAT in rats. AJP Gastrointest Liver Physiol. 1998;275(4):G789–96. Kusuhara H, Han YH, Shimoda M, Kokue E, Suzuki H, Sugiyama Y. Reduced folate derivatives are endogenous substrates for cMOAT in rats. AJP Gastrointest Liver Physiol. 1998;275(4):G789–96.
400.
Zurück zum Zitat Kato K, Mori H, Kito T, Yokochi M, Ito S, Inoue K, et al. Investigation of endogenous compounds for assessing the drug interactions in the urinary excretion involving multidrug and toxin extrusion proteins. Pharm Res. 2013;2013(08/02):1–12. Kato K, Mori H, Kito T, Yokochi M, Ito S, Inoue K, et al. Investigation of endogenous compounds for assessing the drug interactions in the urinary excretion involving multidrug and toxin extrusion proteins. Pharm Res. 2013;2013(08/02):1–12.
401.
Zurück zum Zitat Kobayashi Y, Ohshiro N, Tsuchiya A, Kohyama N, Ohbayashi M, Yamamoto T. Renal transport of organic compounds mediated by mouse organic anion transporter 3 (mOat3): further substrate specificity of mOat3. Drug Metab Dispos. 2004;32(5):479–83.PubMedCrossRef Kobayashi Y, Ohshiro N, Tsuchiya A, Kohyama N, Ohbayashi M, Yamamoto T. Renal transport of organic compounds mediated by mouse organic anion transporter 3 (mOat3): further substrate specificity of mOat3. Drug Metab Dispos. 2004;32(5):479–83.PubMedCrossRef
402.
Zurück zum Zitat Lancaster CS, Hu C, Franke RM, Filipski KK, Orwick SJ, Chen Z, et al. Cisplatin-induced downregulation of OCTN2 affects carnitine wasting. Clin Cancer Res. 2010;16(19):4789–99.PubMedPubMedCentralCrossRef Lancaster CS, Hu C, Franke RM, Filipski KK, Orwick SJ, Chen Z, et al. Cisplatin-induced downregulation of OCTN2 affects carnitine wasting. Clin Cancer Res. 2010;16(19):4789–99.PubMedPubMedCentralCrossRef
403.
Zurück zum Zitat Uwai Y, Okuda M, Takami K, Hashimoto Y, Inui KI. Functional characterization of the rat multispecific organic anion transporter OAT1 mediating basolateral uptake of anionic drugs in the kidney. FEBS Lett. 1998;438(3):321–4.PubMedCrossRef Uwai Y, Okuda M, Takami K, Hashimoto Y, Inui KI. Functional characterization of the rat multispecific organic anion transporter OAT1 mediating basolateral uptake of anionic drugs in the kidney. FEBS Lett. 1998;438(3):321–4.PubMedCrossRef
404.
Zurück zum Zitat Badagnani I, Castro RA, Taylor TR, Brett CM, Huang CC, Stryke D, et al. Interaction of methotrexate with organic-anion transporting polypeptide 1A2 and its genetic variants. J Pharmacol Exp Ther. 2006;318(2):521–9.PubMedCrossRef Badagnani I, Castro RA, Taylor TR, Brett CM, Huang CC, Stryke D, et al. Interaction of methotrexate with organic-anion transporting polypeptide 1A2 and its genetic variants. J Pharmacol Exp Ther. 2006;318(2):521–9.PubMedCrossRef
405.
Zurück zum Zitat Ifergan I, Shafran A, Jansen G, Hooijberg JH, Scheffer GL, Assaraf YG. Folate deprivation results in the loss of breast cancer resistance protein (BCRP/ABCG2) expression: a role for BCRP in cellular folate homeostasis. J Biol Chem. 2004;279(24):25527–34.PubMedCrossRef Ifergan I, Shafran A, Jansen G, Hooijberg JH, Scheffer GL, Assaraf YG. Folate deprivation results in the loss of breast cancer resistance protein (BCRP/ABCG2) expression: a role for BCRP in cellular folate homeostasis. J Biol Chem. 2004;279(24):25527–34.PubMedCrossRef
406.
Zurück zum Zitat Furuta S, Smart C, Hackett A, Benning R, Warrington S. Pharmacokinetics and metabolism of [14C]anagliptin, a novel dipeptidyl peptidase-4 inhibitor, in humans. Xenobiotica. 2013;43(5):432–42.PubMedCrossRef Furuta S, Smart C, Hackett A, Benning R, Warrington S. Pharmacokinetics and metabolism of [14C]anagliptin, a novel dipeptidyl peptidase-4 inhibitor, in humans. Xenobiotica. 2013;43(5):432–42.PubMedCrossRef
407.
Zurück zum Zitat Devineni D, Polidori D. Clinical pharmacokinetic, pharmacodynamic, and drug–drug interaction profile of canagliflozin, a sodium-glucose co-transporter 2 inhibitor. Clin Pharmacokinet. 2015;54(10):1027–41.PubMedCrossRef Devineni D, Polidori D. Clinical pharmacokinetic, pharmacodynamic, and drug–drug interaction profile of canagliflozin, a sodium-glucose co-transporter 2 inhibitor. Clin Pharmacokinet. 2015;54(10):1027–41.PubMedCrossRef
409.
Zurück zum Zitat Uwai Y, Saito H, Hashimoto Y, Inui KI. Inhibitory effect of anti-diabetic agents on rat organic anion transporter rOAT1. Eur J Pharmacol. 2000;398(2):193–7.PubMedCrossRef Uwai Y, Saito H, Hashimoto Y, Inui KI. Inhibitory effect of anti-diabetic agents on rat organic anion transporter rOAT1. Eur J Pharmacol. 2000;398(2):193–7.PubMedCrossRef
410.
Zurück zum Zitat Obermeier M, Yao M, Khanna A, Koplowitz B, Zhu M, Li W, et al. In vitro characterization and pharmacokinetics of dapagliflozin (BMS-512148), a potent sodium-glucose cotransporter type II inhibitor, in animals and humans. Drug Metab Dispos. 2010;38(3):405–14.PubMedCrossRef Obermeier M, Yao M, Khanna A, Koplowitz B, Zhu M, Li W, et al. In vitro characterization and pharmacokinetics of dapagliflozin (BMS-512148), a potent sodium-glucose cotransporter type II inhibitor, in animals and humans. Drug Metab Dispos. 2010;38(3):405–14.PubMedCrossRef
411.
Zurück zum Zitat Macha S, Koenen R, Sennewald R, Schone K, Hummel N, Riedmaier S, et al. Effect of gemfibrozil, rifampicin, or probenecid on the pharmacokinetics of the SGLT2 inhibitor empagliflozin in healthy volunteers. Clin Ther. 2014;36(2):280–90.e1. Macha S, Koenen R, Sennewald R, Schone K, Hummel N, Riedmaier S, et al. Effect of gemfibrozil, rifampicin, or probenecid on the pharmacokinetics of the SGLT2 inhibitor empagliflozin in healthy volunteers. Clin Ther. 2014;36(2):280–90.e1.
412.
Zurück zum Zitat Scheen AJ. Pharmacokinetic and pharmacodynamic profile of empagliflozin, a sodium glucose co-transporter 2 inhibitor. Clin Pharmacokinet. 2014;53(3):213–25.PubMedPubMedCentralCrossRef Scheen AJ. Pharmacokinetic and pharmacodynamic profile of empagliflozin, a sodium glucose co-transporter 2 inhibitor. Clin Pharmacokinet. 2014;53(3):213–25.PubMedPubMedCentralCrossRef
413.
Zurück zum Zitat Koenen A, Kock K, Keiser M, Siegmund W, Kroemer HK, Grube M. Steroid hormones specifically modify the activity of organic anion transporting polypeptides. Eur J Pharm Sci. 2012;47(4):774–80.PubMedCrossRef Koenen A, Kock K, Keiser M, Siegmund W, Kroemer HK, Grube M. Steroid hormones specifically modify the activity of organic anion transporting polypeptides. Eur J Pharm Sci. 2012;47(4):774–80.PubMedCrossRef
414.
Zurück zum Zitat Payen L, Delugin L, Courtois A, Trinquart Y, Guillouzo A, Fardel O. The sulphonylurea glibenclamide inhibits multidrug resistance protein (MRP1) activity in human lung cancer cells. Br J Pharmacol. 2001;132(3):778–84.PubMedPubMedCentralCrossRef Payen L, Delugin L, Courtois A, Trinquart Y, Guillouzo A, Fardel O. The sulphonylurea glibenclamide inhibits multidrug resistance protein (MRP1) activity in human lung cancer cells. Br J Pharmacol. 2001;132(3):778–84.PubMedPubMedCentralCrossRef
415.
Zurück zum Zitat Tournier N, Saba W, Cisternino S, Peyronneau MA, Damont A, Goutal S, et al. Effects of selected OATP and/or ABC transporter inhibitors on the brain and whole-body distribution of glyburide. AAPS J. 2013;15(4):1082–90.PubMedPubMedCentralCrossRef Tournier N, Saba W, Cisternino S, Peyronneau MA, Damont A, Goutal S, et al. Effects of selected OATP and/or ABC transporter inhibitors on the brain and whole-body distribution of glyburide. AAPS J. 2013;15(4):1082–90.PubMedPubMedCentralCrossRef
416.
Zurück zum Zitat Varma MVS, Scialis RJ, Lin J, Bi Y-A, Rotter CJ, Goosen TC, et al. Mechanism-based pharmacokinetic modeling to evaluate transporter-enzyme interplay in drug interactions and pharmacogenetics of glyburide. AAPS J. 2014;16(4):736–48.PubMedPubMedCentralCrossRef Varma MVS, Scialis RJ, Lin J, Bi Y-A, Rotter CJ, Goosen TC, et al. Mechanism-based pharmacokinetic modeling to evaluate transporter-enzyme interplay in drug interactions and pharmacogenetics of glyburide. AAPS J. 2014;16(4):736–48.PubMedPubMedCentralCrossRef
418.
Zurück zum Zitat Ishiguro N, Shimizu H, Kishimoto W, Ebner T, Schaefer O. Evaluation and prediction of potential drug–drug interactions of linagliptin using in vitro cell culture methods. Drug Metab Dispos. 2013;41(1):149–58.PubMedCrossRef Ishiguro N, Shimizu H, Kishimoto W, Ebner T, Schaefer O. Evaluation and prediction of potential drug–drug interactions of linagliptin using in vitro cell culture methods. Drug Metab Dispos. 2013;41(1):149–58.PubMedCrossRef
419.
Zurück zum Zitat Kimura N, Masuda S, Tanihara Y, Ueo H, Okuda M, Katsura T, et al. Metformin is a superior substrate for renal organic cation transporter OCT2 rather than hepatic OCT1. Drug Metab Pharmacokinet. 2005;20(5):379–86.PubMedCrossRef Kimura N, Masuda S, Tanihara Y, Ueo H, Okuda M, Katsura T, et al. Metformin is a superior substrate for renal organic cation transporter OCT2 rather than hepatic OCT1. Drug Metab Pharmacokinet. 2005;20(5):379–86.PubMedCrossRef
420.
Zurück zum Zitat Dresser MJ, Xiao G, Leabman MK, Gray AT, Giacomini KM. Interactions of n-tetraalkylammonium compounds and biguanides with a human renal organic cation transporter (hOCT2). Pharm Res. 2002;19(8):1244–7.PubMedCrossRef Dresser MJ, Xiao G, Leabman MK, Gray AT, Giacomini KM. Interactions of n-tetraalkylammonium compounds and biguanides with a human renal organic cation transporter (hOCT2). Pharm Res. 2002;19(8):1244–7.PubMedCrossRef
421.
Zurück zum Zitat Futatsugi A, Masuo Y, Kawabata S, Nakamichi N, Kato Y. L503F variant of carnitine/organic cation transporter 1 efficiently transports metformin and other biguanides. J Pharm Pharmacol. 2016;68(9):1160–9.PubMedCrossRef Futatsugi A, Masuo Y, Kawabata S, Nakamichi N, Kato Y. L503F variant of carnitine/organic cation transporter 1 efficiently transports metformin and other biguanides. J Pharm Pharmacol. 2016;68(9):1160–9.PubMedCrossRef
422.
Zurück zum Zitat Yoon H, Cho HY, Yoo HD, Kim SM, Lee YB. Influences of organic cation transporter polymorphisms on the population pharmacokinetics of metformin in healthy subjects. AAPS J. 2013;15(2):571–80.PubMedPubMedCentralCrossRef Yoon H, Cho HY, Yoo HD, Kim SM, Lee YB. Influences of organic cation transporter polymorphisms on the population pharmacokinetics of metformin in healthy subjects. AAPS J. 2013;15(2):571–80.PubMedPubMedCentralCrossRef
423.
Zurück zum Zitat Uchida Y, Kamiie J, Ohtsuki S, Terasaki T. Multichannel liquid chromatography-tandem mass spectrometry cocktail method for comprehensive substrate characterization of multidrug resistance-associated protein 4 transporter. Pharm Res. 2007;24(12):2281–96.PubMedCrossRef Uchida Y, Kamiie J, Ohtsuki S, Terasaki T. Multichannel liquid chromatography-tandem mass spectrometry cocktail method for comprehensive substrate characterization of multidrug resistance-associated protein 4 transporter. Pharm Res. 2007;24(12):2281–96.PubMedCrossRef
424.
Zurück zum Zitat Kalsi HH, Grewal RKR. Interaction of mouse intestinal P-glycoprotein with oral antidiabetic drugs and its inhibitors. Indian J Exp Biol. 2015;53(9):611–6.PubMed Kalsi HH, Grewal RKR. Interaction of mouse intestinal P-glycoprotein with oral antidiabetic drugs and its inhibitors. Indian J Exp Biol. 2015;53(9):611–6.PubMed
425.
Zurück zum Zitat Suhre WM, Ekins S, Chang C, Swaan PW, Wright SH. Molecular determinants of substrate/inhibitor binding to the human and rabbit renal organic cation transporters hOCT2 and rbOCT2. Mol Pharmacol. 2005;67(4):1067–77.PubMedCrossRef Suhre WM, Ekins S, Chang C, Swaan PW, Wright SH. Molecular determinants of substrate/inhibitor binding to the human and rabbit renal organic cation transporters hOCT2 and rbOCT2. Mol Pharmacol. 2005;67(4):1067–77.PubMedCrossRef
426.
Zurück zum Zitat Shitara Y, Nakamichi N, Norioka M, Shima H, Kato Y, Horie T. Role of organic cation/carnitine transporter 1 in uptake of phenformin and inhibitory effect on complex I respiration in mitochondria. Toxicol Sci. 2013;132(1):32–42.PubMedCrossRef Shitara Y, Nakamichi N, Norioka M, Shima H, Kato Y, Horie T. Role of organic cation/carnitine transporter 1 in uptake of phenformin and inhibitory effect on complex I respiration in mitochondria. Toxicol Sci. 2013;132(1):32–42.PubMedCrossRef
427.
Zurück zum Zitat Min-Koo C, et al. Blockade of P-glycoprotein decreased the disposition of phenformin and increased plasma lactate level. Biomol Ther. 2016;24(2):199–205.CrossRef Min-Koo C, et al. Blockade of P-glycoprotein decreased the disposition of phenformin and increased plasma lactate level. Biomol Ther. 2016;24(2):199–205.CrossRef
428.
Zurück zum Zitat Müller F, König J, Hoier E, Mandery K, Fromm MF. Role of organic cation transporter OCT2 and multidrug and toxin extrusion proteins MATE1 and MATE2-K for transport and drug interactions of the antiviral lamivudine. Biochem Pharmacol. 2013;86(6):808–15.PubMedCrossRef Müller F, König J, Hoier E, Mandery K, Fromm MF. Role of organic cation transporter OCT2 and multidrug and toxin extrusion proteins MATE1 and MATE2-K for transport and drug interactions of the antiviral lamivudine. Biochem Pharmacol. 2013;86(6):808–15.PubMedCrossRef
429.
Zurück zum Zitat Horikawa M, Kato Y, Tyson CA, Sugiyama Y. The potential for an interaction between MRP2 (ABCC2) and various therapeutic agents: probenecid as a candidate inhibitor of the biliary excretion of irinotecan metabolites. Drug Metab Pharmacokinet. 2002;17(1):23–33.PubMedCrossRef Horikawa M, Kato Y, Tyson CA, Sugiyama Y. The potential for an interaction between MRP2 (ABCC2) and various therapeutic agents: probenecid as a candidate inhibitor of the biliary excretion of irinotecan metabolites. Drug Metab Pharmacokinet. 2002;17(1):23–33.PubMedCrossRef
430.
Zurück zum Zitat Wang EJ, Casciano CN, Clement RP, Johnson WW. HMG-CoA reductase inhibitors (statins) characterized as direct inhibitors of P-glycoprotein. Pharm Res. 2001;18(6):800–6.PubMedCrossRef Wang EJ, Casciano CN, Clement RP, Johnson WW. HMG-CoA reductase inhibitors (statins) characterized as direct inhibitors of P-glycoprotein. Pharm Res. 2001;18(6):800–6.PubMedCrossRef
431.
Zurück zum Zitat Keskitalo JE, Zolk O, Fromm MF, Kurkinen KJ, Neuvonen PJ, Niemi M. ABCG2 polymorphism markedly affects the pharmacokinetics of atorvastatin and rosuvastatin. Clin Pharmacol Ther. 2009;86(2):197–203.PubMedCrossRef Keskitalo JE, Zolk O, Fromm MF, Kurkinen KJ, Neuvonen PJ, Niemi M. ABCG2 polymorphism markedly affects the pharmacokinetics of atorvastatin and rosuvastatin. Clin Pharmacol Ther. 2009;86(2):197–203.PubMedCrossRef
432.
Zurück zum Zitat Knauer MJ, Urquhart BL, Meyer zu Schwabedissen HE, Schwarz UI, Lemke CJ, Leake BF, et al. Human skeletal muscle drug transporters determine local exposure and toxicity of statins. Circ Res. 2010;106(2):297–306.PubMedCrossRef Knauer MJ, Urquhart BL, Meyer zu Schwabedissen HE, Schwarz UI, Lemke CJ, Leake BF, et al. Human skeletal muscle drug transporters determine local exposure and toxicity of statins. Circ Res. 2010;106(2):297–306.PubMedCrossRef
433.
Zurück zum Zitat Windass AS, Lowes S, Wang Y, Brown CD. The contribution of organic anion transporters OAT1 and OAT3 to the renal uptake of rosuvastatin. J Pharmacol Exp Ther. 2007;322(3):1221–7.PubMedCrossRef Windass AS, Lowes S, Wang Y, Brown CD. The contribution of organic anion transporters OAT1 and OAT3 to the renal uptake of rosuvastatin. J Pharmacol Exp Ther. 2007;322(3):1221–7.PubMedCrossRef
434.
Zurück zum Zitat Grube M, Ameling S, Noutsias M, Köck K, Triebel I, Bonitz K, et al. Selective regulation of cardiac organic cation transporter novel type 2 (OCTN2) in dilated cardiomyopathy. Am J Pathol. 2011;178(6):2547–59.PubMedPubMedCentralCrossRef Grube M, Ameling S, Noutsias M, Köck K, Triebel I, Bonitz K, et al. Selective regulation of cardiac organic cation transporter novel type 2 (OCTN2) in dilated cardiomyopathy. Am J Pathol. 2011;178(6):2547–59.PubMedPubMedCentralCrossRef
435.
Zurück zum Zitat Feng Y, Wang C, Liu Q, Meng Q, Huo X, Liu Z, et al. Bezafibrate-mizoribine interaction: Involvement of organic anion transporters OAT1 and OAT3 in rats. Eur J Pharm Sci. 2016;1(81):119–28.CrossRef Feng Y, Wang C, Liu Q, Meng Q, Huo X, Liu Z, et al. Bezafibrate-mizoribine interaction: Involvement of organic anion transporters OAT1 and OAT3 in rats. Eur J Pharm Sci. 2016;1(81):119–28.CrossRef
436.
Zurück zum Zitat Asavapanumas N, Kittayaruksakul S, Meetam P, Muanprasat C, Chatsudthipong V, Soodvilai S. Fenofibrate down-regulates renal OCT2-mediated organic cation transport via PPARalpha-independent pathways. Drug Metab Pharmacokinet. 2012;27(5):513–9.PubMedCrossRef Asavapanumas N, Kittayaruksakul S, Meetam P, Muanprasat C, Chatsudthipong V, Soodvilai S. Fenofibrate down-regulates renal OCT2-mediated organic cation transport via PPARalpha-independent pathways. Drug Metab Pharmacokinet. 2012;27(5):513–9.PubMedCrossRef
437.
Zurück zum Zitat Yamazaki M, Li B, Louie SW, Pudvah NT, Stocco R, Wong W, et al. Effects of fibrates on human organic anion-transporting polypeptide 1B1-, multidrug resistance protein 2- and P-glycoprotein-mediated transport. Xenobiotica. 2005;35(7):737–53.PubMedCrossRef Yamazaki M, Li B, Louie SW, Pudvah NT, Stocco R, Wong W, et al. Effects of fibrates on human organic anion-transporting polypeptide 1B1-, multidrug resistance protein 2- and P-glycoprotein-mediated transport. Xenobiotica. 2005;35(7):737–53.PubMedCrossRef
438.
Zurück zum Zitat Mukherjee M, Latif ML, Pritchard DI, Bosquillon C. In-cell Western™ detection of organic cation transporters in bronchial epithelial cell layers cultured at an air–liquid interface on Transwell® inserts. J Pharmacol Toxicol Methods. 2013;68(2):184–9.PubMedCrossRef Mukherjee M, Latif ML, Pritchard DI, Bosquillon C. In-cell Western™ detection of organic cation transporters in bronchial epithelial cell layers cultured at an air–liquid interface on Transwell® inserts. J Pharmacol Toxicol Methods. 2013;68(2):184–9.PubMedCrossRef
439.
Zurück zum Zitat Elsby R, Martin P, Surry D, Sharma P, Fenner K. Solitary inhibition of the breast cancer resistance protein efflux transporter results in a clinically significant drug–drug interaction with rosuvastatin by causing up to a 2-fold increase in statin exposure. Drug Metab Dispos. 2016;44(3):398–408.PubMedCrossRef Elsby R, Martin P, Surry D, Sharma P, Fenner K. Solitary inhibition of the breast cancer resistance protein efflux transporter results in a clinically significant drug–drug interaction with rosuvastatin by causing up to a 2-fold increase in statin exposure. Drug Metab Dispos. 2016;44(3):398–408.PubMedCrossRef
440.
Zurück zum Zitat Zhou Q. Ruan Zr, Yuan H, Zeng S. CYP2C9*3(1075A>C), MDR1 G2677T/A and MDR1 C3435T are determinants of inter-subject variability in fluvastatin pharmacokinetics in healthy Chinese volunteers. Arzneimittelforschung. 2012;62(11):519–24.PubMedCrossRef Zhou Q. Ruan Zr, Yuan H, Zeng S. CYP2C9*3(1075A>C), MDR1 G2677T/A and MDR1 C3435T are determinants of inter-subject variability in fluvastatin pharmacokinetics in healthy Chinese volunteers. Arzneimittelforschung. 2012;62(11):519–24.PubMedCrossRef
441.
Zurück zum Zitat Ellis LCJ, Hawksworth GM, Weaver RJ. ATP-dependent transport of statins by human and rat MRP2/Mrp2. Toxicol Appl Pharmacol. 2013;269(2):187–94.PubMedCrossRef Ellis LCJ, Hawksworth GM, Weaver RJ. ATP-dependent transport of statins by human and rat MRP2/Mrp2. Toxicol Appl Pharmacol. 2013;269(2):187–94.PubMedCrossRef
442.
Zurück zum Zitat Li J, Volpe DA, Wang Y, Zhang W, Bode C, Owen A, et al. Use of transporter knockdown Caco-2 cells to investigate the in vitro efflux of statin drugs. Drug Metab Dispos. 2011;39(7):1196–202.PubMedCrossRef Li J, Volpe DA, Wang Y, Zhang W, Bode C, Owen A, et al. Use of transporter knockdown Caco-2 cells to investigate the in vitro efflux of statin drugs. Drug Metab Dispos. 2011;39(7):1196–202.PubMedCrossRef
443.
Zurück zum Zitat Takeda M, Noshiro R, Onozato ML, Tojo A, Hasannejad H, Huang X-L, et al. Evidence for a role of human organic anion transporters in the muscular side effects of HMG-CoA reductase inhibitors. Eur J Pharmacol. 2004;483(2–3):133–8.PubMedCrossRef Takeda M, Noshiro R, Onozato ML, Tojo A, Hasannejad H, Huang X-L, et al. Evidence for a role of human organic anion transporters in the muscular side effects of HMG-CoA reductase inhibitors. Eur J Pharmacol. 2004;483(2–3):133–8.PubMedCrossRef
444.
Zurück zum Zitat Nakagomi-Hagihara R, Nakai D, Tokui T. Inhibition of human organic anion transporter 3 mediated pravastatin transport by gemfibrozil and the metabolites in humans. Xenobiotica. 2007;37(4):416–26.PubMedCrossRef Nakagomi-Hagihara R, Nakai D, Tokui T. Inhibition of human organic anion transporter 3 mediated pravastatin transport by gemfibrozil and the metabolites in humans. Xenobiotica. 2007;37(4):416–26.PubMedCrossRef
445.
Zurück zum Zitat Watanabe T, Kusuhara H, Watanabe T, Debori Y, Maeda K, Kondo T, et al. Prediction of the overall renal tubular secretion and hepatic clearance of anionic drugs and a renal drug–drug interaction involving organic anion transporter 3 in humans by in vitro uptake experiments. Drug Metab Dispos. 2011;39(6):1031–8.PubMedCrossRef Watanabe T, Kusuhara H, Watanabe T, Debori Y, Maeda K, Kondo T, et al. Prediction of the overall renal tubular secretion and hepatic clearance of anionic drugs and a renal drug–drug interaction involving organic anion transporter 3 in humans by in vitro uptake experiments. Drug Metab Dispos. 2011;39(6):1031–8.PubMedCrossRef
446.
Zurück zum Zitat Kimoto E, Li R, Scialis RJ, Lai Y, Varma MV. Hepatic disposition of gemfibrozil and its major metabolite gemfibrozil 1-O-beta-glucuronide. Mol Pharm. 2015;12(11):3943–52.PubMedCrossRef Kimoto E, Li R, Scialis RJ, Lai Y, Varma MV. Hepatic disposition of gemfibrozil and its major metabolite gemfibrozil 1-O-beta-glucuronide. Mol Pharm. 2015;12(11):3943–52.PubMedCrossRef
447.
Zurück zum Zitat Cvetkovic M, Leake B, Fromm MF, Wilkinson GR, Kim RB. OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab Dispos. 1999;27(8):866–71.PubMed Cvetkovic M, Leake B, Fromm MF, Wilkinson GR, Kim RB. OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab Dispos. 1999;27(8):866–71.PubMed
448.
Zurück zum Zitat Fujino H, Saito T, Ogawa S-I, Kojima J. Transporter-mediated influx and efflux mechanisms of pitavastatin, a new inhibitor of HMG-CoA reductase. J Pharm Pharmacol. 2005;57(10):1305–11.PubMedCrossRef Fujino H, Saito T, Ogawa S-I, Kojima J. Transporter-mediated influx and efflux mechanisms of pitavastatin, a new inhibitor of HMG-CoA reductase. J Pharm Pharmacol. 2005;57(10):1305–11.PubMedCrossRef
449.
Zurück zum Zitat Ieiri I, Suwannakul S, Maeda K, Uchimaru H, Hashimoto K, Kimura M, et al. SLCO1B1 (OATP1B1, an uptake transporter) and ABCG2 (BCRP, an efflux transporter) variant alleles and pharmacokinetics of pitavastatin in healthy volunteers. Clin Pharmacol Ther. 2007;82(5):541–7.PubMedCrossRef Ieiri I, Suwannakul S, Maeda K, Uchimaru H, Hashimoto K, Kimura M, et al. SLCO1B1 (OATP1B1, an uptake transporter) and ABCG2 (BCRP, an efflux transporter) variant alleles and pharmacokinetics of pitavastatin in healthy volunteers. Clin Pharmacol Ther. 2007;82(5):541–7.PubMedCrossRef
450.
Zurück zum Zitat Zhou Q, Chen QX, Ruan ZR, Yuan H, Xu HM, Zeng S. CYP2C9*3(1075A>C), ABCB1 and SLCO1B1 genetic polymorphisms and gender are determinants of inter-subject variability in pitavastatin pharmacokinetics. Pharmazie. 2013;68(3):187–94.PubMed Zhou Q, Chen QX, Ruan ZR, Yuan H, Xu HM, Zeng S. CYP2C9*3(1075A>C), ABCB1 and SLCO1B1 genetic polymorphisms and gender are determinants of inter-subject variability in pitavastatin pharmacokinetics. Pharmazie. 2013;68(3):187–94.PubMed
451.
Zurück zum Zitat Oh ES, Kim COK, Cho SK, Park MS, Chung J-Y. Impact of ABCC2, ABCG2 and SLCO1B1 polymorphisms on the pharmacokinetics of pitavastatin in humans. Drug Metab Pharmacokinet. 2013;28(3):196–202.PubMedCrossRef Oh ES, Kim COK, Cho SK, Park MS, Chung J-Y. Impact of ABCC2, ABCG2 and SLCO1B1 polymorphisms on the pharmacokinetics of pitavastatin in humans. Drug Metab Pharmacokinet. 2013;28(3):196–202.PubMedCrossRef
452.
Zurück zum Zitat Vildhede A, Mateus A, Khan EK, Lai Y, Karlgren M, Artursson P, et al. Mechanistic Modeling of pitavastatin disposition in sandwich-cultured human hepatocytes: a proteomics-informed bottom-up approach. Drug Metab Dispos. 2016;44(4):505–16.PubMedCrossRef Vildhede A, Mateus A, Khan EK, Lai Y, Karlgren M, Artursson P, et al. Mechanistic Modeling of pitavastatin disposition in sandwich-cultured human hepatocytes: a proteomics-informed bottom-up approach. Drug Metab Dispos. 2016;44(4):505–16.PubMedCrossRef
453.
Zurück zum Zitat Windass AS, Lowes S, Wang Y, Brown CDA. The contribution of organic anion transporters OAT1 and OAT3 to the renal uptake of rosuvastatin. J Pharmacol Exp Ther. 2007;322(3):1221–7.PubMedCrossRef Windass AS, Lowes S, Wang Y, Brown CDA. The contribution of organic anion transporters OAT1 and OAT3 to the renal uptake of rosuvastatin. J Pharmacol Exp Ther. 2007;322(3):1221–7.PubMedCrossRef
454.
Zurück zum Zitat Matsushima S, Maeda K, Kondo C, Hirano M, Sasaki M, Suzuki H, et al. Identification of the hepatic efflux transporters of organic anions using double-transfected Madin–Darby canine kidney II cells expressing human organic anion-transporting polypeptide 1B1 (OATP1B1)/multidrug resistance-associated protein 2, OATP1B1/multidrug resistance 1, and OATP1B1/breast cancer resistance protein. J Pharmacol Exp Ther. 2005;314(3):1059–67.PubMedCrossRef Matsushima S, Maeda K, Kondo C, Hirano M, Sasaki M, Suzuki H, et al. Identification of the hepatic efflux transporters of organic anions using double-transfected Madin–Darby canine kidney II cells expressing human organic anion-transporting polypeptide 1B1 (OATP1B1)/multidrug resistance-associated protein 2, OATP1B1/multidrug resistance 1, and OATP1B1/breast cancer resistance protein. J Pharmacol Exp Ther. 2005;314(3):1059–67.PubMedCrossRef
455.
Zurück zum Zitat Sasaki M, Suzuki H, Ito K, Abe T, Sugiyama Y. Transcellular transport of organic anions across a double-transfected Madin–Darby canine kidney II cell monolayer expressing both human organic anion-transporting polypeptide (OATP2/SLC21A6) and multidrug resistance-associated protein 2 (MRP2/ABCC2). J Biol Chem. 2002;277(8):6497–503.PubMedCrossRef Sasaki M, Suzuki H, Ito K, Abe T, Sugiyama Y. Transcellular transport of organic anions across a double-transfected Madin–Darby canine kidney II cell monolayer expressing both human organic anion-transporting polypeptide (OATP2/SLC21A6) and multidrug resistance-associated protein 2 (MRP2/ABCC2). J Biol Chem. 2002;277(8):6497–503.PubMedCrossRef
456.
Zurück zum Zitat Hasegawa M, Kusuhara H, Sugiyama D, Ito K, Ueda S, Endou H, et al. Functional involvement of rat organic anion transporter 3 (rOat3; Slc22a8) in the renal uptake of organic anions. J Pharmacol Exp Ther. 2002;300(3):746–53.PubMedCrossRef Hasegawa M, Kusuhara H, Sugiyama D, Ito K, Ueda S, Endou H, et al. Functional involvement of rat organic anion transporter 3 (rOat3; Slc22a8) in the renal uptake of organic anions. J Pharmacol Exp Ther. 2002;300(3):746–53.PubMedCrossRef
457.
Zurück zum Zitat Shirasaka Y, Suzuki K, Nakanishi T, Tamai I. Intestinal absorption of HMG-CoA reductase inhibitor pravastatin mediated by organic anion transporting polypeptide. Pharm Res. 2010;27(10):2141–9.PubMedCrossRef Shirasaka Y, Suzuki K, Nakanishi T, Tamai I. Intestinal absorption of HMG-CoA reductase inhibitor pravastatin mediated by organic anion transporting polypeptide. Pharm Res. 2010;27(10):2141–9.PubMedCrossRef
458.
Zurück zum Zitat Mikkaichi T, Suzuki T, Onogawa T, Tanemoto M, Mizutamari H, Okada M, et al. Isolation and characterization of a digoxin transporter and its rat homologue expressed in the kidney. Proc Natl Acad Sci USA. 2004;101(10):3569–74.PubMedPubMedCentralCrossRef Mikkaichi T, Suzuki T, Onogawa T, Tanemoto M, Mizutamari H, Okada M, et al. Isolation and characterization of a digoxin transporter and its rat homologue expressed in the kidney. Proc Natl Acad Sci USA. 2004;101(10):3569–74.PubMedPubMedCentralCrossRef
459.
Zurück zum Zitat Ho RH, Tirona RG, Leake BF, Glaeser H, Lee W, Lemke CJ, et al. Drug and bile acid transporters in rosuvastatin hepatic uptake: function, expression, and pharmacogenetics. Gastroenterology. 2006;130(6):1793–806.PubMedCrossRef Ho RH, Tirona RG, Leake BF, Glaeser H, Lee W, Lemke CJ, et al. Drug and bile acid transporters in rosuvastatin hepatic uptake: function, expression, and pharmacogenetics. Gastroenterology. 2006;130(6):1793–806.PubMedCrossRef
460.
Zurück zum Zitat Zhang W, Yu B-N, He Y-J, Fan L, Li Q, Liu Z-Q, et al. Role of BCRP 421C>A polymorphism on rosuvastatin pharmacokinetics in healthy Chinese males. Clinica Chimica Acta. 2006;373(1–2):99–103.CrossRef Zhang W, Yu B-N, He Y-J, Fan L, Li Q, Liu Z-Q, et al. Role of BCRP 421C>A polymorphism on rosuvastatin pharmacokinetics in healthy Chinese males. Clinica Chimica Acta. 2006;373(1–2):99–103.CrossRef
461.
Zurück zum Zitat Zhou Q, Ruan ZR, Yuan H, Xu DH, Zeng S. ABCB1 gene polymorphisms, ABCB1 haplotypes and ABCG2 c.421c>A are determinants of inter-subject variability in rosuvastatin pharmacokinetics. Pharmazie. 2013;68(2):129–34.PubMed Zhou Q, Ruan ZR, Yuan H, Xu DH, Zeng S. ABCB1 gene polymorphisms, ABCB1 haplotypes and ABCG2 c.421c>A are determinants of inter-subject variability in rosuvastatin pharmacokinetics. Pharmazie. 2013;68(2):129–34.PubMed
462.
Zurück zum Zitat Lee H-K, Hu M, Lui SSH, Ho C-S, Wong C-K, Tomlinson B. Effects of polymorphisms in ABCG2, SLCO1B1, SLC10A1 and CYP2C9/19 on plasma concentrations of rosuvastatin and lipid response in Chinese patients. Pharmacogenomics. 2013;14(11):1283–94.PubMedCrossRef Lee H-K, Hu M, Lui SSH, Ho C-S, Wong C-K, Tomlinson B. Effects of polymorphisms in ABCG2, SLCO1B1, SLC10A1 and CYP2C9/19 on plasma concentrations of rosuvastatin and lipid response in Chinese patients. Pharmacogenomics. 2013;14(11):1283–94.PubMedCrossRef
463.
Zurück zum Zitat Wang EJ, Casciano CN, Clement RP, Johnson WW. Active transport of fluorescent P-glycoprotein substrates: evaluation as markers and interaction with inhibitors. Biochem Biophys Res Commun. 2001;289(2):580–5.PubMedCrossRef Wang EJ, Casciano CN, Clement RP, Johnson WW. Active transport of fluorescent P-glycoprotein substrates: evaluation as markers and interaction with inhibitors. Biochem Biophys Res Commun. 2001;289(2):580–5.PubMedCrossRef
464.
Zurück zum Zitat Zhou Q, Ruan ZR, Jiang B, Yuan H, Zeng S. Simvastatin pharmacokinetics in healthy Chinese subjects and its relations with CYP2C9, CYP3A5, ABCB1, ABCG2 and SLCO1B1 polymorphisms. Pharmazie. 2013;68(2):124–8.PubMed Zhou Q, Ruan ZR, Jiang B, Yuan H, Zeng S. Simvastatin pharmacokinetics in healthy Chinese subjects and its relations with CYP2C9, CYP3A5, ABCB1, ABCG2 and SLCO1B1 polymorphisms. Pharmazie. 2013;68(2):124–8.PubMed
465.
Zurück zum Zitat Kaler G, Truong DM, Khandelwal A, Nagle M, Eraly SA, Swaan PW, et al. Structural variation governs substrate specificity for organic anion transporter (OAT) homologs: potential remote sensing by OAT family members. J Biol Chem. 2007;282(33):23841–53.PubMedCrossRef Kaler G, Truong DM, Khandelwal A, Nagle M, Eraly SA, Swaan PW, et al. Structural variation governs substrate specificity for organic anion transporter (OAT) homologs: potential remote sensing by OAT family members. J Biol Chem. 2007;282(33):23841–53.PubMedCrossRef
466.
Zurück zum Zitat Massimi I, Ciuffetta A, Temperilli F, Ferrandino F, Zicari A, Pulcinelli FM, et al. Multidrug resistance protein-4 influences aspirin toxicity in human cell line. Mediat Inflamm. 2015;2015:607957.CrossRef Massimi I, Ciuffetta A, Temperilli F, Ferrandino F, Zicari A, Pulcinelli FM, et al. Multidrug resistance protein-4 influences aspirin toxicity in human cell line. Mediat Inflamm. 2015;2015:607957.CrossRef
467.
Zurück zum Zitat Oh J, Shin D, Lim KS, Lee S, Jung KH, Chu K, et al. Aspirin decreases systemic exposure to clopidogrel through modulation of P-glycoprotein but does not alter its antithrombotic activity. Clin Pharmacol Ther. 2014;95(6):608–16.PubMedCrossRef Oh J, Shin D, Lim KS, Lee S, Jung KH, Chu K, et al. Aspirin decreases systemic exposure to clopidogrel through modulation of P-glycoprotein but does not alter its antithrombotic activity. Clin Pharmacol Ther. 2014;95(6):608–16.PubMedCrossRef
468.
Zurück zum Zitat Gschwind L, Rollason V, Daali Y, Bonnabry P, Dayer P, Desmeules JA. Role of P-glycoprotein in the uptake/efflux transport of oral vitamin K antagonists and rivaroxaban through the Caco-2 cell model. Basic Clin Pharmacol Toxicol. 2013;113(4):259–65.PubMedCrossRef Gschwind L, Rollason V, Daali Y, Bonnabry P, Dayer P, Desmeules JA. Role of P-glycoprotein in the uptake/efflux transport of oral vitamin K antagonists and rivaroxaban through the Caco-2 cell model. Basic Clin Pharmacol Toxicol. 2013;113(4):259–65.PubMedCrossRef
469.
Zurück zum Zitat Zhang D, He K, Herbst JJ, Kolb J, Shou W, Wang L, et al. Characterization of efflux transporters involved in distribution and disposition of apixaban. Drug Metab Dispos. 2013;41(4):827–35.PubMedCrossRef Zhang D, He K, Herbst JJ, Kolb J, Shou W, Wang L, et al. Characterization of efflux transporters involved in distribution and disposition of apixaban. Drug Metab Dispos. 2013;41(4):827–35.PubMedCrossRef
470.
Zurück zum Zitat Wang C, Wang C, Liu Q, Meng Q, Cang J, Sun H, et al. Aspirin and probenecid inhibit organic anion transporter 3-mediated renal uptake of cilostazol and probenecid induces metabolism of cilostazol in the rat. Drug Metab Dispos. 2014;42(6):996–1007.PubMedCrossRef Wang C, Wang C, Liu Q, Meng Q, Cang J, Sun H, et al. Aspirin and probenecid inhibit organic anion transporter 3-mediated renal uptake of cilostazol and probenecid induces metabolism of cilostazol in the rat. Drug Metab Dispos. 2014;42(6):996–1007.PubMedCrossRef
471.
Zurück zum Zitat Takeuchi R, Shinozaki K, Nakanishi T, Tamai I. local drug–drug interaction of donepezil with cilostazol at breast cancer resistance protein (ABCG2) increases drug accumulation in heart. Drug Metab Dispos. 2016;44(1):68–74.PubMedCrossRef Takeuchi R, Shinozaki K, Nakanishi T, Tamai I. local drug–drug interaction of donepezil with cilostazol at breast cancer resistance protein (ABCG2) increases drug accumulation in heart. Drug Metab Dispos. 2016;44(1):68–74.PubMedCrossRef
472.
Zurück zum Zitat Cheepala SB, Pitre A, Fukuda Y, Takenaka K, Zhang Y, Wang Y, et al. The ABCC4 membrane transporter modulates platelet aggregation. Blood. 2015;126(20):2307–19.PubMedPubMedCentralCrossRef Cheepala SB, Pitre A, Fukuda Y, Takenaka K, Zhang Y, Wang Y, et al. The ABCC4 membrane transporter modulates platelet aggregation. Blood. 2015;126(20):2307–19.PubMedPubMedCentralCrossRef
473.
Zurück zum Zitat Taubert D, von Beckerath N, Grimberg G, Lazar A, Jung N, Goeser T, et al. Impact of P-glycoprotein on clopidogrel absorption. Clin Pharmacol Ther. 2006;80(5):486–501.PubMedCrossRef Taubert D, von Beckerath N, Grimberg G, Lazar A, Jung N, Goeser T, et al. Impact of P-glycoprotein on clopidogrel absorption. Clin Pharmacol Ther. 2006;80(5):486–501.PubMedCrossRef
474.
Zurück zum Zitat Li L, Song F, Tu M, Wang K, Zhao L, Wu X, et al. In vitro interaction of clopidogrel and its hydrolysate with OCT1, OCT2 and OAT1. Int J Pharm. 2014;465(1–2):5–10.PubMedCrossRef Li L, Song F, Tu M, Wang K, Zhao L, Wu X, et al. In vitro interaction of clopidogrel and its hydrolysate with OCT1, OCT2 and OAT1. Int J Pharm. 2014;465(1–2):5–10.PubMedCrossRef
475.
Zurück zum Zitat Härtter S, Sennewald R, Nehmiz G, Reilly P. Oral bioavailability of dabigatran etexilate (Pradaxa®) after co-medication with verapamil in healthy subjects. Br J Clin Pharmacol. 2013;75(4):1053–62.PubMedCrossRef Härtter S, Sennewald R, Nehmiz G, Reilly P. Oral bioavailability of dabigatran etexilate (Pradaxa®) after co-medication with verapamil in healthy subjects. Br J Clin Pharmacol. 2013;75(4):1053–62.PubMedCrossRef
476.
Zurück zum Zitat Bendayan R. Interaction of dipyridamole, a nucleoside transport inhibitor, with the renal transport of organic cations by LLCPK1 cells. Can J Physiol Pharmacol. 1997;75(1):52–6.PubMedCrossRef Bendayan R. Interaction of dipyridamole, a nucleoside transport inhibitor, with the renal transport of organic cations by LLCPK1 cells. Can J Physiol Pharmacol. 1997;75(1):52–6.PubMedCrossRef
477.
Zurück zum Zitat Elsby R, Surry DD, Smith VN, Gray AJ. Validation and application of Caco-2 assays for the in vitro evaluation of development candidate drugs as substrates or inhibitors of P-glycoprotein to support regulatory submissions. Xenobiotica. 2008;38(7–8):1140–64.PubMedCrossRef Elsby R, Surry DD, Smith VN, Gray AJ. Validation and application of Caco-2 assays for the in vitro evaluation of development candidate drugs as substrates or inhibitors of P-glycoprotein to support regulatory submissions. Xenobiotica. 2008;38(7–8):1140–64.PubMedCrossRef
478.
Zurück zum Zitat Janneh O, Jones E, Chandler B, Owen A, Khoo SH. Inhibition of P-glycoprotein and multidrug resistance-associated proteins modulates the intracellular concentration of lopinavir in cultured CD4 T cells and primary human lymphocytes. J Antimicrob Chemother. 2007;60(5):987–93.PubMedCrossRef Janneh O, Jones E, Chandler B, Owen A, Khoo SH. Inhibition of P-glycoprotein and multidrug resistance-associated proteins modulates the intracellular concentration of lopinavir in cultured CD4 T cells and primary human lymphocytes. J Antimicrob Chemother. 2007;60(5):987–93.PubMedCrossRef
479.
Zurück zum Zitat Ray AS, Cihlar T, Robinson KL, Tong L, Vela JE, Fuller MD, et al. Mechanism of active renal tubular efflux of tenofovir. Antimicrob Agents Chemother. 2006;50(10):3297–304.PubMedPubMedCentralCrossRef Ray AS, Cihlar T, Robinson KL, Tong L, Vela JE, Fuller MD, et al. Mechanism of active renal tubular efflux of tenofovir. Antimicrob Agents Chemother. 2006;50(10):3297–304.PubMedPubMedCentralCrossRef
480.
Zurück zum Zitat Leung S, Bendayan R. Role of P-glycoprotein in the renal transport of dideoxynucleoside analog drugs. Can J Physiol Pharmacol. 1999;77(8):625–30.PubMedCrossRef Leung S, Bendayan R. Role of P-glycoprotein in the renal transport of dideoxynucleoside analog drugs. Can J Physiol Pharmacol. 1999;77(8):625–30.PubMedCrossRef
481.
Zurück zum Zitat Curtin NJ, Turner DP. Dipyridamole-mediated reversal of multidrug resistance in MRP over-expressing human lung carcinoma cells in vitro. Eur J Cancer. 1999;35(6):1020–6.PubMedCrossRef Curtin NJ, Turner DP. Dipyridamole-mediated reversal of multidrug resistance in MRP over-expressing human lung carcinoma cells in vitro. Eur J Cancer. 1999;35(6):1020–6.PubMedCrossRef
482.
Zurück zum Zitat Mikkaichi T, Yoshigae Y, Masumoto H, Imaoka T, Rozehnal V, Fischer T, et al. Edoxaban transport via P-glycoprotein is a key factor for the drug’s disposition. Drug Metab Dispos. 2014;42(4):520–8.PubMedCrossRef Mikkaichi T, Yoshigae Y, Masumoto H, Imaoka T, Rozehnal V, Fischer T, et al. Edoxaban transport via P-glycoprotein is a key factor for the drug’s disposition. Drug Metab Dispos. 2014;42(4):520–8.PubMedCrossRef
483.
Zurück zum Zitat Gnoth MJ, Buetehorn U, Muenster U, Schwarz T, Sandmann S. In vitro and in vivo P-glycoprotein transport characteristics of rivaroxaban. J Pharmacol Exp Ther. 2011;338(1):372–80.PubMedCrossRef Gnoth MJ, Buetehorn U, Muenster U, Schwarz T, Sandmann S. In vitro and in vivo P-glycoprotein transport characteristics of rivaroxaban. J Pharmacol Exp Ther. 2011;338(1):372–80.PubMedCrossRef
484.
Zurück zum Zitat Gong IY, Mansell SE, Kim RB. Absence of both MDR1 (ABCB1) and breast cancer resistance protein (ABCG2) transporters significantly alters rivaroxaban disposition and central nervous system entry. Basic Clin Pharmacol Toxicol. 2013;112(3):164–70.PubMedCrossRef Gong IY, Mansell SE, Kim RB. Absence of both MDR1 (ABCB1) and breast cancer resistance protein (ABCG2) transporters significantly alters rivaroxaban disposition and central nervous system entry. Basic Clin Pharmacol Toxicol. 2013;112(3):164–70.PubMedCrossRef
485.
Zurück zum Zitat Mueck W, Kubitza D, Becka M. Co-administration of rivaroxaban with drugs that share its elimination pathways: pharmacokinetic effects in healthy subjects. Br J Clin Pharmacol. 2013;76(3):455–66.PubMedPubMedCentralCrossRef Mueck W, Kubitza D, Becka M. Co-administration of rivaroxaban with drugs that share its elimination pathways: pharmacokinetic effects in healthy subjects. Br J Clin Pharmacol. 2013;76(3):455–66.PubMedPubMedCentralCrossRef
487.
Zurück zum Zitat Teng R, Mitchell P, Butler K. Effect of rifampicin on the pharmacokinetics and pharmacodynamics of ticagrelor in healthy subjects. Eur J Clin Pharmacol. 2012;69(4):877–83.PubMedCrossRef Teng R, Mitchell P, Butler K. Effect of rifampicin on the pharmacokinetics and pharmacodynamics of ticagrelor in healthy subjects. Eur J Clin Pharmacol. 2012;69(4):877–83.PubMedCrossRef
488.
Zurück zum Zitat Holmberg MT, Tornio A, Joutsi-Korhonen L, Neuvonen M, Neuvonen PJ, Lassila R, et al. Grapefruit juice markedly increases the plasma concentrations and antiplatelet effects of ticagrelor in healthy subjects. Br J Clin Pharmacol. 2013;75(6):1488–96.PubMedCrossRef Holmberg MT, Tornio A, Joutsi-Korhonen L, Neuvonen M, Neuvonen PJ, Lassila R, et al. Grapefruit juice markedly increases the plasma concentrations and antiplatelet effects of ticagrelor in healthy subjects. Br J Clin Pharmacol. 2013;75(6):1488–96.PubMedCrossRef
489.
Zurück zum Zitat Teng R, Butler K. A pharmacokinetic interaction study of ticagrelor and digoxin in healthy volunteers. Eur J Clin Pharmacol. 2013;69(10):1801–8.PubMedCrossRef Teng R, Butler K. A pharmacokinetic interaction study of ticagrelor and digoxin in healthy volunteers. Eur J Clin Pharmacol. 2013;69(10):1801–8.PubMedCrossRef
491.
Zurück zum Zitat Yang S-H, Cho Y-A, Choi J-S. Effects of ticlopidine on pharmacokinetics of losartan and its main metabolite EXP-3174 in rats. Acta pharmacologica Sinica. 2011;32(7):967–72.PubMedPubMedCentralCrossRef Yang S-H, Cho Y-A, Choi J-S. Effects of ticlopidine on pharmacokinetics of losartan and its main metabolite EXP-3174 in rats. Acta pharmacologica Sinica. 2011;32(7):967–72.PubMedPubMedCentralCrossRef
492.
Zurück zum Zitat Wadelius M, Sorlin K, Wallerman O, Karlsson J, Yue QY, Magnusson PKE, et al. Warfarin sensitivity related to CYP2C9, CYP3A5, ABCB1 (MDR1) and other factors. Pharm J. 2003;4(1):40–8. Wadelius M, Sorlin K, Wallerman O, Karlsson J, Yue QY, Magnusson PKE, et al. Warfarin sensitivity related to CYP2C9, CYP3A5, ABCB1 (MDR1) and other factors. Pharm J. 2003;4(1):40–8.
493.
Zurück zum Zitat De Oliveira Almeida VC, De Souza Ferreira AC, Ribeiro DD, Gomes Borges KB, Salles Moura Fernandes AP, Brunialti Godard AL. Association of the C3435T polymorphism of the MDR1 gene and therapeutic doses of warfarin in thrombophilic patients. J Thromb Haemost. 2011;9(10):2120–2.PubMedCrossRef De Oliveira Almeida VC, De Souza Ferreira AC, Ribeiro DD, Gomes Borges KB, Salles Moura Fernandes AP, Brunialti Godard AL. Association of the C3435T polymorphism of the MDR1 gene and therapeutic doses of warfarin in thrombophilic patients. J Thromb Haemost. 2011;9(10):2120–2.PubMedCrossRef
494.
Zurück zum Zitat Shaik AN, Bohnert T, Williams DA, Gan LL, LeDuc BW. Mechanism of drug–drug interactions between warfarin and statins. J Pharm Sci. 2016;105(6):1976–86.PubMedCrossRef Shaik AN, Bohnert T, Williams DA, Gan LL, LeDuc BW. Mechanism of drug–drug interactions between warfarin and statins. J Pharm Sci. 2016;105(6):1976–86.PubMedCrossRef
495.
Zurück zum Zitat Yang M-SY, C.-P., Lin S.-P. Warfarin is a substrate of breast cancer resistance protein, an efflux drug transporter. In: ISSX, editor. 11th International ISSX Meeting. Busan, Korea: ISSX; 2016. Yang M-SY, C.-P., Lin S.-P. Warfarin is a substrate of breast cancer resistance protein, an efflux drug transporter. In: ISSX, editor. 11th International ISSX Meeting. Busan, Korea: ISSX; 2016.
496.
Zurück zum Zitat Pauli-Magnus C, Mürdter T, Godel A, Mettang T, Eichelbaum M, Klotz U, et al. P-glycoprotein-mediated transport of digitoxin, alpha-methyldigoxin and beta-acetyldigoxin. Naunyn Schmiedebergs Arch Pharmacol. 2001;363(3):337–43.PubMedCrossRef Pauli-Magnus C, Mürdter T, Godel A, Mettang T, Eichelbaum M, Klotz U, et al. P-glycoprotein-mediated transport of digitoxin, alpha-methyldigoxin and beta-acetyldigoxin. Naunyn Schmiedebergs Arch Pharmacol. 2001;363(3):337–43.PubMedCrossRef
497.
Zurück zum Zitat Gozalpour E, Wilmer MJ, Bilos A, Masereeuw R, Russel FG, Koenderink JB. Heterogeneous transport of digitalis-like compounds by P-glycoprotein in vesicular and cellular assays. Toxicol Vitro Int J Publ Assoc BIBRA. 2016;32:138–45.CrossRef Gozalpour E, Wilmer MJ, Bilos A, Masereeuw R, Russel FG, Koenderink JB. Heterogeneous transport of digitalis-like compounds by P-glycoprotein in vesicular and cellular assays. Toxicol Vitro Int J Publ Assoc BIBRA. 2016;32:138–45.CrossRef
498.
Zurück zum Zitat Yamazaki M, Neway WE, Ohe T, Chen IW, Rowe JF, Hochman JH, et al. In vitro substrate identification studies for P-glycoprotein-mediated transport: species difference and predictability of in vivo results. J Pharmacol Exp Ther. 2001;296(3):723–35.PubMed Yamazaki M, Neway WE, Ohe T, Chen IW, Rowe JF, Hochman JH, et al. In vitro substrate identification studies for P-glycoprotein-mediated transport: species difference and predictability of in vivo results. J Pharmacol Exp Ther. 2001;296(3):723–35.PubMed
499.
Zurück zum Zitat Koren G. Clinical pharmacokinetic significance of the renal tubular secretion of digoxin. Clin Pharmacokinet. 1987;13(5):334–43.PubMedCrossRef Koren G. Clinical pharmacokinetic significance of the renal tubular secretion of digoxin. Clin Pharmacokinet. 1987;13(5):334–43.PubMedCrossRef
500.
Zurück zum Zitat Matsson P, Englund G, Ahlin G, Bergström CAS, Norinder U, Artursson P. A global drug inhibition pattern for the human ATP-binding cassette transporter breast cancer resistance protein (ABCG2). J Pharmacol Exp Ther. 2007;323(1):19–30.PubMedCrossRef Matsson P, Englund G, Ahlin G, Bergström CAS, Norinder U, Artursson P. A global drug inhibition pattern for the human ATP-binding cassette transporter breast cancer resistance protein (ABCG2). J Pharmacol Exp Ther. 2007;323(1):19–30.PubMedCrossRef
501.
Zurück zum Zitat Cha SH, Sekine T, Kusuhara H, Yu E, Kim JY, Kim DK, et al. Molecular cloning and characterization of multispecific organic anion transporter 4 expressed in the placenta. J Biol Chem. 2000;275(6):4507–12.PubMedCrossRef Cha SH, Sekine T, Kusuhara H, Yu E, Kim JY, Kim DK, et al. Molecular cloning and characterization of multispecific organic anion transporter 4 expressed in the placenta. J Biol Chem. 2000;275(6):4507–12.PubMedCrossRef
502.
Zurück zum Zitat Gavrilova O. Nutzung transgener Tiermodelle mit Transportdefekten zur Analyse der hepatobiliären Elimination und Organverteilung von Arzneistoffen und Toxinen. Gießen: Justus-Liebig-Universität Gießen; 2008. Gavrilova O. Nutzung transgener Tiermodelle mit Transportdefekten zur Analyse der hepatobiliären Elimination und Organverteilung von Arzneistoffen und Toxinen. Gießen: Justus-Liebig-Universität Gießen; 2008.
503.
Zurück zum Zitat Kusuhara H, Sekine T, Utsunomiya-Tate N, Tsuda M, Kojima R, Cha SH, et al. Molecular cloning and characterization of a new multispecific organic anion transporter from rat brain. J Biol Chem. 1999;274(19):13675–80.PubMedCrossRef Kusuhara H, Sekine T, Utsunomiya-Tate N, Tsuda M, Kojima R, Cha SH, et al. Molecular cloning and characterization of a new multispecific organic anion transporter from rat brain. J Biol Chem. 1999;274(19):13675–80.PubMedCrossRef
504.
Zurück zum Zitat Ott RJ, Giacomini KM. Stereoselective interactions of organic cations with the organic cation transporter in OK cells. Pharm Res. 1993;10(8):1169–73.PubMedCrossRef Ott RJ, Giacomini KM. Stereoselective interactions of organic cations with the organic cation transporter in OK cells. Pharm Res. 1993;10(8):1169–73.PubMedCrossRef
505.
Zurück zum Zitat Urakami Y, Okuda M, Masuda S, Akazawa M, Saito H, Inui KI. Distinct characteristics of organic cation transporters, OCT1 and OCT2, in the basolateral membrane of renal tubules. Pharm Res. 2001;18(11):1528–34.PubMedCrossRef Urakami Y, Okuda M, Masuda S, Akazawa M, Saito H, Inui KI. Distinct characteristics of organic cation transporters, OCT1 and OCT2, in the basolateral membrane of renal tubules. Pharm Res. 2001;18(11):1528–34.PubMedCrossRef
506.
Zurück zum Zitat Ito T, Takahashi Y, Tomidokoro K, Nishino T, Fukuzawa Y. The mechanism of the renal excretion of disopyramide in rats [in Japanese]. Yakugaku Zasshi. 1992;112(5):336–42.PubMedCrossRef Ito T, Takahashi Y, Tomidokoro K, Nishino T, Fukuzawa Y. The mechanism of the renal excretion of disopyramide in rats [in Japanese]. Yakugaku Zasshi. 1992;112(5):336–42.PubMedCrossRef
507.
Zurück zum Zitat Kidron H, Wissel G, Manevski N, Hakli M, Ketola RA, Finel M, et al. Impact of probe compound in MRP2 vesicular transport assays. Eur J Pharm Sci. 2012;46(1–2):100–5.PubMedCrossRef Kidron H, Wissel G, Manevski N, Hakli M, Ketola RA, Finel M, et al. Impact of probe compound in MRP2 vesicular transport assays. Eur J Pharm Sci. 2012;46(1–2):100–5.PubMedCrossRef
508.
Zurück zum Zitat Tjandra-Maga TB, Verbesselt R, Van Hecken A, Mullie A, De Schepper PJ. Flecainide: single and multiple oral dose kinetics, absolute bioavailability and effect of food and antacid in man. Br J Clin Pharmacol. 1986;22(3):309–16.PubMedPubMedCentralCrossRef Tjandra-Maga TB, Verbesselt R, Van Hecken A, Mullie A, De Schepper PJ. Flecainide: single and multiple oral dose kinetics, absolute bioavailability and effect of food and antacid in man. Br J Clin Pharmacol. 1986;22(3):309–16.PubMedPubMedCentralCrossRef
509.
Zurück zum Zitat Horie A, Ishida K, Shibata K, Taguchi M, Ozawa A, Hirono K, et al. Pharmacokinetic variability of flecainide in younger Japanese patients and mechanisms for renal excretion and intestinal absorption. Biopharm Drug Dispos. 2014;35(3):145–53.PubMedCrossRef Horie A, Ishida K, Shibata K, Taguchi M, Ozawa A, Hirono K, et al. Pharmacokinetic variability of flecainide in younger Japanese patients and mechanisms for renal excretion and intestinal absorption. Biopharm Drug Dispos. 2014;35(3):145–53.PubMedCrossRef
510.
Zurück zum Zitat Zolk O, Solbach T, König J, Fromm M. Structural determinants of inhibitor interaction with the human organic cation transporter OCT2 (SLC22A2). Naunyn Schmied Arch Pharmacol. 2009;379(4):337–48.CrossRef Zolk O, Solbach T, König J, Fromm M. Structural determinants of inhibitor interaction with the human organic cation transporter OCT2 (SLC22A2). Naunyn Schmied Arch Pharmacol. 2009;379(4):337–48.CrossRef
511.
Zurück zum Zitat Wang W, Zhao JJ, Wang T, Wang L, Jiang XH. Transplacental transport mechanisms of drugs for transplacental treatment of fetal tachyarrhythmia of MDCKII/MDCKII-BCRP cell line. Yao xue xue bao Acta pharmaceutica Sinica. 2015;50(3):305–11.PubMed Wang W, Zhao JJ, Wang T, Wang L, Jiang XH. Transplacental transport mechanisms of drugs for transplacental treatment of fetal tachyarrhythmia of MDCKII/MDCKII-BCRP cell line. Yao xue xue bao Acta pharmaceutica Sinica. 2015;50(3):305–11.PubMed
512.
Zurück zum Zitat Chiba S, Ikawa T, Takeshita H, Kanno S, Nagai T, Takada M, et al. Human organic cation transporter 2 (hOCT2): Inhibitor studies using S2-hOCT2 cells. Toxicology. 2013;310:98–103.PubMedCrossRef Chiba S, Ikawa T, Takeshita H, Kanno S, Nagai T, Takada M, et al. Human organic cation transporter 2 (hOCT2): Inhibitor studies using S2-hOCT2 cells. Toxicology. 2013;310:98–103.PubMedCrossRef
513.
Zurück zum Zitat Kakumoto M, Takara K, Sakaeda T, Tanigawara Y, Kita T, Okumura K. MDR1-mediated interaction of digoxin with antiarrhythmic or antianginal drugs. Biol Pharm Bull. 2002;25(12):1604–7.PubMedCrossRef Kakumoto M, Takara K, Sakaeda T, Tanigawara Y, Kita T, Okumura K. MDR1-mediated interaction of digoxin with antiarrhythmic or antianginal drugs. Biol Pharm Bull. 2002;25(12):1604–7.PubMedCrossRef
514.
Zurück zum Zitat Shiga T, Hashiguchi M, Tanaka T, Morozumi N, Irie S, Mochizuki M, et al. Lack of contribution of P-glycoprotein-mediated transport to renal excretion of pilsicainide in humans. Rinsho yakuri Jpn J Clin Pharmacol Ther. 2012;43(3):157–64.CrossRef Shiga T, Hashiguchi M, Tanaka T, Morozumi N, Irie S, Mochizuki M, et al. Lack of contribution of P-glycoprotein-mediated transport to renal excretion of pilsicainide in humans. Rinsho yakuri Jpn J Clin Pharmacol Ther. 2012;43(3):157–64.CrossRef
515.
Zurück zum Zitat Noguchi SN, T., Mukaida S, Tomi M. Levocetirizine transport by human organic anion transporter 4. In: ISSX, editor. 11th International ISSX Meeting. Busan: ISSX; 2016. Noguchi SN, T., Mukaida S, Tomi M. Levocetirizine transport by human organic anion transporter 4. In: ISSX, editor. 11th International ISSX Meeting. Busan: ISSX; 2016.
516.
Zurück zum Zitat Arndt P, Volk C, Gorboulev V, Budiman T, Popp C, Ulzheimer-Teuber I, et al. Interaction of cations, anions, and weak base quinine with rat renal cation transporter rOCT2 compared with rOCT1. AJP Renal Physiol. 2001;281(3):F454–68. Arndt P, Volk C, Gorboulev V, Budiman T, Popp C, Ulzheimer-Teuber I, et al. Interaction of cations, anions, and weak base quinine with rat renal cation transporter rOCT2 compared with rOCT1. AJP Renal Physiol. 2001;281(3):F454–68.
517.
Zurück zum Zitat Goralski KB, Lou G, Prowse MT, Gorboulev V, Volk C, Koepsell H, et al. The cation transporters rOCT1 and rOCT2 interact with bicarbonate but play only a minor role for amantadine uptake into rat renal proximal tubules. J Pharmacol Exp Ther. 2002;303(3):959–68.PubMedCrossRef Goralski KB, Lou G, Prowse MT, Gorboulev V, Volk C, Koepsell H, et al. The cation transporters rOCT1 and rOCT2 interact with bicarbonate but play only a minor role for amantadine uptake into rat renal proximal tubules. J Pharmacol Exp Ther. 2002;303(3):959–68.PubMedCrossRef
518.
Zurück zum Zitat Gründemann D, Schechinger B, Rappold G, Schömig E. Molecular identification of the corticosterone-sensitive extraneuronal catecholamine transporter. Nat Neurosci. 1998;1(5):349–51.PubMedCrossRef Gründemann D, Schechinger B, Rappold G, Schömig E. Molecular identification of the corticosterone-sensitive extraneuronal catecholamine transporter. Nat Neurosci. 1998;1(5):349–51.PubMedCrossRef
519.
Zurück zum Zitat Wu X, George RL, Huang W, Wang H, Conway SJ, Leibach FH, et al. Structural and functional characteristics and tissue distribution pattern of rat OCTN1, an organic cation transporter, cloned from placenta. Biochim Biophys Acta. 2000;1466(1–2):315–27.PubMedCrossRef Wu X, George RL, Huang W, Wang H, Conway SJ, Leibach FH, et al. Structural and functional characteristics and tissue distribution pattern of rat OCTN1, an organic cation transporter, cloned from placenta. Biochim Biophys Acta. 2000;1466(1–2):315–27.PubMedCrossRef
520.
521.
Zurück zum Zitat Woodland C, Verjee Z, Giesbrecht E, Koren G, Ito S. The digoxin-propafenone interaction: characterization of a mechanism using renal tubular cell monolayers. J Pharmacol Exp Ther. 1997;283(1):39–45.PubMed Woodland C, Verjee Z, Giesbrecht E, Koren G, Ito S. The digoxin-propafenone interaction: characterization of a mechanism using renal tubular cell monolayers. J Pharmacol Exp Ther. 1997;283(1):39–45.PubMed
522.
Zurück zum Zitat Choo EF, Leake B, Wandel C, Imamura H, Wood AJJ, Wilkinson GR, et al. Pharmacological inhibition of p-glycoprotein transport enhances the distribution of HIV-1 protease inhibitors into brain and testes. Drug Metab Dispos. 2000;28(6):655–60.PubMed Choo EF, Leake B, Wandel C, Imamura H, Wood AJJ, Wilkinson GR, et al. Pharmacological inhibition of p-glycoprotein transport enhances the distribution of HIV-1 protease inhibitors into brain and testes. Drug Metab Dispos. 2000;28(6):655–60.PubMed
523.
Zurück zum Zitat Gao J, Murase O, Schowen RL, Aubé J, Borchardt RT. A functional assay for quantitation of the apparent affinities of ligands of P-glycoprotein in Caco-2 cells. Pharm Res. 2001;18(2):171–6.PubMedCrossRef Gao J, Murase O, Schowen RL, Aubé J, Borchardt RT. A functional assay for quantitation of the apparent affinities of ligands of P-glycoprotein in Caco-2 cells. Pharm Res. 2001;18(2):171–6.PubMedCrossRef
524.
Zurück zum Zitat Ito T, Yano I, Tanaka K, Inui KI. Transport of quinolone antibacterial drugs by human P-glycoprotein expressed in a kidney epithelial cell line, LLC-PK1. J Pharmacol Exp Ther. 1997;282(2):955–60.PubMed Ito T, Yano I, Tanaka K, Inui KI. Transport of quinolone antibacterial drugs by human P-glycoprotein expressed in a kidney epithelial cell line, LLC-PK1. J Pharmacol Exp Ther. 1997;282(2):955–60.PubMed
525.
Zurück zum Zitat Kim RB, Fromm MF, Wandel C, Leake B, Wood AJ, Roden DM, et al. The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J Clin Investig. 1998;101(2):289–94.PubMedPubMedCentralCrossRef Kim RB, Fromm MF, Wandel C, Leake B, Wood AJ, Roden DM, et al. The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J Clin Investig. 1998;101(2):289–94.PubMedPubMedCentralCrossRef
526.
Zurück zum Zitat Nagy H, Goda K, Fenyvesi F, Bacsό Z, Szilasi M, Kappelmayer J, et al. Distinct groups of multidrug resistance modulating agents are distinguished by competition of P-glycoprotein-specific antibodies. Biochem Biophys Res Commun. 2004;315(4):942–9.PubMedCrossRef Nagy H, Goda K, Fenyvesi F, Bacsό Z, Szilasi M, Kappelmayer J, et al. Distinct groups of multidrug resistance modulating agents are distinguished by competition of P-glycoprotein-specific antibodies. Biochem Biophys Res Commun. 2004;315(4):942–9.PubMedCrossRef
527.
Zurück zum Zitat Neuhoff S, Ungell AL, Zamora I, Artursson P. pH-dependent bidirectional transport of weakly basic drugs across Caco-2 monolayers: implications for drug–drug interactions. Pharm Res. 2003;20(8):1141–8.PubMedCrossRef Neuhoff S, Ungell AL, Zamora I, Artursson P. pH-dependent bidirectional transport of weakly basic drugs across Caco-2 monolayers: implications for drug–drug interactions. Pharm Res. 2003;20(8):1141–8.PubMedCrossRef
528.
Zurück zum Zitat Tanigawara Y, Okamura N, Hirai M, Yasuhara M, Ueda K, Kioka N, et al. Transport of digoxin by human P-glycoprotein expressed in a porcine kidney epithelial cell line (LLC-PK1). J Pharmacol Exp Ther. 1992;263(2):840–5.PubMed Tanigawara Y, Okamura N, Hirai M, Yasuhara M, Ueda K, Kioka N, et al. Transport of digoxin by human P-glycoprotein expressed in a porcine kidney epithelial cell line (LLC-PK1). J Pharmacol Exp Ther. 1992;263(2):840–5.PubMed
529.
Zurück zum Zitat Urakami Y, Okuda M, Masuda S, Saito H, Inui KI. Functional characteristics and membrane localization of rat multispecific organic cation transporters, OCT1 and OCT2, mediating tubular secretion of cationic drugs. J Pharmacol Exp Ther. 1998;287(2):800–5.PubMed Urakami Y, Okuda M, Masuda S, Saito H, Inui KI. Functional characteristics and membrane localization of rat multispecific organic cation transporters, OCT1 and OCT2, mediating tubular secretion of cationic drugs. J Pharmacol Exp Ther. 1998;287(2):800–5.PubMed
530.
Zurück zum Zitat van Montfoort JE, Muller M, Groothuis GMM, Meijer DKF, Koepsell H, Meier PJ. Comparison of “type I” and “type II” organic cation transport by organic cation transporters and organic anion-transporting polypeptides. J Pharmacol Exp Ther. 2001;298(1):110–5.PubMed van Montfoort JE, Muller M, Groothuis GMM, Meijer DKF, Koepsell H, Meier PJ. Comparison of “type I” and “type II” organic cation transport by organic cation transporters and organic anion-transporting polypeptides. J Pharmacol Exp Ther. 2001;298(1):110–5.PubMed
531.
Zurück zum Zitat Dahan A, Amidon GL. Small intestinal efflux mediated by MRP2 and BCRP shifts sulfasalazine intestinal permeability from high to low, enabling its colonic targeting. Am J Physiol Gastrointest Liver Physiol. 2009;297(2):G371–7.PubMedCrossRef Dahan A, Amidon GL. Small intestinal efflux mediated by MRP2 and BCRP shifts sulfasalazine intestinal permeability from high to low, enabling its colonic targeting. Am J Physiol Gastrointest Liver Physiol. 2009;297(2):G371–7.PubMedCrossRef
532.
Zurück zum Zitat Kodaira H, Kusuhara H, Ushiki J, Fuse E, Sugiyama Y. Kinetic analysis of the cooperation of P-glycoprotein (P-gp/Abcb1) and breast cancer resistance protein (Bcrp/Abcg2) in limiting the brain and testis penetration of erlotinib, flavopiridol, and mitoxantrone. J Pharmacol Exp Ther. 2010;333(3):788–96.PubMedCrossRef Kodaira H, Kusuhara H, Ushiki J, Fuse E, Sugiyama Y. Kinetic analysis of the cooperation of P-glycoprotein (P-gp/Abcb1) and breast cancer resistance protein (Bcrp/Abcg2) in limiting the brain and testis penetration of erlotinib, flavopiridol, and mitoxantrone. J Pharmacol Exp Ther. 2010;333(3):788–96.PubMedCrossRef
533.
Zurück zum Zitat Shen J, Cross ST, Tang-Liu DDS, Welty DF. Evaluation of an immortalized retinal endothelial cell line as an in vitro model for drug transport studies across the blood-retinal barrier. Pharm Res. 2003;20(9):1357–63.PubMedCrossRef Shen J, Cross ST, Tang-Liu DDS, Welty DF. Evaluation of an immortalized retinal endothelial cell line as an in vitro model for drug transport studies across the blood-retinal barrier. Pharm Res. 2003;20(9):1357–63.PubMedCrossRef
534.
Zurück zum Zitat Wu X, Kekuda R, Huang W, Fei YJ, Leibach FH, Chen J, et al. Identity of the organic cation transporter OCT3 as the extraneuronal monoamine transporter (uptake2) and evidence for the expression of the transporter in the brain. J Biol Chem. 1998;273(49):32776–86.PubMedCrossRef Wu X, Kekuda R, Huang W, Fei YJ, Leibach FH, Chen J, et al. Identity of the organic cation transporter OCT3 as the extraneuronal monoamine transporter (uptake2) and evidence for the expression of the transporter in the brain. J Biol Chem. 1998;273(49):32776–86.PubMedCrossRef
535.
Zurück zum Zitat Wu X, Huang W, Ganapathy ME, Wang H, Kekuda R, Conway SJ, et al. Structure, function, and regional distribution of the organic cation transporter OCT3 in the kidney. AJP Renal Physiol. 2000;279(3):F449–58. Wu X, Huang W, Ganapathy ME, Wang H, Kekuda R, Conway SJ, et al. Structure, function, and regional distribution of the organic cation transporter OCT3 in the kidney. AJP Renal Physiol. 2000;279(3):F449–58.
536.
Zurück zum Zitat Yasujima T, Ohta K-Y, Inoue K, Ishimaru M, Yuasa H. Evaluation of 4′,6-diamidino-2-phenylindole as a fluorescent probe substrate for rapid assays of the functionality of human multidrug and toxin extrusion proteins. Drug Metab Dispos. 2010;38(4):715–21.PubMedCrossRef Yasujima T, Ohta K-Y, Inoue K, Ishimaru M, Yuasa H. Evaluation of 4′,6-diamidino-2-phenylindole as a fluorescent probe substrate for rapid assays of the functionality of human multidrug and toxin extrusion proteins. Drug Metab Dispos. 2010;38(4):715–21.PubMedCrossRef
537.
Zurück zum Zitat Andre P, Debray M, Scherrmann JM, Cisternino S. Clonidine transport at the mouse blood–brain barrier by a new H+ antiporter that interacts with addictive drugs. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2009;29(7):1293–304.CrossRef Andre P, Debray M, Scherrmann JM, Cisternino S. Clonidine transport at the mouse blood–brain barrier by a new H+ antiporter that interacts with addictive drugs. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2009;29(7):1293–304.CrossRef
538.
Zurück zum Zitat Zheng M, Zhou H, Wan H, Chen Y-L, He Y. Effects of herbal drugs in Mahuang decoction and their main components on intestinal transport characteristics of Ephedra alkaloids evaluated by a Caco-2 cell monolayer model. J Ethnopharmacol. 2015;164:22–9.PubMedCrossRef Zheng M, Zhou H, Wan H, Chen Y-L, He Y. Effects of herbal drugs in Mahuang decoction and their main components on intestinal transport characteristics of Ephedra alkaloids evaluated by a Caco-2 cell monolayer model. J Ethnopharmacol. 2015;164:22–9.PubMedCrossRef
539.
Zurück zum Zitat Rytting E, Audus KL. Novel organic cation transporter 2-mediated carnitine uptake in placental choriocarcinoma (BeWo) cells. J Pharmacol Exp Ther. 2005;312(1):192–8.PubMedCrossRef Rytting E, Audus KL. Novel organic cation transporter 2-mediated carnitine uptake in placental choriocarcinoma (BeWo) cells. J Pharmacol Exp Ther. 2005;312(1):192–8.PubMedCrossRef
540.
Zurück zum Zitat Carchman SH, Crowe JT, Wright GJ. The bioavailability and pharmacokinetics of guanfacine after oral and intravenous administration to healthy volunteers. J Clin Pharmacol. 1987;27(10):762–7.PubMedCrossRef Carchman SH, Crowe JT, Wright GJ. The bioavailability and pharmacokinetics of guanfacine after oral and intravenous administration to healthy volunteers. J Clin Pharmacol. 1987;27(10):762–7.PubMedCrossRef
541.
Zurück zum Zitat Li X, Sun X, Chen J, Lu Y, Zhang Y, Wang C, et al. Investigation of the role of organic cation transporter 2 (OCT2) in the renal transport of guanfacine, a selective alpha2A-adrenoreceptor agonist. Xenobiotica. 2015;45(1):88–94.PubMedCrossRef Li X, Sun X, Chen J, Lu Y, Zhang Y, Wang C, et al. Investigation of the role of organic cation transporter 2 (OCT2) in the renal transport of guanfacine, a selective alpha2A-adrenoreceptor agonist. Xenobiotica. 2015;45(1):88–94.PubMedCrossRef
542.
Zurück zum Zitat Song IS, Shin HJ, Shin JG. Genetic variants of organic cation transporter 2 (OCT2) significantly reduce metformin uptake in oocytes. Xenobiotica. 2008;38(9):1252–62.PubMedCrossRef Song IS, Shin HJ, Shin JG. Genetic variants of organic cation transporter 2 (OCT2) significantly reduce metformin uptake in oocytes. Xenobiotica. 2008;38(9):1252–62.PubMedCrossRef
543.
Zurück zum Zitat Ho C-H, Hsu J-L, Liu S-P, Hsu L-C, Chang W-L, Chao CCK, et al. Repurposing of phentolamine as a potential anticancer agent against human castration-resistant prostate cancer: a central role on microtubule stabilization and mitochondrial apoptosis pathway. Prostate. 2015;75(13):1454–66.PubMedCrossRef Ho C-H, Hsu J-L, Liu S-P, Hsu L-C, Chang W-L, Chao CCK, et al. Repurposing of phentolamine as a potential anticancer agent against human castration-resistant prostate cancer: a central role on microtubule stabilization and mitochondrial apoptosis pathway. Prostate. 2015;75(13):1454–66.PubMedCrossRef
544.
Zurück zum Zitat Zhao R, Raub TJ, Sawada GA, Kasper SC, Bacon JA, Bridges AS, et al. Breast cancer resistance protein interacts with various compounds in vitro, but plays a minor role in substrate efflux at the blood–brain barrier. Drug Metab Dispos. 2009;37(6):1251–8.PubMedPubMedCentralCrossRef Zhao R, Raub TJ, Sawada GA, Kasper SC, Bacon JA, Bridges AS, et al. Breast cancer resistance protein interacts with various compounds in vitro, but plays a minor role in substrate efflux at the blood–brain barrier. Drug Metab Dispos. 2009;37(6):1251–8.PubMedPubMedCentralCrossRef
545.
Zurück zum Zitat DiDiodato G, Sharom FJ. Interaction of combinations of drugs, chemosensitizers, and peptides with the P-glycoprotein multidrug transporter. Biochem Pharmacol. 1997;53(12):1789–97.PubMedCrossRef DiDiodato G, Sharom FJ. Interaction of combinations of drugs, chemosensitizers, and peptides with the P-glycoprotein multidrug transporter. Biochem Pharmacol. 1997;53(12):1789–97.PubMedCrossRef
546.
Zurück zum Zitat Tang F, Horie K, Borchardt RT. Are MDCK cells transfected with the human MRP2 gene a good model of the human intestinal mucosa? Pharm Res. 2002;19(6):773–9.PubMedCrossRef Tang F, Horie K, Borchardt RT. Are MDCK cells transfected with the human MRP2 gene a good model of the human intestinal mucosa? Pharm Res. 2002;19(6):773–9.PubMedCrossRef
547.
Zurück zum Zitat Ullrich KJ, Rumrich G, Kloss S. Contraluminal organic anion and cation transport in the proximal renal tubule: V. Interaction with sulfamoyl- and phenoxy diuretics, and with [beta]-lactam antibiotics. Kidney Int. 1989;36(1):78–88.PubMedCrossRef Ullrich KJ, Rumrich G, Kloss S. Contraluminal organic anion and cation transport in the proximal renal tubule: V. Interaction with sulfamoyl- and phenoxy diuretics, and with [beta]-lactam antibiotics. Kidney Int. 1989;36(1):78–88.PubMedCrossRef
548.
Zurück zum Zitat Uwai Y, Saito H, Hashimoto Y, Inui KI. Interaction and transport of thiazide diuretics, loop diuretics, and acetazolamide via rat renal organic anion transporter rOAT1. J Pharmacol Exp Ther. 2000;295(1):261–5.PubMed Uwai Y, Saito H, Hashimoto Y, Inui KI. Interaction and transport of thiazide diuretics, loop diuretics, and acetazolamide via rat renal organic anion transporter rOAT1. J Pharmacol Exp Ther. 2000;295(1):261–5.PubMed
549.
Zurück zum Zitat Hasegawa M, Kusuhara H, Adachi M, Schuetz JD, Takeuchi K, Sugiyama Y. Multidrug resistance-associated protein 4 is involved in the urinary excretion of hydrochlorothiazide and furosemide. J Am Soc Nephrol. 2007;18(1):37–45.PubMedCrossRef Hasegawa M, Kusuhara H, Adachi M, Schuetz JD, Takeuchi K, Sugiyama Y. Multidrug resistance-associated protein 4 is involved in the urinary excretion of hydrochlorothiazide and furosemide. J Am Soc Nephrol. 2007;18(1):37–45.PubMedCrossRef
550.
Zurück zum Zitat Ruokoniemi P, Tertti R, Paalosmaa-Puusa P, Kareranta H, Laine K. Acetazolamide may provoke cyclosporine toxicity—a case report. NDT Plus. 2009;2(4):298–9.PubMedPubMedCentral Ruokoniemi P, Tertti R, Paalosmaa-Puusa P, Kareranta H, Laine K. Acetazolamide may provoke cyclosporine toxicity—a case report. NDT Plus. 2009;2(4):298–9.PubMedPubMedCentral
551.
Zurück zum Zitat Crowe A, Teoh Y-K. Limited P-glycoprotein mediated efflux for anti-epileptic drugs. J Drug Target. 2006;14(5):291–300.PubMedCrossRef Crowe A, Teoh Y-K. Limited P-glycoprotein mediated efflux for anti-epileptic drugs. J Drug Target. 2006;14(5):291–300.PubMedCrossRef
552.
Zurück zum Zitat Biermann J, Lang D, Gorboulev V, Koepsell H, Sindic A, Schroter R, et al. Characterization of regulatory mechanisms and states of human organic cation transporter 2. AJP Cell Physiol. 2006;290(6):C1521–31.CrossRef Biermann J, Lang D, Gorboulev V, Koepsell H, Sindic A, Schroter R, et al. Characterization of regulatory mechanisms and states of human organic cation transporter 2. AJP Cell Physiol. 2006;290(6):C1521–31.CrossRef
553.
Zurück zum Zitat Pietruck F, Ullrich KJ. Transport interactions of different organic cations during their excretion by the intact rat kidney. Kidney Int. 1995;47(6):1647–57.PubMedCrossRef Pietruck F, Ullrich KJ. Transport interactions of different organic cations during their excretion by the intact rat kidney. Kidney Int. 1995;47(6):1647–57.PubMedCrossRef
554.
Zurück zum Zitat Race JE, Grassl SM, Williams WJ, Holtzman EJ. Molecular cloning and characterization of two novel human renal organic anion transporters (hOAT1 and hOAT3). Biochem Biophys Res Commun. 1999;255(2):508–14.PubMedCrossRef Race JE, Grassl SM, Williams WJ, Holtzman EJ. Molecular cloning and characterization of two novel human renal organic anion transporters (hOAT1 and hOAT3). Biochem Biophys Res Commun. 1999;255(2):508–14.PubMedCrossRef
555.
Zurück zum Zitat Vallon V, Rieg T, Ahn SY, Wu W, Eraly SA, Nigam SK. Overlapping in vitro and in vivo specificities of the organic anion transporters OAT1 and OAT3 for loop and thiazide diuretics. Am J Physiol Renal Physiol. 2008;294(4):F867–73.PubMedCrossRef Vallon V, Rieg T, Ahn SY, Wu W, Eraly SA, Nigam SK. Overlapping in vitro and in vivo specificities of the organic anion transporters OAT1 and OAT3 for loop and thiazide diuretics. Am J Physiol Renal Physiol. 2008;294(4):F867–73.PubMedCrossRef
556.
Zurück zum Zitat Donovan MD, Schellekens H, Boylan GB, Cryan JF, Griffin BT. In vitro bidirectional permeability studies identify pharmacokinetic limitations of NKCC1 inhibitor bumetanide. Eur J Pharmacol. 2016;770:117–25.PubMedCrossRef Donovan MD, Schellekens H, Boylan GB, Cryan JF, Griffin BT. In vitro bidirectional permeability studies identify pharmacokinetic limitations of NKCC1 inhibitor bumetanide. Eur J Pharmacol. 2016;770:117–25.PubMedCrossRef
557.
Zurück zum Zitat Donovan MD, O’Brien FE, Boylan GB, Cryan JF, Griffin BT. The effect of organic anion transporter 3 inhibitor probenecid on bumetanide levels in the brain: an integrated in vivo microdialysis study in the rat. J Pharm Pharmacol. 2015;67(4):501–10.PubMedCrossRef Donovan MD, O’Brien FE, Boylan GB, Cryan JF, Griffin BT. The effect of organic anion transporter 3 inhibitor probenecid on bumetanide levels in the brain: an integrated in vivo microdialysis study in the rat. J Pharm Pharmacol. 2015;67(4):501–10.PubMedCrossRef
558.
Zurück zum Zitat Brismar T, Gruber A, Peterson C. Increased cation transport inmdr1-gene-expressing K562 cells. Cancer Chemother Pharmacol. 1995;36(1):87–90.PubMedCrossRef Brismar T, Gruber A, Peterson C. Increased cation transport inmdr1-gene-expressing K562 cells. Cancer Chemother Pharmacol. 1995;36(1):87–90.PubMedCrossRef
559.
Zurück zum Zitat Wei L, Tominaga H, Ohgaki R, Wiriyasermkul P, Hagiwara K, Okuda S, et al. Transport of 3-fluoro-l-alpha-methyl-tyrosine (FAMT) by organic ion transporters explains renal background in [F]FAMT positron emission tomography. J Pharmacol Sci. 2016. Wei L, Tominaga H, Ohgaki R, Wiriyasermkul P, Hagiwara K, Okuda S, et al. Transport of 3-fluoro-l-alpha-methyl-tyrosine (FAMT) by organic ion transporters explains renal background in [F]FAMT positron emission tomography. J Pharmacol Sci. 2016.
560.
Zurück zum Zitat Zaman GJR, Cnubben NHP, van Bladeren PJ, Evers R, Borst P. Transport of the glutathione conjugate of ethacrynic acid by the human multidrug resistance protein MRP. FEBS Lett. 1996;391(1–2):126–30.PubMedCrossRef Zaman GJR, Cnubben NHP, van Bladeren PJ, Evers R, Borst P. Transport of the glutathione conjugate of ethacrynic acid by the human multidrug resistance protein MRP. FEBS Lett. 1996;391(1–2):126–30.PubMedCrossRef
561.
Zurück zum Zitat El-Sheikh AAK, van den Heuvel JJMW, Koenderink JB, Russel FGM. Effect of hypouricaemic and hyperuricaemic drugs on the renal urate efflux transporter, multidrug resistance protein 4. Br J Pharmacol. 2008;155(7):1066–75.PubMedPubMedCentralCrossRef El-Sheikh AAK, van den Heuvel JJMW, Koenderink JB, Russel FGM. Effect of hypouricaemic and hyperuricaemic drugs on the renal urate efflux transporter, multidrug resistance protein 4. Br J Pharmacol. 2008;155(7):1066–75.PubMedPubMedCentralCrossRef
562.
Zurück zum Zitat Homeida M, Roberts C, Branch RA. Influence of probenecid and spironolactone on furosemide kinetics and dynamics in man. Clin Pharmacol Ther. 1977;22(4):402–9.PubMedCrossRef Homeida M, Roberts C, Branch RA. Influence of probenecid and spironolactone on furosemide kinetics and dynamics in man. Clin Pharmacol Ther. 1977;22(4):402–9.PubMedCrossRef
563.
Zurück zum Zitat Al-Mohizea AM. Influence of intestinal efflux pumps on the absorption and transport of furosemide. Saudi Pharm J SPJ. 2010;18(2):97–101.PubMedCrossRef Al-Mohizea AM. Influence of intestinal efflux pumps on the absorption and transport of furosemide. Saudi Pharm J SPJ. 2010;18(2):97–101.PubMedCrossRef
564.
Zurück zum Zitat Juhasz V, Beery E, Nagy Z, Bui A, Molnar E, Zolnerciks JK, et al. Chlorothiazide is a substrate for the human uptake transporters OAT1 and OAT3. J Pharm Sci. 2013;102(5):1683–7.PubMedCrossRef Juhasz V, Beery E, Nagy Z, Bui A, Molnar E, Zolnerciks JK, et al. Chlorothiazide is a substrate for the human uptake transporters OAT1 and OAT3. J Pharm Sci. 2013;102(5):1683–7.PubMedCrossRef
565.
Zurück zum Zitat Waldorff S, Andersen JD, Heebøll-Nielsen N, Nielsen OG, Moltke E, Sørensen U, et al. Spironolactone-induced changes in digoxin kinetics. Clin Pharmacol Ther. 1987;24(2):162–7.CrossRef Waldorff S, Andersen JD, Heebøll-Nielsen N, Nielsen OG, Moltke E, Sørensen U, et al. Spironolactone-induced changes in digoxin kinetics. Clin Pharmacol Ther. 1987;24(2):162–7.CrossRef
566.
Zurück zum Zitat Ruiz ML, Villanueva SSM, Luquita MG, Pellegrino JM, Rigalli JP, Arias A, et al. Induction of intestinal multidrug resistance-associated protein 2 (Mrp2) by spironolactone in rats. Eur J Pharmacol. 2009;623(1–3):103–6.PubMedCrossRef Ruiz ML, Villanueva SSM, Luquita MG, Pellegrino JM, Rigalli JP, Arias A, et al. Induction of intestinal multidrug resistance-associated protein 2 (Mrp2) by spironolactone in rats. Eur J Pharmacol. 2009;623(1–3):103–6.PubMedCrossRef
567.
Zurück zum Zitat Hagos Y, Bahn A, Vormfelde SV, Brockmoller J, Burckhardt G. Torasemide transport by organic anion transporters contributes to hyperuricemia. J Am Soc Nephrol. 2007;18(12):3101–9.PubMedCrossRef Hagos Y, Bahn A, Vormfelde SV, Brockmoller J, Burckhardt G. Torasemide transport by organic anion transporters contributes to hyperuricemia. J Am Soc Nephrol. 2007;18(12):3101–9.PubMedCrossRef
568.
Zurück zum Zitat Enokizono J, Kusuhara H, Ose A, Schinkel AH, Sugiyama Y. Quantitative investigation of the role of breast cancer resistance protein (Bcrp/Abcg2) in limiting brain and testis penetration of xenobiotic compounds. Drug Metab Dispos. 2008;36(6):995–1002.PubMedCrossRef Enokizono J, Kusuhara H, Ose A, Schinkel AH, Sugiyama Y. Quantitative investigation of the role of breast cancer resistance protein (Bcrp/Abcg2) in limiting brain and testis penetration of xenobiotic compounds. Drug Metab Dispos. 2008;36(6):995–1002.PubMedCrossRef
569.
Zurück zum Zitat Hasannejad H, Takeda M, Taki K, Shin HJ, Babu E, Jutabha P, et al. Interactions of human organic anion transporters with diuretics. J Pharmacol Exp Ther. 2004;308(3):1021–9.PubMedCrossRef Hasannejad H, Takeda M, Taki K, Shin HJ, Babu E, Jutabha P, et al. Interactions of human organic anion transporters with diuretics. J Pharmacol Exp Ther. 2004;308(3):1021–9.PubMedCrossRef
570.
Zurück zum Zitat Schulze S, Reinhardt S, Freese C, Schmitt U, Endres K. Identification of trichlormethiazide as a Mdr1a/b gene expression enhancer via a dual secretion-based promoter assay. Pharmacol Res Perspect. 2015;3(1):e00109. Schulze S, Reinhardt S, Freese C, Schmitt U, Endres K. Identification of trichlormethiazide as a Mdr1a/b gene expression enhancer via a dual secretion-based promoter assay. Pharmacol Res Perspect. 2015;3(1):e00109.
571.
Zurück zum Zitat Kato Y, Miyazaki T, Kano T, Sugiura T, Kubo Y, Tsuji A. Involvement of influx and efflux transport systems in gastrointestinal absorption of celiprolol. J Pharm Sci. 2009;98(7):2529–39.PubMedCrossRef Kato Y, Miyazaki T, Kano T, Sugiura T, Kubo Y, Tsuji A. Involvement of influx and efflux transport systems in gastrointestinal absorption of celiprolol. J Pharm Sci. 2009;98(7):2529–39.PubMedCrossRef
572.
Zurück zum Zitat Lu J, Michaud V, Moya LG, Gaudette F, Leung YH, Turgeon J. Effects of beta-blockers and tricyclic antidepressants on the activity of human organic anion transporting polypeptide 1A2 (OATP1A2). J Pharmacol Exp Ther. 2015;352(3):552–8.PubMedCrossRef Lu J, Michaud V, Moya LG, Gaudette F, Leung YH, Turgeon J. Effects of beta-blockers and tricyclic antidepressants on the activity of human organic anion transporting polypeptide 1A2 (OATP1A2). J Pharmacol Exp Ther. 2015;352(3):552–8.PubMedCrossRef
573.
Zurück zum Zitat Ma YR, Huang J, Shao YY, Ma K, Zhang GQ, Zhou Y, et al. Inhibitory effect of atenolol on urinary excretion of metformin via down-regulating multidrug and toxin extrusion protein 1 (rMate1) expression in the kidney of rats. Eur J Pharm Sci. 2015;20(68):18–26.CrossRef Ma YR, Huang J, Shao YY, Ma K, Zhang GQ, Zhou Y, et al. Inhibitory effect of atenolol on urinary excretion of metformin via down-regulating multidrug and toxin extrusion protein 1 (rMate1) expression in the kidney of rats. Eur J Pharm Sci. 2015;20(68):18–26.CrossRef
574.
Zurück zum Zitat Yin J, Duan H, Shirasaka Y, Prasad B, Wang J. Atenolol renal secretion is mediated by human organic cation transporter 2 and multidrug and toxin extrusion proteins. Drug Metab Dispos. 2015;43(12):1872–81.PubMedPubMedCentralCrossRef Yin J, Duan H, Shirasaka Y, Prasad B, Wang J. Atenolol renal secretion is mediated by human organic cation transporter 2 and multidrug and toxin extrusion proteins. Drug Metab Dispos. 2015;43(12):1872–81.PubMedPubMedCentralCrossRef
575.
Zurück zum Zitat Hayeshi R, Hilgendorf C, Artursson P, Augustijns P, Brodin B, Dehertogh P, et al. Comparison of drug transporter gene expression and functionality in Caco-2 cells from 10 different laboratories. Eur J Pharm Sci. 2008;35(5):383–96.PubMedCrossRef Hayeshi R, Hilgendorf C, Artursson P, Augustijns P, Brodin B, Dehertogh P, et al. Comparison of drug transporter gene expression and functionality in Caco-2 cells from 10 different laboratories. Eur J Pharm Sci. 2008;35(5):383–96.PubMedCrossRef
576.
Zurück zum Zitat Tahara K, Kagawa Y, Takaai M, Taguchi M, Hashimoto Y. Directional transcellular transport of bisoprolol in P-glycoprotein-expressed LLC-GA5-COL150 cells, but not in renal epithelial LLC-PK1 cells. Drug Metab Pharmacokinet. 2008;23(5):340–6.PubMedCrossRef Tahara K, Kagawa Y, Takaai M, Taguchi M, Hashimoto Y. Directional transcellular transport of bisoprolol in P-glycoprotein-expressed LLC-GA5-COL150 cells, but not in renal epithelial LLC-PK1 cells. Drug Metab Pharmacokinet. 2008;23(5):340–6.PubMedCrossRef
577.
Zurück zum Zitat Takaai M, Suzuki H, Ishida K, Tahara K, Hashimoto Y. Pharmacokinetic analysis of transcellular transport of levofloxacin across LLC-PK1 and Caco-2 cell monolayers. Biol Pharm Bull. 2007;30(11):2167–72.PubMedCrossRef Takaai M, Suzuki H, Ishida K, Tahara K, Hashimoto Y. Pharmacokinetic analysis of transcellular transport of levofloxacin across LLC-PK1 and Caco-2 cell monolayers. Biol Pharm Bull. 2007;30(11):2167–72.PubMedCrossRef
578.
Zurück zum Zitat Bachmakov I, Glaeser H, Endress B, Mörl F, König J, Fromm MF. Interaction of beta-blockers with the renal uptake transporter OCT2. Diabetes Obes Metab. 2009:1080-3. Bachmakov I, Glaeser H, Endress B, Mörl F, König J, Fromm MF. Interaction of beta-blockers with the renal uptake transporter OCT2. Diabetes Obes Metab. 2009:1080-3.
579.
Zurück zum Zitat Solbach TF, Paulus B, Weyand M, Eschenhagen T, Zolk O, Fromm MF. ATP-binding cassette transporters in human heart failure. Naunyn Schmied Arch Pharmacol. 2008;377(3):231–43.CrossRef Solbach TF, Paulus B, Weyand M, Eschenhagen T, Zolk O, Fromm MF. ATP-binding cassette transporters in human heart failure. Naunyn Schmied Arch Pharmacol. 2008;377(3):231–43.CrossRef
580.
Zurück zum Zitat Doze P, Van Waarde A, Elsinga PH, Hendrikse NH, Vaalburg W. Enhanced cerebral uptake of receptor ligands by modulation of P-glycoprotein function in the blood–brain barrier. Synapse (New York, NY). 2000;36(1):66–74. Doze P, Van Waarde A, Elsinga PH, Hendrikse NH, Vaalburg W. Enhanced cerebral uptake of receptor ligands by modulation of P-glycoprotein function in the blood–brain barrier. Synapse (New York, NY). 2000;36(1):66–74.
581.
Zurück zum Zitat Giessmann T, Modess C, Hecker U, Zschiesche M, Dazert P, Kunert-Keil C, et al. CYP2D6 genotype and induction of intestinal drug transporters by rifampin predict presystemic clearance of carvedilol in healthy subjects. Clin Pharmacol Ther. 2004;75(3):213–22.PubMedCrossRef Giessmann T, Modess C, Hecker U, Zschiesche M, Dazert P, Kunert-Keil C, et al. CYP2D6 genotype and induction of intestinal drug transporters by rifampin predict presystemic clearance of carvedilol in healthy subjects. Clin Pharmacol Ther. 2004;75(3):213–22.PubMedCrossRef
582.
Zurück zum Zitat Plise EGS, G.; Cheong, J.; Chang, J.C. Investigating the Role of UGT1A1, MRP2 and OATP1B1 in drug induced liver toxicity. In: ISSX, editor. 17th North American Regional ISSX Meeting Atlanta, Georgia, USA: ISSX; 2011. Plise EGS, G.; Cheong, J.; Chang, J.C. Investigating the Role of UGT1A1, MRP2 and OATP1B1 in drug induced liver toxicity. In: ISSX, editor. 17th North American Regional ISSX Meeting Atlanta, Georgia, USA: ISSX; 2011.
583.
Zurück zum Zitat Misaka S, Knop J, Singer K, Hoier E, Keiser M, Muller F, et al. The nonmetabolized beta-blocker nadolol is a substrate of OCT1, OCT2, MATE1, MATE2-K, and P-glycoprotein, but not of OATP1B1 and OATP1B3. Mol Pharm. 2016:19. Misaka S, Knop J, Singer K, Hoier E, Keiser M, Muller F, et al. The nonmetabolized beta-blocker nadolol is a substrate of OCT1, OCT2, MATE1, MATE2-K, and P-glycoprotein, but not of OATP1B1 and OATP1B3. Mol Pharm. 2016:19.
584.
Zurück zum Zitat Pasquier E, Street J, Pouchy C, Carre M, Gifford AJ, Murray J, et al. [beta]-blockers increase response to chemotherapy via direct antitumour and anti-angiogenic mechanisms in neuroblastoma. Br J Cancer. 2013;108(12):2485–94.PubMedPubMedCentralCrossRef Pasquier E, Street J, Pouchy C, Carre M, Gifford AJ, Murray J, et al. [beta]-blockers increase response to chemotherapy via direct antitumour and anti-angiogenic mechanisms in neuroblastoma. Br J Cancer. 2013;108(12):2485–94.PubMedPubMedCentralCrossRef
585.
Zurück zum Zitat D’Emanuele A, Jevprasesphant R, Penny J, Attwood D. The use of a dendrimer-propranolol prodrug to bypass efflux transporters and enhance oral bioavailability. J Control Release. 2004;95(3):447–53.PubMedCrossRef D’Emanuele A, Jevprasesphant R, Penny J, Attwood D. The use of a dendrimer-propranolol prodrug to bypass efflux transporters and enhance oral bioavailability. J Control Release. 2004;95(3):447–53.PubMedCrossRef
586.
Zurück zum Zitat Bachmakov I, Werner U, Endress B, Auge D, Fromm MF. Characterization of β-adrenoceptor antagonists as substrates and inhibitors of the drug transporter P-glycoprotein1. Fundam Clin Pharmacol. 2006;20(3):273–82.PubMedCrossRef Bachmakov I, Werner U, Endress B, Auge D, Fromm MF. Characterization of β-adrenoceptor antagonists as substrates and inhibitors of the drug transporter P-glycoprotein1. Fundam Clin Pharmacol. 2006;20(3):273–82.PubMedCrossRef
587.
588.
Zurück zum Zitat Carr RA, Pasutto FM, Foster RT. Influence of cimetidine coadministration on the pharmacokinetics of sotalol enantiomers in an anaesthetized rat model: evidence supporting active renal excretion of sotalol. Biopharm Drug Dispos. 1996;17(1):55–69.PubMedCrossRef Carr RA, Pasutto FM, Foster RT. Influence of cimetidine coadministration on the pharmacokinetics of sotalol enantiomers in an anaesthetized rat model: evidence supporting active renal excretion of sotalol. Biopharm Drug Dispos. 1996;17(1):55–69.PubMedCrossRef
589.
Zurück zum Zitat Collett A, Tanianis-Hughes J, Hallifax D, Warhurst G. Predicting P-glycoprotein effects on oral absorption: correlation of transport in Caco-2 with drug pharmacokinetics in wild-type and mdr1a(−/−) mice in vivo. Pharm Res. 2004;21(5):819–26.PubMedCrossRef Collett A, Tanianis-Hughes J, Hallifax D, Warhurst G. Predicting P-glycoprotein effects on oral absorption: correlation of transport in Caco-2 with drug pharmacokinetics in wild-type and mdr1a(−/−) mice in vivo. Pharm Res. 2004;21(5):819–26.PubMedCrossRef
590.
Zurück zum Zitat Döppenschmitt S, Langguth P, Regardh CG, Andersson TB, Hilgendorf C, Spahn-Langguth H. Characterization of binding properties to human P-glycoprotein: development of a [3H]verapamil radioligand-binding assay. J Pharmacol Exp Ther. 1999;288(1):348–57.PubMed Döppenschmitt S, Langguth P, Regardh CG, Andersson TB, Hilgendorf C, Spahn-Langguth H. Characterization of binding properties to human P-glycoprotein: development of a [3H]verapamil radioligand-binding assay. J Pharmacol Exp Ther. 1999;288(1):348–57.PubMed
591.
Zurück zum Zitat Shirasaka Y, Kuraoka E, Spahn-Langguth H, Nakanishi T, Langguth P, Tamai I. Species difference in the effect of grapefruit juice on intestinal absorption of talinolol between human and rat. J Pharmacol Exp Ther. 2010;332(1):181–9.PubMedCrossRef Shirasaka Y, Kuraoka E, Spahn-Langguth H, Nakanishi T, Langguth P, Tamai I. Species difference in the effect of grapefruit juice on intestinal absorption of talinolol between human and rat. J Pharmacol Exp Ther. 2010;332(1):181–9.PubMedCrossRef
592.
Zurück zum Zitat Giessmann T, May K, Modess C, Wegner D, Hecker U, Zschiesche M, et al. Carbamazepine regulates intestinal P-glycoprotein and multidrug resistance protein MRP2 and influences disposition of talinolol in humans. Clin Pharmacol Ther. 2004;76(3):192–200.PubMedCrossRef Giessmann T, May K, Modess C, Wegner D, Hecker U, Zschiesche M, et al. Carbamazepine regulates intestinal P-glycoprotein and multidrug resistance protein MRP2 and influences disposition of talinolol in humans. Clin Pharmacol Ther. 2004;76(3):192–200.PubMedCrossRef
593.
Zurück zum Zitat Katoh M, Nakajima M, Yamazaki H, Yokoi T. Inhibitory potencies of 1,4-dihydropyridine calcium antagonists to P-glycoprotein-mediated transport: comparison with the effects on CYP3A4. Pharm Res. 2000;17(10):1189–97.PubMedCrossRef Katoh M, Nakajima M, Yamazaki H, Yokoi T. Inhibitory potencies of 1,4-dihydropyridine calcium antagonists to P-glycoprotein-mediated transport: comparison with the effects on CYP3A4. Pharm Res. 2000;17(10):1189–97.PubMedCrossRef
594.
Zurück zum Zitat Takara K, Matsubara M, Yamamoto K, Minegaki T, Takegami S, Takahashi M, Okumura K. Differential effects of calcium antagonists on ABCG2/BCRP-mediated drug resistance and transport in SN-38-resistant HeLa cells. Mol Med Rep. 2012;5:603–9.PubMed Takara K, Matsubara M, Yamamoto K, Minegaki T, Takegami S, Takahashi M, Okumura K. Differential effects of calcium antagonists on ABCG2/BCRP-mediated drug resistance and transport in SN-38-resistant HeLa cells. Mol Med Rep. 2012;5:603–9.PubMed
595.
Zurück zum Zitat Zhang Y, Gupta A, Wang H, Zhou L, Vethanayagam RR, Unadkat JD, et al. BCRP transports dipyridamole and is inhibited by calcium channel blockers. Pharm Res. 2005;22(12):2023–34.PubMedCrossRef Zhang Y, Gupta A, Wang H, Zhou L, Vethanayagam RR, Unadkat JD, et al. BCRP transports dipyridamole and is inhibited by calcium channel blockers. Pharm Res. 2005;22(12):2023–34.PubMedCrossRef
596.
Zurück zum Zitat Yano K, Takimoto S, Motegi T, Tomono T, Hagiwara M, Idota Y, et al. Role of P-glycoprotein in regulating cilnidipine distribution to intact and ischemic brain. Drug Metab Pharmacokinet. 2014;29(3):254–8.PubMedCrossRef Yano K, Takimoto S, Motegi T, Tomono T, Hagiwara M, Idota Y, et al. Role of P-glycoprotein in regulating cilnidipine distribution to intact and ischemic brain. Drug Metab Pharmacokinet. 2014;29(3):254–8.PubMedCrossRef
597.
Zurück zum Zitat Takara K, Sakaeda T, Tanigawara Y, Nishiguchi K, Ohmoto N, Horinouchi M, et al. Effects of 12 Ca2+ antagonists on multidrug resistance, MDR1-mediated transport and MDR1 mRNA expression. Eur J Pharm Sci. 2002;16(3):159–65.PubMedCrossRef Takara K, Sakaeda T, Tanigawara Y, Nishiguchi K, Ohmoto N, Horinouchi M, et al. Effects of 12 Ca2+ antagonists on multidrug resistance, MDR1-mediated transport and MDR1 mRNA expression. Eur J Pharm Sci. 2002;16(3):159–65.PubMedCrossRef
598.
Zurück zum Zitat Piao Y-J, Choi J-S. Effects of morin on the pharmacokinetics of nicardipine after oral and intravenous administration of nicardipine in rats. J Pharm Pharmacol. 2008;60(5):625–9.PubMedCrossRef Piao Y-J, Choi J-S. Effects of morin on the pharmacokinetics of nicardipine after oral and intravenous administration of nicardipine in rats. J Pharm Pharmacol. 2008;60(5):625–9.PubMedCrossRef
599.
Zurück zum Zitat Miller DS. Nucleoside phosphonate interactions with multiple organic anion transporters in renal proximal tubule. J Pharmacol Exp Ther. 2001;299(2):567–74.PubMed Miller DS. Nucleoside phosphonate interactions with multiple organic anion transporters in renal proximal tubule. J Pharmacol Exp Ther. 2001;299(2):567–74.PubMed
600.
Zurück zum Zitat Dudley AJ, Brown CD. Mediation of cimetidine secretion by P-glycoprotein and a novel H(+)-coupled mechanism in cultured renal epithelial monolayers of LLC-PK1 cells. Br J Pharmacol. 1996;117(6):1139–44.PubMedPubMedCentralCrossRef Dudley AJ, Brown CD. Mediation of cimetidine secretion by P-glycoprotein and a novel H(+)-coupled mechanism in cultured renal epithelial monolayers of LLC-PK1 cells. Br J Pharmacol. 1996;117(6):1139–44.PubMedPubMedCentralCrossRef
601.
Zurück zum Zitat Adachi Y, Suzuki H, Sugiyama Y. Comparative studies on in vitro methods for evaluating in vivo function of MDR1 p-glycoprotein. Pharm Res. 2001;18(12):1660–8.PubMedCrossRef Adachi Y, Suzuki H, Sugiyama Y. Comparative studies on in vitro methods for evaluating in vivo function of MDR1 p-glycoprotein. Pharm Res. 2001;18(12):1660–8.PubMedCrossRef
602.
Zurück zum Zitat Baltes S, Gastens AM, Fedrowitz M, Potschka H, Kaever V, Löscher W. Differences in the transport of the antiepileptic drugs phenytoin, levetiracetam and carbamazepine by human and mouse P-glycoprotein. Neuropharmacology. 2007;52(2):333–46.PubMedCrossRef Baltes S, Gastens AM, Fedrowitz M, Potschka H, Kaever V, Löscher W. Differences in the transport of the antiepileptic drugs phenytoin, levetiracetam and carbamazepine by human and mouse P-glycoprotein. Neuropharmacology. 2007;52(2):333–46.PubMedCrossRef
603.
Zurück zum Zitat Bebawy M, Morris MB, Roufogalis BD. A continuous fluorescence assay for the study of p-glycoprotein-mediated drug efflux using inside-out membrane vesicles. Anal Biochem. 1999;268(2):270–7.PubMedCrossRef Bebawy M, Morris MB, Roufogalis BD. A continuous fluorescence assay for the study of p-glycoprotein-mediated drug efflux using inside-out membrane vesicles. Anal Biochem. 1999;268(2):270–7.PubMedCrossRef
604.
Zurück zum Zitat Borgnia MJ, Eytan GD, Assaraf YG. Competition of hydrophobic peptides, cytotoxic drugs, and chemosensitizers on a common p-glycoprotein pharmacophore as revealed by its ATPase activity. J Biol Chem. 1996;271(6):3163–71.PubMedCrossRef Borgnia MJ, Eytan GD, Assaraf YG. Competition of hydrophobic peptides, cytotoxic drugs, and chemosensitizers on a common p-glycoprotein pharmacophore as revealed by its ATPase activity. J Biol Chem. 1996;271(6):3163–71.PubMedCrossRef
605.
Zurück zum Zitat Golstein PE, Boom A, van Geffel J, Jacobs P, Masereel B, Beauwens R. P-glycoprotein inhibition by glibenclamide and related compounds. Pflügers Arch. 1999;437(5):652–60.PubMedCrossRef Golstein PE, Boom A, van Geffel J, Jacobs P, Masereel B, Beauwens R. P-glycoprotein inhibition by glibenclamide and related compounds. Pflügers Arch. 1999;437(5):652–60.PubMedCrossRef
606.
Zurück zum Zitat Horie K, Tang F, Borchardt RT. Isolation and characterization of Caco-2 subclones expressing high levels of multidrug resistance protein efflux transporter. Pharm Res. 2003;20(2):161–8.PubMedCrossRef Horie K, Tang F, Borchardt RT. Isolation and characterization of Caco-2 subclones expressing high levels of multidrug resistance protein efflux transporter. Pharm Res. 2003;20(2):161–8.PubMedCrossRef
607.
Zurück zum Zitat Lash LH, Putt DA, Cai H. Membrane transport function in primary cultures of human proximal tubular cells. Toxicology. 2006;228(2–3):200–18.PubMedCrossRef Lash LH, Putt DA, Cai H. Membrane transport function in primary cultures of human proximal tubular cells. Toxicology. 2006;228(2–3):200–18.PubMedCrossRef
608.
Zurück zum Zitat Pauli-Magnus C, von Richter O, Burk O, Ziegler A, Mettang T, Eichelbaum M, et al. Characterization of the major metabolites of verapamil as substrates and inhibitors of P-glycoprotein. J Pharmacol Exp Ther. 2000;293(2):376–82.PubMed Pauli-Magnus C, von Richter O, Burk O, Ziegler A, Mettang T, Eichelbaum M, et al. Characterization of the major metabolites of verapamil as substrates and inhibitors of P-glycoprotein. J Pharmacol Exp Ther. 2000;293(2):376–82.PubMed
609.
Zurück zum Zitat Perloff MD, Moltke LL, Fahey JM, Daily JP, Greenblatt DJ. Induction of P-glycoprotein expression by HIV protease inhibitors in cell culture. AIDS. 2000;14(9):1287–9.PubMedCrossRef Perloff MD, Moltke LL, Fahey JM, Daily JP, Greenblatt DJ. Induction of P-glycoprotein expression by HIV protease inhibitors in cell culture. AIDS. 2000;14(9):1287–9.PubMedCrossRef
610.
Zurück zum Zitat Petri N, Tannergren C, Rungstad D, Lennernäs H. Transport characteristics of fexofenadine in the Caco-2 cell model. Pharm Res. 2004;21(8):1398–404.PubMedCrossRef Petri N, Tannergren C, Rungstad D, Lennernäs H. Transport characteristics of fexofenadine in the Caco-2 cell model. Pharm Res. 2004;21(8):1398–404.PubMedCrossRef
611.
Zurück zum Zitat Pouliot JF, L’Heureux F, Liu Z, Prichard RK, Georges E. Reversal of P-glycoprotein-associated multidrug resistance by ivermectin. Biochem Pharmacol. 1997;53(1):17–25.PubMedCrossRef Pouliot JF, L’Heureux F, Liu Z, Prichard RK, Georges E. Reversal of P-glycoprotein-associated multidrug resistance by ivermectin. Biochem Pharmacol. 1997;53(1):17–25.PubMedCrossRef
612.
Zurück zum Zitat Shu Y, Bello CL, Mangravite LM, Feng B, Giacomini KM. Functional characteristics and steroid hormone-mediated regulation of an organic cation transporter in Madin–Darby canine kidney cells. J Pharmacol Exp Ther. 2001;299(1):392–8.PubMed Shu Y, Bello CL, Mangravite LM, Feng B, Giacomini KM. Functional characteristics and steroid hormone-mediated regulation of an organic cation transporter in Madin–Darby canine kidney cells. J Pharmacol Exp Ther. 2001;299(1):392–8.PubMed
613.
Zurück zum Zitat Weiss J, Dormann SMG, Martin-Facklam M, Kerpen CJ, Ketabi-Kiyanvash N, Haefeli WE. Inhibition of P-glycoprotein by newer antidepressants. J Pharmacol Exp Ther. 2003;305(1):197–204.PubMedCrossRef Weiss J, Dormann SMG, Martin-Facklam M, Kerpen CJ, Ketabi-Kiyanvash N, Haefeli WE. Inhibition of P-glycoprotein by newer antidepressants. J Pharmacol Exp Ther. 2003;305(1):197–204.PubMedCrossRef
614.
Zurück zum Zitat Wils P, Phung-Ba V, Warnery A, Lechardeur D, Raeissi S, Hidalgo IJ, et al. Polarized transport of docetaxel and vinblastine mediated by P-glycoprotein in human intestinal epithelial cell monolayers. Biochem Pharmacol. 1994;48(7):1528–30.PubMedCrossRef Wils P, Phung-Ba V, Warnery A, Lechardeur D, Raeissi S, Hidalgo IJ, et al. Polarized transport of docetaxel and vinblastine mediated by P-glycoprotein in human intestinal epithelial cell monolayers. Biochem Pharmacol. 1994;48(7):1528–30.PubMedCrossRef
615.
Zurück zum Zitat Honda Y, Ushigome F, Koyabu N, Morimoto S, Shoyama Y, Uchiumi T, et al. Effects of grapefruit juice and orange juice components on P-glycoprotein- and MRP2-mediated drug efflux. Br J Pharmacol. 2004;143(7):856–64.PubMedPubMedCentralCrossRef Honda Y, Ushigome F, Koyabu N, Morimoto S, Shoyama Y, Uchiumi T, et al. Effects of grapefruit juice and orange juice components on P-glycoprotein- and MRP2-mediated drug efflux. Br J Pharmacol. 2004;143(7):856–64.PubMedPubMedCentralCrossRef
616.
Zurück zum Zitat Yusa K, Tsuruo T. Reversal mechanism of multidrug resistance by verapamil: direct binding of verapamil to P-glycoprotein on specific sites and transport of verapamil outward across the plasma membrane of K562/ADM cells. Cancer Res. 1989;49(18):5002–6.PubMed Yusa K, Tsuruo T. Reversal mechanism of multidrug resistance by verapamil: direct binding of verapamil to P-glycoprotein on specific sites and transport of verapamil outward across the plasma membrane of K562/ADM cells. Cancer Res. 1989;49(18):5002–6.PubMed
617.
Zurück zum Zitat Zhang S, Morris ME. Effects of the flavonoids biochanin A, morin, phloretin, and silymarin on P-glycoprotein-mediated transport. J Pharmacol Exp Ther. 2003;304(3):1258–67.PubMedCrossRef Zhang S, Morris ME. Effects of the flavonoids biochanin A, morin, phloretin, and silymarin on P-glycoprotein-mediated transport. J Pharmacol Exp Ther. 2003;304(3):1258–67.PubMedCrossRef
618.
Zurück zum Zitat Vaidyanathan S, Camenisch G, Schuetz H, Reynolds C, Yeh CM, Bizot MN, et al. Pharmacokinetics of the oral direct renin inhibitor aliskiren in combination with digoxin, atorvastatin, and ketoconazole in healthy subjects: the role of P-glycoprotein in the disposition of aliskiren. J Clin Pharmacol. 2008;48(11):1323–38.PubMedCrossRef Vaidyanathan S, Camenisch G, Schuetz H, Reynolds C, Yeh CM, Bizot MN, et al. Pharmacokinetics of the oral direct renin inhibitor aliskiren in combination with digoxin, atorvastatin, and ketoconazole in healthy subjects: the role of P-glycoprotein in the disposition of aliskiren. J Clin Pharmacol. 2008;48(11):1323–38.PubMedCrossRef
619.
Zurück zum Zitat Rebello S, Zhao S, Hariry S, Dahlke M, Alexander N, Vapurcuyan A, et al. Intestinal OATP1A2 inhibition as a potential mechanism for the effect of grapefruit juice on aliskiren pharmacokinetics in healthy subjects. Eur J Clin Pharmacol. 2012;68(5):697–708.PubMedCrossRef Rebello S, Zhao S, Hariry S, Dahlke M, Alexander N, Vapurcuyan A, et al. Intestinal OATP1A2 inhibition as a potential mechanism for the effect of grapefruit juice on aliskiren pharmacokinetics in healthy subjects. Eur J Clin Pharmacol. 2012;68(5):697–708.PubMedCrossRef
620.
Zurück zum Zitat Yamashita F, Ohtani H, Koyabu N, Ushigome F, Satoh H, Murakami H, et al. Inhibitory effects of angiotensin II receptor antagonists and leukotriene receptor antagonists on the transport of human organic anion transporter 4. J Pharm Pharmacol. 2006;58(11):1499–505.PubMedCrossRef Yamashita F, Ohtani H, Koyabu N, Ushigome F, Satoh H, Murakami H, et al. Inhibitory effects of angiotensin II receptor antagonists and leukotriene receptor antagonists on the transport of human organic anion transporter 4. J Pharm Pharmacol. 2006;58(11):1499–505.PubMedCrossRef
621.
Zurück zum Zitat Kamiyama E, Nakai D, Mikkaichi T, Okudaira N, Okazaki O. Interaction of angiotensin II type 1 receptor blockers with P-gp substrates in Caco-2 cells and hMDR1-expressing membranes. Life Sci. 2010;86(1–2):52–8.PubMedCrossRef Kamiyama E, Nakai D, Mikkaichi T, Okudaira N, Okazaki O. Interaction of angiotensin II type 1 receptor blockers with P-gp substrates in Caco-2 cells and hMDR1-expressing membranes. Life Sci. 2010;86(1–2):52–8.PubMedCrossRef
622.
Zurück zum Zitat Weiss J, Sauer A, Divac N, Herzog M, Schwedhelm E, Böger RH, et al. Interaction of angiotensin receptor type 1 blockers with ATP-binding cassette transporters. Biopharm Drug Dispos. 2010;31(2–3):150–61.PubMedCrossRef Weiss J, Sauer A, Divac N, Herzog M, Schwedhelm E, Böger RH, et al. Interaction of angiotensin receptor type 1 blockers with ATP-binding cassette transporters. Biopharm Drug Dispos. 2010;31(2–3):150–61.PubMedCrossRef
623.
Zurück zum Zitat Zhou F, Zhu L, Cui PH, Church WB, Murray M. Functional characterization of nonsynonymous single nucleotide polymorphisms in the human organic anion transporter 4 (hOAT4). Br J Pharmacol. 2010;159(2):419–27.PubMedCrossRef Zhou F, Zhu L, Cui PH, Church WB, Murray M. Functional characterization of nonsynonymous single nucleotide polymorphisms in the human organic anion transporter 4 (hOAT4). Br J Pharmacol. 2010;159(2):419–27.PubMedCrossRef
624.
Zurück zum Zitat Takara K, Kakumoto M, Tanigawara Y, Funakoshi J, Sakaeda T, Okumura K. Interaction of digoxin with antihypertensive drugs via MDR1. Life Sci. 2002;70(13):1491–500.PubMedCrossRef Takara K, Kakumoto M, Tanigawara Y, Funakoshi J, Sakaeda T, Okumura K. Interaction of digoxin with antihypertensive drugs via MDR1. Life Sci. 2002;70(13):1491–500.PubMedCrossRef
625.
Zurück zum Zitat Ferslew BC, Köck K, Bridges AS, Brouwer KLR. Role of multidrug resistance-associated protein 4 in the basolateral efflux of hepatically derived enalaprilat. Drug Metab Dispos. 2014;42(9):1567–74.PubMedPubMedCentralCrossRef Ferslew BC, Köck K, Bridges AS, Brouwer KLR. Role of multidrug resistance-associated protein 4 in the basolateral efflux of hepatically derived enalaprilat. Drug Metab Dispos. 2014;42(9):1567–74.PubMedPubMedCentralCrossRef
626.
Zurück zum Zitat Liu L, Cui Y, Chung AY, Shitara Y, Sugiyama Y, Keppler D, et al. Vectorial transport of enalapril by Oatp1a1/Mrp2 and OATP1B1 and OATP1B3/MRP2 in rat and human livers. J Pharmacol Exp Ther. 2006;318(1):395–402.PubMedCrossRef Liu L, Cui Y, Chung AY, Shitara Y, Sugiyama Y, Keppler D, et al. Vectorial transport of enalapril by Oatp1a1/Mrp2 and OATP1B1 and OATP1B3/MRP2 in rat and human livers. J Pharmacol Exp Ther. 2006;318(1):395–402.PubMedCrossRef
628.
Zurück zum Zitat Sun P, Wang C, Liu Q, Meng Q, Zhang A, Huo X, et al. OATP and MRP2-mediated hepatic uptake and biliary excretion of eprosartan in rat and human. Pharmacol Rep. 2014;66(2):311–9.PubMedCrossRef Sun P, Wang C, Liu Q, Meng Q, Zhang A, Huo X, et al. OATP and MRP2-mediated hepatic uptake and biliary excretion of eprosartan in rat and human. Pharmacol Rep. 2014;66(2):311–9.PubMedCrossRef
629.
Zurück zum Zitat Huo X, Liu Q, Wang C, Meng Q, Sun H, Peng J, et al. Inhibitory effect of valsartan on the intestinal absorption and renal excretion of bestatin in rats. J Pharm Sci. 2014;103(2):719–29.PubMedCrossRef Huo X, Liu Q, Wang C, Meng Q, Sun H, Peng J, et al. Inhibitory effect of valsartan on the intestinal absorption and renal excretion of bestatin in rats. J Pharm Sci. 2014;103(2):719–29.PubMedCrossRef
630.
Zurück zum Zitat Kim JW, Yi S, Kim TE, Lim KS, Yoon SH, Cho JY, et al. Increased systemic exposure of fimasartan, an angiotensin II receptor antagonist, by ketoconazole and rifampicin. J Clin Pharmacol. 2013;53(1):75–81.PubMedCrossRef Kim JW, Yi S, Kim TE, Lim KS, Yoon SH, Cho JY, et al. Increased systemic exposure of fimasartan, an angiotensin II receptor antagonist, by ketoconazole and rifampicin. J Clin Pharmacol. 2013;53(1):75–81.PubMedCrossRef
631.
Zurück zum Zitat Jeong E-S, Kim Y-W, Kim H-J, Shin H-J, Shin J-G, Kim KH, et al. Glucuronidation of fimasartan, a new angiotensin receptor antagonist, is mainly mediated by UGT1A3. Xenobiotica. 2015;45(1):10–8.PubMedCrossRef Jeong E-S, Kim Y-W, Kim H-J, Shin H-J, Shin J-G, Kim KH, et al. Glucuronidation of fimasartan, a new angiotensin receptor antagonist, is mainly mediated by UGT1A3. Xenobiotica. 2015;45(1):10–8.PubMedCrossRef
632.
Zurück zum Zitat Ghim J-L, Paik SH, Hasanuzzaman M, Chi YH, Choi H-K, Kim D-H, et al. Absolute bioavailability and pharmacokinetics of the angiotensin II receptor antagonist fimasartan in healthy subjects. J Clin Pharmacol. 2016;56(5):576–80.PubMedCrossRef Ghim J-L, Paik SH, Hasanuzzaman M, Chi YH, Choi H-K, Kim D-H, et al. Absolute bioavailability and pharmacokinetics of the angiotensin II receptor antagonist fimasartan in healthy subjects. J Clin Pharmacol. 2016;56(5):576–80.PubMedCrossRef
633.
Zurück zum Zitat Green BR, Bain LJ. Mrp2 is involved in the efflux and disposition of fosinopril. J Appl Toxicol JAT. 2013;6:458–65.CrossRef Green BR, Bain LJ. Mrp2 is involved in the efflux and disposition of fosinopril. J Appl Toxicol JAT. 2013;6:458–65.CrossRef
634.
Zurück zum Zitat Edwards RM, Stack EJ, Trizna W. Transport of [3H]losartan across isolated perfused rabbit proximal tubule. J Pharmacol Exp Ther. 1999;290(1):38–42.PubMed Edwards RM, Stack EJ, Trizna W. Transport of [3H]losartan across isolated perfused rabbit proximal tubule. J Pharmacol Exp Ther. 1999;290(1):38–42.PubMed
635.
Zurück zum Zitat Werner D, Werner U, Meybaum A, Schmidt B, Umbreen S, Grosch A, et al. Determinants of steady-state torasemide pharmacokinetics: impact of pharmacogenetic factors, gender and angiotensin II receptor blockers. Clin Pharmacokinet. 2008;47(5):323–32.PubMedCrossRef Werner D, Werner U, Meybaum A, Schmidt B, Umbreen S, Grosch A, et al. Determinants of steady-state torasemide pharmacokinetics: impact of pharmacogenetic factors, gender and angiotensin II receptor blockers. Clin Pharmacokinet. 2008;47(5):323–32.PubMedCrossRef
636.
Zurück zum Zitat Noguchi S, Nishimura T, Fujibayashi A, Maruyama T, Tomi M, Nakashima E. Organic anion transporter 4-mediated transport of olmesartan at basal plasma membrane of human placental barrier. J Pharm Sci. 2015;104(9):3128–35.PubMedCrossRef Noguchi S, Nishimura T, Fujibayashi A, Maruyama T, Tomi M, Nakashima E. Organic anion transporter 4-mediated transport of olmesartan at basal plasma membrane of human placental barrier. J Pharm Sci. 2015;104(9):3128–35.PubMedCrossRef
637.
Zurück zum Zitat Soldner A, Benet LZ, Mutschler E, Christians U. Active transport of the angiotensin-II antagonist losartan and its main metabolite EXP 3174 across MDCK-MDR1 and Caco-2 cell monolayers. Br J Pharmacol. 2000;129(6):1235–43.PubMedPubMedCentralCrossRef Soldner A, Benet LZ, Mutschler E, Christians U. Active transport of the angiotensin-II antagonist losartan and its main metabolite EXP 3174 across MDCK-MDR1 and Caco-2 cell monolayers. Br J Pharmacol. 2000;129(6):1235–43.PubMedPubMedCentralCrossRef
638.
Zurück zum Zitat Ullrich KJ, Rumrich G. Luminal transport step of para -aminohippurate (PAH): transport from PAH-loaded proximal tubular cells into the tubular lumen of the rat kidney in vivo. Pflügers Arch. 1997;433(6):735–43.PubMedCrossRef Ullrich KJ, Rumrich G. Luminal transport step of para -aminohippurate (PAH): transport from PAH-loaded proximal tubular cells into the tubular lumen of the rat kidney in vivo. Pflügers Arch. 1997;433(6):735–43.PubMedCrossRef
639.
Zurück zum Zitat Flynn CA, Hagenbuch B, Reed G. Fexofenadine transport and drug–drug interactions. FASEB J. 2009;2009(748):5. Flynn CA, Hagenbuch B, Reed G. Fexofenadine transport and drug–drug interactions. FASEB J. 2009;2009(748):5.
640.
Zurück zum Zitat Yamada A, Maeda K, Kamiyama E, Sugiyama D, Kondo T, Shiroyanagi Y, et al. Multiple human isoforms of drug transporters contribute to the hepatic and renal transport of olmesartan, a selective antagonist of the angiotensin II AT1-receptor. Drug Metab Dispos. 2007;35(12):2166–76.PubMedCrossRef Yamada A, Maeda K, Kamiyama E, Sugiyama D, Kondo T, Shiroyanagi Y, et al. Multiple human isoforms of drug transporters contribute to the hepatic and renal transport of olmesartan, a selective antagonist of the angiotensin II AT1-receptor. Drug Metab Dispos. 2007;35(12):2166–76.PubMedCrossRef
641.
Zurück zum Zitat Nakagomi-Hagihara R, Nakai D, Kawai K, Yoshigae Y, Tokui T, Abe T, et al. OATP1B1, OATP1B3, and MRP2 are involved in hepatobiliary transport of olmesartan, a novel angiotensin II blocker. Drug Metab Dispos. 2006;34(5):862–9.PubMedCrossRef Nakagomi-Hagihara R, Nakai D, Kawai K, Yoshigae Y, Tokui T, Abe T, et al. OATP1B1, OATP1B3, and MRP2 are involved in hepatobiliary transport of olmesartan, a novel angiotensin II blocker. Drug Metab Dispos. 2006;34(5):862–9.PubMedCrossRef
642.
Zurück zum Zitat Kim CO, Cho SK, Oh ES, Park MS, Chung JY. Influence of ABCC2, SLCO1B1, and ABCG2 polymorphisms on the pharmacokinetics of olmesartan. J Cardiovasc Pharmacol. 2012;60(1):49–54.PubMedCrossRef Kim CO, Cho SK, Oh ES, Park MS, Chung JY. Influence of ABCC2, SLCO1B1, and ABCG2 polymorphisms on the pharmacokinetics of olmesartan. J Cardiovasc Pharmacol. 2012;60(1):49–54.PubMedCrossRef
643.
Zurück zum Zitat Yuan H, Feng B, Yu Y, Chupka J, Zheng JY, Heath TG, et al. Renal organic anion transporter-mediated drug–drug interaction between gemcabene and quinapril. J Pharmacol Exp Ther. 2009;330(1):191–7.PubMedCrossRef Yuan H, Feng B, Yu Y, Chupka J, Zheng JY, Heath TG, et al. Renal organic anion transporter-mediated drug–drug interaction between gemcabene and quinapril. J Pharmacol Exp Ther. 2009;330(1):191–7.PubMedCrossRef
644.
Zurück zum Zitat EMA. Entresto® assessment report. UK: European Medicines Agency; 2015. EMA. Entresto® assessment report. UK: European Medicines Agency; 2015.
645.
Zurück zum Zitat Yamada A, Maeda K, Ishiguro N, Tsuda Y, Igarashi T, Ebner T, et al. The impact of pharmacogenetics of metabolic enzymes and transporters on the pharmacokinetics of telmisartan in healthy volunteers. Pharmacogenet Genomics. 2011;21(9):523–30.PubMedCrossRef Yamada A, Maeda K, Ishiguro N, Tsuda Y, Igarashi T, Ebner T, et al. The impact of pharmacogenetics of metabolic enzymes and transporters on the pharmacokinetics of telmisartan in healthy volunteers. Pharmacogenet Genomics. 2011;21(9):523–30.PubMedCrossRef
646.
Zurück zum Zitat Chen W-Q, Shu Y, Li Q, Xu L-Y, Roederer MW, Fan L, et al. Polymorphism of ORM1 is associated with the pharmacokinetics of telmisartan. PLoS One. 2013;8(8):e70341.PubMedPubMedCentralCrossRef Chen W-Q, Shu Y, Li Q, Xu L-Y, Roederer MW, Fan L, et al. Polymorphism of ORM1 is associated with the pharmacokinetics of telmisartan. PLoS One. 2013;8(8):e70341.PubMedPubMedCentralCrossRef
647.
Zurück zum Zitat Hotchkiss AG, Gao T, Khan U, Berrigan L, Li M, Ingraham L, et al. Organic anion transporter 1 is inhibited by multiple mechanisms and shows a transport mode independent of exchange. Drug Metab Dispos. 2015;43(12):1847–54.PubMedCrossRef Hotchkiss AG, Gao T, Khan U, Berrigan L, Li M, Ingraham L, et al. Organic anion transporter 1 is inhibited by multiple mechanisms and shows a transport mode independent of exchange. Drug Metab Dispos. 2015;43(12):1847–54.PubMedCrossRef
648.
Zurück zum Zitat Bentz J, O’Connor MP, Bednarczyk D, Coleman J, Lee C, Palm J, et al. Variability in P-glycoprotein inhibitory potency (IC(5)(0)) using various in vitro experimental systems: implications for universal digoxin drug–drug interaction risk assessment decision criteria. Drug Metab Dispos. 2013;41(7):1347–66.PubMedPubMedCentralCrossRef Bentz J, O’Connor MP, Bednarczyk D, Coleman J, Lee C, Palm J, et al. Variability in P-glycoprotein inhibitory potency (IC(5)(0)) using various in vitro experimental systems: implications for universal digoxin drug–drug interaction risk assessment decision criteria. Drug Metab Dispos. 2013;41(7):1347–66.PubMedPubMedCentralCrossRef
649.
Zurück zum Zitat Hasegawa M, Kusuhara H, Endou H, Sugiyama Y. Contribution of organic anion transporters to the renal uptake of anionic compounds and nucleoside derivatives in rat. J Pharmacol Exp Ther. 2003;305(3):1087–97.PubMedCrossRef Hasegawa M, Kusuhara H, Endou H, Sugiyama Y. Contribution of organic anion transporters to the renal uptake of anionic compounds and nucleoside derivatives in rat. J Pharmacol Exp Ther. 2003;305(3):1087–97.PubMedCrossRef
650.
Zurück zum Zitat Ishizuka H, Konno K, Naganuma H, Sasahara K, Kawahara Y, Niinuma K, et al. Temocaprilat, a novel angiotensin-converting enzyme inhibitor, is excreted in bile via an ATP-dependent active transporter (cMOAT) that is deficient in Eisai hyperbilirubinemic mutant rats (EHBR). J Pharmacol Exp Ther. 1997;280(3):1304–11.PubMed Ishizuka H, Konno K, Naganuma H, Sasahara K, Kawahara Y, Niinuma K, et al. Temocaprilat, a novel angiotensin-converting enzyme inhibitor, is excreted in bile via an ATP-dependent active transporter (cMOAT) that is deficient in Eisai hyperbilirubinemic mutant rats (EHBR). J Pharmacol Exp Ther. 1997;280(3):1304–11.PubMed
651.
Zurück zum Zitat Yamashiro W, Maeda K, Hirouchi M, Adachi Y, Hu Z, Sugiyama Y. Involvement of transporters in the hepatic uptake and biliary excretion of valsartan, a selective antagonist of the angiotensin II at 1-receptor, in humans. Drug Metab Dispos. 2006;34(7):1247–54.PubMedCrossRef Yamashiro W, Maeda K, Hirouchi M, Adachi Y, Hu Z, Sugiyama Y. Involvement of transporters in the hepatic uptake and biliary excretion of valsartan, a selective antagonist of the angiotensin II at 1-receptor, in humans. Drug Metab Dispos. 2006;34(7):1247–54.PubMedCrossRef
652.
Zurück zum Zitat Challa VR, Ravindra Babu P, Challa SR, Johnson B, Maheswari C. Pharmacokinetic interaction study between quercetin and valsartan in rats and in vitro models. Drug Dev Indus Pharmacy. 2013;39(6):865–72.CrossRef Challa VR, Ravindra Babu P, Challa SR, Johnson B, Maheswari C. Pharmacokinetic interaction study between quercetin and valsartan in rats and in vitro models. Drug Dev Indus Pharmacy. 2013;39(6):865–72.CrossRef
653.
Zurück zum Zitat Wise SD, Chan C, Schaefer HG, He MM, Pouliquen IJ, Mitchell MI. Quinidine does not affect the renal clearance of moxonidine. Br J Clin Pharmacol. 2002;54(3):251–4.PubMedPubMedCentralCrossRef Wise SD, Chan C, Schaefer HG, He MM, Pouliquen IJ, Mitchell MI. Quinidine does not affect the renal clearance of moxonidine. Br J Clin Pharmacol. 2002;54(3):251–4.PubMedPubMedCentralCrossRef
654.
Zurück zum Zitat Gilead Sciences I. Ranexa® full prescribing information. Foster City: Gilead Sciences, Inc.; 2016. Gilead Sciences I. Ranexa® full prescribing information. Foster City: Gilead Sciences, Inc.; 2016.
655.
Zurück zum Zitat Ohtsuki S, Kikkawa T, Mori S, Hori S, Takanaga H, Otagiri M, et al. Mouse reduced in osteosclerosis transporter functions as an organic anion transporter 3 and is localized at abluminal membrane of blood–brain barrier. J Pharmacol Exp Ther. 2004;309(3):1273–81.PubMedCrossRef Ohtsuki S, Kikkawa T, Mori S, Hori S, Takanaga H, Otagiri M, et al. Mouse reduced in osteosclerosis transporter functions as an organic anion transporter 3 and is localized at abluminal membrane of blood–brain barrier. J Pharmacol Exp Ther. 2004;309(3):1273–81.PubMedCrossRef
656.
Zurück zum Zitat Fujiwara K, Adachi H, Nishio T, Unno M, Tokui T, Okabe M, et al. Identification of thyroid hormone transporters in humans: different molecules are involved in a tissue-specific manner. Endocrinology. 2001;142(5):2005–12.PubMedCrossRef Fujiwara K, Adachi H, Nishio T, Unno M, Tokui T, Okabe M, et al. Identification of thyroid hormone transporters in humans: different molecules are involved in a tissue-specific manner. Endocrinology. 2001;142(5):2005–12.PubMedCrossRef
657.
Zurück zum Zitat Siegmund W, Altmannsberger S, Paneitz A, Hecker U, Zschiesche M, Franke G, et al. Effect of levothyroxine administration on intestinal P-glycoprotein expression: consequences for drug disposition. Clin Pharmacol Ther. 2002;72(3):256–64.PubMedCrossRef Siegmund W, Altmannsberger S, Paneitz A, Hecker U, Zschiesche M, Franke G, et al. Effect of levothyroxine administration on intestinal P-glycoprotein expression: consequences for drug disposition. Clin Pharmacol Ther. 2002;72(3):256–64.PubMedCrossRef
658.
Zurück zum Zitat Lecureux L, Dieter MZ, Nelson DM, Watson L, Wong H, Gemzik B, et al. Hepatobiliary disposition of thyroid hormone in Mrp2-deficient TR-rats: reduced biliary excretion of thyroxine glucuronide does not prevent xenobiotic-induced hypothyroidism. Toxicol Sci. 2009;108(2):482–91.PubMedCrossRef Lecureux L, Dieter MZ, Nelson DM, Watson L, Wong H, Gemzik B, et al. Hepatobiliary disposition of thyroid hormone in Mrp2-deficient TR-rats: reduced biliary excretion of thyroxine glucuronide does not prevent xenobiotic-induced hypothyroidism. Toxicol Sci. 2009;108(2):482–91.PubMedCrossRef
659.
Zurück zum Zitat Imamura Y, Tsuruya Y, Damme K, Heer D, Kumagai Y, Maeda K, et al. 6beta-Hydroxycortisol is an endogenous probe for evaluation of drug–drug interactions involving a multispecific renal organic anion transporter, OAT3/SLC22A8, in healthy subjects. Drug Metab Dispos. 2014;42(4):685–94.PubMedCrossRef Imamura Y, Tsuruya Y, Damme K, Heer D, Kumagai Y, Maeda K, et al. 6beta-Hydroxycortisol is an endogenous probe for evaluation of drug–drug interactions involving a multispecific renal organic anion transporter, OAT3/SLC22A8, in healthy subjects. Drug Metab Dispos. 2014;42(4):685–94.PubMedCrossRef
660.
Zurück zum Zitat Imamura Y, Murayama N, Okudaira N, Kurihara A, Inoue K, Yuasa H, et al. Effect of the fluoroquinolone antibacterial agent DX-619 on the apparent formation and renal clearances of 6beta-hydroxycortisol, an endogenous probe for CYP3A4 inhibition, in healthy subjects. Pharm Res. 2013;30(2):447–57.PubMedCrossRef Imamura Y, Murayama N, Okudaira N, Kurihara A, Inoue K, Yuasa H, et al. Effect of the fluoroquinolone antibacterial agent DX-619 on the apparent formation and renal clearances of 6beta-hydroxycortisol, an endogenous probe for CYP3A4 inhibition, in healthy subjects. Pharm Res. 2013;30(2):447–57.PubMedCrossRef
661.
Zurück zum Zitat Pavek P, Merino G, Wagenaar E, Bolscher E, Novotna M, Jonker JW, et al. Human breast cancer resistance protein: interactions with steroid drugs, hormones, the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine, and transport of cimetidine. J Pharmacol Exp Ther. 2005;312(1):144–52.PubMedCrossRef Pavek P, Merino G, Wagenaar E, Bolscher E, Novotna M, Jonker JW, et al. Human breast cancer resistance protein: interactions with steroid drugs, hormones, the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine, and transport of cimetidine. J Pharmacol Exp Ther. 2005;312(1):144–52.PubMedCrossRef
662.
Zurück zum Zitat Dilger K, Schwab M, Fromm MF. Identification of budesonide and prednisone as substrates of the intestinal drug efflux pump P-glycoprotein. Inflamm Bowel Dis. 2004;10(5):578–83.PubMedCrossRef Dilger K, Schwab M, Fromm MF. Identification of budesonide and prednisone as substrates of the intestinal drug efflux pump P-glycoprotein. Inflamm Bowel Dis. 2004;10(5):578–83.PubMedCrossRef
663.
Zurück zum Zitat Hayer-Zillgen M, Brüss M, Bönisch H. Expression and pharmacological profile of the human organic cation transporters hOCT1, hOCT2 and hOCT3. Br J Pharmacol. 2002;136(6):829–36.PubMedPubMedCentralCrossRef Hayer-Zillgen M, Brüss M, Bönisch H. Expression and pharmacological profile of the human organic cation transporters hOCT1, hOCT2 and hOCT3. Br J Pharmacol. 2002;136(6):829–36.PubMedPubMedCentralCrossRef
664.
Zurück zum Zitat Mason BL, Pariante CM, Thomas SA. A revised role for P-glycoprotein in the brain distribution of dexamethasone, cortisol, and corticosterone in wild-type and ABCB1A/B-deficient mice. Endocrinology. 2008;149(10):5244–53.PubMedPubMedCentralCrossRef Mason BL, Pariante CM, Thomas SA. A revised role for P-glycoprotein in the brain distribution of dexamethasone, cortisol, and corticosterone in wild-type and ABCB1A/B-deficient mice. Endocrinology. 2008;149(10):5244–53.PubMedPubMedCentralCrossRef
665.
Zurück zum Zitat Ueda K, Okamura N, Hirai M, Tanigawara Y, Saeki T, Kioka N, et al. Human P-glycoprotein transports cortisol, aldosterone, and dexamethasone, but not progesterone. J Biol Chem. 1992;267(34):24248–52.PubMed Ueda K, Okamura N, Hirai M, Tanigawara Y, Saeki T, Kioka N, et al. Human P-glycoprotein transports cortisol, aldosterone, and dexamethasone, but not progesterone. J Biol Chem. 1992;267(34):24248–52.PubMed
666.
Zurück zum Zitat Asif AR, Steffgen J, Metten M, Grunewald RW, Müller GA, Bahn A, et al. Presence of organic anion transporters 3 (OAT3) and 4 (OAT4) in human adrenocortical cells. Pflügers Arch. 2005;450(2):88–95.PubMedCrossRef Asif AR, Steffgen J, Metten M, Grunewald RW, Müller GA, Bahn A, et al. Presence of organic anion transporters 3 (OAT3) and 4 (OAT4) in human adrenocortical cells. Pflügers Arch. 2005;450(2):88–95.PubMedCrossRef
667.
Zurück zum Zitat Yam K-Y, van den Akker ELT, van Rossum EFC, van Mullem AAA, Visser TJ. Is transport of cortisol in liver cells carrier-mediated? Erasmus J Med. 2012;3(1):8–12. Yam K-Y, van den Akker ELT, van Rossum EFC, van Mullem AAA, Visser TJ. Is transport of cortisol in liver cells carrier-mediated? Erasmus J Med. 2012;3(1):8–12.
668.
Zurück zum Zitat Micuda S, Fuksa L, Mundlova L, Osterreicher J, Mokry J, Cermanova J, et al. Morphological and functional changes in P-glycoprotein during dexamethasone-induced hepatomegaly. Clin Exp Pharmacol Physiol. 2007;34(4):296–303.PubMedCrossRef Micuda S, Fuksa L, Mundlova L, Osterreicher J, Mokry J, Cermanova J, et al. Morphological and functional changes in P-glycoprotein during dexamethasone-induced hepatomegaly. Clin Exp Pharmacol Physiol. 2007;34(4):296–303.PubMedCrossRef
669.
Zurück zum Zitat El-Sheikh AAK, Greupink R, Wortelboer HM, van den Heuvel JJMW, Schreurs M, Koenderink JB, et al. Interaction of immunosuppressive drugs with human organic anion transporter (OAT) 1 and OAT3, and multidrug resistance-associated protein (MRP) 2 and MRP4. Transl Res J Lab Clin Med. 2013;162(6):398–409.CrossRef El-Sheikh AAK, Greupink R, Wortelboer HM, van den Heuvel JJMW, Schreurs M, Koenderink JB, et al. Interaction of immunosuppressive drugs with human organic anion transporter (OAT) 1 and OAT3, and multidrug resistance-associated protein (MRP) 2 and MRP4. Transl Res J Lab Clin Med. 2013;162(6):398–409.CrossRef
670.
Zurück zum Zitat Kullak-Ublick GA, Fisch T, Oswald M, Hagenbuch B, Meier PJ, Beuers U, et al. Dehydroepiandrosterone sulfate (DHEAS): identification of a carrier protein in human liver and brain. FEBS Lett. 1998;424(3):173–6.PubMedCrossRef Kullak-Ublick GA, Fisch T, Oswald M, Hagenbuch B, Meier PJ, Beuers U, et al. Dehydroepiandrosterone sulfate (DHEAS): identification of a carrier protein in human liver and brain. FEBS Lett. 1998;424(3):173–6.PubMedCrossRef
671.
Zurück zum Zitat Oka A, Oda M, Saitoh H, Nakayama A, Takada M, Aungst BJ. Secretory transport of methylprednisolone possibly mediated by P-glycoprotein in Caco-2 cells. Biol Pharm Bull. 2002;25(3):393–6.PubMedCrossRef Oka A, Oda M, Saitoh H, Nakayama A, Takada M, Aungst BJ. Secretory transport of methylprednisolone possibly mediated by P-glycoprotein in Caco-2 cells. Biol Pharm Bull. 2002;25(3):393–6.PubMedCrossRef
672.
Zurück zum Zitat Nozaki Y, Kusuhara H, Kondo T, Hasegawa M, Shiroyanagi Y, Nakazawa H, et al. Characterization of the uptake of organic anion transporter (OAT) 1 and OAT3 substrates by human kidney slices. J Pharmacol Exp Ther. 2007;321(1):362–9.PubMedCrossRef Nozaki Y, Kusuhara H, Kondo T, Hasegawa M, Shiroyanagi Y, Nakazawa H, et al. Characterization of the uptake of organic anion transporter (OAT) 1 and OAT3 substrates by human kidney slices. J Pharmacol Exp Ther. 2007;321(1):362–9.PubMedCrossRef
673.
Zurück zum Zitat Sugimoto Y, Tsukahara S, Imai Y, Sugimoto Y, Ueda K, Tsuruo T. Reversal of breast cancer resistance protein-mediated drug resistance by estrogen antagonists and agonists. Mol Cancer Ther. 2003;2(1):105–12.PubMed Sugimoto Y, Tsukahara S, Imai Y, Sugimoto Y, Ueda K, Tsuruo T. Reversal of breast cancer resistance protein-mediated drug resistance by estrogen antagonists and agonists. Mol Cancer Ther. 2003;2(1):105–12.PubMed
674.
Zurück zum Zitat Chen ZS, Lee K, Kruh GD. Transport of cyclic nucleotides and estradiol 17-beta-d-glucuronide by multidrug resistance protein 4. Resistance to 6-mercaptopurine and 6-thioguanine. J Biol Chem. 2001;276(36):33747–54.PubMedCrossRef Chen ZS, Lee K, Kruh GD. Transport of cyclic nucleotides and estradiol 17-beta-d-glucuronide by multidrug resistance protein 4. Resistance to 6-mercaptopurine and 6-thioguanine. J Biol Chem. 2001;276(36):33747–54.PubMedCrossRef
675.
Zurück zum Zitat Vallon V, Eraly SA, Wikoff WR, Rieg T, Kaler G, Truong DM, et al. Organic anion transporter 3 contributes to the regulation of blood pressure. J Am Soc Nephrol. 2008;19(9):1732–40.PubMedPubMedCentralCrossRef Vallon V, Eraly SA, Wikoff WR, Rieg T, Kaler G, Truong DM, et al. Organic anion transporter 3 contributes to the regulation of blood pressure. J Am Soc Nephrol. 2008;19(9):1732–40.PubMedPubMedCentralCrossRef
676.
Zurück zum Zitat Briz O, Serrano MA, MacIas RIR, Gonzalez-Gallego J, Marin JJG. Role of organic anion-transporting polypeptides, OATP-A, OATP-C and OATP-8, in the human placenta-maternal liver tandem excretory pathway for foetal bilirubin. Biochem J. 2003;371(3):897–905.PubMedPubMedCentralCrossRef Briz O, Serrano MA, MacIas RIR, Gonzalez-Gallego J, Marin JJG. Role of organic anion-transporting polypeptides, OATP-A, OATP-C and OATP-8, in the human placenta-maternal liver tandem excretory pathway for foetal bilirubin. Biochem J. 2003;371(3):897–905.PubMedPubMedCentralCrossRef
677.
Zurück zum Zitat Babu E, Takeda M, Narikawa S, Kobayashi Y, Yamamoto T, Cha SH, et al. Human organic anion transporters mediate the transport of tetracycline. Jpn J Pharmacol. 2002;88(1):69–76.PubMedCrossRef Babu E, Takeda M, Narikawa S, Kobayashi Y, Yamamoto T, Cha SH, et al. Human organic anion transporters mediate the transport of tetracycline. Jpn J Pharmacol. 2002;88(1):69–76.PubMedCrossRef
678.
Zurück zum Zitat Bossuyt X, Müller M, Meier PJ. Multispecific amphipathic substrate transport by an organic anion transporter of human liver. J Hepatol. 1996;25(5):733–8.PubMedCrossRef Bossuyt X, Müller M, Meier PJ. Multispecific amphipathic substrate transport by an organic anion transporter of human liver. J Hepatol. 1996;25(5):733–8.PubMedCrossRef
679.
Zurück zum Zitat Han Y-H, Busler D, Hong Y, Tian Y, Chen C, Rodrigues AD. transporter studies with the 3-O-sulfate conjugate of 17α-ethinylestradiol: assessment of human kidney drug transporters. Drug Metab Dispos. 2010;38(7):1064–71.PubMedCrossRef Han Y-H, Busler D, Hong Y, Tian Y, Chen C, Rodrigues AD. transporter studies with the 3-O-sulfate conjugate of 17α-ethinylestradiol: assessment of human kidney drug transporters. Drug Metab Dispos. 2010;38(7):1064–71.PubMedCrossRef
680.
Zurück zum Zitat Miyajima M, Kusuhara H, Takahashi K, Takashima T, Hosoya T, Watanabe Y, et al. Investigation of the effect of active efflux at the blood–brain barrier on the distribution of nonsteroidal aromatase inhibitors in the central nervous system. J Pharm Sci. 2013;102(9):3309–19.PubMedCrossRef Miyajima M, Kusuhara H, Takahashi K, Takashima T, Hosoya T, Watanabe Y, et al. Investigation of the effect of active efflux at the blood–brain barrier on the distribution of nonsteroidal aromatase inhibitors in the central nervous system. J Pharm Sci. 2013;102(9):3309–19.PubMedCrossRef
681.
Zurück zum Zitat Payen L, Delugin L, Courtois A, Trinquart Y, Guillouzo A, Fardel O. Reversal of MRP-mediated multidrug resistance in human lung cancer cells by the antiprogestatin drug RU486. Biochem Biophys Res Commun. 1999;258(3):513–8.PubMedCrossRef Payen L, Delugin L, Courtois A, Trinquart Y, Guillouzo A, Fardel O. Reversal of MRP-mediated multidrug resistance in human lung cancer cells by the antiprogestatin drug RU486. Biochem Biophys Res Commun. 1999;258(3):513–8.PubMedCrossRef
682.
Zurück zum Zitat Lecureur V, Fardel O, Guillouzo A. The antiprogestatin drug RU 486 potentiates doxorubicin cytotoxicity in multidrug resistant cells through inhibition of P-glycoprotein function. FEBS Lett. 1994;355(2):187–91.PubMedCrossRef Lecureur V, Fardel O, Guillouzo A. The antiprogestatin drug RU 486 potentiates doxorubicin cytotoxicity in multidrug resistant cells through inhibition of P-glycoprotein function. FEBS Lett. 1994;355(2):187–91.PubMedCrossRef
683.
Zurück zum Zitat Barnes KM, Dickstein B, Cutler GBJ, Fojo T, Bates SE. Steroid transport, accumulation, and antagonism of p-glycoprotein in multidrug-resistant cells. Biochemistry. 1996;35(15):4820–7.PubMedCrossRef Barnes KM, Dickstein B, Cutler GBJ, Fojo T, Bates SE. Steroid transport, accumulation, and antagonism of p-glycoprotein in multidrug-resistant cells. Biochemistry. 1996;35(15):4820–7.PubMedCrossRef
684.
Zurück zum Zitat Leonessa F, Kim JH, Ghiorghis A, Kulawiec RJ, Hammer C, Talebian A, et al. C-7 analogues of progesterone as potent inhibitors of the P-glycoprotein efflux pump. J Med Chem. 2001;45(2):390–8.CrossRef Leonessa F, Kim JH, Ghiorghis A, Kulawiec RJ, Hammer C, Talebian A, et al. C-7 analogues of progesterone as potent inhibitors of the P-glycoprotein efflux pump. J Med Chem. 2001;45(2):390–8.CrossRef
685.
Zurück zum Zitat Rytting E, Audus KL. Contributions of phosphorylation to regulation of OCTN2 uptake of carnitine are minimal in BeWo cells. Biochem Pharmacol. 2008;75(3):745–51.PubMedCrossRef Rytting E, Audus KL. Contributions of phosphorylation to regulation of OCTN2 uptake of carnitine are minimal in BeWo cells. Biochem Pharmacol. 2008;75(3):745–51.PubMedCrossRef
686.
Zurück zum Zitat Wielinga PR, van der Heijden I, Reid G, Beijnen JH, Wijnholds J, Borst P. Characterization of the MRP4- and MRP5-mediated transport of cyclic nucleotides from intact cells. J Biol Chem. 2003;278(20):17664–71.PubMedCrossRef Wielinga PR, van der Heijden I, Reid G, Beijnen JH, Wijnholds J, Borst P. Characterization of the MRP4- and MRP5-mediated transport of cyclic nucleotides from intact cells. J Biol Chem. 2003;278(20):17664–71.PubMedCrossRef
687.
Zurück zum Zitat Bekaii-Saab TS, Perloff MD, Weemhoff JL, Greenblatt DJ, von Moltke LL. Interactions of tamoxifen, N-desmethyltamoxifen and 4-hydroxytamoxifen with P-glycoprotein and CYP3A. Biopharm Drug Dispos. 2004;25(7):283–9.PubMedCrossRef Bekaii-Saab TS, Perloff MD, Weemhoff JL, Greenblatt DJ, von Moltke LL. Interactions of tamoxifen, N-desmethyltamoxifen and 4-hydroxytamoxifen with P-glycoprotein and CYP3A. Biopharm Drug Dispos. 2004;25(7):283–9.PubMedCrossRef
688.
Zurück zum Zitat Hiasa M, Matsumoto T, Komatsu T, Moriyama Y. Wide variety of locations for rodent MATE1, a transporter protein that mediates the final excretion step for toxic organic cations. AJP Cell Physiol. 2006;291(4):C678–86.CrossRef Hiasa M, Matsumoto T, Komatsu T, Moriyama Y. Wide variety of locations for rodent MATE1, a transporter protein that mediates the final excretion step for toxic organic cations. AJP Cell Physiol. 2006;291(4):C678–86.CrossRef
689.
Zurück zum Zitat Alebouyeh M, Takeda M, Onozato ML, Tojo A, Noshiro R, Hasannejad H, et al. Expression of human organic anion transporters in the choroid plexus and their interactions with neurotransmitter metabolites. J Pharmacol Sci. 2003;93(4):430–6.PubMedCrossRef Alebouyeh M, Takeda M, Onozato ML, Tojo A, Noshiro R, Hasannejad H, et al. Expression of human organic anion transporters in the choroid plexus and their interactions with neurotransmitter metabolites. J Pharmacol Sci. 2003;93(4):430–6.PubMedCrossRef
690.
Zurück zum Zitat Martin V, Sanchez-Sanchez AM, Herrera F, Gomez-Manzano C, Fueyo J, Alvarez-Vega MA, et al. Melatonin-induced methylation of the ABCG2/BCRP promoter as a novel mechanism to overcome multidrug resistance in brain tumour stem cells. Br J Cancer. 2013;108(10):2005–12.PubMedPubMedCentralCrossRef Martin V, Sanchez-Sanchez AM, Herrera F, Gomez-Manzano C, Fueyo J, Alvarez-Vega MA, et al. Melatonin-induced methylation of the ABCG2/BCRP promoter as a novel mechanism to overcome multidrug resistance in brain tumour stem cells. Br J Cancer. 2013;108(10):2005–12.PubMedPubMedCentralCrossRef
691.
Zurück zum Zitat Ronchera CL, Hernández T, Peris JE, Torres F, Granero L, Jiménez NV, et al. Pharmacokinetic interaction between high-dose methotrexate and amoxycillin. Ther Drug Monit. 1993;15(5):375–9.PubMedCrossRef Ronchera CL, Hernández T, Peris JE, Torres F, Granero L, Jiménez NV, et al. Pharmacokinetic interaction between high-dose methotrexate and amoxycillin. Ther Drug Monit. 1993;15(5):375–9.PubMedCrossRef
692.
Zurück zum Zitat Jariyawat S, Sekine T, Takeda M, Apiwattanakul N, Kanai Y, Sophasan S, et al. The interaction and transport of beta-lactam antibiotics with the cloned rat renal organic anion transporter 1. J Pharmacol Exp Ther. 1999;290(2):672–7.PubMed Jariyawat S, Sekine T, Takeda M, Apiwattanakul N, Kanai Y, Sophasan S, et al. The interaction and transport of beta-lactam antibiotics with the cloned rat renal organic anion transporter 1. J Pharmacol Exp Ther. 1999;290(2):672–7.PubMed
693.
Zurück zum Zitat Wolman AT, Gionfriddo MR, Heindel GA, Mukhija P, Witkowski S, Bommareddy A, et al. Organic anion transporter 3 interacts selectively with lipophilic beta-lactam antibiotics. Drug Metab Dispos. 2013;41(4):791–800.PubMedCrossRef Wolman AT, Gionfriddo MR, Heindel GA, Mukhija P, Witkowski S, Bommareddy A, et al. Organic anion transporter 3 interacts selectively with lipophilic beta-lactam antibiotics. Drug Metab Dispos. 2013;41(4):791–800.PubMedCrossRef
694.
Zurück zum Zitat Chanteux H, Van Bambeke F, Mingeot-Leclercq M-P, Tulkens PM. Accumulation and oriented transport of ampicillin in Caco-2 cells from its pivaloyloxymethylester prodrug, pivampicillin. Antimicrob Agents Chemother. 2005;49(4):1279–88.PubMedPubMedCentralCrossRef Chanteux H, Van Bambeke F, Mingeot-Leclercq M-P, Tulkens PM. Accumulation and oriented transport of ampicillin in Caco-2 cells from its pivaloyloxymethylester prodrug, pivampicillin. Antimicrob Agents Chemother. 2005;49(4):1279–88.PubMedPubMedCentralCrossRef
695.
Zurück zum Zitat Vishwanathan K, Mair S, Gupta A, Atherton J, Clarkson-Jones J, Edeki T, et al. Assessment of the mass balance recovery and metabolite profile of avibactam in humans and in vitro drug–drug interaction potential. Drug Metab Dispos. 2014;42(5):932–42.PubMedCrossRef Vishwanathan K, Mair S, Gupta A, Atherton J, Clarkson-Jones J, Edeki T, et al. Assessment of the mass balance recovery and metabolite profile of avibactam in humans and in vitro drug–drug interaction potential. Drug Metab Dispos. 2014;42(5):932–42.PubMedCrossRef
697.
Zurück zum Zitat Shitara Y, Sato H, Sugiyama Y. Evaluation of drug–drug interaction in the hepatobiliary and renal transport of drugs. Annu Rev Pharmacol Toxicol. 2005;45(1):689–723.PubMedCrossRef Shitara Y, Sato H, Sugiyama Y. Evaluation of drug–drug interaction in the hepatobiliary and renal transport of drugs. Annu Rev Pharmacol Toxicol. 2005;45(1):689–723.PubMedCrossRef
698.
Zurück zum Zitat Khamdang S, Takeda M, Babu E, Noshiro R, Onozato ML, Tojo A, et al. Interaction of human and rat organic anion transporter 2 with various cephalosporin antibiotics. Eur J Pharmacol. 2003;465(1–2):1–7.PubMedCrossRef Khamdang S, Takeda M, Babu E, Noshiro R, Onozato ML, Tojo A, et al. Interaction of human and rat organic anion transporter 2 with various cephalosporin antibiotics. Eur J Pharmacol. 2003;465(1–2):1–7.PubMedCrossRef
699.
Zurück zum Zitat Mariño EL, Dominguez-Gil A. The pharmacokinetics of cefadroxil associated with probenecid. Int J Clin Pharmacol Ther Toxicol. 1981;19(11):506–8.PubMed Mariño EL, Dominguez-Gil A. The pharmacokinetics of cefadroxil associated with probenecid. Int J Clin Pharmacol Ther Toxicol. 1981;19(11):506–8.PubMed
700.
Zurück zum Zitat Jung KY, Takeda M, Shimoda M, Narikawa S, Tojo A, Kim DK, et al. Involvement of rat organic anion transporter 3 (rOAT3) in cephaloridine-induced nephrotoxicity: In comparison with rOAT1. Life Sci. 2002;70(16):1861–74.PubMedCrossRef Jung KY, Takeda M, Shimoda M, Narikawa S, Tojo A, Kim DK, et al. Involvement of rat organic anion transporter 3 (rOAT3) in cephaloridine-induced nephrotoxicity: In comparison with rOAT1. Life Sci. 2002;70(16):1861–74.PubMedCrossRef
701.
Zurück zum Zitat Granero L, Gimeno MJ, Torres-Molina F, Chesa-Jiménez J, Peris JE. Studies on the renal excretion mechanisms of cefadroxil. Drug Metabol Dispos. 1994;22(3):447–50. Granero L, Gimeno MJ, Torres-Molina F, Chesa-Jiménez J, Peris JE. Studies on the renal excretion mechanisms of cefadroxil. Drug Metabol Dispos. 1994;22(3):447–50.
702.
Zurück zum Zitat Mellin HE, Welling PG, Madsen PO. Pharmacokinetics of cefamandole in patients with normal and impaired renal function. Antimicrob Agents Chemother. 1977;11(2):262–6.PubMedPubMedCentralCrossRef Mellin HE, Welling PG, Madsen PO. Pharmacokinetics of cefamandole in patients with normal and impaired renal function. Antimicrob Agents Chemother. 1977;11(2):262–6.PubMedPubMedCentralCrossRef
703.
Zurück zum Zitat Spina SP, Dillon ECJ. Effect of chronic probenecid therapy on cefazolin serum concentrations. Ann Pharmacother. 2003;37(5):621–4.PubMedCrossRef Spina SP, Dillon ECJ. Effect of chronic probenecid therapy on cefazolin serum concentrations. Ann Pharmacother. 2003;37(5):621–4.PubMedCrossRef
704.
Zurück zum Zitat Wang L, Wang C, Liu Q, Meng Q, Huo X, Sun P, et al. PEPT1- and OAT1/3-mediated drug–drug interactions between bestatin and cefixime in vivo and in vitro in rats, and in vitro in human. Eur J Pharm Sci. 2014;63:77–86.PubMedCrossRef Wang L, Wang C, Liu Q, Meng Q, Huo X, Sun P, et al. PEPT1- and OAT1/3-mediated drug–drug interactions between bestatin and cefixime in vivo and in vitro in rats, and in vitro in human. Eur J Pharm Sci. 2014;63:77–86.PubMedCrossRef
705.
Zurück zum Zitat Yee SW, Nguyen AN, Brown C, Savic RM, Zhang Y, Castro RA, et al. Reduced renal clearance of cefotaxime in asians with a low-frequency polymorphism of OAT3 (SLC22A8). J Pharm Sci. 2013;102(9):3451–7.PubMedPubMedCentralCrossRef Yee SW, Nguyen AN, Brown C, Savic RM, Zhang Y, Castro RA, et al. Reduced renal clearance of cefotaxime in asians with a low-frequency polymorphism of OAT3 (SLC22A8). J Pharm Sci. 2013;102(9):3451–7.PubMedPubMedCentralCrossRef
706.
Zurück zum Zitat MHRA. Zevtera® public assessment report. UK: Medicines and Healthcare Products Regulatory Agency; 2013. MHRA. Zevtera® public assessment report. UK: Medicines and Healthcare Products Regulatory Agency; 2013.
707.
Zurück zum Zitat Gower PE, Dash CH. The pharmacokinetics of cefuroxime after intravenous injection. Eur J Clin Pharmacol. 1977;12(3):221–7.PubMedCrossRef Gower PE, Dash CH. The pharmacokinetics of cefuroxime after intravenous injection. Eur J Clin Pharmacol. 1977;12(3):221–7.PubMedCrossRef
708.
Zurück zum Zitat Watanabe S, Tsuda M, Terada T, Katsura T, Inui K-I. Reduced renal clearance of a zwitterionic substrate cephalexin in Mate1-deficient mice. J Pharmacol Exp Ther. 2010;334(2):651–6.PubMedCrossRef Watanabe S, Tsuda M, Terada T, Katsura T, Inui K-I. Reduced renal clearance of a zwitterionic substrate cephalexin in Mate1-deficient mice. J Pharmacol Exp Ther. 2010;334(2):651–6.PubMedCrossRef
709.
Zurück zum Zitat Cihlar T, Ho ES. Fluorescence-based assay for the interaction of small molecules with the human renal organic anion transporter 1. Anal Biochem. 2000;283(1):49–55.PubMedCrossRef Cihlar T, Ho ES. Fluorescence-based assay for the interaction of small molecules with the human renal organic anion transporter 1. Anal Biochem. 2000;283(1):49–55.PubMedCrossRef
710.
Zurück zum Zitat Saitoh H, Oda M, Gyotoku T, Kobayashi M, Fujisaki H, Sekikawa H. A beneficial interaction between imipenem and piperacillin possibly through their renal excretory process. Biol Pharm Bull. 2006;29(12):2519–22.PubMedCrossRef Saitoh H, Oda M, Gyotoku T, Kobayashi M, Fujisaki H, Sekikawa H. A beneficial interaction between imipenem and piperacillin possibly through their renal excretory process. Biol Pharm Bull. 2006;29(12):2519–22.PubMedCrossRef
711.
Zurück zum Zitat Shibayama T, Sugiyama D, Kamiyama E, Tokui T, Hirota T. IKEDA T. Characterization of CS-023 (RO4908463), a novel parenteral carbapenem antibiotic, and meropenem as substrates of human renal transporters. Drug Metab Pharmacokinet. 2007;22(1):41–7.PubMedCrossRef Shibayama T, Sugiyama D, Kamiyama E, Tokui T, Hirota T. IKEDA T. Characterization of CS-023 (RO4908463), a novel parenteral carbapenem antibiotic, and meropenem as substrates of human renal transporters. Drug Metab Pharmacokinet. 2007;22(1):41–7.PubMedCrossRef
712.
Zurück zum Zitat Maeda K, Tian Y, Fujita T, Ikeda Y, Kumagai Y, Kondo T, et al. Inhibitory effects of p-aminohippurate and probenecid on the renal clearance of adefovir and benzylpenicillin as probe drugs for organic anion transporter (OAT) 1 and OAT3 in humans. Eur J Pharm Sci. 2014;59:94–103.PubMedCrossRef Maeda K, Tian Y, Fujita T, Ikeda Y, Kumagai Y, Kondo T, et al. Inhibitory effects of p-aminohippurate and probenecid on the renal clearance of adefovir and benzylpenicillin as probe drugs for organic anion transporter (OAT) 1 and OAT3 in humans. Eur J Pharm Sci. 2014;59:94–103.PubMedCrossRef
713.
Zurück zum Zitat Komuro M, Maeda T, Kakuo H, Matsushita H, Shimada J. Inhibition of the renal excretion of tazobactam by piperacillin. J Antimicrob Chemother. 1994;34(4):555–64.PubMedCrossRef Komuro M, Maeda T, Kakuo H, Matsushita H, Shimada J. Inhibition of the renal excretion of tazobactam by piperacillin. J Antimicrob Chemother. 1994;34(4):555–64.PubMedCrossRef
714.
Zurück zum Zitat Kato K, Shirasaka Y, Kuraoka E, Kikuchi A, Iguchi M, Suzuki H, et al. Intestinal absorption mechanism of tebipenem pivoxil, a novel oral carbapenem: involvement of human OATP family in apical membrane transport. Mol Pharm. 2010;7(5):1747–56.PubMedCrossRef Kato K, Shirasaka Y, Kuraoka E, Kikuchi A, Iguchi M, Suzuki H, et al. Intestinal absorption mechanism of tebipenem pivoxil, a novel oral carbapenem: involvement of human OATP family in apical membrane transport. Mol Pharm. 2010;7(5):1747–56.PubMedCrossRef
715.
Zurück zum Zitat Wang JP, Unadkat JD, Al-Habet SMH, O’Sullivan TA, Williams-Warren J, Smith AL, et al. Disposition of drugs in cystic fibrosis. IV. Mechanisms for enhanced renal clearance of ticarcillin. Clin Pharm Ther. 1993;54(3):293–302.CrossRef Wang JP, Unadkat JD, Al-Habet SMH, O’Sullivan TA, Williams-Warren J, Smith AL, et al. Disposition of drugs in cystic fibrosis. IV. Mechanisms for enhanced renal clearance of ticarcillin. Clin Pharm Ther. 1993;54(3):293–302.CrossRef
716.
Zurück zum Zitat Milane A, Fernandez C, Vautier S, Bensimon G, Meininger V, Farinotti R. Minocycline and riluzole brain disposition: interactions with p-glycoprotein at the blood–brain barrier. J Neurochem. 2007;103(1):164–73.PubMed Milane A, Fernandez C, Vautier S, Bensimon G, Meininger V, Farinotti R. Minocycline and riluzole brain disposition: interactions with p-glycoprotein at the blood–brain barrier. J Neurochem. 2007;103(1):164–73.PubMed
717.
Zurück zum Zitat Oh YH, Han HK. Pharmacokinetic interaction of tetracycline with non-steroidal anti-inflammatory drugs via organic anion transporters in rats. Pharm Res. 2006;53(1):75–9.CrossRef Oh YH, Han HK. Pharmacokinetic interaction of tetracycline with non-steroidal anti-inflammatory drugs via organic anion transporters in rats. Pharm Res. 2006;53(1):75–9.CrossRef
718.
Zurück zum Zitat Sugie M, Asakura E, Zhao YL, Torita S, Nadai M, Baba K, et al. Possible involvement of the drug transporters P glycoprotein and multidrug resistance-associated protein Mrp2 in disposition of azithromycin. Antimicrob Agents Chemother. 2004;48(3):809–14.PubMedPubMedCentralCrossRef Sugie M, Asakura E, Zhao YL, Torita S, Nadai M, Baba K, et al. Possible involvement of the drug transporters P glycoprotein and multidrug resistance-associated protein Mrp2 in disposition of azithromycin. Antimicrob Agents Chemother. 2004;48(3):809–14.PubMedPubMedCentralCrossRef
719.
Zurück zum Zitat He XJ, Zhao LM, Qiu F, Sun YX, Li-Ling J. Influence of ABCB1 gene polymorphisms on the pharmacokinetics of azithromycin among healthy Chinese Han ethnic subjects. Pharmacol Rep. 2009;61(5):843–50.PubMedCrossRef He XJ, Zhao LM, Qiu F, Sun YX, Li-Ling J. Influence of ABCB1 gene polymorphisms on the pharmacokinetics of azithromycin among healthy Chinese Han ethnic subjects. Pharmacol Rep. 2009;61(5):843–50.PubMedCrossRef
720.
Zurück zum Zitat Lan T, Rao A, Haywood J, Davis CB, Han C, Garver E, et al. Interaction of macrolide antibiotics with intestinally expressed human and rat organic anion-transporting polypeptides. Drug Metab Dispos. 2009;37(12):2375–82.PubMedPubMedCentralCrossRef Lan T, Rao A, Haywood J, Davis CB, Han C, Garver E, et al. Interaction of macrolide antibiotics with intestinally expressed human and rat organic anion-transporting polypeptides. Drug Metab Dispos. 2009;37(12):2375–82.PubMedPubMedCentralCrossRef
721.
Zurück zum Zitat Vermeer LM, Isringhausen CD, Ogilvie BW, Buckley DB. Evaluation of ketoconazole and its alternative clinical CYP3A4/5 inhibitors as inhibitors of drug transporters: the in vitro effects of ketoconazole, ritonavir, clarithromycin, and itraconazole on 13 clinically-relevant drug transporters. Drug Metab Dispos. 2016;44(3):453–9.PubMedCrossRef Vermeer LM, Isringhausen CD, Ogilvie BW, Buckley DB. Evaluation of ketoconazole and its alternative clinical CYP3A4/5 inhibitors as inhibitors of drug transporters: the in vitro effects of ketoconazole, ritonavir, clarithromycin, and itraconazole on 13 clinically-relevant drug transporters. Drug Metab Dispos. 2016;44(3):453–9.PubMedCrossRef
722.
Zurück zum Zitat Parvez MM, Kaisar N, Shin HJ, Jung JA, Shin J-G. Inhibitory interaction potential of 22 antituberculosis drugs on organic anion and cation transporter of SLC22A family. Antimicrob Agents Chemother. 2016;60(11):6558–67.PubMedPubMedCentralCrossRef Parvez MM, Kaisar N, Shin HJ, Jung JA, Shin J-G. Inhibitory interaction potential of 22 antituberculosis drugs on organic anion and cation transporter of SLC22A family. Antimicrob Agents Chemother. 2016;60(11):6558–67.PubMedPubMedCentralCrossRef
723.
Zurück zum Zitat Franke RM, Baker SD, Mathijssen RH, Schuetz EG, Sparreboom A. Influence of solute carriers on the pharmacokinetics of CYP3A4 probes. Clin Pharmacol Ther. 2008;84(6):704–9.PubMedCrossRef Franke RM, Baker SD, Mathijssen RH, Schuetz EG, Sparreboom A. Influence of solute carriers on the pharmacokinetics of CYP3A4 probes. Clin Pharmacol Ther. 2008;84(6):704–9.PubMedCrossRef
724.
Zurück zum Zitat Li C, Kim CS, Yang JY, Park YJ, Choi JS. Effects of roxithromycin on the pharmacokinetics of loratadine after oral and intravenous administration of loratadine in rats. Eur J Drug Metab Pharmacokinet. 2008;33(4):231–6.PubMedCrossRef Li C, Kim CS, Yang JY, Park YJ, Choi JS. Effects of roxithromycin on the pharmacokinetics of loratadine after oral and intravenous administration of loratadine in rats. Eur J Drug Metab Pharmacokinet. 2008;33(4):231–6.PubMedCrossRef
725.
Zurück zum Zitat Dalle JH, Auvrignon A, Vassal G, Leverger G. Interaction between methotrexate and ciprofloxacin. J Pediatr Hematol Oncol. 2002;24(4):321–2.PubMedCrossRef Dalle JH, Auvrignon A, Vassal G, Leverger G. Interaction between methotrexate and ciprofloxacin. J Pediatr Hematol Oncol. 2002;24(4):321–2.PubMedCrossRef
726.
Zurück zum Zitat VanWert AL, Srimaroeng C, Sweet DH. Organic anion transporter 3 (Oat3/Slc22a8) interacts with carboxyfluoroquinolones, and deletion increases systemic exposure to ciprofloxacin. Mol Pharmacol. 2008;74(1):122–31.PubMedPubMedCentralCrossRef VanWert AL, Srimaroeng C, Sweet DH. Organic anion transporter 3 (Oat3/Slc22a8) interacts with carboxyfluoroquinolones, and deletion increases systemic exposure to ciprofloxacin. Mol Pharmacol. 2008;74(1):122–31.PubMedPubMedCentralCrossRef
727.
Zurück zum Zitat Maeda T, Takahashi K, Ohtsu N, Oguma T, Ohnishi T, Atsumi R, et al. Identification of influx transporter for the quinolone antibacterial agent levofloxacin. Mol Pharm. 2007;4(1):85–94.PubMedCrossRef Maeda T, Takahashi K, Ohtsu N, Oguma T, Ohnishi T, Atsumi R, et al. Identification of influx transporter for the quinolone antibacterial agent levofloxacin. Mol Pharm. 2007;4(1):85–94.PubMedCrossRef
728.
Zurück zum Zitat Rodríguez-Ibáñez M, Nalda-Molina R, Montalar-Montero M, Bermejo MV, Merino V, Garrigues TM. Transintestinal secretion of ciprofloxacin, grepafloxacin and sparfloxacin: in vitro and in situ inhibition studies. Eur J Pharm Biopharm. 2003;55(2):241–6.PubMedCrossRef Rodríguez-Ibáñez M, Nalda-Molina R, Montalar-Montero M, Bermejo MV, Merino V, Garrigues TM. Transintestinal secretion of ciprofloxacin, grepafloxacin and sparfloxacin: in vitro and in situ inhibition studies. Eur J Pharm Biopharm. 2003;55(2):241–6.PubMedCrossRef
729.
Zurück zum Zitat Haslam IS, Wright JA, O’Reilly DA, Sherlock DJ, Coleman T, Simmons NL. Intestinal ciprofloxacin efflux: the role of breast cancer resistance protein (ABCG2). Drug Metab Dispos. 2011;39(12):2321–8.PubMedPubMedCentralCrossRef Haslam IS, Wright JA, O’Reilly DA, Sherlock DJ, Coleman T, Simmons NL. Intestinal ciprofloxacin efflux: the role of breast cancer resistance protein (ABCG2). Drug Metab Dispos. 2011;39(12):2321–8.PubMedPubMedCentralCrossRef
730.
Zurück zum Zitat Mulgaonkar A, Venitz J, Gründemann D, Sweet DH. Human organic cation transporters 1 (SLC22A1), 2 (SLC22A2), and 3 (SLC22A3) as disposition pathways for fluoroquinolone antimicrobials. Antimicrob Agents Chemother. 2013;57(6):2705–11.PubMedPubMedCentralCrossRef Mulgaonkar A, Venitz J, Gründemann D, Sweet DH. Human organic cation transporters 1 (SLC22A1), 2 (SLC22A2), and 3 (SLC22A3) as disposition pathways for fluoroquinolone antimicrobials. Antimicrob Agents Chemother. 2013;57(6):2705–11.PubMedPubMedCentralCrossRef
731.
Zurück zum Zitat Matsuo Y, Yano I, Habu Y, Katsura T, Hashimoto Y, Inui K. Transport of levofloxacin in the OK kidney epithelial cell line: interaction with p-aminohippurate transport. Pharm Res. 2001;18(5):573–8.PubMedCrossRef Matsuo Y, Yano I, Habu Y, Katsura T, Hashimoto Y, Inui K. Transport of levofloxacin in the OK kidney epithelial cell line: interaction with p-aminohippurate transport. Pharm Res. 2001;18(5):573–8.PubMedCrossRef
732.
Zurück zum Zitat Jin HE, Song B, Kim SB, Shim WS, Kim DD, Chong S, et al. Transport of gemifloxacin, a 4th generation quinolone antibiotic, in the Caco-2 and engineered MDCKII cells, and potential involvement of efflux transporters in the intestinal absorption of the drug. Xenobiotica. 2013;43(4):355–67.PubMedCrossRef Jin HE, Song B, Kim SB, Shim WS, Kim DD, Chong S, et al. Transport of gemifloxacin, a 4th generation quinolone antibiotic, in the Caco-2 and engineered MDCKII cells, and potential involvement of efflux transporters in the intestinal absorption of the drug. Xenobiotica. 2013;43(4):355–67.PubMedCrossRef
733.
Zurück zum Zitat Ito T, Yano I, Masuda S, Hashimoto Y, Inui KI. Distribution characteristics of levofloxacin and grepafloxacin in rat kidney. Pharm Res. 1999;16(4):534–9.PubMedCrossRef Ito T, Yano I, Masuda S, Hashimoto Y, Inui KI. Distribution characteristics of levofloxacin and grepafloxacin in rat kidney. Pharm Res. 1999;16(4):534–9.PubMedCrossRef
734.
Zurück zum Zitat Matsuo Y, Yano I, Ito T, Hashimoto Y, Inui KI. Transport of quinolone antibacterial drugs in a kidney epithelial cell line, LLC-PK1. J Pharmacol Exp Ther. 1998;287(2):672–8.PubMed Matsuo Y, Yano I, Ito T, Hashimoto Y, Inui KI. Transport of quinolone antibacterial drugs in a kidney epithelial cell line, LLC-PK1. J Pharmacol Exp Ther. 1998;287(2):672–8.PubMed
735.
Zurück zum Zitat Naruhashi K, Tamai I, Inoue N, Muraoka H, Sai Y, Suzuki N, et al. Involvement of multidrug resistance-associated protein 2 in intestinal secretion of grepafloxacin in rats. Antimicrob Agents Chemother. 2002;46(2):344–9.PubMedPubMedCentralCrossRef Naruhashi K, Tamai I, Inoue N, Muraoka H, Sai Y, Suzuki N, et al. Involvement of multidrug resistance-associated protein 2 in intestinal secretion of grepafloxacin in rats. Antimicrob Agents Chemother. 2002;46(2):344–9.PubMedPubMedCentralCrossRef
736.
Zurück zum Zitat Sasabe H, Tsuji A, Sugiyama Y. Carrier-mediated mechanism for the biliary excretion of the quinolone antibiotic grepafloxacin and its glucuronide in rats. J Pharmacol Exp Ther. 1998;284(3):1033–9.PubMed Sasabe H, Tsuji A, Sugiyama Y. Carrier-mediated mechanism for the biliary excretion of the quinolone antibiotic grepafloxacin and its glucuronide in rats. J Pharmacol Exp Ther. 1998;284(3):1033–9.PubMed
737.
Zurück zum Zitat Lowes S, Simmons NL. Multiple pathways for fluoroquinolone secretion by human intestinal epithelial (Caco-2) cells. Br J Pharmacol. 2002;135(5):1263–75.PubMedPubMedCentralCrossRef Lowes S, Simmons NL. Multiple pathways for fluoroquinolone secretion by human intestinal epithelial (Caco-2) cells. Br J Pharmacol. 2002;135(5):1263–75.PubMedPubMedCentralCrossRef
738.
Zurück zum Zitat Hirano T, Yasuda S, Osaka Y, Kobayashi M, Itagaki S, Iseki K. Mechanism of the inhibitory effect of zwitterionic drugs (levofloxacin and grepafloxacin) on carnitine transporter (OCTN2) in Caco-2 cells. Biochimica et Biophysica Acta (BBA) Biomembr. 2006;1758(11):1743–50.CrossRef Hirano T, Yasuda S, Osaka Y, Kobayashi M, Itagaki S, Iseki K. Mechanism of the inhibitory effect of zwitterionic drugs (levofloxacin and grepafloxacin) on carnitine transporter (OCTN2) in Caco-2 cells. Biochimica et Biophysica Acta (BBA) Biomembr. 2006;1758(11):1743–50.CrossRef
739.
Zurück zum Zitat Ohtomo T, Saito H, Inotsume N, Yasuhara M, Inui KI. Transport of levofloxacin in a kidney epithelial cell line, LLC-PK1: interaction with organic cation transporters in apical and basolateral membranes. J Pharmacol Exp Ther. 1996;276(3):1143–8.PubMed Ohtomo T, Saito H, Inotsume N, Yasuhara M, Inui KI. Transport of levofloxacin in a kidney epithelial cell line, LLC-PK1: interaction with organic cation transporters in apical and basolateral membranes. J Pharmacol Exp Ther. 1996;276(3):1143–8.PubMed
740.
Zurück zum Zitat Yano I, Ito T, Takano M, Inui KI. Evaluation of renal tubular secretion and reabsorption of levofloxacin in rats. Pharm Res. 1997;14(4):508–11.PubMedCrossRef Yano I, Ito T, Takano M, Inui KI. Evaluation of renal tubular secretion and reabsorption of levofloxacin in rats. Pharm Res. 1997;14(4):508–11.PubMedCrossRef
741.
Zurück zum Zitat Okuda M, Kimura N, Inui KI. Interactions of fluoroquinolone antibacterials, DX-619 and levofloxacin, with creatinine transport by renal organic cation transporter hOCT2. Drug Metab Pharmacokinet. 2006;21(5):432–6.PubMedCrossRef Okuda M, Kimura N, Inui KI. Interactions of fluoroquinolone antibacterials, DX-619 and levofloxacin, with creatinine transport by renal organic cation transporter hOCT2. Drug Metab Pharmacokinet. 2006;21(5):432–6.PubMedCrossRef
742.
Zurück zum Zitat Brillault J, De Castro WV, Harnois T, Kitzis A, Olivier JC, Couet W. P-glycoprotein-mediated transport of moxifloxacin in a Calu-3 lung epithelial cell model. Antimicrob Agents Chemother. 2009;53(4):1457–62.PubMedPubMedCentralCrossRef Brillault J, De Castro WV, Harnois T, Kitzis A, Olivier JC, Couet W. P-glycoprotein-mediated transport of moxifloxacin in a Calu-3 lung epithelial cell model. Antimicrob Agents Chemother. 2009;53(4):1457–62.PubMedPubMedCentralCrossRef
743.
Zurück zum Zitat te Brake LHM, van den Heuvel JJMW, Buaben AO, van Crevel R, Bilos A, Russel FG, et al. Moxifloxacin is a potent in vitro inhibitor of OCT- and MATE-mediated transport of metformin and ethambutol. Antimicrob Agents Chemother. 2016;60(12):7105–14. te Brake LHM, van den Heuvel JJMW, Buaben AO, van Crevel R, Bilos A, Russel FG, et al. Moxifloxacin is a potent in vitro inhibitor of OCT- and MATE-mediated transport of metformin and ethambutol. Antimicrob Agents Chemother. 2016;60(12):7105–14.
744.
Zurück zum Zitat Shimada J, Yamaji T, Ueda Y, Uchida H, Kusajima H, Irikura T. Mechanism of renal excretion of AM-715, a new quinolonecarboxylic acid derivative, in rabbits, dogs, and humans. Antimicrob Agents Chemother. 1983;23(1):1–7.PubMedPubMedCentralCrossRef Shimada J, Yamaji T, Ueda Y, Uchida H, Kusajima H, Irikura T. Mechanism of renal excretion of AM-715, a new quinolonecarboxylic acid derivative, in rabbits, dogs, and humans. Antimicrob Agents Chemother. 1983;23(1):1–7.PubMedPubMedCentralCrossRef
745.
Zurück zum Zitat Foote EF, Halstenson CE. Effects of probenecid and cimetidine on renal disposition of ofloxacin in rats. Antimicrob Agents Chemother. 1998;42(2):456–8.PubMedPubMedCentral Foote EF, Halstenson CE. Effects of probenecid and cimetidine on renal disposition of ofloxacin in rats. Antimicrob Agents Chemother. 1998;42(2):456–8.PubMedPubMedCentral
746.
Zurück zum Zitat Wang D, Wei YH, Zhou Y, Zhang GQ, Zhang F, Li YQ, et al. Pharmacokinetic variation of ofloxacin based on gender-related difference in the expression of multidrug resistance-associated protein (Abcc2/Mrp2) in rat kidney. Yao xue xue bao Acta pharmaceutica Sinica. 2012;47(5):624–9.PubMed Wang D, Wei YH, Zhou Y, Zhang GQ, Zhang F, Li YQ, et al. Pharmacokinetic variation of ofloxacin based on gender-related difference in the expression of multidrug resistance-associated protein (Abcc2/Mrp2) in rat kidney. Yao xue xue bao Acta pharmaceutica Sinica. 2012;47(5):624–9.PubMed
747.
Zurück zum Zitat Cormet-Boyaka E, Huneau JF, Mordrelle A, Boyaka PN, Carbon C, Rubinstein E, et al. Secretion of sparfloxacin from the human intestinal Caco-2 cell line is altered by P-glycoprotein inhibitors. Antimicrob Agents Chemother. 1998;42(10):2607–11.PubMedPubMedCentral Cormet-Boyaka E, Huneau JF, Mordrelle A, Boyaka PN, Carbon C, Rubinstein E, et al. Secretion of sparfloxacin from the human intestinal Caco-2 cell line is altered by P-glycoprotein inhibitors. Antimicrob Agents Chemother. 1998;42(10):2607–11.PubMedPubMedCentral
748.
Zurück zum Zitat Naruhashi K, Tamai I, Inoue N, Muraoka H, Sai Y, Suzuki N, et al. Active intestinal secretion of new quinolone antimicrobials and the partial contribution of P-glycoprotein. J Pharm Pharmacol. 2001;53:699–709.PubMedCrossRef Naruhashi K, Tamai I, Inoue N, Muraoka H, Sai Y, Suzuki N, et al. Active intestinal secretion of new quinolone antimicrobials and the partial contribution of P-glycoprotein. J Pharm Pharmacol. 2001;53:699–709.PubMedCrossRef
749.
Zurück zum Zitat Adamis G, Papaioannou MG, Giamarellos-Bourboulis EJ, Gargalianos P, Kosmidis J, Giamarellou H. Pharmacokinetic interactions of ceftazidime, imipenem and aztreonam with amikacin in healthy volunteers. Int J Antimicrob Agents. 2004;23(2):144–9.PubMedCrossRef Adamis G, Papaioannou MG, Giamarellos-Bourboulis EJ, Gargalianos P, Kosmidis J, Giamarellou H. Pharmacokinetic interactions of ceftazidime, imipenem and aztreonam with amikacin in healthy volunteers. Int J Antimicrob Agents. 2004;23(2):144–9.PubMedCrossRef
750.
Zurück zum Zitat Jagannath C, Wells A, Mshvildadze M, Olsen M, Sepulveda E, Emanuele M, et al. Significantly improved oral uptake of amikacin in FVB mice in the presence of CRL-1605 copolymer. Life Sci. 1999;64(19):1733–8.PubMedCrossRef Jagannath C, Wells A, Mshvildadze M, Olsen M, Sepulveda E, Emanuele M, et al. Significantly improved oral uptake of amikacin in FVB mice in the presence of CRL-1605 copolymer. Life Sci. 1999;64(19):1733–8.PubMedCrossRef
751.
Zurück zum Zitat Enomoto A, Takeda M, Shimoda M, Narikawa S, Kobayashi Y, Kobayashi Y, et al. Interaction of human organic anion transporters 2 and 4 with organic anion transport inhibitors. J Pharmacol Exp Ther. 2002;301(3):797–802.PubMedCrossRef Enomoto A, Takeda M, Shimoda M, Narikawa S, Kobayashi Y, Kobayashi Y, et al. Interaction of human organic anion transporters 2 and 4 with organic anion transport inhibitors. J Pharmacol Exp Ther. 2002;301(3):797–802.PubMedCrossRef
752.
Zurück zum Zitat Mulato AS, Ho ES, Cihlar T. Nonsteroidal anti-inflammatory drugs efficiently reduce the transport and cytotoxicity of adefovir mediated by the human renal organic anion transporter 1. J Pharmacol Exp Ther. 2000;295(1):10–5.PubMed Mulato AS, Ho ES, Cihlar T. Nonsteroidal anti-inflammatory drugs efficiently reduce the transport and cytotoxicity of adefovir mediated by the human renal organic anion transporter 1. J Pharmacol Exp Ther. 2000;295(1):10–5.PubMed
753.
Zurück zum Zitat Takeda M, Narikawa S, Hosoyamada M, Cha SH, Sekine T, Endou H. Characterization of organic anion transport inhibitors using cells stably expressing human organic anion transporters. Eur J Pharmacol. 2001;419(2–3):113–20.PubMedCrossRef Takeda M, Narikawa S, Hosoyamada M, Cha SH, Sekine T, Endou H. Characterization of organic anion transport inhibitors using cells stably expressing human organic anion transporters. Eur J Pharmacol. 2001;419(2–3):113–20.PubMedCrossRef
754.
Zurück zum Zitat Hartkoorn RC, Chandler B, Owen A, Ward SA, Bertel Squire S, Back DJ, et al. Differential drug susceptibility of intracellular and extracellular tuberculosis, and the impact of P-glycoprotein. Tuberculosis. 2007;87(3):248–55.PubMedCrossRef Hartkoorn RC, Chandler B, Owen A, Ward SA, Bertel Squire S, Back DJ, et al. Differential drug susceptibility of intracellular and extracellular tuberculosis, and the impact of P-glycoprotein. Tuberculosis. 2007;87(3):248–55.PubMedCrossRef
755.
Zurück zum Zitat Takeda M, Hosoyamada M, Cha SH, Sekine T, Endou H. Hydrogen peroxide downregulates human organic anion transporters in the basolateral membrane of the proximal tubule. Life Sci. 2000;68(6):679–87.PubMedCrossRef Takeda M, Hosoyamada M, Cha SH, Sekine T, Endou H. Hydrogen peroxide downregulates human organic anion transporters in the basolateral membrane of the proximal tubule. Life Sci. 2000;68(6):679–87.PubMedCrossRef
756.
Zurück zum Zitat Zhong K, Li X, Xie C, Zhang Y, Zhong D, Chen X. Effects of renal impairment on the pharmacokinetics of morinidazole: uptake transporter-mediated renal clearance of the conjugated metabolites. Antimicrob Agents Chemother. 2014;58(7):4153–61.PubMedPubMedCentralCrossRef Zhong K, Li X, Xie C, Zhang Y, Zhong D, Chen X. Effects of renal impairment on the pharmacokinetics of morinidazole: uptake transporter-mediated renal clearance of the conjugated metabolites. Antimicrob Agents Chemother. 2014;58(7):4153–61.PubMedPubMedCentralCrossRef
757.
Zurück zum Zitat Wang X, Morris ME. Effects of the flavonoid chrysin on nitrofurantoin pharmacokinetics in rats: potential involvement of ABCG2. Drug Metab Dispos. 2007;35(2):268–74.PubMedCrossRef Wang X, Morris ME. Effects of the flavonoid chrysin on nitrofurantoin pharmacokinetics in rats: potential involvement of ABCG2. Drug Metab Dispos. 2007;35(2):268–74.PubMedCrossRef
758.
Zurück zum Zitat Adkison KK, Vaidya SS, Lee DY, Koo SH, Li L, Mehta AA, et al. The ABCG2 C421A polymorphism does not affect oral nitrofurantoin pharmacokinetics in healthy Chinese male subjects. Br J Clin Pharmacol. 2008;66(2):233–9.PubMedPubMedCentralCrossRef Adkison KK, Vaidya SS, Lee DY, Koo SH, Li L, Mehta AA, et al. The ABCG2 C421A polymorphism does not affect oral nitrofurantoin pharmacokinetics in healthy Chinese male subjects. Br J Clin Pharmacol. 2008;66(2):233–9.PubMedPubMedCentralCrossRef
759.
Zurück zum Zitat Hong L, Xu C, O’Neal S, Bi HC, Huang M, Zheng W, et al. Roles of P-glycoprotein and multidrug resistance protein in transporting para-aminosalicylic acid and its N-acetylated metabolite in mice brain. Acta Pharmacologica Sinica. 2014;35(12):1577–85.PubMedPubMedCentralCrossRef Hong L, Xu C, O’Neal S, Bi HC, Huang M, Zheng W, et al. Roles of P-glycoprotein and multidrug resistance protein in transporting para-aminosalicylic acid and its N-acetylated metabolite in mice brain. Acta Pharmacologica Sinica. 2014;35(12):1577–85.PubMedPubMedCentralCrossRef
760.
Zurück zum Zitat Schrenk D, Baus PR, Ermel N, Klein C, Vorderstemann B, Kauffmann HM. Up-regulation of transporters of the MRP family by drugs and toxins. Toxicol Lett. 2001;120(1–3):51–7.PubMedCrossRef Schrenk D, Baus PR, Ermel N, Klein C, Vorderstemann B, Kauffmann HM. Up-regulation of transporters of the MRP family by drugs and toxins. Toxicol Lett. 2001;120(1–3):51–7.PubMedCrossRef
761.
Zurück zum Zitat Vavricka SR, van Montfoort J, Ha HR, Meier PJ, Fattinger K. Interactions of rifamycin SV and rifampicin with organic anion uptake systems of human liver. Hepatology. 2002;36(1):164–72.PubMedCrossRef Vavricka SR, van Montfoort J, Ha HR, Meier PJ, Fattinger K. Interactions of rifamycin SV and rifampicin with organic anion uptake systems of human liver. Hepatology. 2002;36(1):164–72.PubMedCrossRef
762.
Zurück zum Zitat Schuetz EG, Beck WT, Schuetz JD. Modulators and substrates of P-glycoprotein and cytochrome P4503A coordinately up-regulate these proteins in human colon carcinoma cells. Mol Pharmacol. 1996;49(2):311–8.PubMed Schuetz EG, Beck WT, Schuetz JD. Modulators and substrates of P-glycoprotein and cytochrome P4503A coordinately up-regulate these proteins in human colon carcinoma cells. Mol Pharmacol. 1996;49(2):311–8.PubMed
763.
Zurück zum Zitat Fardel O, Lecureur V, Loyer P, Guillouzo A. Rifampicin enhances anti-cancer drug accumulation and activity in multidrug-resistant cells. Biochem Pharmacol. 1995;49(9):1255–60.PubMedCrossRef Fardel O, Lecureur V, Loyer P, Guillouzo A. Rifampicin enhances anti-cancer drug accumulation and activity in multidrug-resistant cells. Biochem Pharmacol. 1995;49(9):1255–60.PubMedCrossRef
764.
Zurück zum Zitat Geick A, Eichelbaum M, Burk O. Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin. J Biol Chem. 2001;276(18):14581–7.PubMedCrossRef Geick A, Eichelbaum M, Burk O. Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin. J Biol Chem. 2001;276(18):14581–7.PubMedCrossRef
765.
Zurück zum Zitat Greiner B, Eichelbaum M, Fritz P, Kreichgauer HP, von Richter O, Zundler J, et al. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J Clin Investig. 1999;104(2):147–53.PubMedPubMedCentralCrossRef Greiner B, Eichelbaum M, Fritz P, Kreichgauer HP, von Richter O, Zundler J, et al. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J Clin Investig. 1999;104(2):147–53.PubMedPubMedCentralCrossRef
766.
Zurück zum Zitat Fromm MF, Kauffmann HM, Fritz P, Burk O, Kroemer HK, Warzok RW, et al. The effect of rifampin treatment on intestinal expression of human MRP transporters. Am J Pathol. 2000;157(5):1575–80.PubMedPubMedCentralCrossRef Fromm MF, Kauffmann HM, Fritz P, Burk O, Kroemer HK, Warzok RW, et al. The effect of rifampin treatment on intestinal expression of human MRP transporters. Am J Pathol. 2000;157(5):1575–80.PubMedPubMedCentralCrossRef
767.
Zurück zum Zitat Kauffmann HM, Pfannschmidt S, Zöller H, Benz A, Vorderstemann B, Webster JI, et al. Influence of redox-active compounds and PXR-activators on human MRP1 and MRP2 gene expression. Toxicology. 2002;171(2–3):137–46.PubMedCrossRef Kauffmann HM, Pfannschmidt S, Zöller H, Benz A, Vorderstemann B, Webster JI, et al. Influence of redox-active compounds and PXR-activators on human MRP1 and MRP2 gene expression. Toxicology. 2002;171(2–3):137–46.PubMedCrossRef
768.
Zurück zum Zitat Elsby R, Fox L, Stresser D, Layton M, Butters C, Sharma P, et al. In vitro risk assessment of AZD9056 perpetrating a transporter-mediated drug–drug interaction with methotrexate. Eur J Pharm Sci. 2011;43(1–2):41–9.PubMedCrossRef Elsby R, Fox L, Stresser D, Layton M, Butters C, Sharma P, et al. In vitro risk assessment of AZD9056 perpetrating a transporter-mediated drug–drug interaction with methotrexate. Eur J Pharm Sci. 2011;43(1–2):41–9.PubMedCrossRef
769.
Zurück zum Zitat Yamasaki Y, Ieiri I, Kusuhara H, Sasaki T, Kimura M, Tabuchi H, et al. Pharmacogenetic characterization of sulfasalazine disposition based on NAT2 and ABCG2 (BCRP) gene polymorphisms in humans. Clin Pharmacol Ther. 2008;84(1):95–103.PubMedCrossRef Yamasaki Y, Ieiri I, Kusuhara H, Sasaki T, Kimura M, Tabuchi H, et al. Pharmacogenetic characterization of sulfasalazine disposition based on NAT2 and ABCG2 (BCRP) gene polymorphisms in humans. Clin Pharmacol Ther. 2008;84(1):95–103.PubMedCrossRef
770.
Zurück zum Zitat Adkison KK, Vaidya SS, Lee DY, Koo SH, Li L, Mehta AA, et al. Oral sulfasalazine as a clinical BCRP probe substrate: pharmacokinetic effects of genetic variation (C421A) and pantoprazole coadministration. J Pharm Sci. 2010;99(2):1046–62.PubMedCrossRef Adkison KK, Vaidya SS, Lee DY, Koo SH, Li L, Mehta AA, et al. Oral sulfasalazine as a clinical BCRP probe substrate: pharmacokinetic effects of genetic variation (C421A) and pantoprazole coadministration. J Pharm Sci. 2010;99(2):1046–62.PubMedCrossRef
771.
Zurück zum Zitat Bendayan R, Georgis W, Rafi-Tari S. Interaction of 3’-azido-3’-deoxythymidine with the organic base transporter in a cultured renal epithelium. Pharmacotherapy. 1995;15(3):338–44.PubMed Bendayan R, Georgis W, Rafi-Tari S. Interaction of 3’-azido-3’-deoxythymidine with the organic base transporter in a cultured renal epithelium. Pharmacotherapy. 1995;15(3):338–44.PubMed
772.
Zurück zum Zitat Nakatani-Freshwater T, Taft DR. Renal excretion of emtricitabine I: effects of organic anion, organic cation, and nucleoside transport inhibitors on emtricitabine excretion. J Pharm Sci. 2008;97(12):5401–10.PubMedCrossRef Nakatani-Freshwater T, Taft DR. Renal excretion of emtricitabine I: effects of organic anion, organic cation, and nucleoside transport inhibitors on emtricitabine excretion. J Pharm Sci. 2008;97(12):5401–10.PubMedCrossRef
773.
Zurück zum Zitat Urakami Y, Kimura N, Okuda M, Masuda S, Katsura T, Inui KI. Transcellular transport of creatinine in renal tubular epithelial cell line LLC-PK1. Drug Metab Pharmacokinet. 2005;20(3):200–5.PubMedCrossRef Urakami Y, Kimura N, Okuda M, Masuda S, Katsura T, Inui KI. Transcellular transport of creatinine in renal tubular epithelial cell line LLC-PK1. Drug Metab Pharmacokinet. 2005;20(3):200–5.PubMedCrossRef
774.
Zurück zum Zitat Trejtnar F, Mandikova J, Kocincova J, Volkova M. Renal handling of amphotericin B and amphotericin B-deoxycholate and potential renal drug–drug interactions with selected antivirals. Antimicrob Agents Chemother. 2014;58(10):5650–7.PubMedPubMedCentralCrossRef Trejtnar F, Mandikova J, Kocincova J, Volkova M. Renal handling of amphotericin B and amphotericin B-deoxycholate and potential renal drug–drug interactions with selected antivirals. Antimicrob Agents Chemother. 2014;58(10):5650–7.PubMedPubMedCentralCrossRef
775.
Zurück zum Zitat Lempers VJC, van den Heuvel JJMW, Russel FGM, Aarnoutse RE, Burger DM, Brüggemann RJ, et al. Inhibitory potential of antifungal drugs on ATP-binding cassette transporters P-gp, MRP1-5, BCRP and BSEP. Antimicrob Agents Chemother. 2016;60(6):3372–9. Lempers VJC, van den Heuvel JJMW, Russel FGM, Aarnoutse RE, Burger DM, Brüggemann RJ, et al. Inhibitory potential of antifungal drugs on ATP-binding cassette transporters P-gp, MRP1-5, BCRP and BSEP. Antimicrob Agents Chemother. 2016;60(6):3372–9.
776.
Zurück zum Zitat Sandhu P, Lee W, Xu X, Leake BF, Yamazaki M, Stone JA, et al. Hepatic uptake of the novel antifungal agent caspofungin. Drug Metab Dispos. 2005;33(5):676–82.PubMedCrossRef Sandhu P, Lee W, Xu X, Leake BF, Yamazaki M, Stone JA, et al. Hepatic uptake of the novel antifungal agent caspofungin. Drug Metab Dispos. 2005;33(5):676–82.PubMedCrossRef
777.
Zurück zum Zitat Yamazaki T, Desai A, Goldwater R, Han D, Lasseter KC, Howieson C, et al. Pharmacokinetic interactions between isavuconazole and the drug transporter substrates atorvastatin, metformin, and methotrexate in healthy subjects. Digoxin: Clin Pharmacol Drug Dev; 2016. Yamazaki T, Desai A, Goldwater R, Han D, Lasseter KC, Howieson C, et al. Pharmacokinetic interactions between isavuconazole and the drug transporter substrates atorvastatin, metformin, and methotrexate in healthy subjects. Digoxin: Clin Pharmacol Drug Dev; 2016.
778.
Zurück zum Zitat Miyama T, Takanaga H, Matsuo H, Yamano K, Yamamoto K, Iga T, et al. P-glycoprotein-mediated transport of itraconazole across the blood–brain barrier. Antimicrob Agents Chemother. 1998;42(7):1738–44.PubMedPubMedCentral Miyama T, Takanaga H, Matsuo H, Yamano K, Yamamoto K, Iga T, et al. P-glycoprotein-mediated transport of itraconazole across the blood–brain barrier. Antimicrob Agents Chemother. 1998;42(7):1738–44.PubMedPubMedCentral
779.
Zurück zum Zitat Profit L, Eagling VA, Back DJ. Modulation of P-glycoprotein function in human lymphocytes and Caco-2 cell monolayers by HIV-1 protease inhibitors. AIDS. 1999;13(13):1623–7.PubMedCrossRef Profit L, Eagling VA, Back DJ. Modulation of P-glycoprotein function in human lymphocytes and Caco-2 cell monolayers by HIV-1 protease inhibitors. AIDS. 1999;13(13):1623–7.PubMedCrossRef
780.
Zurück zum Zitat Takano M, Hasegawa R, Fukuda T, Yumoto R, Nagai J, Murakami T. Interaction with P-glycoprotein and transport of erythromycin, midazolam and ketoconazole in Caco-2 cells. Eur J Pharmacol. 1998;358(3):289–94.PubMedCrossRef Takano M, Hasegawa R, Fukuda T, Yumoto R, Nagai J, Murakami T. Interaction with P-glycoprotein and transport of erythromycin, midazolam and ketoconazole in Caco-2 cells. Eur J Pharmacol. 1998;358(3):289–94.PubMedCrossRef
781.
Zurück zum Zitat Ekins S, Kim RB, Leake BF, Dantzig AH, Schuetz EG, Lb Lan, et al. Three-dimensional quantitative structure-activity relationships of inhibitors of P-glycoprotein. Mol Pharmacol. 2002;61(5):964–73.PubMedCrossRef Ekins S, Kim RB, Leake BF, Dantzig AH, Schuetz EG, Lb Lan, et al. Three-dimensional quantitative structure-activity relationships of inhibitors of P-glycoprotein. Mol Pharmacol. 2002;61(5):964–73.PubMedCrossRef
782.
Zurück zum Zitat Ming X, Ju W, Wu H, Tidwell RR, Hall JE, Thakker DR. Transport of dicationic drugs pentamidine and furamidine by human organic cation transporters. Drug Metab Dispos. 2009;37(2):424–30.PubMedCrossRef Ming X, Ju W, Wu H, Tidwell RR, Hall JE, Thakker DR. Transport of dicationic drugs pentamidine and furamidine by human organic cation transporters. Drug Metab Dispos. 2009;37(2):424–30.PubMedCrossRef
783.
Zurück zum Zitat Shaik N, Giri N, Pan G, Elmquist WF. P-glycoprotein-mediated active efflux of the anti-HIV1 nucleoside abacavir limits cellular accumulation and brain distribution. Drug Metab Dispos. 2007;35(11):2076–85.PubMedCrossRef Shaik N, Giri N, Pan G, Elmquist WF. P-glycoprotein-mediated active efflux of the anti-HIV1 nucleoside abacavir limits cellular accumulation and brain distribution. Drug Metab Dispos. 2007;35(11):2076–85.PubMedCrossRef
784.
Zurück zum Zitat Wada S, Tsuda M, Sekine T, Cha SH, Kimura M, Kanai Y, et al. Rat multispecific organic anion transporter 1 (rOAT1) transports zidovudine, acyclovir, and other antiviral nucleoside analogs. J Pharmacol Exp Ther. 2000;294(3):844–9.PubMed Wada S, Tsuda M, Sekine T, Cha SH, Kimura M, Kanai Y, et al. Rat multispecific organic anion transporter 1 (rOAT1) transports zidovudine, acyclovir, and other antiviral nucleoside analogs. J Pharmacol Exp Ther. 2000;294(3):844–9.PubMed
785.
Zurück zum Zitat Gunness P, Aleksa K, Koren G. Acyclovir is a substrate for the human breast cancer resistance protein (BCRP/ABCG2): implications for renal tubular transport and acyclovir-induced nephrotoxicity. Can J Physiol Pharmacol. 2011;89(9):675–80.PubMedCrossRef Gunness P, Aleksa K, Koren G. Acyclovir is a substrate for the human breast cancer resistance protein (BCRP/ABCG2): implications for renal tubular transport and acyclovir-induced nephrotoxicity. Can J Physiol Pharmacol. 2011;89(9):675–80.PubMedCrossRef
786.
Zurück zum Zitat Ye J, Liu Q, Wang C, Meng Q, Peng J, Sun H, et al. Inhibitory effect of JBP485 on renal excretion of acyclovir by the inhibition of OAT1 and OAT3. Eur J Pharm Sci. 2012;47(2):341–6.PubMedCrossRef Ye J, Liu Q, Wang C, Meng Q, Peng J, Sun H, et al. Inhibitory effect of JBP485 on renal excretion of acyclovir by the inhibition of OAT1 and OAT3. Eur J Pharm Sci. 2012;47(2):341–6.PubMedCrossRef
787.
Zurück zum Zitat Bleasby K, Hall LA, Perry JL, Mohrenweiser HW, Pritchard JB. Functional consequences of single nucleotide polymorphisms in the human organic anion transporter hOAT1 (SLC22A6). J Pharmacol Exp Ther. 2005;314(2):923–31.PubMedCrossRef Bleasby K, Hall LA, Perry JL, Mohrenweiser HW, Pritchard JB. Functional consequences of single nucleotide polymorphisms in the human organic anion transporter hOAT1 (SLC22A6). J Pharmacol Exp Ther. 2005;314(2):923–31.PubMedCrossRef
788.
Zurück zum Zitat Cihlar T, Lin DC, Pritchard JB, Fuller MD, Mendel DB, Sweet DH. The antiviral nucleotide analogs cidofovir and adefovir are novel substrates for human and rat renal organic anion transporter 1. Mol Pharmacol. 1999;56(3):570–80.PubMed Cihlar T, Lin DC, Pritchard JB, Fuller MD, Mendel DB, Sweet DH. The antiviral nucleotide analogs cidofovir and adefovir are novel substrates for human and rat renal organic anion transporter 1. Mol Pharmacol. 1999;56(3):570–80.PubMed
789.
Zurück zum Zitat Servais A, Lechat P, Zahr N, Urien S, Aymard G, Jaudon MC, et al. Tubular transporters and clearance of adefovir. Eur J Pharmacol. 2006;540(1–3):168–74.PubMedCrossRef Servais A, Lechat P, Zahr N, Urien S, Aymard G, Jaudon MC, et al. Tubular transporters and clearance of adefovir. Eur J Pharmacol. 2006;540(1–3):168–74.PubMedCrossRef
790.
Zurück zum Zitat Mandikova J, Volkova M, Pavek P, Cesnek M, Janeba Z, Kubicek V, et al. Interactions with selected drug renal transporters and transporter-mediated cytotoxicity in antiviral agents from the group of acyclic nucleoside phosphonates. Toxicology. 2013;311(3):135–46.PubMedCrossRef Mandikova J, Volkova M, Pavek P, Cesnek M, Janeba Z, Kubicek V, et al. Interactions with selected drug renal transporters and transporter-mediated cytotoxicity in antiviral agents from the group of acyclic nucleoside phosphonates. Toxicology. 2013;311(3):135–46.PubMedCrossRef
791.
Zurück zum Zitat Ming X, Thakker DR. Role of basolateral efflux transporter MRP4 in the intestinal absorption of the antiviral drug adefovir dipivoxil. Biochem Pharmacol. 2010;79(3):455–62.PubMedCrossRef Ming X, Thakker DR. Role of basolateral efflux transporter MRP4 in the intestinal absorption of the antiviral drug adefovir dipivoxil. Biochem Pharmacol. 2010;79(3):455–62.PubMedCrossRef
792.
Zurück zum Zitat Tong L, Phan TK, Robinson KL, Babusis D, Strab R, Bhoopathy S, et al. Effects of human immunodeficiency virus protease inhibitors on the intestinal absorption of tenofovir disoproxil fumarate in vitro. Antimicrob Agents Chemother. 2007;51(10):3498–504.PubMedPubMedCentralCrossRef Tong L, Phan TK, Robinson KL, Babusis D, Strab R, Bhoopathy S, et al. Effects of human immunodeficiency virus protease inhibitors on the intestinal absorption of tenofovir disoproxil fumarate in vitro. Antimicrob Agents Chemother. 2007;51(10):3498–504.PubMedPubMedCentralCrossRef
793.
Zurück zum Zitat Cihlar T, Ray AS, Laflamme G, Vela JE, Tong L, Fuller MD, et al. Molecular assessment of the potential for renal drug interactions between tenofovir and HIV protease inhibitors. Antivir Ther. 2007;12(2):267–72.PubMed Cihlar T, Ray AS, Laflamme G, Vela JE, Tong L, Fuller MD, et al. Molecular assessment of the potential for renal drug interactions between tenofovir and HIV protease inhibitors. Antivir Ther. 2007;12(2):267–72.PubMed
794.
Zurück zum Zitat Gupta A, Zhang Y, Unadkat JD, Mao Q. HIV protease inhibitors are inhibitors but not substrates of the human breast cancer resistance protein (BCRP/ABCG2). J Pharmacol Exp Ther. 2004;310(1):334–41.PubMedCrossRef Gupta A, Zhang Y, Unadkat JD, Mao Q. HIV protease inhibitors are inhibitors but not substrates of the human breast cancer resistance protein (BCRP/ABCG2). J Pharmacol Exp Ther. 2004;310(1):334–41.PubMedCrossRef
795.
Zurück zum Zitat Reese MJ, Bowers GD, Humphreys JE, Gould EP, Ford SL, Webster LO, et al. Drug interaction profile of the HIV integrase inhibitor cabotegravir: assessment from in vitro studies and a clinical investigation with midazolam. Xenobiotica. 2016;46(5):445–56.PubMedCrossRef Reese MJ, Bowers GD, Humphreys JE, Gould EP, Ford SL, Webster LO, et al. Drug interaction profile of the HIV integrase inhibitor cabotegravir: assessment from in vitro studies and a clinical investigation with midazolam. Xenobiotica. 2016;46(5):445–56.PubMedCrossRef
796.
Zurück zum Zitat German P, Liu HC, Szwarcberg J, Hepner M, Andrews J, Kearney BP, et al. Effect of cobicistat on glomerular filtration rate in subjects with normal and impaired renal function. JAIDS J Acquir Immune Defic Syndr. 2012;61(1):32–40. doi:10.1097/QAI.0b013e3182645648.PubMedCrossRef German P, Liu HC, Szwarcberg J, Hepner M, Andrews J, Kearney BP, et al. Effect of cobicistat on glomerular filtration rate in subjects with normal and impaired renal function. JAIDS J Acquir Immune Defic Syndr. 2012;61(1):32–40. doi:10.​1097/​QAI.​0b013e3182645648​.PubMedCrossRef
797.
Zurück zum Zitat Lepist E-I, Murray BP, Tong L, Roy A, Bannister R, AS. R. Effect of cobicistat and ritonavir on proximal renal tubular cell uptake and efflux transporters. Abstr 51st Intersci Conf Antimicrob Agents Chemother. Chicago: American Society for Microbiology, Washington, DC.; 2011. Lepist E-I, Murray BP, Tong L, Roy A, Bannister R, AS. R. Effect of cobicistat and ritonavir on proximal renal tubular cell uptake and efflux transporters. Abstr 51st Intersci Conf Antimicrob Agents Chemother. Chicago: American Society for Microbiology, Washington, DC.; 2011.
798.
Zurück zum Zitat Stray KM, Bam RA, Birkus G, Hao J, Lepist E-I, Yant SR, et al. Evaluation of the effect of cobicistat on the in vitro renal transport and cytotoxicity potential of tenofovir. Antimicrob Agents Chemother. 2013;57(10):4982–9.PubMedPubMedCentralCrossRef Stray KM, Bam RA, Birkus G, Hao J, Lepist E-I, Yant SR, et al. Evaluation of the effect of cobicistat on the in vitro renal transport and cytotoxicity potential of tenofovir. Antimicrob Agents Chemother. 2013;57(10):4982–9.PubMedPubMedCentralCrossRef
799.
Zurück zum Zitat European Medicines Agency. Daklinza® product information. EMA; 2016. European Medicines Agency. Daklinza® product information. EMA; 2016.
800.
801.
Zurück zum Zitat Fujimoto H, Higuchi M, Watanabe H, Koh Y, Ghosh AK, Mitsuya H, et al. P-glycoprotein mediates efflux transport of darunavir in human intestinal Caco-2 and ABCB1 gene-transfected renal LLC-PK1 cell lines. Biol Pharm Bull. 2009;32(9):1588–93.PubMedCrossRef Fujimoto H, Higuchi M, Watanabe H, Koh Y, Ghosh AK, Mitsuya H, et al. P-glycoprotein mediates efflux transport of darunavir in human intestinal Caco-2 and ABCB1 gene-transfected renal LLC-PK1 cell lines. Biol Pharm Bull. 2009;32(9):1588–93.PubMedCrossRef
802.
Zurück zum Zitat Grammen C, Baes M, Haenen S, Verguts J, Augustyns K, Zydowsky T, et al. Vaginal expression of efflux transporters and the potential impact on the disposition of microbicides in vitro and in rabbits. Mol Pharm. 2014;11(12):4405–14.PubMedCrossRef Grammen C, Baes M, Haenen S, Verguts J, Augustyns K, Zydowsky T, et al. Vaginal expression of efflux transporters and the potential impact on the disposition of microbicides in vitro and in rabbits. Mol Pharm. 2014;11(12):4405–14.PubMedCrossRef
803.
Zurück zum Zitat Bow D, Liu J, Kavetskaia O, Menon R, de Morais S, Nijsen M, et al. A mechanistic non-clinical assessment of drug–drug interactions (metabolism and transporters) with the hepatitis C virus (HCV) regimen: ABT-450/r, ombitasvir and dasabuvir. AASLD/EASL Special Conference on Hepatitis C. New York, NY; 2014. Bow D, Liu J, Kavetskaia O, Menon R, de Morais S, Nijsen M, et al. A mechanistic non-clinical assessment of drug–drug interactions (metabolism and transporters) with the hepatitis C virus (HCV) regimen: ABT-450/r, ombitasvir and dasabuvir. AASLD/EASL Special Conference on Hepatitis C. New York, NY; 2014.
805.
Zurück zum Zitat Weiss J, Weis N, Ketabi-Kiyanvash N, Storch CH, Haefeli WE. Comparison of the induction of P-glycoprotein activity by nucleotide, nucleoside, and non-nucleoside reverse transcriptase inhibitors. Eur J Pharmacol. 2008;579(1–3):104–9.PubMedCrossRef Weiss J, Weis N, Ketabi-Kiyanvash N, Storch CH, Haefeli WE. Comparison of the induction of P-glycoprotein activity by nucleotide, nucleoside, and non-nucleoside reverse transcriptase inhibitors. Eur J Pharmacol. 2008;579(1–3):104–9.PubMedCrossRef
806.
Zurück zum Zitat Reese MJ, Savina PM, Generaux GT, Tracey H, Humphreys JE, Kanaoka E, et al. In vitro investigations into the roles of drug transporters and metabolizing enzymes in the disposition and drug interactions of dolutegravir, a HIV integrase inhibitor. Drug Metab Dispos. 2013;41(2):353–61.PubMedCrossRef Reese MJ, Savina PM, Generaux GT, Tracey H, Humphreys JE, Kanaoka E, et al. In vitro investigations into the roles of drug transporters and metabolizing enzymes in the disposition and drug interactions of dolutegravir, a HIV integrase inhibitor. Drug Metab Dispos. 2013;41(2):353–61.PubMedCrossRef
807.
Zurück zum Zitat Peroni RN, Di Gennaro SS, Hocht C, Chiappetta DA, Rubio MC, Sosnik A, et al. Efavirenz is a substrate and in turn modulates the expression of the efflux transporter ABCG2/BCRP in the gastrointestinal tract of the rat. Biochem Pharmacol. 2011;82(9):1227–33.PubMedCrossRef Peroni RN, Di Gennaro SS, Hocht C, Chiappetta DA, Rubio MC, Sosnik A, et al. Efavirenz is a substrate and in turn modulates the expression of the efflux transporter ABCG2/BCRP in the gastrointestinal tract of the rat. Biochem Pharmacol. 2011;82(9):1227–33.PubMedCrossRef
808.
Zurück zum Zitat Weiss J, Rose J, Storch CH, Ketabi-Kiyanvash N, Sauer A, Haefeli WE, et al. Modulation of human BCRP (ABCG2) activity by anti-HIV drugs. J Antimicrob Chemother. 2007;59(2):238–45.PubMedCrossRef Weiss J, Rose J, Storch CH, Ketabi-Kiyanvash N, Sauer A, Haefeli WE, et al. Modulation of human BCRP (ABCG2) activity by anti-HIV drugs. J Antimicrob Chemother. 2007;59(2):238–45.PubMedCrossRef
809.
Zurück zum Zitat Xu Q, Wang C, Meng Q, Liu Q, Sun H, Peng J, et al. OAT1 and OAT3: targets of drug–drug interaction between entecavir and JBP485. Eur J Pharm Sci. 2013;48(4–5):650–7.PubMedCrossRef Xu Q, Wang C, Meng Q, Liu Q, Sun H, Peng J, et al. OAT1 and OAT3: targets of drug–drug interaction between entecavir and JBP485. Eur J Pharm Sci. 2013;48(4–5):650–7.PubMedCrossRef
810.
Zurück zum Zitat Mandíková J, Volková M, Pávek P, Navrátilová L, Hyršová L, Janeba Z, et al. Entecavir interacts with influx transporters hOAT1, hCNT2, hCNT3, but not with hOCT2: the potential for renal transporter-mediated cytotoxicity and drug–drug interactions. Front Pharmacol. 2015;6:304.PubMed Mandíková J, Volková M, Pávek P, Navrátilová L, Hyršová L, Janeba Z, et al. Entecavir interacts with influx transporters hOAT1, hCNT2, hCNT3, but not with hOCT2: the potential for renal transporter-mediated cytotoxicity and drug–drug interactions. Front Pharmacol. 2015;6:304.PubMed
811.
Zurück zum Zitat Kakuda TN, Van Solingen-Ristea RM, Onkelinx J, Stevens T, Aharchi F, De Smedt G, et al. The effect of single- and multiple-dose etravirine on a drug cocktail of representative cytochrome P450 probes and digoxin in healthy subjects. J Clin Pharmacol. 2014;54(4):422–31.PubMedCrossRef Kakuda TN, Van Solingen-Ristea RM, Onkelinx J, Stevens T, Aharchi F, De Smedt G, et al. The effect of single- and multiple-dose etravirine on a drug cocktail of representative cytochrome P450 probes and digoxin in healthy subjects. J Clin Pharmacol. 2014;54(4):422–31.PubMedCrossRef
812.
Zurück zum Zitat Zembruski NCL, Haefeli WE, Weiss J. Interaction potential of etravirine with drug transporters assessed in vitro. Antimicrob Agents Chemother. 2011;55(3):1282–4.PubMedCrossRef Zembruski NCL, Haefeli WE, Weiss J. Interaction potential of etravirine with drug transporters assessed in vitro. Antimicrob Agents Chemother. 2011;55(3):1282–4.PubMedCrossRef
813.
Zurück zum Zitat Huisman MT, Smit JW, Crommentuyn KM, Zelcer N, Wiltshire HR, Beijnen JH, et al. Multidrug resistance protein 2 (MRP2) transports HIV protease inhibitors, and transport can be enhanced by other drugs. AIDS. 2002;16(17):2295–301.PubMedCrossRef Huisman MT, Smit JW, Crommentuyn KM, Zelcer N, Wiltshire HR, Beijnen JH, et al. Multidrug resistance protein 2 (MRP2) transports HIV protease inhibitors, and transport can be enhanced by other drugs. AIDS. 2002;16(17):2295–301.PubMedCrossRef
814.
Zurück zum Zitat Jones K, Bray PG, Khoo SH, Davey RA, Meaden ER, Ward SA, et al. P-glycoprotein and transporter MRP1 reduce HIV protease inhibitor uptake in CD4 cells: potential for accelerated viral drug resistance? AIDS. 2001;15(11):1353–8.PubMedCrossRef Jones K, Bray PG, Khoo SH, Davey RA, Meaden ER, Ward SA, et al. P-glycoprotein and transporter MRP1 reduce HIV protease inhibitor uptake in CD4 cells: potential for accelerated viral drug resistance? AIDS. 2001;15(11):1353–8.PubMedCrossRef
815.
Zurück zum Zitat de Souza J, Benet LZ, Huang Y, Storpirtis S. Comparison of bidirectional lamivudine and zidovudine transport using MDCK, MDCK–MDR1, and Caco-2 cell monolayers. J Pharm Sci. 2009;98(11):4413–9.PubMedCrossRef de Souza J, Benet LZ, Huang Y, Storpirtis S. Comparison of bidirectional lamivudine and zidovudine transport using MDCK, MDCK–MDR1, and Caco-2 cell monolayers. J Pharm Sci. 2009;98(11):4413–9.PubMedCrossRef
816.
Zurück zum Zitat Vishnuvardhan D, Moltke LL, Richert C, Greenblatt DJ. Lopinavir: acute exposure inhibits P-glycoprotein; extended exposure induces P-glycoprotein. AIDS. 2003;17(7):1092–4.PubMedCrossRef Vishnuvardhan D, Moltke LL, Richert C, Greenblatt DJ. Lopinavir: acute exposure inhibits P-glycoprotein; extended exposure induces P-glycoprotein. AIDS. 2003;17(7):1092–4.PubMedCrossRef
817.
Zurück zum Zitat van Waterschoot RA, ter Heine R, Wagenaar E, van der Kruijssen CM, Rooswinkel RW, Huitema AD, et al. Effects of cytochrome P450 3A (CYP3A) and the drug transporters P-glycoprotein (MDR1/ABCB1) and MRP2 (ABCC2) on the pharmacokinetics of lopinavir. Br J Pharmacol. 2010;160(5):1224–33.PubMedPubMedCentralCrossRef van Waterschoot RA, ter Heine R, Wagenaar E, van der Kruijssen CM, Rooswinkel RW, Huitema AD, et al. Effects of cytochrome P450 3A (CYP3A) and the drug transporters P-glycoprotein (MDR1/ABCB1) and MRP2 (ABCC2) on the pharmacokinetics of lopinavir. Br J Pharmacol. 2010;160(5):1224–33.PubMedPubMedCentralCrossRef
818.
Zurück zum Zitat Zembruski NCL, Büchel G, Jödicke L, Herzog M, Haefeli WE, Weiss J. Potential of novel antiretrovirals to modulate expression and function of drug transporters in vitro. J Antimicrob Chemother. 2011;66(4):802–12.PubMedCrossRef Zembruski NCL, Büchel G, Jödicke L, Herzog M, Haefeli WE, Weiss J. Potential of novel antiretrovirals to modulate expression and function of drug transporters in vitro. J Antimicrob Chemother. 2011;66(4):802–12.PubMedCrossRef
819.
Zurück zum Zitat Fukuda Y, Takenaka K, Sparreboom A, Cheepala SB, Wu CP, Ekins S, et al. Human immunodeficiency virus protease inhibitors interact with ATP binding cassette transporter 4/multidrug resistance protein 4: a basis for unanticipated enhanced cytotoxicity. Mol Pharmacol. 2013;84(3):361–71.PubMedPubMedCentralCrossRef Fukuda Y, Takenaka K, Sparreboom A, Cheepala SB, Wu CP, Ekins S, et al. Human immunodeficiency virus protease inhibitors interact with ATP binding cassette transporter 4/multidrug resistance protein 4: a basis for unanticipated enhanced cytotoxicity. Mol Pharmacol. 2013;84(3):361–71.PubMedPubMedCentralCrossRef
821.
Zurück zum Zitat Ose A, Ito M, Kusuhara H, Yamatsugu K, Kanai M, Shibasaki M, et al. Limited brain distribution of [3R,4R,5S]-4-acetamido-5-amino-3-(1-ethylpropoxy)-1-cyclohexene-1-carboxylate phosphate (Ro 64-0802), a pharmacologically active form of oseltamivir, by active efflux across the blood–brain barrier mediated by organic anion transporter 3 (Oat3/Slc22a8) and multidrug resistance-associated protein 4 (Mrp4/Abcc4). Drug Metab Dispos. 2009;37(2):315–21.PubMedCrossRef Ose A, Ito M, Kusuhara H, Yamatsugu K, Kanai M, Shibasaki M, et al. Limited brain distribution of [3R,4R,5S]-4-acetamido-5-amino-3-(1-ethylpropoxy)-1-cyclohexene-1-carboxylate phosphate (Ro 64-0802), a pharmacologically active form of oseltamivir, by active efflux across the blood–brain barrier mediated by organic anion transporter 3 (Oat3/Slc22a8) and multidrug resistance-associated protein 4 (Mrp4/Abcc4). Drug Metab Dispos. 2009;37(2):315–21.PubMedCrossRef
822.
Zurück zum Zitat Hashiguchi Y, Hamada A, Shinohara T, Tsuchiya K, Jono H, Saito H. Role of P-glycoprotein in the efflux of raltegravir from human intestinal cells and CD4+ T-cells as an interaction target for anti-HIV agents. Biochem Biophys Res Commun. 2013;439(2):221–7.PubMedCrossRef Hashiguchi Y, Hamada A, Shinohara T, Tsuchiya K, Jono H, Saito H. Role of P-glycoprotein in the efflux of raltegravir from human intestinal cells and CD4+ T-cells as an interaction target for anti-HIV agents. Biochem Biophys Res Commun. 2013;439(2):221–7.PubMedCrossRef
823.
Zurück zum Zitat Rizk ML, Houle R, Chan GH, Hafey M, Rhee EG, Chu X. Raltegravir has a low propensity to cause clinical drug interactions through inhibition of major drug transporters: an in vitro evaluation. Antimicrob Agents Chemother. 2014;58(3):1294–301.PubMedPubMedCentralCrossRef Rizk ML, Houle R, Chan GH, Hafey M, Rhee EG, Chu X. Raltegravir has a low propensity to cause clinical drug interactions through inhibition of major drug transporters: an in vitro evaluation. Antimicrob Agents Chemother. 2014;58(3):1294–301.PubMedPubMedCentralCrossRef
824.
Zurück zum Zitat Gutierrez F, Fulladosa X, Barril G, Domingo P. Renal tubular transporter-mediated interactions of HIV drugs: implications for patient management. AIDS Rev. 2014;16(4):199–212.PubMed Gutierrez F, Fulladosa X, Barril G, Domingo P. Renal tubular transporter-mediated interactions of HIV drugs: implications for patient management. AIDS Rev. 2014;16(4):199–212.PubMed
825.
Zurück zum Zitat Moss DM, Liptrott NJ, Curley P, Siccardi M, Back DJ, Owen A. Rilpivirine inhibits drug transporters ABCB1, SLC22A1, and SLC22A2 In vitro. Antimicrob Agents Chemother. 2013;57(11):5612–8.PubMedPubMedCentralCrossRef Moss DM, Liptrott NJ, Curley P, Siccardi M, Back DJ, Owen A. Rilpivirine inhibits drug transporters ABCB1, SLC22A1, and SLC22A2 In vitro. Antimicrob Agents Chemother. 2013;57(11):5612–8.PubMedPubMedCentralCrossRef
826.
Zurück zum Zitat Perloff MD, von Moltke LL, Marchand JE, Greenblatt DJ. Ritonavir induces P-glycoprotein expression, multidrug resistance-associated protein (MRP1) expression, and drug transporter-mediated activity in a human intestinal cell line. J Pharm Sci. 2001;90(11):1829–37.PubMedCrossRef Perloff MD, von Moltke LL, Marchand JE, Greenblatt DJ. Ritonavir induces P-glycoprotein expression, multidrug resistance-associated protein (MRP1) expression, and drug transporter-mediated activity in a human intestinal cell line. J Pharm Sci. 2001;90(11):1829–37.PubMedCrossRef
827.
Zurück zum Zitat Kim AE, Dintaman JM, Waddell DS, Silverman JA. Saquinavir, an HIV protease inhibitor, is transported by P-glycoprotein. J Pharmacol Exp Ther. 1998;286(3):1439–45.PubMed Kim AE, Dintaman JM, Waddell DS, Silverman JA. Saquinavir, an HIV protease inhibitor, is transported by P-glycoprotein. J Pharmacol Exp Ther. 1998;286(3):1439–45.PubMed
828.
Zurück zum Zitat Williams GC, Liu A, Knipp G, Sinko PJ. Direct evidence that saquinavir is transported by multidrug resistance-associated protein (MRP1) and canalicular multispecific organic anion transporter (MRP2). Antimicrob Agents Chemother. 2002;46(11):3456–62.PubMedPubMedCentralCrossRef Williams GC, Liu A, Knipp G, Sinko PJ. Direct evidence that saquinavir is transported by multidrug resistance-associated protein (MRP1) and canalicular multispecific organic anion transporter (MRP2). Antimicrob Agents Chemother. 2002;46(11):3456–62.PubMedPubMedCentralCrossRef
829.
Zurück zum Zitat Eagling VA, Profit L, Back DJ. Inhibition of the CYP3A4-mediated metabolism and P-glycoprotein-mediated transport of the HIV-1 protease inhibitor saquinavir by grapefruit juice components. Br J Clin Pharmacol. 1999;48(4):543–52.PubMedPubMedCentralCrossRef Eagling VA, Profit L, Back DJ. Inhibition of the CYP3A4-mediated metabolism and P-glycoprotein-mediated transport of the HIV-1 protease inhibitor saquinavir by grapefruit juice components. Br J Clin Pharmacol. 1999;48(4):543–52.PubMedPubMedCentralCrossRef
830.
Zurück zum Zitat Su Y, Zhang X, Sinko PJ. Human organic anion-transporting polypeptide OATP-A (SLC21A3) acts in concert with P-glycoprotein and multidrug resistance protein 2 in the vectorial transport of saquinavir in Hep G2 Cells. Mol Pharm. 2003;1(1):49–56.CrossRef Su Y, Zhang X, Sinko PJ. Human organic anion-transporting polypeptide OATP-A (SLC21A3) acts in concert with P-glycoprotein and multidrug resistance protein 2 in the vectorial transport of saquinavir in Hep G2 Cells. Mol Pharm. 2003;1(1):49–56.CrossRef
831.
Zurück zum Zitat Nagle MA, Truong DM, Dnyanmote AV, Ahn SY, Eraly SA, Wu W, et al. Analysis of three-dimensional systems for developing and mature kidneys clarifies the role of OAT1 and OAT3 in antiviral handling. J Biol Chem. 2011;286(1):243–51.PubMedCrossRef Nagle MA, Truong DM, Dnyanmote AV, Ahn SY, Eraly SA, Wu W, et al. Analysis of three-dimensional systems for developing and mature kidneys clarifies the role of OAT1 and OAT3 in antiviral handling. J Biol Chem. 2011;286(1):243–51.PubMedCrossRef
832.
Zurück zum Zitat Siccardi D, Kandalaft LE, Gumbleton M, McGuigan C. Stereoselective and concentration-dependent polarized epithelial permeability of a series of phosphoramidate triester prodrugs of d4T: an in vitro study in Caco-2 and Madin–Darby canine kidney cell monolayers. J Pharmacol Exp Ther. 2003;307(3):1112–9.PubMedCrossRef Siccardi D, Kandalaft LE, Gumbleton M, McGuigan C. Stereoselective and concentration-dependent polarized epithelial permeability of a series of phosphoramidate triester prodrugs of d4T: an in vitro study in Caco-2 and Madin–Darby canine kidney cell monolayers. J Pharmacol Exp Ther. 2003;307(3):1112–9.PubMedCrossRef
833.
Zurück zum Zitat Kunze A, Huwyler J, Camenisch G, Gutmann H. Interaction of the antiviral drug telaprevir with renal and hepatic drug transporters. Biochem Pharmacol. 2012;84(8):1096–102.PubMedCrossRef Kunze A, Huwyler J, Camenisch G, Gutmann H. Interaction of the antiviral drug telaprevir with renal and hepatic drug transporters. Biochem Pharmacol. 2012;84(8):1096–102.PubMedCrossRef
834.
Zurück zum Zitat Nakada T, Kito T, Inoue K, Masuda S, Inui K, Matsubara K, et al. Evaluation of the potency of telaprevir and its metabolites as inhibitors of renal organic cation transporters, a potential mechanism for the elevation of serum creatinine. Drug Metab Pharmacokinet. 2014;29(3):266–71.PubMedCrossRef Nakada T, Kito T, Inoue K, Masuda S, Inui K, Matsubara K, et al. Evaluation of the potency of telaprevir and its metabolites as inhibitors of renal organic cation transporters, a potential mechanism for the elevation of serum creatinine. Drug Metab Pharmacokinet. 2014;29(3):266–71.PubMedCrossRef
835.
Zurück zum Zitat Cusato J, Allegra S, De Nicolò A, Boglione L, Fatiguso G, Cariti G, et al. ABCB11 and ABCB1 gene polymorphisms impact on telaprevir pharmacokinetic at one month of therapy. Biomed Pharmacother. 2015;69:63–9.PubMedCrossRef Cusato J, Allegra S, De Nicolò A, Boglione L, Fatiguso G, Cariti G, et al. ABCB11 and ABCB1 gene polymorphisms impact on telaprevir pharmacokinetic at one month of therapy. Biomed Pharmacother. 2015;69:63–9.PubMedCrossRef
836.
Zurück zum Zitat Weiss J, Becker JP, Haefeli WE. Telaprevir is a substrate and moderate inhibitor of P-glycoprotein, a strong inductor of ABCG2, but not an activator of PXR in vitro. Int J Antimicrob Agents. 2014;43(2):184–8.PubMedCrossRef Weiss J, Becker JP, Haefeli WE. Telaprevir is a substrate and moderate inhibitor of P-glycoprotein, a strong inductor of ABCG2, but not an activator of PXR in vitro. Int J Antimicrob Agents. 2014;43(2):184–8.PubMedCrossRef
837.
Zurück zum Zitat Fujita Y, Noguchi K, Suzuki T, Katayama K, Sugimoto Y. Biochemical interaction of anti-HCV telaprevir with the ABC transporters P-glycoprotein and breast cancer resistance protein. BMC Res Notes. 2013;6(1):1–6.CrossRef Fujita Y, Noguchi K, Suzuki T, Katayama K, Sugimoto Y. Biochemical interaction of anti-HCV telaprevir with the ABC transporters P-glycoprotein and breast cancer resistance protein. BMC Res Notes. 2013;6(1):1–6.CrossRef
838.
Zurück zum Zitat Mallants R, Van Oosterwyck K, Van Vaeck L, Mols R, De Clercq E, Augustijns P. Multidrug resistance-associated protein 2 (MRP2) affects hepatobiliary elimination but not the intestinal disposition of tenofovir disoproxil fumarate and its metabolites. Xenobiotica. 2005;35(10–11):1055–66.PubMedCrossRef Mallants R, Van Oosterwyck K, Van Vaeck L, Mols R, De Clercq E, Augustijns P. Multidrug resistance-associated protein 2 (MRP2) affects hepatobiliary elimination but not the intestinal disposition of tenofovir disoproxil fumarate and its metabolites. Xenobiotica. 2005;35(10–11):1055–66.PubMedCrossRef
839.
Zurück zum Zitat Bam RA, Yant SR, Cihlar T. Tenofovir alafenamide is not a substrate for renal organic anion transporters (OATs) and does not exhibit OAT-dependent cytotoxicity. Antivir Ther. 2014;19(7):687–92.PubMedCrossRef Bam RA, Yant SR, Cihlar T. Tenofovir alafenamide is not a substrate for renal organic anion transporters (OATs) and does not exhibit OAT-dependent cytotoxicity. Antivir Ther. 2014;19(7):687–92.PubMedCrossRef
840.
Zurück zum Zitat Dahlin A, Wittwer M, de la Cruz M, Woo JM, Bam R, Scharen-Guivel V, et al. A pharmacogenetic candidate gene study of tenofovir-associated Fanconi syndrome. Pharmacogenet Genomics. 2015;25(2):82–92.PubMedPubMedCentralCrossRef Dahlin A, Wittwer M, de la Cruz M, Woo JM, Bam R, Scharen-Guivel V, et al. A pharmacogenetic candidate gene study of tenofovir-associated Fanconi syndrome. Pharmacogenet Genomics. 2015;25(2):82–92.PubMedPubMedCentralCrossRef
842.
Zurück zum Zitat Jin MJ, Han HK. Interaction of zalcitabine with human organic anion transporter 1. Pharmazie. 2006;61(5):491–2.PubMed Jin MJ, Han HK. Interaction of zalcitabine with human organic anion transporter 1. Pharmazie. 2006;61(5):491–2.PubMed
843.
Zurück zum Zitat Schuetz JD, Connelly MC, Sun D, Paibir SG, Flynn PM, Srinivas RV, et al. MRP4: a previously unidentified factor in resistance to nucleoside-based antiviral drugs. Nat Med. 1999;5(9):1048–51.PubMedCrossRef Schuetz JD, Connelly MC, Sun D, Paibir SG, Flynn PM, Srinivas RV, et al. MRP4: a previously unidentified factor in resistance to nucleoside-based antiviral drugs. Nat Med. 1999;5(9):1048–51.PubMedCrossRef
844.
Zurück zum Zitat Müller F, König J, Glaeser H, Schmidt I, Zolk O, Fromm MF, et al. Molecular mechanism of renal tubular secretion of the antimalarial drug chloroquine. Antimicrob Agents Chemother. 2011;55(7):3091–8.PubMedPubMedCentralCrossRef Müller F, König J, Glaeser H, Schmidt I, Zolk O, Fromm MF, et al. Molecular mechanism of renal tubular secretion of the antimalarial drug chloroquine. Antimicrob Agents Chemother. 2011;55(7):3091–8.PubMedPubMedCentralCrossRef
845.
Zurück zum Zitat Xu C, Zhu L, Chan T, Lu X, Shen W, Madigan MC, et al. Chloroquine and hydroxychloroquine are novel inhibitors of human organic anion transporting polypeptide 1A2. J Pharm Sci. 2016;105(2):884–90.PubMedCrossRef Xu C, Zhu L, Chan T, Lu X, Shen W, Madigan MC, et al. Chloroquine and hydroxychloroquine are novel inhibitors of human organic anion transporting polypeptide 1A2. J Pharm Sci. 2016;105(2):884–90.PubMedCrossRef
846.
Zurück zum Zitat Jin X, Luong TL, Reese N, Gaona H, Collazo-Velez V, Vuong C, et al. Comparison of MDCK-MDR1 and Caco-2 cell based permeability assays for anti-malarial drug screening and drug investigations. J Pharmacol Toxicol Methods. 2014;70(2):188–94.PubMedCrossRef Jin X, Luong TL, Reese N, Gaona H, Collazo-Velez V, Vuong C, et al. Comparison of MDCK-MDR1 and Caco-2 cell based permeability assays for anti-malarial drug screening and drug investigations. J Pharmacol Toxicol Methods. 2014;70(2):188–94.PubMedCrossRef
847.
Zurück zum Zitat Schinkel AH, Wagenaar E, van Deemter L, Mol CA, Borst P. Absence of the mdr1a P-glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J Clin Investig. 1995;96(4):1698–705.PubMedPubMedCentralCrossRef Schinkel AH, Wagenaar E, van Deemter L, Mol CA, Borst P. Absence of the mdr1a P-glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J Clin Investig. 1995;96(4):1698–705.PubMedPubMedCentralCrossRef
848.
Zurück zum Zitat Lespine A, Dupuy J, Orlowski S, Tn Nagy, Glavinas H, Krajcsi P, et al. Interaction of ivermectin with multidrug resistance proteins (MRP1, 2 and 3). Chem Biol Interact. 2006;159(3):169–79.PubMedCrossRef Lespine A, Dupuy J, Orlowski S, Tn Nagy, Glavinas H, Krajcsi P, et al. Interaction of ivermectin with multidrug resistance proteins (MRP1, 2 and 3). Chem Biol Interact. 2006;159(3):169–79.PubMedCrossRef
849.
Zurück zum Zitat Dunn ST, Hedges L, Sampson KE, Lai Y, Mahabir S, Balogh L, et al. Pharmacokinetic interaction of the antiparasitic agents ivermectin and spinosad in dogs. Drug Metab Dispos. 2011;39(5):789–95.PubMedCrossRef Dunn ST, Hedges L, Sampson KE, Lai Y, Mahabir S, Balogh L, et al. Pharmacokinetic interaction of the antiparasitic agents ivermectin and spinosad in dogs. Drug Metab Dispos. 2011;39(5):789–95.PubMedCrossRef
850.
Zurück zum Zitat Fujita R, Ishikawa M, Takayanagi M, Takayanagi Y, Sasaki K. Enhancement of doxorubicin activity in multidrug-resistant cells by mefloquine. Methods Find Exp Clin Pharmacol. 2000;22(5):281–4.PubMedCrossRef Fujita R, Ishikawa M, Takayanagi M, Takayanagi Y, Sasaki K. Enhancement of doxorubicin activity in multidrug-resistant cells by mefloquine. Methods Find Exp Clin Pharmacol. 2000;22(5):281–4.PubMedCrossRef
851.
Zurück zum Zitat Ito S, Kusuhara H, Kuroiwa Y, Wu C, Moriyama Y, Inoue K, et al. Potent and specific inhibition of mMate1-mediated efflux of type I organic cations in the liver and kidney by pyrimethamine. J Pharmacol Exp Ther. 2010;333(1):341–50.PubMedCrossRef Ito S, Kusuhara H, Kuroiwa Y, Wu C, Moriyama Y, Inoue K, et al. Potent and specific inhibition of mMate1-mediated efflux of type I organic cations in the liver and kidney by pyrimethamine. J Pharmacol Exp Ther. 2010;333(1):341–50.PubMedCrossRef
852.
Zurück zum Zitat Sweet DH, Pritchard JB. rOCT2 is a basolateral potential-driven carrier, not an organic cation/proton exchanger. AJP Renal Physiol. 1999;277(6):F890–8. Sweet DH, Pritchard JB. rOCT2 is a basolateral potential-driven carrier, not an organic cation/proton exchanger. AJP Renal Physiol. 1999;277(6):F890–8.
853.
Zurück zum Zitat Sweet DH, Miller DS, Pritchard JB. Ventricular choline transport. A role for organic cation transporter 2 expressed in choroid plexus. J Biol Chem. 2001;276(45):41611–9.PubMedCrossRef Sweet DH, Miller DS, Pritchard JB. Ventricular choline transport. A role for organic cation transporter 2 expressed in choroid plexus. J Biol Chem. 2001;276(45):41611–9.PubMedCrossRef
854.
Zurück zum Zitat Ohtsuki S, Asaba H, Takanaga H, Deguchi T, K-i Hosoya, Otagiri M, et al. Role of blood–brain barrier organic anion transporter 3 (OAT3) in the efflux of indoxyl sulfate, a uremic toxin: its involvement in neurotransmitter metabolite clearance from the brain. J Neurochem. 2002;83(1):57–66.PubMedCrossRef Ohtsuki S, Asaba H, Takanaga H, Deguchi T, K-i Hosoya, Otagiri M, et al. Role of blood–brain barrier organic anion transporter 3 (OAT3) in the efflux of indoxyl sulfate, a uremic toxin: its involvement in neurotransmitter metabolite clearance from the brain. J Neurochem. 2002;83(1):57–66.PubMedCrossRef
855.
Zurück zum Zitat Mori S, Ohtsuki S, Takanaga H, Kikkawa T, Kang Y-S, Terasaki T. Organic anion transporter 3 is involved in the brain-to-blood efflux transport of thiopurine nucleobase analogs. J Neurochem. 2004;90(4):931–41.PubMedCrossRef Mori S, Ohtsuki S, Takanaga H, Kikkawa T, Kang Y-S, Terasaki T. Organic anion transporter 3 is involved in the brain-to-blood efflux transport of thiopurine nucleobase analogs. J Neurochem. 2004;90(4):931–41.PubMedCrossRef
856.
Zurück zum Zitat Hill CR, Jamieson D, Thomas HD, Brown CD, Boddy AV, Veal GJ. Characterisation of the roles of ABCB1, ABCC1, ABCC2 and ABCG2 in the transport and pharmacokinetics of actinomycin D in vitro and in vivo. Biochem Pharmacol. 2013;85(1):29–37.PubMedPubMedCentralCrossRef Hill CR, Jamieson D, Thomas HD, Brown CD, Boddy AV, Veal GJ. Characterisation of the roles of ABCB1, ABCC1, ABCC2 and ABCG2 in the transport and pharmacokinetics of actinomycin D in vitro and in vivo. Biochem Pharmacol. 2013;85(1):29–37.PubMedPubMedCentralCrossRef
857.
Zurück zum Zitat Wind S, Giessmann T, Jungnik A, Brand T, Marzin K, Bertulis J, et al. Pharmacokinetic drug interactions of afatinib with rifampicin and ritonavir. Clin Drug Investig. 2014;34(3):173–82.PubMedCrossRef Wind S, Giessmann T, Jungnik A, Brand T, Marzin K, Bertulis J, et al. Pharmacokinetic drug interactions of afatinib with rifampicin and ritonavir. Clin Drug Investig. 2014;34(3):173–82.PubMedCrossRef
858.
Zurück zum Zitat Peters S, Zimmermann S, Adjei AA. Oral epidermal growth factor receptor tyrosine kinase inhibitors for the treatment of non-small cell lung cancer: comparative pharmacokinetics and drug–drug interactions. Cancer Treatm Rev. 2014;40(8):917–26.CrossRef Peters S, Zimmermann S, Adjei AA. Oral epidermal growth factor receptor tyrosine kinase inhibitors for the treatment of non-small cell lung cancer: comparative pharmacokinetics and drug–drug interactions. Cancer Treatm Rev. 2014;40(8):917–26.CrossRef
859.
Zurück zum Zitat Johnston RA, Rawling T, Chan T, Zhou F, Murray M. Selective inhibition of human solute carrier transporters by multikinase inhibitors. Drug Metab Dispos. 2014;42(11):1851–7.PubMedCrossRef Johnston RA, Rawling T, Chan T, Zhou F, Murray M. Selective inhibition of human solute carrier transporters by multikinase inhibitors. Drug Metab Dispos. 2014;42(11):1851–7.PubMedCrossRef
861.
Zurück zum Zitat Uwai Y, Iwamoto K. Transport of aminopterin by human organic anion transporters hOAT1 and hOAT3: comparison with methotrexate. Drug Metab Pharmacokinet. 2010;25(2):163–9.PubMedCrossRef Uwai Y, Iwamoto K. Transport of aminopterin by human organic anion transporters hOAT1 and hOAT3: comparison with methotrexate. Drug Metab Pharmacokinet. 2010;25(2):163–9.PubMedCrossRef
862.
Zurück zum Zitat Reyner EL, Sevidal S, West MA, Clouser-Roche A, Freiwald S, Fenner K, et al. In vitro characterization of axitinib interactions with human efflux and hepatic uptake transporters: implications for disposition and drug interactions. Drug Metab Dispos. 2013;41(8):1575–83.PubMedCrossRef Reyner EL, Sevidal S, West MA, Clouser-Roche A, Freiwald S, Fenner K, et al. In vitro characterization of axitinib interactions with human efflux and hepatic uptake transporters: implications for disposition and drug interactions. Drug Metab Dispos. 2013;41(8):1575–83.PubMedCrossRef
863.
Zurück zum Zitat Poller B, Iusuf D, Sparidans RW, Wagenaar E, Beijnen JH, Schinkel AH. Differential impact of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) on axitinib brain accumulation and oral plasma pharmacokinetics. Drug Metab Dispos. 2011;39(5):729–35.PubMedCrossRef Poller B, Iusuf D, Sparidans RW, Wagenaar E, Beijnen JH, Schinkel AH. Differential impact of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) on axitinib brain accumulation and oral plasma pharmacokinetics. Drug Metab Dispos. 2011;39(5):729–35.PubMedCrossRef
864.
Zurück zum Zitat Marchetti S, Pluim D, van Eijndhoven M, van Tellingen O, Mazzanti R, Beijnen JH, et al. Effect of the drug transporters ABCG2, Abcg2, ABCB1 and ABCC2 on the disposition, brain accumulation and myelotoxicity of the aurora kinase B inhibitor barasertib and its more active form barasertib-hydroxy-QPA. Invest New Drugs. 2013;31(5):1125–35.PubMedCrossRef Marchetti S, Pluim D, van Eijndhoven M, van Tellingen O, Mazzanti R, Beijnen JH, et al. Effect of the drug transporters ABCG2, Abcg2, ABCB1 and ABCC2 on the disposition, brain accumulation and myelotoxicity of the aurora kinase B inhibitor barasertib and its more active form barasertib-hydroxy-QPA. Invest New Drugs. 2013;31(5):1125–35.PubMedCrossRef
865.
Zurück zum Zitat Hagos Y, Hundertmark P, Shnitsar V, Marada VV, Wulf G, Burckhardt G. Renal human organic anion transporter 3 increases the susceptibility of lymphoma cells to bendamustine uptake. Am J Physiol Renal Physiol. 2015;308(4):F330–8.PubMedCrossRef Hagos Y, Hundertmark P, Shnitsar V, Marada VV, Wulf G, Burckhardt G. Renal human organic anion transporter 3 increases the susceptibility of lymphoma cells to bendamustine uptake. Am J Physiol Renal Physiol. 2015;308(4):F330–8.PubMedCrossRef
866.
Zurück zum Zitat Lacy S, Hsu B, Miles D, Aftab D, Wang R, Nguyen L. Metabolism and disposition of cabozantinib in healthy male volunteers and pharmacologic characterization of its major metabolites. Drug Metab Dispos. 2015;43(8):1190–207.PubMedCrossRef Lacy S, Hsu B, Miles D, Aftab D, Wang R, Nguyen L. Metabolism and disposition of cabozantinib in healthy male volunteers and pharmacologic characterization of its major metabolites. Drug Metab Dispos. 2015;43(8):1190–207.PubMedCrossRef
867.
Zurück zum Zitat Zhou Y, Yuan J, Li Z, Wang Z, Cheng D, Du Y, et al. Genetic polymorphisms and function of the organic anion-transporting polypeptide 1A2 and its clinical relevance in drug disposition. Pharmacology. 2015;95(3–4):201–8.PubMedCrossRef Zhou Y, Yuan J, Li Z, Wang Z, Cheng D, Du Y, et al. Genetic polymorphisms and function of the organic anion-transporting polypeptide 1A2 and its clinical relevance in drug disposition. Pharmacology. 2015;95(3–4):201–8.PubMedCrossRef
868.
Zurück zum Zitat Chen ZS, Kawabe T, Ono M, Aoki S, Sumizawa T, Furukawa T, et al. Effect of multidrug resistance-reversing agents on transporting activity of human canalicular multispecific organic anion transporter. Mol Pharmacol. 1999;56(6):1219–28.PubMed Chen ZS, Kawabe T, Ono M, Aoki S, Sumizawa T, Furukawa T, et al. Effect of multidrug resistance-reversing agents on transporting activity of human canalicular multispecific organic anion transporter. Mol Pharmacol. 1999;56(6):1219–28.PubMed
869.
Zurück zum Zitat Zhang Y-H, Wu Q, Xiao X-Y, Li D-W, Wang X-P. Silencing MRP4 by small interfering RNA reverses acquired DDP resistance of gastric cancer cell. Cancer Lett. 2010;291(1):76–82.PubMedCrossRef Zhang Y-H, Wu Q, Xiao X-Y, Li D-W, Wang X-P. Silencing MRP4 by small interfering RNA reverses acquired DDP resistance of gastric cancer cell. Cancer Lett. 2010;291(1):76–82.PubMedCrossRef
870.
Zurück zum Zitat Hu S, Pabla N, Janke LJ, Li L, Vasilyeva A, Sprowl JA, et al. Abstract 5471: identification of OAT1/OAT3 as contributors to cisplatin nephrotoxicity. Cancer Res. 2015;75(15 Supplement):5471.CrossRef Hu S, Pabla N, Janke LJ, Li L, Vasilyeva A, Sprowl JA, et al. Abstract 5471: identification of OAT1/OAT3 as contributors to cisplatin nephrotoxicity. Cancer Res. 2015;75(15 Supplement):5471.CrossRef
871.
Zurück zum Zitat Li D, Jang SH, Kim J, Wientjes MG, Au JL-S. Enhanced drug-induced apoptosis associated with P-glycoprotein overexpression is specific to antimicrotubule agents. Pharm Res. 2003;20(1):45–50.PubMedCrossRef Li D, Jang SH, Kim J, Wientjes MG, Au JL-S. Enhanced drug-induced apoptosis associated with P-glycoprotein overexpression is specific to antimicrotubule agents. Pharm Res. 2003;20(1):45–50.PubMedCrossRef
872.
Zurück zum Zitat EMA. Xalkori® assessment report. UK: European Medicines Agency; 2016. EMA. Xalkori® assessment report. UK: European Medicines Agency; 2016.
873.
874.
Zurück zum Zitat Joy MS, La M, Wang J, Bridges AS, Hu Y, Hogan SL, et al. Cyclophosphamide and 4-hydroxycyclophosphamide pharmacokinetics in patients with glomerulonephritis secondary to lupus and small vessel vasculitis. Br J Clin Pharmacol. 2012;74(3):445–55.PubMedPubMedCentralCrossRef Joy MS, La M, Wang J, Bridges AS, Hu Y, Hogan SL, et al. Cyclophosphamide and 4-hydroxycyclophosphamide pharmacokinetics in patients with glomerulonephritis secondary to lupus and small vessel vasculitis. Br J Clin Pharmacol. 2012;74(3):445–55.PubMedPubMedCentralCrossRef
875.
Zurück zum Zitat Mittapalli RK, Vaidhyanathan S, Dudek AZ, Elmquist WF. Mechanisms limiting distribution of the threonine-protein kinase B-RaF(V600E) inhibitor dabrafenib to the brain: implications for the treatment of melanoma brain metastases. J Pharmacol Exp Ther. 2013;344(3):655–64.PubMedPubMedCentralCrossRef Mittapalli RK, Vaidhyanathan S, Dudek AZ, Elmquist WF. Mechanisms limiting distribution of the threonine-protein kinase B-RaF(V600E) inhibitor dabrafenib to the brain: implications for the treatment of melanoma brain metastases. J Pharmacol Exp Ther. 2013;344(3):655–64.PubMedPubMedCentralCrossRef
877.
Zurück zum Zitat Minematsu T, Giacomini KM. Interactions of tyrosine kinase inhibitors with organic cation transporters and multidrug and toxic compound extrusion proteins. Mol Cancer Ther. 2011;10(3):531–9.PubMedPubMedCentralCrossRef Minematsu T, Giacomini KM. Interactions of tyrosine kinase inhibitors with organic cation transporters and multidrug and toxic compound extrusion proteins. Mol Cancer Ther. 2011;10(3):531–9.PubMedPubMedCentralCrossRef
878.
Zurück zum Zitat Shirakawa K, Takara K, Tanigawara Y, Aoyama N, Kasuga M, Komada F, et al. Interaction of docetaxel (“Taxotere”) with human P-glycoprotein. Cancer Sci. 1999;90(12):1380–6. Shirakawa K, Takara K, Tanigawara Y, Aoyama N, Kasuga M, Komada F, et al. Interaction of docetaxel (“Taxotere”) with human P-glycoprotein. Cancer Sci. 1999;90(12):1380–6.
879.
Zurück zum Zitat Cihalova D, Ceckova M, Kucera R, Klimes J, Staud F. Dinaciclib, a cyclin-dependent kinase inhibitor, is a substrate of human ABCB1 and ABCG2 and an inhibitor of human ABCC1 in vitro. Biochem Pharmacol. 2015;98(3):465–72.PubMedCrossRef Cihalova D, Ceckova M, Kucera R, Klimes J, Staud F. Dinaciclib, a cyclin-dependent kinase inhibitor, is a substrate of human ABCB1 and ABCG2 and an inhibitor of human ABCC1 in vitro. Biochem Pharmacol. 2015;98(3):465–72.PubMedCrossRef
880.
Zurück zum Zitat Huisman MT, Chhatta AA, van Tellingen O, Beijnen JH, Schinkel AH. MRP2 (ABCC2) transports taxanes and confers paclitaxel resistance and both processes are stimulated by probenecid. Int J Cancer. 2005;116(5):824–9.PubMedCrossRef Huisman MT, Chhatta AA, van Tellingen O, Beijnen JH, Schinkel AH. MRP2 (ABCC2) transports taxanes and confers paclitaxel resistance and both processes are stimulated by probenecid. Int J Cancer. 2005;116(5):824–9.PubMedCrossRef
881.
Zurück zum Zitat Chew S-C, Singh O, Chen X, Ramasamy RD, Kulkarni T, Lee EJD, et al. The effects of CYP3A4, CYP3A5, ABCB1, ABCC2, ABCG2 and SLCO1B3 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of docetaxel in nasopharyngeal carcinoma patients. Cancer Chemother Pharmacol. 2011;67(6):1471–8.PubMedCrossRef Chew S-C, Singh O, Chen X, Ramasamy RD, Kulkarni T, Lee EJD, et al. The effects of CYP3A4, CYP3A5, ABCB1, ABCC2, ABCG2 and SLCO1B3 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of docetaxel in nasopharyngeal carcinoma patients. Cancer Chemother Pharmacol. 2011;67(6):1471–8.PubMedCrossRef
882.
Zurück zum Zitat Lee HH, Leake BF, Teft W, Tirona RG, Kim RB, Ho RH. Contribution of hepatic organic anion-transporting polypeptides to docetaxel uptake and clearance. Mol Cancer Ther. 2015;14(4):994–1003.PubMedPubMedCentralCrossRef Lee HH, Leake BF, Teft W, Tirona RG, Kim RB, Ho RH. Contribution of hepatic organic anion-transporting polypeptides to docetaxel uptake and clearance. Mol Cancer Ther. 2015;14(4):994–1003.PubMedPubMedCentralCrossRef
883.
Zurück zum Zitat Iusuf D, Hendrikx JJ, van Esch A, van de Steeg E, Wagenaar E, Rosing H, et al. Human OATP1B1, OATP1B3 and OATP1A2 can mediate the in vivo uptake and clearance of docetaxel. Int J Cancer. 2015;136(1):225–33.PubMedCrossRef Iusuf D, Hendrikx JJ, van Esch A, van de Steeg E, Wagenaar E, Rosing H, et al. Human OATP1B1, OATP1B3 and OATP1A2 can mediate the in vivo uptake and clearance of docetaxel. Int J Cancer. 2015;136(1):225–33.PubMedCrossRef
884.
Zurück zum Zitat Baker SD, Verweij J, Cusatis GA, van Schaik RH, Marsh S, Orwick SJ, et al. Pharmacogenetic pathway analysis of docetaxel elimination. Clin Pharmacol Ther. 2009;85(2):155–63.PubMedCrossRef Baker SD, Verweij J, Cusatis GA, van Schaik RH, Marsh S, Orwick SJ, et al. Pharmacogenetic pathway analysis of docetaxel elimination. Clin Pharmacol Ther. 2009;85(2):155–63.PubMedCrossRef
885.
Zurück zum Zitat Okabe M, Szakács G, Reimers MA, Suzuki T, Hall MD, Abe T, et al. Profiling SLCO and SLC22 genes in the NCI-60 cancer cell lines to identify drug uptake transporters. Mol Cancer Ther. 2008;7(9):3081–91.PubMedPubMedCentralCrossRef Okabe M, Szakács G, Reimers MA, Suzuki T, Hall MD, Abe T, et al. Profiling SLCO and SLC22 genes in the NCI-60 cancer cell lines to identify drug uptake transporters. Mol Cancer Ther. 2008;7(9):3081–91.PubMedPubMedCentralCrossRef
886.
Zurück zum Zitat Durmus S, Naik J, Buil L, Wagenaar E, van Tellingen O, Schinkel AH. In vivo disposition of doxorubicin is affected by mouse Oatp1a/1b and human OATP1A/1B transporters. Int J Cancer. 2014;135(7):1700–10.PubMedCrossRef Durmus S, Naik J, Buil L, Wagenaar E, van Tellingen O, Schinkel AH. In vivo disposition of doxorubicin is affected by mouse Oatp1a/1b and human OATP1A/1B transporters. Int J Cancer. 2014;135(7):1700–10.PubMedCrossRef
887.
Zurück zum Zitat Li J, Cusatis G, Brahmer J, Sparreboom A, Robey RW, Bates SE, et al. Association of variant ABCG2 and the pharmacokinetics of epidermal growth factor receptor tyrosine kinase inhibitors in cancer patients. Cancer Biol Therapy. 2007;6(3):432–8.CrossRef Li J, Cusatis G, Brahmer J, Sparreboom A, Robey RW, Bates SE, et al. Association of variant ABCG2 and the pharmacokinetics of epidermal growth factor receptor tyrosine kinase inhibitors in cancer patients. Cancer Biol Therapy. 2007;6(3):432–8.CrossRef
888.
Zurück zum Zitat Yang Z, Wu D, Bui T, Ho RJY. A novel human multidrug resistance gene MDR1 variant G571A (G191R) modulates cancer drug resistance and efflux transport. J Pharmacol Exp Ther. 2008;327(2):474–81.PubMedPubMedCentralCrossRef Yang Z, Wu D, Bui T, Ho RJY. A novel human multidrug resistance gene MDR1 variant G571A (G191R) modulates cancer drug resistance and efflux transport. J Pharmacol Exp Ther. 2008;327(2):474–81.PubMedPubMedCentralCrossRef
889.
Zurück zum Zitat Long BH, Wang L, Lorico A, Wang RCC, Brattain MG, Casazza AM. Mechanisms of resistance to etoposide and teniposide in acquired resistant human colon and lung carcinoma cell lines. Cancer Res. 1991;51(19):5275–83.PubMed Long BH, Wang L, Lorico A, Wang RCC, Brattain MG, Casazza AM. Mechanisms of resistance to etoposide and teniposide in acquired resistant human colon and lung carcinoma cell lines. Cancer Res. 1991;51(19):5275–83.PubMed
890.
Zurück zum Zitat Allen JD, van Dort SC, Buitelaar M, van Tellingen O, Schinkel AH. Mouse breast cancer resistance protein (Bcrp1/Abcg2) mediates etoposide resistance and transport, but etoposide oral availability is limited primarily by P-glycoprotein. Cancer Res. 2003;63(6):1339–44.PubMed Allen JD, van Dort SC, Buitelaar M, van Tellingen O, Schinkel AH. Mouse breast cancer resistance protein (Bcrp1/Abcg2) mediates etoposide resistance and transport, but etoposide oral availability is limited primarily by P-glycoprotein. Cancer Res. 2003;63(6):1339–44.PubMed
891.
Zurück zum Zitat Nakano K, Ando H, Kurokawa S, Hosohata K, Ushijima K, Takada M, et al. Association of decreased mRNA expression of multidrug and toxin extrusion protein 1 in peripheral blood cells with the development of flutamide-induced liver injury. Cancer Chemother Pharmacol. 2015;75(6):1191–7.PubMedCrossRef Nakano K, Ando H, Kurokawa S, Hosohata K, Ushijima K, Takada M, et al. Association of decreased mRNA expression of multidrug and toxin extrusion protein 1 in peripheral blood cells with the development of flutamide-induced liver injury. Cancer Chemother Pharmacol. 2015;75(6):1191–7.PubMedCrossRef
892.
Zurück zum Zitat Agarwal S, Sane R, Gallardo JL, Ohlfest JR, Elmquist WF. Distribution of gefitinib to the brain is limited by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2)-mediated active efflux. J Pharmacol Exp Ther. 2010;334(1):147–55.PubMedPubMedCentralCrossRef Agarwal S, Sane R, Gallardo JL, Ohlfest JR, Elmquist WF. Distribution of gefitinib to the brain is limited by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2)-mediated active efflux. J Pharmacol Exp Ther. 2010;334(1):147–55.PubMedPubMedCentralCrossRef
893.
Zurück zum Zitat Bergman AM, Pinedo HM, Talianidis I, Veerman G, Loves WJP, van der Wilt CL, et al. Increased sensitivity to gemcitabine of P-glycoprotein and multidrug resistance-associated protein-overexpressing human cancer cell lines. Br J Cancer. 2003;88(12):1963–70.PubMedPubMedCentralCrossRef Bergman AM, Pinedo HM, Talianidis I, Veerman G, Loves WJP, van der Wilt CL, et al. Increased sensitivity to gemcitabine of P-glycoprotein and multidrug resistance-associated protein-overexpressing human cancer cell lines. Br J Cancer. 2003;88(12):1963–70.PubMedPubMedCentralCrossRef
894.
Zurück zum Zitat Walker AL, Franke RM, Sparreboom A, Ware RE. Transcellular movement of hydroxyurea is mediated by specific solute carrier transporters. Exp Hematol. 2011;39(4):446–56.PubMedPubMedCentral Walker AL, Franke RM, Sparreboom A, Ware RE. Transcellular movement of hydroxyurea is mediated by specific solute carrier transporters. Exp Hematol. 2011;39(4):446–56.PubMedPubMedCentral
895.
Zurück zum Zitat Pharmacyclics LLC. Imbruvica® full prescribing information. Pharmacyclics LLC; 2016. Pharmacyclics LLC. Imbruvica® full prescribing information. Pharmacyclics LLC; 2016.
896.
Zurück zum Zitat Ciarimboli G. Role of organic cation transporters in drug-induced toxicity. Expert Opin Drug Metab Toxicol. 2011;7(2):159–74.PubMedCrossRef Ciarimboli G. Role of organic cation transporters in drug-induced toxicity. Expert Opin Drug Metab Toxicol. 2011;7(2):159–74.PubMedCrossRef
897.
Zurück zum Zitat Hamada A, Miyano H, Watanabe H, Saito H. Interaction of imatinib mesilate with human P-glycoprotein. J Pharmacol Exp Ther. 2003;307(2):824–8.PubMedCrossRef Hamada A, Miyano H, Watanabe H, Saito H. Interaction of imatinib mesilate with human P-glycoprotein. J Pharmacol Exp Ther. 2003;307(2):824–8.PubMedCrossRef
898.
Zurück zum Zitat Thomas J, Wang L, Clark RE, Pirmohamed M. Active transport of imatinib into and out of cells: implications for drug resistance. Blood. 2004;104(12):3739–45.PubMedCrossRef Thomas J, Wang L, Clark RE, Pirmohamed M. Active transport of imatinib into and out of cells: implications for drug resistance. Blood. 2004;104(12):3739–45.PubMedCrossRef
899.
Zurück zum Zitat Hu S, Franke RM, Filipski KK, Hu C, Orwick SJ, de Bruijn EA, et al. Interaction of imatinib with human organic ion carriers. Clin Cancer Res. 2008;14(10):3141–8.PubMedCrossRef Hu S, Franke RM, Filipski KK, Hu C, Orwick SJ, de Bruijn EA, et al. Interaction of imatinib with human organic ion carriers. Clin Cancer Res. 2008;14(10):3141–8.PubMedCrossRef
900.
Zurück zum Zitat Takahashi N, Miura M, Scott SA, Kagaya H, Kameoka Y, Tagawa H, et al. Influence of CYP3A5 and drug transporter polymorphisms on imatinib trough concentration and clinical response among patients with chronic phase chronic myeloid leukemia. J Hum Genet. 2010;55(11):731–7.PubMedCrossRef Takahashi N, Miura M, Scott SA, Kagaya H, Kameoka Y, Tagawa H, et al. Influence of CYP3A5 and drug transporter polymorphisms on imatinib trough concentration and clinical response among patients with chronic phase chronic myeloid leukemia. J Hum Genet. 2010;55(11):731–7.PubMedCrossRef
901.
Zurück zum Zitat Houghton PJ, Germain GS, Harwood FC, Schuetz JD, Stewart CF, Buchdunger E, et al. Imatinib mesylate is a potent inhibitor of the ABCG2 (BCRP) transporter and reverses resistance to topotecan and SN-38 in vitro. Cancer Res. 2004;64(7):2333–7.PubMedCrossRef Houghton PJ, Germain GS, Harwood FC, Schuetz JD, Stewart CF, Buchdunger E, et al. Imatinib mesylate is a potent inhibitor of the ABCG2 (BCRP) transporter and reverses resistance to topotecan and SN-38 in vitro. Cancer Res. 2004;64(7):2333–7.PubMedCrossRef
902.
Zurück zum Zitat Han J-Y, Lim HS, Yoo YK, Shin ES, Park YH, Lee SY, et al. Associations of ABCB1, ABCC2, and ABCG2 polymorphisms with irinotecan-pharmacokinetics and clinical outcome in patients with advanced non-small cell lung cancer. Cancer. 2007;110(1):138–47.PubMedCrossRef Han J-Y, Lim HS, Yoo YK, Shin ES, Park YH, Lee SY, et al. Associations of ABCB1, ABCC2, and ABCG2 polymorphisms with irinotecan-pharmacokinetics and clinical outcome in patients with advanced non-small cell lung cancer. Cancer. 2007;110(1):138–47.PubMedCrossRef
903.
Zurück zum Zitat Zheng J, Chan T, Zhu L, Yan X, Cao Z, Wang Y, et al. The inhibitory effects of camptothecin (CPT) and its derivatives on the substrate uptakes mediated by human solute carrier transporters (SLCs). Xenobiotica. 2016;8:1–10. Zheng J, Chan T, Zhu L, Yan X, Cao Z, Wang Y, et al. The inhibitory effects of camptothecin (CPT) and its derivatives on the substrate uptakes mediated by human solute carrier transporters (SLCs). Xenobiotica. 2016;8:1–10.
904.
Zurück zum Zitat Shen H, Lee FY, Gan J. Ixabepilone, a novel microtubule-targeting agent for breast cancer, is a substrate for P-glycoprotein (P-gp/MDR1/ABCB1) but not breast cancer resistance protein (BCRP/ABCG2). J Pharmacol Exp Ther. 2011;337(2):423–32.PubMedCrossRef Shen H, Lee FY, Gan J. Ixabepilone, a novel microtubule-targeting agent for breast cancer, is a substrate for P-glycoprotein (P-gp/MDR1/ABCB1) but not breast cancer resistance protein (BCRP/ABCG2). J Pharmacol Exp Ther. 2011;337(2):423–32.PubMedCrossRef
905.
Zurück zum Zitat Polli JW, Humphreys JE, Harmon KA, Castellino S, O’Mara MJ, Olson KL, et al. The role of efflux and uptake transporters in N-{3-chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethyl]amino}methyl)-2-furyl]-4-quinazolinamine (GW572016, lapatinib) disposition and drug interactions. Drug Metab Dispos. 2008;36(4):695–701.PubMedCrossRef Polli JW, Humphreys JE, Harmon KA, Castellino S, O’Mara MJ, Olson KL, et al. The role of efflux and uptake transporters in N-{3-chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethyl]amino}methyl)-2-furyl]-4-quinazolinamine (GW572016, lapatinib) disposition and drug interactions. Drug Metab Dispos. 2008;36(4):695–701.PubMedCrossRef
906.
Zurück zum Zitat Cl Dai, Tiwari AK, Wu CP, Su Xd, Wang SR, Dg Liu, et al. Lapatinib (Tykerb, GW572016) reverses multidrug resistance in cancer cells by inhibiting the activity of ATP-binding cassette subfamily B member 1 and G member 2. Cancer Res. 2008;68(19):7905–14.CrossRef Cl Dai, Tiwari AK, Wu CP, Su Xd, Wang SR, Dg Liu, et al. Lapatinib (Tykerb, GW572016) reverses multidrug resistance in cancer cells by inhibiting the activity of ATP-binding cassette subfamily B member 1 and G member 2. Cancer Res. 2008;68(19):7905–14.CrossRef
907.
Zurück zum Zitat Tong Z, Yerramilli U, Surapaneni S, Kumar G. The interactions of lenalidomide with human uptake and efflux transporters and UDP-glucuronosyltransferase 1A1: lack of potential for drug–drug interactions. Cancer Chemother Pharmacol. 2014;73(4):869–74.PubMedCrossRef Tong Z, Yerramilli U, Surapaneni S, Kumar G. The interactions of lenalidomide with human uptake and efflux transporters and UDP-glucuronosyltransferase 1A1: lack of potential for drug–drug interactions. Cancer Chemother Pharmacol. 2014;73(4):869–74.PubMedCrossRef
908.
Zurück zum Zitat Takahashi N, Miura M, Kameoka Y, Abumiya M, Sawada K. Drug interaction between lenalidomide and itraconazole. Am J Hematol. 2012;87(3):338–9.PubMedCrossRef Takahashi N, Miura M, Kameoka Y, Abumiya M, Sawada K. Drug interaction between lenalidomide and itraconazole. Am J Hematol. 2012;87(3):338–9.PubMedCrossRef
909.
Zurück zum Zitat Hooijberg JH, Broxterman HJ, Kool M, Assaraf YG, Peters GJ, Noordhuis P, et al. Antifolate resistance mediated by the multidrug resistance proteins MRP1 and MRP2. Cancer Res. 1999;59(11):2532–5.PubMed Hooijberg JH, Broxterman HJ, Kool M, Assaraf YG, Peters GJ, Noordhuis P, et al. Antifolate resistance mediated by the multidrug resistance proteins MRP1 and MRP2. Cancer Res. 1999;59(11):2532–5.PubMed
910.
Zurück zum Zitat Masuda M, I’izuka Y, Yamazaki M, Nishigaki R, Kato Y, Ni’inuma K, et al. Methotrexate is excreted into the bile by canalicular multispecific organic anion transporter in rats. Cancer Res. 1997;57(16):3506–10.PubMed Masuda M, I’izuka Y, Yamazaki M, Nishigaki R, Kato Y, Ni’inuma K, et al. Methotrexate is excreted into the bile by canalicular multispecific organic anion transporter in rats. Cancer Res. 1997;57(16):3506–10.PubMed
911.
Zurück zum Zitat Bohanec Grabar P, Logar D, Lestan B, Dolžan V. Genetic determinants of methotrexate toxicity in rheumatoid arthritis patients: a study of polymorphisms affecting methotrexate transport and folate metabolism. Eur J Clin Pharmacol. 2008;64(11):1057–68.PubMedCrossRef Bohanec Grabar P, Logar D, Lestan B, Dolžan V. Genetic determinants of methotrexate toxicity in rheumatoid arthritis patients: a study of polymorphisms affecting methotrexate transport and folate metabolism. Eur J Clin Pharmacol. 2008;64(11):1057–68.PubMedCrossRef
912.
Zurück zum Zitat Liu Q, Wang C, Meng Q, Huo X, Sun H, Peng J, et al. MDR1 and OAT1/OAT3 mediate the drug–drug interaction between puerarin and methotrexate. Pharm Res. 2014;31(5):1120–32.PubMedCrossRef Liu Q, Wang C, Meng Q, Huo X, Sun H, Peng J, et al. MDR1 and OAT1/OAT3 mediate the drug–drug interaction between puerarin and methotrexate. Pharm Res. 2014;31(5):1120–32.PubMedCrossRef
913.
Zurück zum Zitat Zhu Y, Meng Q, Wang C, Liu Q, Huo X, Zhang A, et al. Methotrexate-bestatin interaction: involvement of P-glycoprotein and organic anion transporters in rats. Int J Pharm. 2014;465(1–2):368–77.PubMedCrossRef Zhu Y, Meng Q, Wang C, Liu Q, Huo X, Zhang A, et al. Methotrexate-bestatin interaction: involvement of P-glycoprotein and organic anion transporters in rats. Int J Pharm. 2014;465(1–2):368–77.PubMedCrossRef
914.
Zurück zum Zitat Maitra R, Halpin PA, Karlson KH, Page RL, Paik DY, Leavitt MO, et al. Differential effects of mitomycin C and doxorubicin on P-glycoprotein expression. Biochem J. 2001;355(3):617–24.PubMedPubMedCentralCrossRef Maitra R, Halpin PA, Karlson KH, Page RL, Paik DY, Leavitt MO, et al. Differential effects of mitomycin C and doxorubicin on P-glycoprotein expression. Biochem J. 2001;355(3):617–24.PubMedPubMedCentralCrossRef
915.
Zurück zum Zitat Shen F, Bailey BJ, Chu S, Bence AK, Xue X, Erickson P, et al. Dynamic assessment of mitoxantrone resistance and modulation of multidrug resistance by valspodar (PSC833) in multidrug resistance human cancer cells. J Pharmacol Exp Ther. 2009;330(2):423–9.PubMedPubMedCentralCrossRef Shen F, Bailey BJ, Chu S, Bence AK, Xue X, Erickson P, et al. Dynamic assessment of mitoxantrone resistance and modulation of multidrug resistance by valspodar (PSC833) in multidrug resistance human cancer cells. J Pharmacol Exp Ther. 2009;330(2):423–9.PubMedPubMedCentralCrossRef
916.
Zurück zum Zitat Taipalensuu J, Tavelin S, Lazorova L, Svensson AC, Artursson P. Exploring the quantitative relationship between the level of MDR1 transcript, protein and function using digoxin as a marker of MDR1-dependent drug efflux activity. Eur J Pharm Sci. 2004;21(1):69–75.PubMedCrossRef Taipalensuu J, Tavelin S, Lazorova L, Svensson AC, Artursson P. Exploring the quantitative relationship between the level of MDR1 transcript, protein and function using digoxin as a marker of MDR1-dependent drug efflux activity. Eur J Pharm Sci. 2004;21(1):69–75.PubMedCrossRef
917.
Zurück zum Zitat Zhang S, Yang X, Morris ME. Flavonoids Are inhibitors of breast cancer resistance protein (ABCG2)-mediated transport. Mol Pharmacol. 2004;65(5):1208–16.PubMedCrossRef Zhang S, Yang X, Morris ME. Flavonoids Are inhibitors of breast cancer resistance protein (ABCG2)-mediated transport. Mol Pharmacol. 2004;65(5):1208–16.PubMedCrossRef
918.
Zurück zum Zitat Yamakawa Y, Hamada A, Uchida T, Sato D, Yuki M, Hayashi M, et al. Distinct interaction of nilotinib and imatinib with P-glycoprotein in intracellular accumulation and cytotoxicity in CML Cell Line K562 cells. Biol Pharm Bull. 2014;37(8):1330–5.PubMedCrossRef Yamakawa Y, Hamada A, Uchida T, Sato D, Yuki M, Hayashi M, et al. Distinct interaction of nilotinib and imatinib with P-glycoprotein in intracellular accumulation and cytotoxicity in CML Cell Line K562 cells. Biol Pharm Bull. 2014;37(8):1330–5.PubMedCrossRef
919.
Zurück zum Zitat Lawlor D, Martin P, Busschots S, Thery J, O’leary JJ, Hennessy BT, et al. PARP inhibitors as P-glyoprotein substrates. J Pharm Sci. 2014;103(6):1913–20.PubMedCrossRef Lawlor D, Martin P, Busschots S, Thery J, O’leary JJ, Hennessy BT, et al. PARP inhibitors as P-glyoprotein substrates. J Pharm Sci. 2014;103(6):1913–20.PubMedCrossRef
920.
Zurück zum Zitat Dufour R, Daumar P, Mounetou E, Aubel C, Kwiatkowski F, Abrial C, et al. BCRP and P-gp relay overexpression in triple negative basal-like breast cancer cell line: a prospective role in resistance to Olaparib. Sci Rep. 2015;5:12670.PubMedPubMedCentralCrossRef Dufour R, Daumar P, Mounetou E, Aubel C, Kwiatkowski F, Abrial C, et al. BCRP and P-gp relay overexpression in triple negative basal-like breast cancer cell line: a prospective role in resistance to Olaparib. Sci Rep. 2015;5:12670.PubMedPubMedCentralCrossRef
922.
Zurück zum Zitat Jong NN, Nakanishi T, Liu JJ, Tamai I, McKeage MJ. Oxaliplatin transport mediated by organic cation/carnitine transporters OCTN1 and OCTN2 in overexpressing human embryonic kidney 293 cells and rat dorsal root ganglion neurons. J Pharmacol Exp Ther. 2011;338(2):537–47.PubMedCrossRef Jong NN, Nakanishi T, Liu JJ, Tamai I, McKeage MJ. Oxaliplatin transport mediated by organic cation/carnitine transporters OCTN1 and OCTN2 in overexpressing human embryonic kidney 293 cells and rat dorsal root ganglion neurons. J Pharmacol Exp Ther. 2011;338(2):537–47.PubMedCrossRef
923.
Zurück zum Zitat Jang SH, Wientjes MG, Au JL-S. Kinetics of P-glycoprotein-mediated efflux of paclitaxel. J Pharmacol Exp Ther. 2001;298(3):1236–42.PubMed Jang SH, Wientjes MG, Au JL-S. Kinetics of P-glycoprotein-mediated efflux of paclitaxel. J Pharmacol Exp Ther. 2001;298(3):1236–42.PubMed
924.
Zurück zum Zitat Smith NF, Marsh S, Scott-Horton TJ, Hamada A, Mielke S, Mross K, et al. Variants in the SLCO1B3 gene: interethnic distribution and association with paclitaxel pharmacokinetics. Clin Pharmacol Ther. 2007;81(1):76–82.PubMedCrossRef Smith NF, Marsh S, Scott-Horton TJ, Hamada A, Mielke S, Mross K, et al. Variants in the SLCO1B3 gene: interethnic distribution and association with paclitaxel pharmacokinetics. Clin Pharmacol Ther. 2007;81(1):76–82.PubMedCrossRef
925.
Zurück zum Zitat Parrish KE, Pokorny J, Mittapalli RK, Bakken K, Sarkaria JN, Elmquist WF. Efflux transporters at the blood–brain barrier limit delivery and efficacy of cyclin-dependent kinase 4/6 inhibitor palbociclib (PD-0332991) in an orthotopic brain tumor model. J Pharmacol Exp Ther. 2015;355(2):264–71.PubMedPubMedCentralCrossRef Parrish KE, Pokorny J, Mittapalli RK, Bakken K, Sarkaria JN, Elmquist WF. Efflux transporters at the blood–brain barrier limit delivery and efficacy of cyclin-dependent kinase 4/6 inhibitor palbociclib (PD-0332991) in an orthotopic brain tumor model. J Pharmacol Exp Ther. 2015;355(2):264–71.PubMedPubMedCentralCrossRef
927.
Zurück zum Zitat Posada MM, Bacon JA, Schneck KB, Tirona RG, Kim RB, Higgins JW, et al. Prediction of renal transporter mediated drug–drug interactions for pemetrexed using physiologically based pharmacokinetic modeling. Drug Metab Dispos. 2015;43(3):325–34.PubMedCrossRef Posada MM, Bacon JA, Schneck KB, Tirona RG, Kim RB, Higgins JW, et al. Prediction of renal transporter mediated drug–drug interactions for pemetrexed using physiologically based pharmacokinetic modeling. Drug Metab Dispos. 2015;43(3):325–34.PubMedCrossRef
928.
Zurück zum Zitat Kurata T, Iwamoto T, Kawahara Y, Okuda M. Characteristics of pemetrexed transport by renal basolateral organic anion transporter hOAT3. Drug Metab Pharmacokinet. 2014;29(2):148–53.PubMedCrossRef Kurata T, Iwamoto T, Kawahara Y, Okuda M. Characteristics of pemetrexed transport by renal basolateral organic anion transporter hOAT3. Drug Metab Pharmacokinet. 2014;29(2):148–53.PubMedCrossRef
929.
Zurück zum Zitat More SS, Li S, Yee SW, Chen L, Xu Z, Jablons DM, et al. Organic cation transporters modulate the uptake and cytotoxicity of picoplatin, a third-generation platinum analogue. Mol Cancer Ther. 2010;9(4):1058–69.PubMedPubMedCentralCrossRef More SS, Li S, Yee SW, Chen L, Xu Z, Jablons DM, et al. Organic cation transporters modulate the uptake and cytotoxicity of picoplatin, a third-generation platinum analogue. Mol Cancer Ther. 2010;9(4):1058–69.PubMedPubMedCentralCrossRef
930.
Zurück zum Zitat Kasserra C, Assaf M, Hoffmann M, Li Y, Liu L, Wang X, et al. Pomalidomide: evaluation of cytochrome P450 and transporter-mediated drug–drug interaction potential in vitro and in healthy subjects. J Clin Pharmacol. 2015;55(2):168–78.PubMedCrossRef Kasserra C, Assaf M, Hoffmann M, Li Y, Liu L, Wang X, et al. Pomalidomide: evaluation of cytochrome P450 and transporter-mediated drug–drug interaction potential in vitro and in healthy subjects. J Clin Pharmacol. 2015;55(2):168–78.PubMedCrossRef
931.
Zurück zum Zitat Allos Therapeutics I. Folotyn® full prescribing information. Westminster: Allos Therapeutics, Inc.; 2011. Allos Therapeutics I. Folotyn® full prescribing information. Westminster: Allos Therapeutics, Inc.; 2011.
932.
Zurück zum Zitat Durmus S, Sparidans RW, van Esch A, Wagenaar E, Beijnen JH, Schinkel AH. Breast cancer resistance protein (BCRP/ABCG2) and P-glycoprotein (P-GP/ABCB1) restrict oral availability and brain accumulation of the PARP inhibitor rucaparib (AG-014699). Pharm Res. 2015;32(1):37–46.PubMedCrossRef Durmus S, Sparidans RW, van Esch A, Wagenaar E, Beijnen JH, Schinkel AH. Breast cancer resistance protein (BCRP/ABCG2) and P-glycoprotein (P-GP/ABCB1) restrict oral availability and brain accumulation of the PARP inhibitor rucaparib (AG-014699). Pharm Res. 2015;32(1):37–46.PubMedCrossRef
933.
Zurück zum Zitat Shibayama Y, Nakano K, Maeda H, Taguchi M, Ikeda R, Sugawara M, et al. Multidrug resistance protein 2 implicates anticancer drug-resistance to sorafenib. Biol Pharm Bull. 2011;34(3):433–5.PubMedCrossRef Shibayama Y, Nakano K, Maeda H, Taguchi M, Ikeda R, Sugawara M, et al. Multidrug resistance protein 2 implicates anticancer drug-resistance to sorafenib. Biol Pharm Bull. 2011;34(3):433–5.PubMedCrossRef
934.
Zurück zum Zitat Tsuchiya N, Narita S, Inoue T, Hasunuma N, Numakura K, Horikawa Y, et al. Risk factors for sorafenib-induced high-grade skin rash in Japanese patients with advanced renal cell carcinoma. Anticancer Drugs. 2013;24(3):310–4.PubMedCrossRef Tsuchiya N, Narita S, Inoue T, Hasunuma N, Numakura K, Horikawa Y, et al. Risk factors for sorafenib-induced high-grade skin rash in Japanese patients with advanced renal cell carcinoma. Anticancer Drugs. 2013;24(3):310–4.PubMedCrossRef
935.
Zurück zum Zitat Mizuno T, Fukudo M, Terada T, Kamba T, Nakamura E, Ogawa O, et al. Impact of genetic variation in breast cancer resistance protein (BCRP/ABCG2) on sunitinib pharmacokinetics. Drug Metab Pharmacokinet. 2012;27(6):631–9.PubMedCrossRef Mizuno T, Fukudo M, Terada T, Kamba T, Nakamura E, Ogawa O, et al. Impact of genetic variation in breast cancer resistance protein (BCRP/ABCG2) on sunitinib pharmacokinetics. Drug Metab Pharmacokinet. 2012;27(6):631–9.PubMedCrossRef
936.
Zurück zum Zitat Sato H, Siddig S, Uzu M, Suzuki S, Nomura Y, Kashiba T, et al. Elacridar enhances the cytotoxic effects of sunitinib and prevents multidrug resistance in renal carcinoma cells. Eur J Pharmacol. 2015;746:258–66.PubMedCrossRef Sato H, Siddig S, Uzu M, Suzuki S, Nomura Y, Kashiba T, et al. Elacridar enhances the cytotoxic effects of sunitinib and prevents multidrug resistance in renal carcinoma cells. Eur J Pharmacol. 2015;746:258–66.PubMedCrossRef
937.
Zurück zum Zitat Bai J, Lai L, Yeo HC, Goh BC, Tan TMC. Multidrug resistance protein 4 (MRP4/ABCC4) mediates efflux of bimane-glutathione. Int J Biochem Cell Biol. 2004;36(2):247–57.PubMedCrossRef Bai J, Lai L, Yeo HC, Goh BC, Tan TMC. Multidrug resistance protein 4 (MRP4/ABCC4) mediates efflux of bimane-glutathione. Int J Biochem Cell Biol. 2004;36(2):247–57.PubMedCrossRef
939.
Zurück zum Zitat Matsumoto SI, Yoshida K, Ishiguro N, Maeda T, Tamai I. Involvement of rat and human organic anion transporter 3 in the renal tubular secretion of topotecan [(S)-9-dimethylaminomethyl-10-hydroxy-camptothecin hydrochloride]. J Pharmacol Exp Ther. 2007;322(3):1246–52.PubMedCrossRef Matsumoto SI, Yoshida K, Ishiguro N, Maeda T, Tamai I. Involvement of rat and human organic anion transporter 3 in the renal tubular secretion of topotecan [(S)-9-dimethylaminomethyl-10-hydroxy-camptothecin hydrochloride]. J Pharmacol Exp Ther. 2007;322(3):1246–52.PubMedCrossRef
940.
Zurück zum Zitat Li H, Jin HE, Kim W, Han YH, Kim DD, Chung SJ, et al. Involvement of P-glycoprotein, multidrug resistance protein 2 and breast cancer resistance protein in the transport of belotecan and topotecan in Caco-2 and MDCKII cells. Pharm Res. 2008;25(11):2601–12.PubMedCrossRef Li H, Jin HE, Kim W, Han YH, Kim DD, Chung SJ, et al. Involvement of P-glycoprotein, multidrug resistance protein 2 and breast cancer resistance protein in the transport of belotecan and topotecan in Caco-2 and MDCKII cells. Pharm Res. 2008;25(11):2601–12.PubMedCrossRef
941.
Zurück zum Zitat Shen H, Yang Z, Zhao W, Zhang Y, Rodrigues AD. Assessment of vandetanib as an inhibitor of various human renal transporters: inhibition of multidrug and toxin extrusion as a possible mechanism leading to decreased cisplatin and creatinine clearance. Drug Metab Dispos. 2013;41(12):2095–103.PubMedCrossRef Shen H, Yang Z, Zhao W, Zhang Y, Rodrigues AD. Assessment of vandetanib as an inhibitor of various human renal transporters: inhibition of multidrug and toxin extrusion as a possible mechanism leading to decreased cisplatin and creatinine clearance. Drug Metab Dispos. 2013;41(12):2095–103.PubMedCrossRef
942.
Zurück zum Zitat Johansson S, Read J, Oliver S, Steinberg M, Li Y, Lisbon E, et al. Pharmacokinetic evaluations of the co-administrations of vandetanib and metformin, digoxin, midazolam, omeprazole or ranitidine. Clin Pharmacokinet. 2014;53(9):837–47.PubMedCrossRef Johansson S, Read J, Oliver S, Steinberg M, Li Y, Lisbon E, et al. Pharmacokinetic evaluations of the co-administrations of vandetanib and metformin, digoxin, midazolam, omeprazole or ranitidine. Clin Pharmacokinet. 2014;53(9):837–47.PubMedCrossRef
943.
Zurück zum Zitat Azzariti A, Porcelli L, Simone GM, Quatrale AE, Colabufo NA, Berardi F, et al. Tyrosine kinase inhibitors and multidrug resistance proteins: interactions and biological consequences. Cancer Chemother Pharmacol. 2009;65(2):335–46.CrossRef Azzariti A, Porcelli L, Simone GM, Quatrale AE, Colabufo NA, Berardi F, et al. Tyrosine kinase inhibitors and multidrug resistance proteins: interactions and biological consequences. Cancer Chemother Pharmacol. 2009;65(2):335–46.CrossRef
944.
Zurück zum Zitat Minocha M, Khurana V, Qin B, Pal D, Mitra AK. Co-administration strategy to enhance brain accumulation of vandetanib by modulating P-glycoprotein (P-gp/Abcb1) and breast cancer resistance protein (Bcrp1/Abcg2) mediated efflux with m-TOR inhibitors. Int J Pharm. 2012;434(1–2):306–14.PubMedPubMedCentralCrossRef Minocha M, Khurana V, Qin B, Pal D, Mitra AK. Co-administration strategy to enhance brain accumulation of vandetanib by modulating P-glycoprotein (P-gp/Abcb1) and breast cancer resistance protein (Bcrp1/Abcg2) mediated efflux with m-TOR inhibitors. Int J Pharm. 2012;434(1–2):306–14.PubMedPubMedCentralCrossRef
945.
Zurück zum Zitat Kikuchi R, Lao Y, Bow DA, Chiou WJ, Andracki ME, Carr RA, et al. Prediction of clinical drug–drug interactions of veliparib (ABT-888) with human renal transporters (OAT1, OAT3, OCT2, MATE1, and MATE2K). J Pharm Sci. 2013;102(12):4426–32.PubMedCrossRef Kikuchi R, Lao Y, Bow DA, Chiou WJ, Andracki ME, Carr RA, et al. Prediction of clinical drug–drug interactions of veliparib (ABT-888) with human renal transporters (OAT1, OAT3, OCT2, MATE1, and MATE2K). J Pharm Sci. 2013;102(12):4426–32.PubMedCrossRef
946.
Zurück zum Zitat Li J, Kim S, Sha X, Wiegand R, Wu J, LoRusso P. Complex disease-, gene-, and drug–drug interactions: impacts of renal function, CYP2D6 phenotype, and OCT2 activity on veliparib pharmacokinetics. Clin Cancer Res. 2014;20(15):3931–44.PubMedPubMedCentralCrossRef Li J, Kim S, Sha X, Wiegand R, Wu J, LoRusso P. Complex disease-, gene-, and drug–drug interactions: impacts of renal function, CYP2D6 phenotype, and OCT2 activity on veliparib pharmacokinetics. Clin Cancer Res. 2014;20(15):3931–44.PubMedPubMedCentralCrossRef
947.
Zurück zum Zitat Durmus S, Sparidans RW, Wagenaar E, Beijnen JH, Schinkel AH. Oral availability and brain penetration of the B-RAFV600E inhibitor vemurafenib can be enhanced by the P-GLYCOprotein (ABCB1) and breast cancer resistance protein (ABCG2) inhibitor elacridar. Mol Pharm. 2012;9(11):3236–45.PubMedCrossRef Durmus S, Sparidans RW, Wagenaar E, Beijnen JH, Schinkel AH. Oral availability and brain penetration of the B-RAFV600E inhibitor vemurafenib can be enhanced by the P-GLYCOprotein (ABCB1) and breast cancer resistance protein (ABCG2) inhibitor elacridar. Mol Pharm. 2012;9(11):3236–45.PubMedCrossRef
948.
Zurück zum Zitat Mittapalli RK, Vaidhyanathan S, Sane R, Elmquist WF. Impact of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) on the brain distribution of a novel BRAF inhibitor: vemurafenib (PLX4032). J Pharmacol Exp Ther. 2012;342(1):33–40.PubMedPubMedCentralCrossRef Mittapalli RK, Vaidhyanathan S, Sane R, Elmquist WF. Impact of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) on the brain distribution of a novel BRAF inhibitor: vemurafenib (PLX4032). J Pharmacol Exp Ther. 2012;342(1):33–40.PubMedPubMedCentralCrossRef
949.
Zurück zum Zitat Smit JW, Weert B, Schinkel AH, Meijer DK. Heterologous expression of various P-glycoproteins in polarized epithelial cells induces directional transport of small (type 1) and bulky (type 2) cationic drugs. J Pharmacol Exp Ther. 1998;286(1):321–7.PubMed Smit JW, Weert B, Schinkel AH, Meijer DK. Heterologous expression of various P-glycoproteins in polarized epithelial cells induces directional transport of small (type 1) and bulky (type 2) cationic drugs. J Pharmacol Exp Ther. 1998;286(1):321–7.PubMed
950.
Zurück zum Zitat Tang F, Horie K, Borchardt RT. Are MDCK cells transfected with the human MDR1 gene a good model of the human intestinal mucosa? Pharm Res. 2002;19(6):765–72.PubMedCrossRef Tang F, Horie K, Borchardt RT. Are MDCK cells transfected with the human MDR1 gene a good model of the human intestinal mucosa? Pharm Res. 2002;19(6):765–72.PubMedCrossRef
951.
Zurück zum Zitat Hunter J, Hirst BH, Simmons NL. Drug absorption limited by P-glycoprotein-mediated secretory drug transport in human intestinal epithelial Caco-2 cell layers. Pharm Res. 1993;10(5):743–9.PubMedCrossRef Hunter J, Hirst BH, Simmons NL. Drug absorption limited by P-glycoprotein-mediated secretory drug transport in human intestinal epithelial Caco-2 cell layers. Pharm Res. 1993;10(5):743–9.PubMedCrossRef
952.
Zurück zum Zitat Lecureur V, Sun D, Hargrove P, Schuetz EG, Kim RB, Lb Lan, et al. Cloning and expression of murine sister of P-glycoprotein reveals a more discriminating transporter than MDR1/P-glycoprotein. Mol Pharmacol. 2000;57(1):24–35.PubMed Lecureur V, Sun D, Hargrove P, Schuetz EG, Kim RB, Lb Lan, et al. Cloning and expression of murine sister of P-glycoprotein reveals a more discriminating transporter than MDR1/P-glycoprotein. Mol Pharmacol. 2000;57(1):24–35.PubMed
953.
Zurück zum Zitat Kuo CC, Hsieh HP, Pan WY, Chen CP, Liou JP, Lee SJ, et al. BPR0L075, a novel synthetic indole compound with antimitotic activity in human cancer cells, exerts effective antitumoral activity in vivo. Cancer Res. 2004;64(13):4621–8.PubMedCrossRef Kuo CC, Hsieh HP, Pan WY, Chen CP, Liou JP, Lee SJ, et al. BPR0L075, a novel synthetic indole compound with antimitotic activity in human cancer cells, exerts effective antitumoral activity in vivo. Cancer Res. 2004;64(13):4621–8.PubMedCrossRef
954.
Zurück zum Zitat Lagas JS, Damen CW, van Waterschoot RA, Iusuf D, Beijnen JH, Schinkel AH. P-glycoprotein, multidrug-resistance associated protein 2, Cyp3a, and carboxylesterase affect the oral availability and metabolism of vinorelbine. Mol Pharmacol. 2012;82(4):636–44.PubMedCrossRef Lagas JS, Damen CW, van Waterschoot RA, Iusuf D, Beijnen JH, Schinkel AH. P-glycoprotein, multidrug-resistance associated protein 2, Cyp3a, and carboxylesterase affect the oral availability and metabolism of vinorelbine. Mol Pharmacol. 2012;82(4):636–44.PubMedCrossRef
955.
Zurück zum Zitat Saeki T, Ueda K, Tanigawara Y, Hori R, Komano T. Human P-glycoprotein transports cyclosporin A and FK506. J Biol Chem. 1993;268(9):6077–80.PubMed Saeki T, Ueda K, Tanigawara Y, Hori R, Komano T. Human P-glycoprotein transports cyclosporin A and FK506. J Biol Chem. 1993;268(9):6077–80.PubMed
956.
Zurück zum Zitat Chu C, Abbara C, Noël-Hudson MS, Thomas-Bourgneuf L, Gonin P, Farinotti R, et al. Disposition of everolimus in mdr1a-/1b- mice and after a pre-treatment of lapatinib in Swiss mice. Biochem Pharmacol. 2009;77(10):1629–34.PubMedCrossRef Chu C, Abbara C, Noël-Hudson MS, Thomas-Bourgneuf L, Gonin P, Farinotti R, et al. Disposition of everolimus in mdr1a-/1b- mice and after a pre-treatment of lapatinib in Swiss mice. Biochem Pharmacol. 2009;77(10):1629–34.PubMedCrossRef
957.
Zurück zum Zitat Kovarik JM, Beyer D, Bizot MN, Jiang Q, Allison MJ, Schmouder RL. Pharmacokinetic interaction between verapamil and everolimus in healthy subjects. Br J Clin Pharmacol. 2005;60(4):434–7.PubMedPubMedCentralCrossRef Kovarik JM, Beyer D, Bizot MN, Jiang Q, Allison MJ, Schmouder RL. Pharmacokinetic interaction between verapamil and everolimus in healthy subjects. Br J Clin Pharmacol. 2005;60(4):434–7.PubMedPubMedCentralCrossRef
958.
Zurück zum Zitat Uwai Y, Motohashi H, Tsuji Y, Ueo H, Katsura T, Inui KI. Interaction and transport characteristics of mycophenolic acid and its glucuronide via human organic anion transporters hOAT1 and hOAT3. Biochem Pharmacol. 2007;74(1):161–8.PubMedCrossRef Uwai Y, Motohashi H, Tsuji Y, Ueo H, Katsura T, Inui KI. Interaction and transport characteristics of mycophenolic acid and its glucuronide via human organic anion transporters hOAT1 and hOAT3. Biochem Pharmacol. 2007;74(1):161–8.PubMedCrossRef
959.
Zurück zum Zitat Wolff NA, Burckhardt BC, Burckhardt G, Oellerich M, Armstrong VW. Mycophenolic acid (MPA) and its glucuronide metabolites interact with transport systems responsible for excretion of organic anions in the basolateral membrane of the human kidney. Nephrol Dial Transpl. 2007;22(9):2497–503.CrossRef Wolff NA, Burckhardt BC, Burckhardt G, Oellerich M, Armstrong VW. Mycophenolic acid (MPA) and its glucuronide metabolites interact with transport systems responsible for excretion of organic anions in the basolateral membrane of the human kidney. Nephrol Dial Transpl. 2007;22(9):2497–503.CrossRef
960.
Zurück zum Zitat El-Sheikh AA, Koenderink JB, Wouterse AC, van den Broek PH, Verweij VG, Masereeuw R, et al. Renal glucuronidation and multidrug resistance protein 2-/ multidrug resistance protein 4-mediated efflux of mycophenolic acid: interaction with cyclosporine and tacrolimus. Transl Res. 2014;164(1):46–56.PubMedCrossRef El-Sheikh AA, Koenderink JB, Wouterse AC, van den Broek PH, Verweij VG, Masereeuw R, et al. Renal glucuronidation and multidrug resistance protein 2-/ multidrug resistance protein 4-mediated efflux of mycophenolic acid: interaction with cyclosporine and tacrolimus. Transl Res. 2014;164(1):46–56.PubMedCrossRef
961.
Zurück zum Zitat Fukuda T, Goebel J, Cox S, Maseck D, Zhang K, Sherbotie JR, et al. UGT1A9, UGT2B7, and MRP2 genotypes can predict mycophenolic acid pharmacokinetic variability in pediatric kidney transplant recipients. Ther Drug Monit. 2012;34(6):671–9.PubMedPubMedCentralCrossRef Fukuda T, Goebel J, Cox S, Maseck D, Zhang K, Sherbotie JR, et al. UGT1A9, UGT2B7, and MRP2 genotypes can predict mycophenolic acid pharmacokinetic variability in pediatric kidney transplant recipients. Ther Drug Monit. 2012;34(6):671–9.PubMedPubMedCentralCrossRef
962.
Zurück zum Zitat Patel CG, Ogasawara K, Akhlaghi F. Mycophenolic acid glucuronide is transported by multidrug resistance-associated protein 2 and this transport is not inhibited by cyclosporine, tacrolimus or sirolimus. Xenobiotica. 2013;43(3):229–35.PubMedCrossRef Patel CG, Ogasawara K, Akhlaghi F. Mycophenolic acid glucuronide is transported by multidrug resistance-associated protein 2 and this transport is not inhibited by cyclosporine, tacrolimus or sirolimus. Xenobiotica. 2013;43(3):229–35.PubMedCrossRef
963.
Zurück zum Zitat Lloberas N, Torras J, Cruzado JM, Andreu F, Oppenheimer F, Sanchez-Plumed J, et al. Influence of MRP2 on MPA pharmacokinetics in renal transplant recipients-results of the Pharmacogenomic Substudy within the Symphony Study. Nephrol Dial Transpl. 2011;26(11):3784–93.CrossRef Lloberas N, Torras J, Cruzado JM, Andreu F, Oppenheimer F, Sanchez-Plumed J, et al. Influence of MRP2 on MPA pharmacokinetics in renal transplant recipients-results of the Pharmacogenomic Substudy within the Symphony Study. Nephrol Dial Transpl. 2011;26(11):3784–93.CrossRef
964.
Zurück zum Zitat Miller DS, Fricker G, Drewe J. p-glycoprotein-mediated transport of a fluorescent rapamycin derivative in renal proximal tubule. J Pharmacol Exp Ther. 1997;282(1):440–4.PubMed Miller DS, Fricker G, Drewe J. p-glycoprotein-mediated transport of a fluorescent rapamycin derivative in renal proximal tubule. J Pharmacol Exp Ther. 1997;282(1):440–4.PubMed
965.
Zurück zum Zitat Capone D, Palmiero G, Gentile A, Basile V, Federico S, Sabbatini M, et al. A pharmacokinetic interaction between clarithromycin and sirolimus in kidney transplant recipient. Curr Drug Metab. 2007;8(4):379–81.PubMedCrossRef Capone D, Palmiero G, Gentile A, Basile V, Federico S, Sabbatini M, et al. A pharmacokinetic interaction between clarithromycin and sirolimus in kidney transplant recipient. Curr Drug Metab. 2007;8(4):379–81.PubMedCrossRef
966.
Zurück zum Zitat Wacher VJ, Silverman JA, Wong S, Tran-Tau P, Chan AO, Chai A, et al. Sirolimus oral absorption in rats is increased by ketoconazole but is not affected by d-alpha-tocopheryl poly(ethylene glycol 1000) succinate. J Pharmacol Exp Ther. 2002;303(1):308–13.PubMedCrossRef Wacher VJ, Silverman JA, Wong S, Tran-Tau P, Chan AO, Chai A, et al. Sirolimus oral absorption in rats is increased by ketoconazole but is not affected by d-alpha-tocopheryl poly(ethylene glycol 1000) succinate. J Pharmacol Exp Ther. 2002;303(1):308–13.PubMedCrossRef
967.
Zurück zum Zitat Sam WJ, Chamberlain CE, Lee SJ, Goldstein JA, Hale DA, Mannon RB, et al. Associations of ABCB1 3435C>T and IL-10-1082G>A polymorphisms with long-term sirolimus dose requirements in renal transplant patients. Transplantation. 2011;92(12):1342–7.PubMedPubMedCentralCrossRef Sam WJ, Chamberlain CE, Lee SJ, Goldstein JA, Hale DA, Mannon RB, et al. Associations of ABCB1 3435C>T and IL-10-1082G>A polymorphisms with long-term sirolimus dose requirements in renal transplant patients. Transplantation. 2011;92(12):1342–7.PubMedPubMedCentralCrossRef
968.
Zurück zum Zitat Jeong H, Chiou WL. Role of P-glycoprotein in the hepatic metabolism of tacrolimus. Xenobiotica. 2006;36(1):1–13.PubMedCrossRef Jeong H, Chiou WL. Role of P-glycoprotein in the hepatic metabolism of tacrolimus. Xenobiotica. 2006;36(1):1–13.PubMedCrossRef
969.
Zurück zum Zitat Quezada CA, Garrido WX, González-Oyarzún MA, Rauch MC, Salas MR, San Martín RE, et al. Effect of tacrolimus on activity and expression of P-glycoprotein and ATP-binding cassette transporter A5 (ABCA5) proteins in hematoencephalic barrier cells. Biol Pharm Bull. 2008;31(10):1911–6.PubMedCrossRef Quezada CA, Garrido WX, González-Oyarzún MA, Rauch MC, Salas MR, San Martín RE, et al. Effect of tacrolimus on activity and expression of P-glycoprotein and ATP-binding cassette transporter A5 (ABCA5) proteins in hematoencephalic barrier cells. Biol Pharm Bull. 2008;31(10):1911–6.PubMedCrossRef
970.
Zurück zum Zitat Hashida T, Masuda S, Uemoto S, Saito H, Tanaka K, Inui KI. Pharmacokinetic and prognostic significance of intestinal MDR1 expression in recipients of living-donor liver transplantation. Clin Pharmacol Ther. 2001;69(5):308–16.PubMedCrossRef Hashida T, Masuda S, Uemoto S, Saito H, Tanaka K, Inui KI. Pharmacokinetic and prognostic significance of intestinal MDR1 expression in recipients of living-donor liver transplantation. Clin Pharmacol Ther. 2001;69(5):308–16.PubMedCrossRef
971.
Zurück zum Zitat Wandel C, Kim B, Kajiji S, Guengerich FP, Wilkinson GR, Wood AJJ. P-glycoprotein and cytochrome P-450 3A inhibition: dissociation of inhibitory potencies. Cancer Res. 1999;59(16):3944–8.PubMed Wandel C, Kim B, Kajiji S, Guengerich FP, Wilkinson GR, Wood AJJ. P-glycoprotein and cytochrome P-450 3A inhibition: dissociation of inhibitory potencies. Cancer Res. 1999;59(16):3944–8.PubMed
972.
Zurück zum Zitat Wang L, Kitaichi K, Hui CS, Takagi K, Takagi K, Sakai M, et al. Reversal of anticancer drug resistance by macrolide antibiotics in vitro and in vivo. Clin Exp Pharmacol Physiol. 2009;27(8):587–93.CrossRef Wang L, Kitaichi K, Hui CS, Takagi K, Takagi K, Sakai M, et al. Reversal of anticancer drug resistance by macrolide antibiotics in vitro and in vivo. Clin Exp Pharmacol Physiol. 2009;27(8):587–93.CrossRef
973.
Zurück zum Zitat Ogasawara K, Chitnis SD, Gohh RY, Christians U, Akhlaghi F. Multidrug resistance-associated protein 2 (MRP2/ABCC2) haplotypes significantly affect the pharmacokinetics of tacrolimus in kidney transplant recipients. Clin Pharmacokinet. 2013;52(9):751–62.PubMedPubMedCentralCrossRef Ogasawara K, Chitnis SD, Gohh RY, Christians U, Akhlaghi F. Multidrug resistance-associated protein 2 (MRP2/ABCC2) haplotypes significantly affect the pharmacokinetics of tacrolimus in kidney transplant recipients. Clin Pharmacokinet. 2013;52(9):751–62.PubMedPubMedCentralCrossRef
974.
Zurück zum Zitat Uwai Y, Motohashi H, Tsuji Y, Ueo H, Katsura T, Inui K. Interaction and transport characteristics of mycophenolic acid and its glucuronide via human organic anion transporters hOAT1 and hOAT3. Biochem Pharmacol. 2007;74(1):161–8.PubMedCrossRef Uwai Y, Motohashi H, Tsuji Y, Ueo H, Katsura T, Inui K. Interaction and transport characteristics of mycophenolic acid and its glucuronide via human organic anion transporters hOAT1 and hOAT3. Biochem Pharmacol. 2007;74(1):161–8.PubMedCrossRef
975.
Zurück zum Zitat Maeda A, Tsuruoka S, Ushijima K, Kanai Y, Endou H, Saito K, et al. Drug interaction between celecoxib and methotrexate in organic anion transporter 3-transfected renal cells and in rats in vivo. Eur J Pharmacol. 2010;640(1–3):168–71.PubMedCrossRef Maeda A, Tsuruoka S, Ushijima K, Kanai Y, Endou H, Saito K, et al. Drug interaction between celecoxib and methotrexate in organic anion transporter 3-transfected renal cells and in rats in vivo. Eur J Pharmacol. 2010;640(1–3):168–71.PubMedCrossRef
976.
Zurück zum Zitat Zhang Y, Han YH, Putluru SP, Matta MK, Kole P, Mandlekar S, et al. Diclofenac and its acyl glucuronide: determination of in vivo exposure in human subjects and characterization as human drug transporter substrates in vitro. Drug Metab Dispos. 2016;44(3):320–8.PubMedCrossRef Zhang Y, Han YH, Putluru SP, Matta MK, Kole P, Mandlekar S, et al. Diclofenac and its acyl glucuronide: determination of in vivo exposure in human subjects and characterization as human drug transporter substrates in vitro. Drug Metab Dispos. 2016;44(3):320–8.PubMedCrossRef
977.
Zurück zum Zitat Kawase A, Yamamoto T, Egashira S, Iwaki M. Stereoselective inhibition of methotrexate excretion by glucuronides of nonsteroidal Anti-inflammatory drugs via multidrug resistance proteins 2 and 4. J Pharmacol Exp Ther. 2016;356(2):366–74.PubMedCrossRef Kawase A, Yamamoto T, Egashira S, Iwaki M. Stereoselective inhibition of methotrexate excretion by glucuronides of nonsteroidal Anti-inflammatory drugs via multidrug resistance proteins 2 and 4. J Pharmacol Exp Ther. 2016;356(2):366–74.PubMedCrossRef
978.
Zurück zum Zitat Dickinson RG, King AR, McKinnon GE, Hooper WD, Eadie MJ, Herkes GK. Studies on the renal excretion of the acyl glucuronide, phenolic glucuronide and sulphate conjugates of diflunisal. Br J Clin Pharmacol. 1993;35(6):609–13.PubMedPubMedCentralCrossRef Dickinson RG, King AR, McKinnon GE, Hooper WD, Eadie MJ, Herkes GK. Studies on the renal excretion of the acyl glucuronide, phenolic glucuronide and sulphate conjugates of diflunisal. Br J Clin Pharmacol. 1993;35(6):609–13.PubMedPubMedCentralCrossRef
979.
Zurück zum Zitat Maeda A, Tsuruoka S, Kanai Y, Endou H, Saito K, Miyamoto E, et al. Evaluation of the interaction between nonsteroidal anti-inflammatory drugs and methotrexate using human organic anion transporter 3-transfected cells. Eur J Pharmacol. 2008;596(1–3):166–72.PubMedCrossRef Maeda A, Tsuruoka S, Kanai Y, Endou H, Saito K, Miyamoto E, et al. Evaluation of the interaction between nonsteroidal anti-inflammatory drugs and methotrexate using human organic anion transporter 3-transfected cells. Eur J Pharmacol. 2008;596(1–3):166–72.PubMedCrossRef
980.
Zurück zum Zitat Honjo H, Uwai Y, Iwamoto K. Inhibitory effect of selective cyclooxygenase-2 inhibitor etoricoxib on human organic anion transporter 3 (hOAT3). Drug Metab Lett. 2011;5(2):137–40.CrossRef Honjo H, Uwai Y, Iwamoto K. Inhibitory effect of selective cyclooxygenase-2 inhibitor etoricoxib on human organic anion transporter 3 (hOAT3). Drug Metab Lett. 2011;5(2):137–40.CrossRef
981.
Zurück zum Zitat Uwai Y, Taniguchi R, Motohashi H, Saito H, Okuda M, Inui KI. Methotrexate-loxoprofen interaction: involvement of human organic anion transporters hOAT1 and hOAT3. Drug Metab Pharmacokinet. 2004;19(5):369–74.PubMedCrossRef Uwai Y, Taniguchi R, Motohashi H, Saito H, Okuda M, Inui KI. Methotrexate-loxoprofen interaction: involvement of human organic anion transporters hOAT1 and hOAT3. Drug Metab Pharmacokinet. 2004;19(5):369–74.PubMedCrossRef
982.
Zurück zum Zitat Statkevich P, Fournier DJ, Sweeney KR. Characterization of methotrexate elimination and interaction with indomethacin and flurbiprofen in the isolated perfused rat kidney. J Pharmacol Exp Ther. 1993;265(3):1118–24.PubMed Statkevich P, Fournier DJ, Sweeney KR. Characterization of methotrexate elimination and interaction with indomethacin and flurbiprofen in the isolated perfused rat kidney. J Pharmacol Exp Ther. 1993;265(3):1118–24.PubMed
983.
Zurück zum Zitat Honjo H, Uwai Y, Aoki Y, Iwamoto K. Stereoselective inhibitory effect of flurbiprofen, ibuprofen and naproxen on human organic anion transporters hOAT1 and hOAT3. Biopharm Drug Dispos. 2011;32(9):518–24.PubMedCrossRef Honjo H, Uwai Y, Aoki Y, Iwamoto K. Stereoselective inhibitory effect of flurbiprofen, ibuprofen and naproxen on human organic anion transporters hOAT1 and hOAT3. Biopharm Drug Dispos. 2011;32(9):518–24.PubMedCrossRef
984.
Zurück zum Zitat Uwai Y, Honjo H, Iwamoto K. Inhibitory effect of selective cyclooxygenase-2 inhibitor lumiracoxib on human organic anion transporters hOAT1 and hOAT3. Drug Metab Pharmacokinet. 2010;25(5):450–5.PubMedCrossRef Uwai Y, Honjo H, Iwamoto K. Inhibitory effect of selective cyclooxygenase-2 inhibitor lumiracoxib on human organic anion transporters hOAT1 and hOAT3. Drug Metab Pharmacokinet. 2010;25(5):450–5.PubMedCrossRef
985.
Zurück zum Zitat Honjo H, Uwai Y, Nabekura T. Effect of selective cyclooxygenase-2 inhibitor lumiracoxib on phenolsulfonphthalein disposition in rats. Drug Metab Drug Interact. 2014;29(3):203–6.CrossRef Honjo H, Uwai Y, Nabekura T. Effect of selective cyclooxygenase-2 inhibitor lumiracoxib on phenolsulfonphthalein disposition in rats. Drug Metab Drug Interact. 2014;29(3):203–6.CrossRef
986.
Zurück zum Zitat Chen C, Hennig GE, Manautou JE. Hepatobiliary excretion of acetaminophen glutathione conjugate and its derivatives in transport-deficient (TR-) hyperbilirubinemic rats. Drug Metab Dispos. 2003;31(6):798–804.PubMedCrossRef Chen C, Hennig GE, Manautou JE. Hepatobiliary excretion of acetaminophen glutathione conjugate and its derivatives in transport-deficient (TR-) hyperbilirubinemic rats. Drug Metab Dispos. 2003;31(6):798–804.PubMedCrossRef
987.
Zurück zum Zitat van Montfoort JE, Hagenbuch B, Fattinger KE, Müller M, Groothuis GMM, Meijer DKF, et al. Polyspecific organic anion transporting polypeptides mediate hepatic uptake of amphipathic type II organic cations. J Pharmacol Exp Ther. 1999;291(1):147–52.PubMed van Montfoort JE, Hagenbuch B, Fattinger KE, Müller M, Groothuis GMM, Meijer DKF, et al. Polyspecific organic anion transporting polypeptides mediate hepatic uptake of amphipathic type II organic cations. J Pharmacol Exp Ther. 1999;291(1):147–52.PubMed
988.
Zurück zum Zitat Oude Elferink RPJ, Meijer DKF, Kuipers F, Jansen PLM, Groen AK, Groothuis GMM. Hepatobiliary secretion of organic compounds; molecular mechanisms of membrane transport. Biochimica et Biophysica Acta (BBA) Rev Biomembr. 1995;1241(2):215–68.CrossRef Oude Elferink RPJ, Meijer DKF, Kuipers F, Jansen PLM, Groen AK, Groothuis GMM. Hepatobiliary secretion of organic compounds; molecular mechanisms of membrane transport. Biochimica et Biophysica Acta (BBA) Rev Biomembr. 1995;1241(2):215–68.CrossRef
989.
Zurück zum Zitat Shen Z, Yeh LT, Wallach K, Zhu N, Kerr B, Gillen M. In vitro and in vivo interaction studies between lesinurad, a selective urate reabsorption inhibitor, and major liver or kidney transporters. Clin Drug Investig. 2016;36(6):443–52.PubMedPubMedCentralCrossRef Shen Z, Yeh LT, Wallach K, Zhu N, Kerr B, Gillen M. In vitro and in vivo interaction studies between lesinurad, a selective urate reabsorption inhibitor, and major liver or kidney transporters. Clin Drug Investig. 2016;36(6):443–52.PubMedPubMedCentralCrossRef
990.
Zurück zum Zitat Fellner C. Pharmaceutical approval update. Pharm Ther. 2016;41(2):95–6. Fellner C. Pharmaceutical approval update. Pharm Ther. 2016;41(2):95–6.
991.
Zurück zum Zitat Evers R, de Haas M, Sparidans R, Beijnen J, Wielinga PR, Lankelma J, et al. Vinblastine and sulfinpyrazone export by the multidrug resistance protein MRP2 is associated with glutathione export. Br J Cancer. 2000;83(3):375–83.PubMedPubMedCentralCrossRef Evers R, de Haas M, Sparidans R, Beijnen J, Wielinga PR, Lankelma J, et al. Vinblastine and sulfinpyrazone export by the multidrug resistance protein MRP2 is associated with glutathione export. Br J Cancer. 2000;83(3):375–83.PubMedPubMedCentralCrossRef
992.
Zurück zum Zitat Flanagan SD, Cummins CL, Susanto M, Liu X, Takahashi LH, Benet LZ. Comparison of furosemide and vinblastine secretion from cell lines overexpressing multidrug resistance protein (P-glycoprotein) and multidrug resistance-associated proteins (MRP1 and MRP2). Pharmacology. 2002;64(3):126–34.PubMedCrossRef Flanagan SD, Cummins CL, Susanto M, Liu X, Takahashi LH, Benet LZ. Comparison of furosemide and vinblastine secretion from cell lines overexpressing multidrug resistance protein (P-glycoprotein) and multidrug resistance-associated proteins (MRP1 and MRP2). Pharmacology. 2002;64(3):126–34.PubMedCrossRef
993.
Zurück zum Zitat Campbell SD, Gadel S, Friedel C, Crafford A, Regina KJ, Kharasch ED. Influence of HIV antiretrovirals on methadone N-demethylation and transport. Biochem Pharmacol. 2015;95(2):115–25.PubMedCrossRef Campbell SD, Gadel S, Friedel C, Crafford A, Regina KJ, Kharasch ED. Influence of HIV antiretrovirals on methadone N-demethylation and transport. Biochem Pharmacol. 2015;95(2):115–25.PubMedCrossRef
994.
Zurück zum Zitat Stormer E, Perloff MD, von Moltke LL, Greenblatt DJ. Methadone inhibits rhodamine123 transport in Caco-2 cells. Drug Metab Dispos. 2001;29(7):954–6.PubMed Stormer E, Perloff MD, von Moltke LL, Greenblatt DJ. Methadone inhibits rhodamine123 transport in Caco-2 cells. Drug Metab Dispos. 2001;29(7):954–6.PubMed
995.
Zurück zum Zitat Dzierlenga AL, Clarke JD, Hargraves TL, Ainslie GR, Vanderah TW, Paine MF, et al. Mechanistic basis of altered morphine disposition in nonalcoholic steatohepatitis. J Pharmacol Exp Ther. 2015;352(3):462–70.PubMedPubMedCentralCrossRef Dzierlenga AL, Clarke JD, Hargraves TL, Ainslie GR, Vanderah TW, Paine MF, et al. Mechanistic basis of altered morphine disposition in nonalcoholic steatohepatitis. J Pharmacol Exp Ther. 2015;352(3):462–70.PubMedPubMedCentralCrossRef
996.
Zurück zum Zitat Pontier C, Pachot J, Botham R, Lenfant B, Arnaud P. HT29-MTX and Caco-2/TC7 monolayers as predictive models for human intestinal absorption: role of the mucus layer. J Pharm Sci. 2001;90(10):1608–19.PubMedCrossRef Pontier C, Pachot J, Botham R, Lenfant B, Arnaud P. HT29-MTX and Caco-2/TC7 monolayers as predictive models for human intestinal absorption: role of the mucus layer. J Pharm Sci. 2001;90(10):1608–19.PubMedCrossRef
997.
Zurück zum Zitat Liu H, Yu N, Lu S, Ito S, Zhang X, Prasad B, et al. Solute carrier family of the organic anion-transporting polypeptides 1A2-madin-darby canine kidney II: a promising in vitro system to understand the role of organic anion-transporting polypeptide 1A2 in blood–brain barrier drug penetration. Drug Metab Dispos. 2015;43(7):1008–18.PubMedCrossRef Liu H, Yu N, Lu S, Ito S, Zhang X, Prasad B, et al. Solute carrier family of the organic anion-transporting polypeptides 1A2-madin-darby canine kidney II: a promising in vitro system to understand the role of organic anion-transporting polypeptide 1A2 in blood–brain barrier drug penetration. Drug Metab Dispos. 2015;43(7):1008–18.PubMedCrossRef
998.
Zurück zum Zitat Yu LS, Zhao NP, Yao TW, Zeng S. Zolmitriptan uptake by human intestinal epithelial Caco-2 cells. Pharmazie. 2006;61(10):862–5.PubMed Yu LS, Zhao NP, Yao TW, Zeng S. Zolmitriptan uptake by human intestinal epithelial Caco-2 cells. Pharmazie. 2006;61(10):862–5.PubMed
999.
Zurück zum Zitat Owen A, Goldring C, Morgan P, Park BK, Pirmohamed M. Induction of P-glycoprotein in lymphocytes by carbamazepine and rifampicin: the role of nuclear hormone response elements. Br J Clin Pharmacol. 2006;62(2):237–42.PubMedPubMedCentralCrossRef Owen A, Goldring C, Morgan P, Park BK, Pirmohamed M. Induction of P-glycoprotein in lymphocytes by carbamazepine and rifampicin: the role of nuclear hormone response elements. Br J Clin Pharmacol. 2006;62(2):237–42.PubMedPubMedCentralCrossRef
1000.
Zurück zum Zitat Maines LW, Antonetti DA, Wolpert EB, Smith CD. Evaluation of the role of P-glycoprotein in the uptake of paroxetine, clozapine, phenytoin and carbamazapine by bovine retinal endothelial cells. Neuropharmacology. 2005;49(5):610–7.PubMedCrossRef Maines LW, Antonetti DA, Wolpert EB, Smith CD. Evaluation of the role of P-glycoprotein in the uptake of paroxetine, clozapine, phenytoin and carbamazapine by bovine retinal endothelial cells. Neuropharmacology. 2005;49(5):610–7.PubMedCrossRef
1001.
Zurück zum Zitat Jones H. Antiepileptic drug transport at the blood–brain barrier, the role of SLC transporters. Liverpool: University of Liverpool; 2014. Jones H. Antiepileptic drug transport at the blood–brain barrier, the role of SLC transporters. Liverpool: University of Liverpool; 2014.
1002.
Zurück zum Zitat Tompson DJ, Crean CS, Buraglio M, Arumugham T. Lack of effect of ezogabine/retigabine on the pharmacokinetics of digoxin in healthy individuals: results from a drug–drug interaction study. Clin Pharmacol Adv Appl. 2014;6:149–59. Tompson DJ, Crean CS, Buraglio M, Arumugham T. Lack of effect of ezogabine/retigabine on the pharmacokinetics of digoxin in healthy individuals: results from a drug–drug interaction study. Clin Pharmacol Adv Appl. 2014;6:149–59.
1004.
Zurück zum Zitat Zhang C, Chanteux H, Zuo Z, Kwan P, Baum L. Potential role for human P-glycoprotein in the transport of lacosamide. Epilepsia. 2013;54(7):1154–60.PubMedCrossRef Zhang C, Chanteux H, Zuo Z, Kwan P, Baum L. Potential role for human P-glycoprotein in the transport of lacosamide. Epilepsia. 2013;54(7):1154–60.PubMedCrossRef
1005.
Zurück zum Zitat Courtois A, Payen L, Le Ferrec E, Scheffer GL, Trinquart Y, Guillouzo A, et al. Differential regulation of multidrug resistance-associated protein 2 (MRP2) and cytochromes P450 2B1/2 and 3A1/2 in phenobarbital-treated hepatocytes. Biochem Pharmacol. 2002;63(2):333–41.PubMedCrossRef Courtois A, Payen L, Le Ferrec E, Scheffer GL, Trinquart Y, Guillouzo A, et al. Differential regulation of multidrug resistance-associated protein 2 (MRP2) and cytochromes P450 2B1/2 and 3A1/2 in phenobarbital-treated hepatocytes. Biochem Pharmacol. 2002;63(2):333–41.PubMedCrossRef
1006.
Zurück zum Zitat Zhang C, Kwan P, Zuo Z, Baum L. In vitro concentration dependent transport of phenytoin and phenobarbital, but not ethosuximide, by human P-glycoprotein. Life Sci. 2010;86(23–24):899–905.PubMedCrossRef Zhang C, Kwan P, Zuo Z, Baum L. In vitro concentration dependent transport of phenytoin and phenobarbital, but not ethosuximide, by human P-glycoprotein. Life Sci. 2010;86(23–24):899–905.PubMedCrossRef
1007.
Zurück zum Zitat von Moltke LL, Weemhoff JL, Perloff MD, Hesse LM, Harmatz JS, Roth-Schechter BF, et al. Effect of zolpidem on human cytochrome P450 activity, and on transport mediated by P-glycoprotein. Biopharm Drug Dispos. 2002;23(9):361–7.CrossRef von Moltke LL, Weemhoff JL, Perloff MD, Hesse LM, Harmatz JS, Roth-Schechter BF, et al. Effect of zolpidem on human cytochrome P450 activity, and on transport mediated by P-glycoprotein. Biopharm Drug Dispos. 2002;23(9):361–7.CrossRef
1008.
Zurück zum Zitat Münch K, Schwöbel J, Monti J, Zolk O, Maas R, Terfloth L, et al. Inhibitory interaction of 125 drugs with the renally expressed organic cation transporter OCT2: development of a chemoinformatics-based model to predict transporter inhibition in silico. 11th Conference of the European Association for Clinical Pharmacology and Therapeutics (EACPT). Geneva; 2013. Münch K, Schwöbel J, Monti J, Zolk O, Maas R, Terfloth L, et al. Inhibitory interaction of 125 drugs with the renally expressed organic cation transporter OCT2: development of a chemoinformatics-based model to predict transporter inhibition in silico. 11th Conference of the European Association for Clinical Pharmacology and Therapeutics (EACPT). Geneva; 2013.
1009.
Zurück zum Zitat Kamizono A, Inotsume N, Fukushima S, Nakano M, Okamoto Y. Inhibitory effects of procainamide and probenecid on renal excretion of sultopride enantiomers in rats. J Pharm Sci. 1993;82(12):1259–61.PubMedCrossRef Kamizono A, Inotsume N, Fukushima S, Nakano M, Okamoto Y. Inhibitory effects of procainamide and probenecid on renal excretion of sultopride enantiomers in rats. J Pharm Sci. 1993;82(12):1259–61.PubMedCrossRef
1010.
Zurück zum Zitat Dos Santos Pereira JN, Tadjerpisheh S, Abed MA, Saadatmand AR, Weksler B, Romero IA, et al. The poorly membrane permeable antipsychotic drugs amisulpride and sulpiride are substrates of the organic cation transporters from the SLC22 family. AAPS J. 2014;16(6):1247–58.PubMedPubMedCentralCrossRef Dos Santos Pereira JN, Tadjerpisheh S, Abed MA, Saadatmand AR, Weksler B, Romero IA, et al. The poorly membrane permeable antipsychotic drugs amisulpride and sulpiride are substrates of the organic cation transporters from the SLC22 family. AAPS J. 2014;16(6):1247–58.PubMedPubMedCentralCrossRef
1011.
Zurück zum Zitat Schmitt U, Kirschbaum KM, Poller B, Kusch-Poddar M, Drewe J, Hiemke C, et al. In vitro P-glycoprotein efflux inhibition by atypical antipsychotics is in vivo nicely reflected by pharmacodynamic but less by pharmacokinetic changes. Pharmacol Biochem Behav. 2012;102(2):312–20.PubMedCrossRef Schmitt U, Kirschbaum KM, Poller B, Kusch-Poddar M, Drewe J, Hiemke C, et al. In vitro P-glycoprotein efflux inhibition by atypical antipsychotics is in vivo nicely reflected by pharmacodynamic but less by pharmacokinetic changes. Pharmacol Biochem Behav. 2012;102(2):312–20.PubMedCrossRef
1012.
Zurück zum Zitat Nagasaka Y, Oda K, Iwatsubo T, Kawamura A, Usui T. Effects of aripiprazole and its active metabolite dehydroaripiprazole on the activities of drug efflux transporters expressed both in the intestine and at the blood–brain barrier. Biopharm Drug Dispos. 2012;33(6):304–15.PubMedCrossRef Nagasaka Y, Oda K, Iwatsubo T, Kawamura A, Usui T. Effects of aripiprazole and its active metabolite dehydroaripiprazole on the activities of drug efflux transporters expressed both in the intestine and at the blood–brain barrier. Biopharm Drug Dispos. 2012;33(6):304–15.PubMedCrossRef
1013.
Zurück zum Zitat Wang JS, Zhu HJ, Markowitz J, Donovan J, DeVane C. Evaluation of antipsychotic drugs as inhibitors of multidrug resistance transporter P-glycoprotein. Psychopharmacology. 2006;187(4):415–23.PubMedCrossRef Wang JS, Zhu HJ, Markowitz J, Donovan J, DeVane C. Evaluation of antipsychotic drugs as inhibitors of multidrug resistance transporter P-glycoprotein. Psychopharmacology. 2006;187(4):415–23.PubMedCrossRef
1014.
Zurück zum Zitat Haenisch B, Drescher E, Thiemer L, Xin H, Giros B, Gautron S, et al. Interaction of antidepressant and antipsychotic drugs with the human organic cation transporters hOCT1, hOCT2 and hOCT3. Naunyn Schmied Arch Pharmacol. 2012;385(10):1017–23.CrossRef Haenisch B, Drescher E, Thiemer L, Xin H, Giros B, Gautron S, et al. Interaction of antidepressant and antipsychotic drugs with the human organic cation transporters hOCT1, hOCT2 and hOCT3. Naunyn Schmied Arch Pharmacol. 2012;385(10):1017–23.CrossRef
1015.
Zurück zum Zitat Schmidt M, Teitge M, Castillo ME, Brandt T, Dobner B, Langner A. Synthesis and biochemical characterization of new phenothiazines and related drugs as MDR reversal agents. Arch Pharm (Weinheim). 2008;341(10):624–38.PubMedCrossRef Schmidt M, Teitge M, Castillo ME, Brandt T, Dobner B, Langner A. Synthesis and biochemical characterization of new phenothiazines and related drugs as MDR reversal agents. Arch Pharm (Weinheim). 2008;341(10):624–38.PubMedCrossRef
1016.
Zurück zum Zitat El Ela AA, Härtter S, Schmitt U, Hiemke C, Spahn-Langguth H, Langguth P. Identification of P-glycoprotein substrates and inhibitors among psychoactive compounds–implications for pharmacokinetics of selected substrates. J Pharm Pharmacol. 2004;56(8):967–75.PubMedCrossRef El Ela AA, Härtter S, Schmitt U, Hiemke C, Spahn-Langguth H, Langguth P. Identification of P-glycoprotein substrates and inhibitors among psychoactive compounds–implications for pharmacokinetics of selected substrates. J Pharm Pharmacol. 2004;56(8):967–75.PubMedCrossRef
1017.
Zurück zum Zitat Boulton DW, DeVane CL, Liston HL, Markowitz JS. In vitro P-glycoprotein affinity for atypical and conventional antipsychotics. Life Sci. 2002;71(2):163–9.PubMedCrossRef Boulton DW, DeVane CL, Liston HL, Markowitz JS. In vitro P-glycoprotein affinity for atypical and conventional antipsychotics. Life Sci. 2002;71(2):163–9.PubMedCrossRef
1018.
Zurück zum Zitat Burgio DE, Gosland MP, McNamara PJ. Effects of p-glycoprotein modulators on etoposide elimination and central nervous system distribution. J Pharmacol Exp Ther. 1998;287(3):911–7.PubMed Burgio DE, Gosland MP, McNamara PJ. Effects of p-glycoprotein modulators on etoposide elimination and central nervous system distribution. J Pharmacol Exp Ther. 1998;287(3):911–7.PubMed
1019.
Zurück zum Zitat Uhr M, Grauer MT, Yassouridis A, Ebinger M. Blood–brain barrier penetration and pharmacokinetics of amitriptyline and its metabolites in p-glycoprotein (abcb1ab) knock-out mice and controls. J Psychiatr Res. 2007;41(1–2):179–88.PubMedCrossRef Uhr M, Grauer MT, Yassouridis A, Ebinger M. Blood–brain barrier penetration and pharmacokinetics of amitriptyline and its metabolites in p-glycoprotein (abcb1ab) knock-out mice and controls. J Psychiatr Res. 2007;41(1–2):179–88.PubMedCrossRef
1020.
Zurück zum Zitat Wang K, Sun S, Li L, Tu M, Jiang H. Involvement of organic cation transporter 2 inhibition in potential mechanisms of antidepressant action. Prog Neuropsychopharmacol Biol Psychiatry. 2014;4(53):90–8.CrossRef Wang K, Sun S, Li L, Tu M, Jiang H. Involvement of organic cation transporter 2 inhibition in potential mechanisms of antidepressant action. Prog Neuropsychopharmacol Biol Psychiatry. 2014;4(53):90–8.CrossRef
1021.
Zurück zum Zitat O’Brien FE, Clarke G, Dinan TG, Cryan JF, Griffin BT. Human P-glycoprotein differentially affects antidepressant drug transport: relevance to blood–brain barrier permeability. Int J Neuropsychopharmacol Off Sci J Coll Int Neuropsychopharmacol (CINP). 2013;16(10):2259–72. O’Brien FE, Clarke G, Dinan TG, Cryan JF, Griffin BT. Human P-glycoprotein differentially affects antidepressant drug transport: relevance to blood–brain barrier permeability. Int J Neuropsychopharmacol Off Sci J Coll Int Neuropsychopharmacol (CINP). 2013;16(10):2259–72.
1022.
Zurück zum Zitat He J, Yu Y, Prasad B, Chen X, Unadkat JD. Mechanism of an unusual, but clinically significant, digoxin-bupropion drug interaction. Biopharm Drug Dispos. 2014;35(5):253–63.PubMedCrossRef He J, Yu Y, Prasad B, Chen X, Unadkat JD. Mechanism of an unusual, but clinically significant, digoxin-bupropion drug interaction. Biopharm Drug Dispos. 2014;35(5):253–63.PubMedCrossRef
1023.
Zurück zum Zitat O’Brien FE, O’Connor RM, Clarke G, Dinan TG, Griffin BT, Cryan JF. P-glycoprotein inhibition increases the brain distribution and antidepressant-like activity of escitalopram in rodents. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2013;38(11):2209–19.CrossRef O’Brien FE, O’Connor RM, Clarke G, Dinan TG, Griffin BT, Cryan JF. P-glycoprotein inhibition increases the brain distribution and antidepressant-like activity of escitalopram in rodents. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2013;38(11):2209–19.CrossRef
1024.
Zurück zum Zitat Uhr M, Grauer MT, Holsboer F. Differential enhancement of antidepressant penetration into the brain in mice with abcb1ab (mdr1ab) P-glycoprotein gene disruption. Biol Psychiatry. 2003;54(8):840–6.PubMedCrossRef Uhr M, Grauer MT, Holsboer F. Differential enhancement of antidepressant penetration into the brain in mice with abcb1ab (mdr1ab) P-glycoprotein gene disruption. Biol Psychiatry. 2003;54(8):840–6.PubMedCrossRef
1026.
Zurück zum Zitat Rengelshausen J, Weiss J, Lindenmaier H, Cihlar T, Walter-Sack I, Haefeli WE. Inhibition of the human organic anion transporter 1 by the caffeine metabolite 1-methylxanthine. Biochem Biophys Res Commun. 2004;320(1):90–4.PubMedCrossRef Rengelshausen J, Weiss J, Lindenmaier H, Cihlar T, Walter-Sack I, Haefeli WE. Inhibition of the human organic anion transporter 1 by the caffeine metabolite 1-methylxanthine. Biochem Biophys Res Commun. 2004;320(1):90–4.PubMedCrossRef
1027.
Zurück zum Zitat Uwai Y, Kawasaki T, Nabekura T. Caffeic acid inhibits organic anion transporters OAT1 and OAT3 in rat kidney. Drug Metab Drug Interact. 2013;28(4):247–50.CrossRef Uwai Y, Kawasaki T, Nabekura T. Caffeic acid inhibits organic anion transporters OAT1 and OAT3 in rat kidney. Drug Metab Drug Interact. 2013;28(4):247–50.CrossRef
1028.
Zurück zum Zitat Ishiguro N, Saito A, Yokoyama K, Morikawa M, Igarashi T, Tamai I. Transport of the dopamine D2 agonist pramipexole by rat organic cation transporters OCT1 and OCT2 in kidney. Drug Metab Dispos. 2005;33(4):495–9.PubMedCrossRef Ishiguro N, Saito A, Yokoyama K, Morikawa M, Igarashi T, Tamai I. Transport of the dopamine D2 agonist pramipexole by rat organic cation transporters OCT1 and OCT2 in kidney. Drug Metab Dispos. 2005;33(4):495–9.PubMedCrossRef
1029.
Zurück zum Zitat Vautier S, Milane A, Fernandez C, Buyse M, Chacun H, Farinotti R. Interactions between antiparkinsonian drugs and ABCB1/P-glycoprotein at the blood–brain barrier in a rat brain endothelial cell model. Neurosci Lett. 2008;442(1):19–23.PubMedCrossRef Vautier S, Milane A, Fernandez C, Buyse M, Chacun H, Farinotti R. Interactions between antiparkinsonian drugs and ABCB1/P-glycoprotein at the blood–brain barrier in a rat brain endothelial cell model. Neurosci Lett. 2008;442(1):19–23.PubMedCrossRef
1030.
Zurück zum Zitat Knop J, Hoier E, Ebner T, Fromm MF, Muller F. Renal tubular secretion of pramipexole. Eur J Pharm Sci. 2015;15(79):73–8.CrossRef Knop J, Hoier E, Ebner T, Fromm MF, Muller F. Renal tubular secretion of pramipexole. Eur J Pharm Sci. 2015;15(79):73–8.CrossRef
1031.
Zurück zum Zitat EMA. Xadago® assessment report. UK: European Medicines Agency; 2015. EMA. Xadago® assessment report. UK: European Medicines Agency; 2015.
1032.
Zurück zum Zitat Dumitras S, Sechaud R, Drollmann A, Pal P, Vaidyanathan S, Camenisch G, et al. Effect of cimetidine, a model drug for inhibition of the organic cation transport (OCT2/MATE1) in the kidney, on the pharmacokinetics of glycopyrronium. Int J Clin Pharmacol Ther. 2013;51(10):771–9.PubMedCrossRef Dumitras S, Sechaud R, Drollmann A, Pal P, Vaidyanathan S, Camenisch G, et al. Effect of cimetidine, a model drug for inhibition of the organic cation transport (OCT2/MATE1) in the kidney, on the pharmacokinetics of glycopyrronium. Int J Clin Pharmacol Ther. 2013;51(10):771–9.PubMedCrossRef
1033.
Zurück zum Zitat Nakamura T, Nakanishi T, Haruta T, Shirasaka Y, Keogh JP, Tamai I. Transport of ipratropium, an anti-chronic obstructive pulmonary disease drug, is mediated by organic cation/carnitine transporters in human bronchial epithelial cells: implications for carrier-mediated pulmonary absorption. Mol Pharm. 2009;7(1):187–95.CrossRef Nakamura T, Nakanishi T, Haruta T, Shirasaka Y, Keogh JP, Tamai I. Transport of ipratropium, an anti-chronic obstructive pulmonary disease drug, is mediated by organic cation/carnitine transporters in human bronchial epithelial cells: implications for carrier-mediated pulmonary absorption. Mol Pharm. 2009;7(1):187–95.CrossRef
1034.
Zurück zum Zitat Okuda M, Urakami Y, Saito H, Inui KI. Molecular mechanisms of organic cation transport in OCT2-expressing Xenopus oocytes. Biochim Biophys Acta. 1999;1417(2):224–31.PubMedCrossRef Okuda M, Urakami Y, Saito H, Inui KI. Molecular mechanisms of organic cation transport in OCT2-expressing Xenopus oocytes. Biochim Biophys Acta. 1999;1417(2):224–31.PubMedCrossRef
1035.
Zurück zum Zitat Wu X, Prasad PD, Leibach FH, Ganapathy V. cDNA sequence, transport function, and genomic organization of human OCTN2, a new member of the organic cation transporter family. Biochem Biophys Res Commun. 1998;246(3):589–95.PubMedCrossRef Wu X, Prasad PD, Leibach FH, Ganapathy V. cDNA sequence, transport function, and genomic organization of human OCTN2, a new member of the organic cation transporter family. Biochem Biophys Res Commun. 1998;246(3):589–95.PubMedCrossRef
1036.
Zurück zum Zitat Wenge B, Geyer J, Bönisch H. Oxybutynin and trospium are substrates of the human organic cation transporters. Naunyn Schmied Arch Pharmacol. 2011;383(2):203–8.CrossRef Wenge B, Geyer J, Bönisch H. Oxybutynin and trospium are substrates of the human organic cation transporters. Naunyn Schmied Arch Pharmacol. 2011;383(2):203–8.CrossRef
1037.
Zurück zum Zitat Bexten M, Oswald S, Grube M, Jia J, Graf T, Zimmermann U, et al. Expression of drug transporters and drug metabolizing enzymes in the bladder urothelium in man and affinity of the bladder spasmolytic trospium chloride to transporters likely involved in its pharmacokinetics. Mol Pharm. 2015;12(1):171–8.PubMedCrossRef Bexten M, Oswald S, Grube M, Jia J, Graf T, Zimmermann U, et al. Expression of drug transporters and drug metabolizing enzymes in the bladder urothelium in man and affinity of the bladder spasmolytic trospium chloride to transporters likely involved in its pharmacokinetics. Mol Pharm. 2015;12(1):171–8.PubMedCrossRef
1038.
Zurück zum Zitat Uwai Y, Tsuge M, Tokai Y, Kawasaki T, Nabekura T. Lithium interferes with the urinary excretion of phenolsulfonphthalein in rats: involvement of a reduced content of alpha-ketoglutarate, the driving force for organic anion transporters OAT1 and OAT3, in the kidney cortex. Pharmacology. 2015;96(5–6):278–83.PubMedCrossRef Uwai Y, Tsuge M, Tokai Y, Kawasaki T, Nabekura T. Lithium interferes with the urinary excretion of phenolsulfonphthalein in rats: involvement of a reduced content of alpha-ketoglutarate, the driving force for organic anion transporters OAT1 and OAT3, in the kidney cortex. Pharmacology. 2015;96(5–6):278–83.PubMedCrossRef
1039.
Zurück zum Zitat Takusagawa S, Ushigome F, Nemoto H, Takahashi Y, Li Q, Kerbusch V, et al. Intestinal absorption mechanism of mirabegron, a potent and selective beta(3)-adrenoceptor agonist: involvement of human efflux and/or influx transport systems. Mol Pharm. 2013;10(5):1783–94.PubMedCrossRef Takusagawa S, Ushigome F, Nemoto H, Takahashi Y, Li Q, Kerbusch V, et al. Intestinal absorption mechanism of mirabegron, a potent and selective beta(3)-adrenoceptor agonist: involvement of human efflux and/or influx transport systems. Mol Pharm. 2013;10(5):1783–94.PubMedCrossRef
1040.
Zurück zum Zitat Lucero ML, Gonzalo A, Ganza A, Leal N, Soengas I, Ioja E, et al. Interactions of bilastine, a new oral H1 antihistamine, with human transporter systems. Drug Chem Toxicol. 2012;35(S1):8–17.PubMedCrossRef Lucero ML, Gonzalo A, Ganza A, Leal N, Soengas I, Ioja E, et al. Interactions of bilastine, a new oral H1 antihistamine, with human transporter systems. Drug Chem Toxicol. 2012;35(S1):8–17.PubMedCrossRef
1041.
Zurück zum Zitat Tahara H, Kusuhara H, Maeda K, Koepsell H, Fuse E, Sugiyama Y. Inhibition of OAT3-mediated renal uptake as a mechanism for drug–drug interaction between fexofenadine and probenecid. Drug Metab Dispos. 2006;34(5):743–7.PubMedCrossRef Tahara H, Kusuhara H, Maeda K, Koepsell H, Fuse E, Sugiyama Y. Inhibition of OAT3-mediated renal uptake as a mechanism for drug–drug interaction between fexofenadine and probenecid. Drug Metab Dispos. 2006;34(5):743–7.PubMedCrossRef
1042.
Zurück zum Zitat Dresser GK, Bailey DG, Leake BF, Schwarz UI, Dawson PA, Freeman DJ, et al. Fruit juices inhibit organic anion transporting polypeptide-mediated drug uptake to decrease the oral availability of fexofenadine. Clin Pharmacol Ther. 2002;71(1):11–20.PubMedCrossRef Dresser GK, Bailey DG, Leake BF, Schwarz UI, Dawson PA, Freeman DJ, et al. Fruit juices inhibit organic anion transporting polypeptide-mediated drug uptake to decrease the oral availability of fexofenadine. Clin Pharmacol Ther. 2002;71(1):11–20.PubMedCrossRef
1043.
Zurück zum Zitat Matsushima S, Maeda K, Inoue K, K-y Ohta, Yuasa H, Kondo T, et al. The inhibition of human multidrug and toxin extrusion 1 is involved in the drug–drug interaction caused by cimetidine. Drug Metab Dispos. 2009;37(3):555–9.PubMedCrossRef Matsushima S, Maeda K, Inoue K, K-y Ohta, Yuasa H, Kondo T, et al. The inhibition of human multidrug and toxin extrusion 1 is involved in the drug–drug interaction caused by cimetidine. Drug Metab Dispos. 2009;37(3):555–9.PubMedCrossRef
1044.
Zurück zum Zitat Chen YA, Juan CH, Hsu KY. Does ethnic variability exist in the systemic exposures of OATP1A2 substrates-fexofenadine in Taiwanese? Indian J Pharm Sci. 2015;77(5):573–8.PubMedPubMedCentralCrossRef Chen YA, Juan CH, Hsu KY. Does ethnic variability exist in the systemic exposures of OATP1A2 substrates-fexofenadine in Taiwanese? Indian J Pharm Sci. 2015;77(5):573–8.PubMedPubMedCentralCrossRef
1045.
Zurück zum Zitat Ming X, Knight BM, Thakker DR. Vectorial transport of fexofenadine across Caco-2 cells: involvement of apical uptake and basolateral efflux transporters. Mol Pharm. 2011;8(5):1677–86.PubMedCrossRef Ming X, Knight BM, Thakker DR. Vectorial transport of fexofenadine across Caco-2 cells: involvement of apical uptake and basolateral efflux transporters. Mol Pharm. 2011;8(5):1677–86.PubMedCrossRef
1046.
Zurück zum Zitat Dai P, Zhu L, Yang X, Zhao M, Shi J, Wang Y, et al. Multidrug resistance-associated protein 2 is involved in the efflux of Aconitum alkaloids determined by MRP2-MDCKII cells. Life Sci. 2015;15(127):66–72.CrossRef Dai P, Zhu L, Yang X, Zhao M, Shi J, Wang Y, et al. Multidrug resistance-associated protein 2 is involved in the efflux of Aconitum alkaloids determined by MRP2-MDCKII cells. Life Sci. 2015;15(127):66–72.CrossRef
1047.
Zurück zum Zitat Nies A, Herrmann E, Brom M, Keppler D. Vectorial transport of the plant alkaloid berberine by double-transfected cells expressing the human organic cation transporter 1 (OCT1, SLC22A1) and the efflux pump MDR1 P-glycoprotein (ABCB1). Naunyn Schmied Arch Pharmacol. 2008;376(6):449–61.CrossRef Nies A, Herrmann E, Brom M, Keppler D. Vectorial transport of the plant alkaloid berberine by double-transfected cells expressing the human organic cation transporter 1 (OCT1, SLC22A1) and the efflux pump MDR1 P-glycoprotein (ABCB1). Naunyn Schmied Arch Pharmacol. 2008;376(6):449–61.CrossRef
1048.
Zurück zum Zitat Sun S, Wang K, Lei H, Li L, Tu M, Zeng S, et al. Inhibition of organic cation transporter 2 and 3 may be involved in the mechanism of the antidepressant-like action of berberine. Prog Neuropsychopharmacol Biol Psychiatry. 2014;49:1–6.PubMedCrossRef Sun S, Wang K, Lei H, Li L, Tu M, Zeng S, et al. Inhibition of organic cation transporter 2 and 3 may be involved in the mechanism of the antidepressant-like action of berberine. Prog Neuropsychopharmacol Biol Psychiatry. 2014;49:1–6.PubMedCrossRef
1049.
Zurück zum Zitat Yokooji T, Kawabe Y, Mori N, Murakami T. Effect of genistein, a natural soy isoflavone, on the pharmacokinetics and intestinal toxicity of irinotecan hydrochloride in rats. J Pharm Pharmacol. 2013;65(2):280–91.PubMedCrossRef Yokooji T, Kawabe Y, Mori N, Murakami T. Effect of genistein, a natural soy isoflavone, on the pharmacokinetics and intestinal toxicity of irinotecan hydrochloride in rats. J Pharm Pharmacol. 2013;65(2):280–91.PubMedCrossRef
1050.
Zurück zum Zitat Fleisher B, Unum J, Shao J, An G. Ingredients in fruit juices interact with dasatinib through inhibition of BCRP: a new mechanism of beverage-drug interaction. J Pharm Sci. 2015;104(1):266–75.PubMedCrossRef Fleisher B, Unum J, Shao J, An G. Ingredients in fruit juices interact with dasatinib through inhibition of BCRP: a new mechanism of beverage-drug interaction. J Pharm Sci. 2015;104(1):266–75.PubMedCrossRef
1051.
Zurück zum Zitat Knop J, Misaka S, Singer K, Hoier E, Muller F, Glaeser H, et al. Inhibitory effects of green tea and (-)-epigallocatechin gallate on transport by OATP1B1, OATP1B3, OCT1, OCT2, MATE1, MATE2-K and P-glycoprotein. PLoS One. 2015;10(10):e0139370.PubMedPubMedCentralCrossRef Knop J, Misaka S, Singer K, Hoier E, Muller F, Glaeser H, et al. Inhibitory effects of green tea and (-)-epigallocatechin gallate on transport by OATP1B1, OATP1B3, OCT1, OCT2, MATE1, MATE2-K and P-glycoprotein. PLoS One. 2015;10(10):e0139370.PubMedPubMedCentralCrossRef
1052.
Zurück zum Zitat Peng YH, Sweet DH, Lin SP, Yu CP, Lee Chao PD, Hou YC. Green tea inhibited the elimination of nephro-cardiovascular toxins and deteriorated the renal function in rats with renal failure. Sci Rep. 2015;5:16226.PubMedPubMedCentralCrossRef Peng YH, Sweet DH, Lin SP, Yu CP, Lee Chao PD, Hou YC. Green tea inhibited the elimination of nephro-cardiovascular toxins and deteriorated the renal function in rats with renal failure. Sci Rep. 2015;5:16226.PubMedPubMedCentralCrossRef
1053.
Zurück zum Zitat Misaka S, Yatabe J, Muller F, Takano K, Kawabe K, Glaeser H, et al. Green tea ingestion greatly reduces plasma concentrations of nadolol in healthy subjects. Clin Pharmacol Ther. 2014;95(4):432–8.PubMedCrossRef Misaka S, Yatabe J, Muller F, Takano K, Kawabe K, Glaeser H, et al. Green tea ingestion greatly reduces plasma concentrations of nadolol in healthy subjects. Clin Pharmacol Ther. 2014;95(4):432–8.PubMedCrossRef
1054.
Zurück zum Zitat Sun H, Wang X, Zhou X, Lu D, Ma Z, Wu B. Multidrug resistance-associated protein 4 (MRP4/ABCC4) controls efflux transport of hesperetin sulfates in sulfotransferase 1A3-overexpressing human embryonic kidney 293 cells. Drug Metab Dispos. 2015;43(10):1430–40.PubMedCrossRef Sun H, Wang X, Zhou X, Lu D, Ma Z, Wu B. Multidrug resistance-associated protein 4 (MRP4/ABCC4) controls efflux transport of hesperetin sulfates in sulfotransferase 1A3-overexpressing human embryonic kidney 293 cells. Drug Metab Dispos. 2015;43(10):1430–40.PubMedCrossRef
1055.
Zurück zum Zitat Bailey DG, Dresser GK, Leake BF, Kim RB. Naringin is a major and selective clinical inhibitor of organic anion-transporting polypeptide 1A2 (OATP1A2) in grapefruit juice. Clin Pharmacol Ther. 2007;81(4):495–502.PubMedCrossRef Bailey DG, Dresser GK, Leake BF, Kim RB. Naringin is a major and selective clinical inhibitor of organic anion-transporting polypeptide 1A2 (OATP1A2) in grapefruit juice. Clin Pharmacol Ther. 2007;81(4):495–502.PubMedCrossRef
1056.
Zurück zum Zitat Wong CC, Barron D, Orfila C, Dionisi F, Krajcsi P, Williamson G. Interaction of hydroxycinnamic acids and their conjugates with organic anion transporters and ATP-binding cassette transporters. Mol Nutr Food Res. 2011;55(7):979–88.PubMedCrossRef Wong CC, Barron D, Orfila C, Dionisi F, Krajcsi P, Williamson G. Interaction of hydroxycinnamic acids and their conjugates with organic anion transporters and ATP-binding cassette transporters. Mol Nutr Food Res. 2011;55(7):979–88.PubMedCrossRef
1057.
Zurück zum Zitat Hong SS, Seo K, Lim SC, Han HK. Interaction characteristics of flavonoids with human organic anion transporter 1 (hOAT1) and 3 (hOAT3). Pharm Res. 2007;56(6):468–73.CrossRef Hong SS, Seo K, Lim SC, Han HK. Interaction characteristics of flavonoids with human organic anion transporter 1 (hOAT1) and 3 (hOAT3). Pharm Res. 2007;56(6):468–73.CrossRef
1058.
Zurück zum Zitat Ikegawa T, Ohtani H, Koyabu N, Juichi M, Iwase Y, Ito C, et al. Inhibition of P-glycoprotein by flavonoid derivatives in adriamycin-resistant human myelogenous leukemia (K562/ADM) cells. Cancer Lett. 2002;177(1):89–93.PubMedCrossRef Ikegawa T, Ohtani H, Koyabu N, Juichi M, Iwase Y, Ito C, et al. Inhibition of P-glycoprotein by flavonoid derivatives in adriamycin-resistant human myelogenous leukemia (K562/ADM) cells. Cancer Lett. 2002;177(1):89–93.PubMedCrossRef
1059.
Zurück zum Zitat An G, Wang X, Morris ME. Flavonoids are inhibitors of human organic anion transporter 1 (OAT1)-mediated transport. Drug Metab Dispos. 2014;42(9):1357–66.PubMedPubMedCentralCrossRef An G, Wang X, Morris ME. Flavonoids are inhibitors of human organic anion transporter 1 (OAT1)-mediated transport. Drug Metab Dispos. 2014;42(9):1357–66.PubMedPubMedCentralCrossRef
1060.
Zurück zum Zitat Li Z, Wang K, Zheng J, Cheung FS, Chan T, Zhu L, et al. Interactions of the active components of Punica granatum (pomegranate) with the essential renal and hepatic human Solute Carrier transporters. Pharm Biol. 2014;52(12):1510–7.PubMedCrossRef Li Z, Wang K, Zheng J, Cheung FS, Chan T, Zhu L, et al. Interactions of the active components of Punica granatum (pomegranate) with the essential renal and hepatic human Solute Carrier transporters. Pharm Biol. 2014;52(12):1510–7.PubMedCrossRef
1061.
Zurück zum Zitat Youdim KA, Qaiser MZ, Begley DJ, Rice-Evans CA, Abbott NJ. Flavonoid permeability across an in situ model of the blood–brain barrier. Free Radic Biol Med. 2004;36(5):592–604.PubMedCrossRef Youdim KA, Qaiser MZ, Begley DJ, Rice-Evans CA, Abbott NJ. Flavonoid permeability across an in situ model of the blood–brain barrier. Free Radic Biol Med. 2004;36(5):592–604.PubMedCrossRef
1062.
Zurück zum Zitat Shapiro AB, Ling V. Effect of quercetin on hoechst 33342 transport by purified and reconstituted p-glycoprotein. Biochem Pharmacol. 1997;53(4):587–96.PubMedCrossRef Shapiro AB, Ling V. Effect of quercetin on hoechst 33342 transport by purified and reconstituted p-glycoprotein. Biochem Pharmacol. 1997;53(4):587–96.PubMedCrossRef
1063.
Zurück zum Zitat Wong CC, Akiyama Y, Abe T, Lippiat JD, Orfila C, Williamson G. Carrier-mediated transport of quercetin conjugates: Involvement of organic anion transporters and organic anion transporting polypeptides. Biochem Pharmacol. 2012;84(4):564–70.PubMedCrossRef Wong CC, Akiyama Y, Abe T, Lippiat JD, Orfila C, Williamson G. Carrier-mediated transport of quercetin conjugates: Involvement of organic anion transporters and organic anion transporting polypeptides. Biochem Pharmacol. 2012;84(4):564–70.PubMedCrossRef
1064.
Zurück zum Zitat Wong CC, Botting NP, Orfila C, Al-Maharik N, Williamson G. Flavonoid conjugates interact with organic anion transporters (OATs) and attenuate cytotoxicity of adefovir mediated by organic anion transporter 1 (OAT1/SLC22A6). Biochem Pharmacol. 2011;81(7):942–9.PubMedCrossRef Wong CC, Botting NP, Orfila C, Al-Maharik N, Williamson G. Flavonoid conjugates interact with organic anion transporters (OATs) and attenuate cytotoxicity of adefovir mediated by organic anion transporter 1 (OAT1/SLC22A6). Biochem Pharmacol. 2011;81(7):942–9.PubMedCrossRef
1065.
Zurück zum Zitat Lee JH, Lee JE, Kim Y, Lee H, Jun HJ, Lee SJ. Multidrug and toxic compound extrusion protein-1 (MATE1/SLC47A1) is a novel flavonoid transporter. J Agric Food Chem. 2014;62(40):9690–8.PubMedCrossRef Lee JH, Lee JE, Kim Y, Lee H, Jun HJ, Lee SJ. Multidrug and toxic compound extrusion protein-1 (MATE1/SLC47A1) is a novel flavonoid transporter. J Agric Food Chem. 2014;62(40):9690–8.PubMedCrossRef
1066.
Zurück zum Zitat Wang L, Pan X, Sweet DH. The anthraquinone drug rhein potently interferes with organic anion transporter-mediated renal elimination. Biochem Pharmacol. 2013;86(7):991–6.PubMedCrossRef Wang L, Pan X, Sweet DH. The anthraquinone drug rhein potently interferes with organic anion transporter-mediated renal elimination. Biochem Pharmacol. 2013;86(7):991–6.PubMedCrossRef
1067.
Zurück zum Zitat Ye L, Lu L, Li Y, Zeng S, Yang X, Chen W, et al. Potential role of ATP-binding cassette transporters in the intestinal transport of rhein. Food Chem Toxicol. 2013;58:301–5.PubMedCrossRef Ye L, Lu L, Li Y, Zeng S, Yang X, Chen W, et al. Potential role of ATP-binding cassette transporters in the intestinal transport of rhein. Food Chem Toxicol. 2013;58:301–5.PubMedCrossRef
1068.
Zurück zum Zitat Ma L, Zhao L, Hu H, Qin Y, Bian Y, Jiang H, et al. Interaction of five anthraquinones from rhubarb with human organic anion transporter 1 (SLC22A6) and 3 (SLC22A8) and drug–drug interaction in rats. J Ethnopharmacol. 2014;153(3):864–71.PubMedCrossRef Ma L, Zhao L, Hu H, Qin Y, Bian Y, Jiang H, et al. Interaction of five anthraquinones from rhubarb with human organic anion transporter 1 (SLC22A6) and 3 (SLC22A8) and drug–drug interaction in rats. J Ethnopharmacol. 2014;153(3):864–71.PubMedCrossRef
1069.
Zurück zum Zitat Shibayama Y, Kawachi A, Onimaru S, Tokunaga J, Ikeda R, Nishida K, et al. Effect of pre-treatment with St John’s Wort on nephrotoxicity of cisplatin in rats. Life Sci. 2007;81(2):103–8.PubMedCrossRef Shibayama Y, Kawachi A, Onimaru S, Tokunaga J, Ikeda R, Nishida K, et al. Effect of pre-treatment with St John’s Wort on nephrotoxicity of cisplatin in rats. Life Sci. 2007;81(2):103–8.PubMedCrossRef
1070.
Zurück zum Zitat Durr D, Stieger B, Kullak-Ublick GA, Rentsch KM, Steinert HC, Meier PJ, et al. St John’s Wort induces intestinal P-glycoprotein/MDR1 and intestinal and hepatic CYP3A4. Clin Pharmacol Ther. 2000;68(6):598–604.PubMedCrossRef Durr D, Stieger B, Kullak-Ublick GA, Rentsch KM, Steinert HC, Meier PJ, et al. St John’s Wort induces intestinal P-glycoprotein/MDR1 and intestinal and hepatic CYP3A4. Clin Pharmacol Ther. 2000;68(6):598–604.PubMedCrossRef
1071.
Zurück zum Zitat Makino T, Okajima K, Uebayashi R, Ohtake N, Inoue K, Mizukami H. 3-Monoglucuronyl-glycyrrhretinic acid is a substrate of organic anion transporters expressed in tubular epithelial cells and plays important roles in licorice-induced pseudoaldosteronism by inhibiting 11β-hydroxysteroid dehydrogenase 2. J Pharmacol Exp Ther. 2012;342(2):297–304.PubMedCrossRef Makino T, Okajima K, Uebayashi R, Ohtake N, Inoue K, Mizukami H. 3-Monoglucuronyl-glycyrrhretinic acid is a substrate of organic anion transporters expressed in tubular epithelial cells and plays important roles in licorice-induced pseudoaldosteronism by inhibiting 11β-hydroxysteroid dehydrogenase 2. J Pharmacol Exp Ther. 2012;342(2):297–304.PubMedCrossRef
1072.
Zurück zum Zitat Ma L, Qin Y, Shen Z, Bi H, Hu H, Huang M, et al. Aristolochic acid I is a substrate of BCRP but not P-glycoprotein or MRP2. J Ethnopharmacol. 2015;22(172):430–5.CrossRef Ma L, Qin Y, Shen Z, Bi H, Hu H, Huang M, et al. Aristolochic acid I is a substrate of BCRP but not P-glycoprotein or MRP2. J Ethnopharmacol. 2015;22(172):430–5.CrossRef
1073.
Zurück zum Zitat Carew MW, Leslie EM. Selenium-dependent and -independent transport of arsenic by the human multidrug resistance protein 2 (MRP2/ABCC2): implications for the mutual detoxification of arsenic and selenium. Carcinogenesis. 2010;31(8):1450–5.PubMedCrossRef Carew MW, Leslie EM. Selenium-dependent and -independent transport of arsenic by the human multidrug resistance protein 2 (MRP2/ABCC2): implications for the mutual detoxification of arsenic and selenium. Carcinogenesis. 2010;31(8):1450–5.PubMedCrossRef
1074.
Zurück zum Zitat Fahrmayr C, Konig J, Auge D, Mieth M, Munch K, Segrestaa J, et al. Phase I and II metabolism and MRP2-mediated export of bosentan in a MDCKII-OATP1B1-CYP3A4-UGT1A1-MRP2 quadruple-transfected cell line. Br J Pharmacol. 2013;169(1):21–33.PubMedPubMedCentralCrossRef Fahrmayr C, Konig J, Auge D, Mieth M, Munch K, Segrestaa J, et al. Phase I and II metabolism and MRP2-mediated export of bosentan in a MDCKII-OATP1B1-CYP3A4-UGT1A1-MRP2 quadruple-transfected cell line. Br J Pharmacol. 2013;169(1):21–33.PubMedPubMedCentralCrossRef
1075.
Zurück zum Zitat Uwai Y, Ozeki Y, Isaka T, Honjo H, Iwamoto K. Inhibitory effect of caffeic acid on human organic anion transporters hOAT1 and hOAT3: a novel candidate for food–drug interaction. Drug Metab Pharmacokinet. 2011;26(5):486–93.PubMedCrossRef Uwai Y, Ozeki Y, Isaka T, Honjo H, Iwamoto K. Inhibitory effect of caffeic acid on human organic anion transporters hOAT1 and hOAT3: a novel candidate for food–drug interaction. Drug Metab Pharmacokinet. 2011;26(5):486–93.PubMedCrossRef
1076.
Zurück zum Zitat Sane R, Agarwal S, Mittapalli RK, Elmquist WF. Saturable active efflux by p-glycoprotein and breast cancer resistance protein at the blood–brain barrier leads to nonlinear distribution of elacridar to the central nervous system. J Pharmacol Exp Ther. 2013;345(1):111–24.PubMedPubMedCentralCrossRef Sane R, Agarwal S, Mittapalli RK, Elmquist WF. Saturable active efflux by p-glycoprotein and breast cancer resistance protein at the blood–brain barrier leads to nonlinear distribution of elacridar to the central nervous system. J Pharmacol Exp Ther. 2013;345(1):111–24.PubMedPubMedCentralCrossRef
1077.
Zurück zum Zitat Sane R, Mittapalli RK, Elmquist WF. Development and evaluation of a novel microemulsion formulation of elacridar to improve its bioavailability. J Pharm Sci. 2013;102(4):1343–54.PubMedPubMedCentralCrossRef Sane R, Mittapalli RK, Elmquist WF. Development and evaluation of a novel microemulsion formulation of elacridar to improve its bioavailability. J Pharm Sci. 2013;102(4):1343–54.PubMedPubMedCentralCrossRef
1078.
Zurück zum Zitat Grigat S, Fork C, Bach M, Golz S, Geerts A, Schömig E, et al. The carnitine transporter SLC22A5 is not a general drug transporter, but it efficiently translocates mildronate. Drug Metab Dispos. 2009;37(2):330–7.PubMedCrossRef Grigat S, Fork C, Bach M, Golz S, Geerts A, Schömig E, et al. The carnitine transporter SLC22A5 is not a general drug transporter, but it efficiently translocates mildronate. Drug Metab Dispos. 2009;37(2):330–7.PubMedCrossRef
1079.
Zurück zum Zitat Bridges CC, Zalups RK, Joshee L. Toxicological significance of renal Bcrp: another potential transporter in the elimination of mercuric ions from proximal tubular cells. Toxicol Appl Pharmacol. 2015;285(2):110–7.PubMedPubMedCentralCrossRef Bridges CC, Zalups RK, Joshee L. Toxicological significance of renal Bcrp: another potential transporter in the elimination of mercuric ions from proximal tubular cells. Toxicol Appl Pharmacol. 2015;285(2):110–7.PubMedPubMedCentralCrossRef
1080.
Zurück zum Zitat Roy U, Chakravarty G, Honer Zu Bentrup K, Mondal D. Montelukast is a potent and durable inhibitor of multidrug resistance protein 2-mediated efflux of taxol and saquinavir. Biol Pharm Bull. 2009;32(12):2002–9.PubMedPubMedCentralCrossRef Roy U, Chakravarty G, Honer Zu Bentrup K, Mondal D. Montelukast is a potent and durable inhibitor of multidrug resistance protein 2-mediated efflux of taxol and saquinavir. Biol Pharm Bull. 2009;32(12):2002–9.PubMedPubMedCentralCrossRef
1081.
Zurück zum Zitat Schwob E, Hagos Y, Burckhardt G, Burckhardt BC. Transporters involved in renal excretion of N-carbamoylglutamate, an orphan drug to treat inborn n-acetylglutamate synthase deficiency. Am J Physiol Renal Physiol. 2014;307(12):F1373–9.PubMedCrossRef Schwob E, Hagos Y, Burckhardt G, Burckhardt BC. Transporters involved in renal excretion of N-carbamoylglutamate, an orphan drug to treat inborn n-acetylglutamate synthase deficiency. Am J Physiol Renal Physiol. 2014;307(12):F1373–9.PubMedCrossRef
1083.
Zurück zum Zitat Tsuda M, Sekine T, Takeda M, Cha SH, Kanai Y, Kimura M, et al. Transport of ochratoxin A by renal multispecific organic anion transporter 1. J Pharmacol Exp Ther. 1999;289(3):1301–5.PubMed Tsuda M, Sekine T, Takeda M, Cha SH, Kanai Y, Kimura M, et al. Transport of ochratoxin A by renal multispecific organic anion transporter 1. J Pharmacol Exp Ther. 1999;289(3):1301–5.PubMed
1084.
Zurück zum Zitat Babu E, Takeda M, Narikawa S, Kobayashi Y, Enomoto A, Tojo A, et al. Role of human organic anion transporter 4 in the transport of ochratoxin A. Biochim Biophys Acta. 2002;1590(1–3):64–75.PubMedCrossRef Babu E, Takeda M, Narikawa S, Kobayashi Y, Enomoto A, Tojo A, et al. Role of human organic anion transporter 4 in the transport of ochratoxin A. Biochim Biophys Acta. 2002;1590(1–3):64–75.PubMedCrossRef
1085.
Zurück zum Zitat Jung KY, Takeda M, Kim DK, Tojo A, Narikawa S, Yoo BS, et al. Characterization of ochratoxin A transport by human organic anion transporters. Life Sci. 2001;69(18):2123–35.PubMedCrossRef Jung KY, Takeda M, Kim DK, Tojo A, Narikawa S, Yoo BS, et al. Characterization of ochratoxin A transport by human organic anion transporters. Life Sci. 2001;69(18):2123–35.PubMedCrossRef
1086.
Zurück zum Zitat Sokol PP, Ripich G, Holohan PD, Ross CR. Mechanism of ochratoxin A transport in kidney. J Pharmacol Exp Ther. 1988;246(2):460–5.PubMed Sokol PP, Ripich G, Holohan PD, Ross CR. Mechanism of ochratoxin A transport in kidney. J Pharmacol Exp Ther. 1988;246(2):460–5.PubMed
1087.
Zurück zum Zitat Srimaroeng C, Chatsudthipong V, Aslamkhan AG, Pritchard JB. Transport of the natural sweetener stevioside and its aglycone steviol by human organic anion transporter (hOAT1; SLC22A6) and hOAT3 (SLC22A8). J Pharmacol Exp Ther. 2005;313(2):621–8.PubMedCrossRef Srimaroeng C, Chatsudthipong V, Aslamkhan AG, Pritchard JB. Transport of the natural sweetener stevioside and its aglycone steviol by human organic anion transporter (hOAT1; SLC22A6) and hOAT3 (SLC22A8). J Pharmacol Exp Ther. 2005;313(2):621–8.PubMedCrossRef
1088.
Zurück zum Zitat Wang M, Qi H, Li J, Xu Y, Zhang H. Transmembrane transport of steviol glucuronide and its potential interaction with selected drugs and natural compounds. Food Chem Toxicol. 2015;86:217–24.PubMedCrossRef Wang M, Qi H, Li J, Xu Y, Zhang H. Transmembrane transport of steviol glucuronide and its potential interaction with selected drugs and natural compounds. Food Chem Toxicol. 2015;86:217–24.PubMedCrossRef
1090.
Zurück zum Zitat Slizgi JR, Lu Y, Brouwer KR, St Claire RL, Freeman KM, Pan M, et al. Inhibition of human hepatic bile acid transporters by tolvaptan and metabolites: contributing factors to drug-induced liver injury? Toxicol Sci Off J Soc Toxicol. 2016;149(1):237–50.CrossRef Slizgi JR, Lu Y, Brouwer KR, St Claire RL, Freeman KM, Pan M, et al. Inhibition of human hepatic bile acid transporters by tolvaptan and metabolites: contributing factors to drug-induced liver injury? Toxicol Sci Off J Soc Toxicol. 2016;149(1):237–50.CrossRef
1091.
Zurück zum Zitat Feng B, Obach RS, Burstein AH, Clark DJ, de Morais SM, Faessel HM. Effect of human renal cationic transporter inhibition on the pharmacokinetics of varenicline, a new therapy for smoking cessation: an in vitro–in vivo study. Clin Pharmacol Ther. 2007;83(4):567–76.PubMedCrossRef Feng B, Obach RS, Burstein AH, Clark DJ, de Morais SM, Faessel HM. Effect of human renal cationic transporter inhibition on the pharmacokinetics of varenicline, a new therapy for smoking cessation: an in vitro–in vivo study. Clin Pharmacol Ther. 2007;83(4):567–76.PubMedCrossRef
1092.
Zurück zum Zitat Kajiwara M, Masuda S, Watanabe S, Terada T, Katsura T, Inui K-I. Renal tubular secretion of varenicline by multidrug and toxin extrusion (MATE) transporters. Drug Metab Pharmacokinet. 2012;27(6):563–9.PubMedCrossRef Kajiwara M, Masuda S, Watanabe S, Terada T, Katsura T, Inui K-I. Renal tubular secretion of varenicline by multidrug and toxin extrusion (MATE) transporters. Drug Metab Pharmacokinet. 2012;27(6):563–9.PubMedCrossRef
1093.
Zurück zum Zitat Hashimoto T, Narikawa S, Huang XL, Minematsu T, Usui T, Kamimura H, et al. Characterization of the renal tubular transport of zonampanel, a novel alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor antagonist, by human organic anion transporters. Drug Metab Dispos. 2004;32(10):1096–102.PubMed Hashimoto T, Narikawa S, Huang XL, Minematsu T, Usui T, Kamimura H, et al. Characterization of the renal tubular transport of zonampanel, a novel alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor antagonist, by human organic anion transporters. Drug Metab Dispos. 2004;32(10):1096–102.PubMed
1094.
Zurück zum Zitat Minematsu T, Hashimoto T, Usui T, Kamimura H. Characterization of renal tubular apical efflux of zonampanel, an alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor antagonist, in humans. Xenobiotica. 2008;38(9):1191–202.PubMedCrossRef Minematsu T, Hashimoto T, Usui T, Kamimura H. Characterization of renal tubular apical efflux of zonampanel, an alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor antagonist, in humans. Xenobiotica. 2008;38(9):1191–202.PubMedCrossRef
1095.
Zurück zum Zitat Uwai Y, Honjo H, Iwamoto K. Interaction and transport of kynurenic acid via human organic anion transporters hOAT1 and hOAT3. Pharmacol Res. 2012;65(2):254–60.PubMedCrossRef Uwai Y, Honjo H, Iwamoto K. Interaction and transport of kynurenic acid via human organic anion transporters hOAT1 and hOAT3. Pharmacol Res. 2012;65(2):254–60.PubMedCrossRef
1096.
Zurück zum Zitat Song I-S, Lee DY, Shin M-H, Kim H, Ahn YG, Park I, et al. Pharmacogenetics meets metabolomics: discovery of tryptophan as a new endogenous OCT2 substrate related to metformin disposition. PLoS One. 2012;7(5):e36637.PubMedPubMedCentralCrossRef Song I-S, Lee DY, Shin M-H, Kim H, Ahn YG, Park I, et al. Pharmacogenetics meets metabolomics: discovery of tryptophan as a new endogenous OCT2 substrate related to metformin disposition. PLoS One. 2012;7(5):e36637.PubMedPubMedCentralCrossRef
1097.
Zurück zum Zitat Bakhiya N, Bahn A, Burckhardt G, Wolff NA. Human organic anion transporter 3 (hOAT3) can operate as an exchanger and mediate secretory urate flux. Cell Physiol Biochem. 2003;13(5):249–56.PubMedCrossRef Bakhiya N, Bahn A, Burckhardt G, Wolff NA. Human organic anion transporter 3 (hOAT3) can operate as an exchanger and mediate secretory urate flux. Cell Physiol Biochem. 2003;13(5):249–56.PubMedCrossRef
1098.
Zurück zum Zitat Zhang X, Groves CE, Bahn A, Barendt WM, Prado MD, Rodiger M, et al. Relative contribution of OAT and OCT transporters to organic electrolyte transport in rabbit proximal tubule. AJP Renal Physiol. 2004;287(5):F999–1010.CrossRef Zhang X, Groves CE, Bahn A, Barendt WM, Prado MD, Rodiger M, et al. Relative contribution of OAT and OCT transporters to organic electrolyte transport in rabbit proximal tubule. AJP Renal Physiol. 2004;287(5):F999–1010.CrossRef
1099.
Zurück zum Zitat Ichida K, Hosoyamada M, Kimura H, Takeda M, Utsunomiya Y, Hosoya T, et al. Urate transport via human PAH transporter hOAT1 and its gene structure. Kidney Int. 2003;63(1):143–55.PubMedCrossRef Ichida K, Hosoyamada M, Kimura H, Takeda M, Utsunomiya Y, Hosoya T, et al. Urate transport via human PAH transporter hOAT1 and its gene structure. Kidney Int. 2003;63(1):143–55.PubMedCrossRef
Metadaten
Titel
Renal Drug Transporters and Drug Interactions
verfasst von
Anton Ivanyuk
Françoise Livio
Jérôme Biollaz
Thierry Buclin
Publikationsdatum
16.02.2017
Verlag
Springer International Publishing
Erschienen in
Clinical Pharmacokinetics / Ausgabe 8/2017
Print ISSN: 0312-5963
Elektronische ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-017-0506-8

Weitere Artikel der Ausgabe 8/2017

Clinical Pharmacokinetics 8/2017 Zur Ausgabe