Skip to main content
Erschienen in: Molecular Diagnosis & Therapy 2/2014

01.04.2014 | Review Article

Preclinical Imaging: an Essential Ally in Modern Biosciences

verfasst von: Lídia Cunha, Ildiko Horvath, Sara Ferreira, Joana Lemos, Pedro Costa, Domingos Vieira, Dániel S. Veres, Krisztián Szigeti, Teresa Summavielle, Domokos Máthé, Luís F. Metello

Erschienen in: Molecular Diagnosis & Therapy | Ausgabe 2/2014

Einloggen, um Zugang zu erhalten

Abstract

Translational research is changing the practice of modern medicine and the way in which health problems are approached and solved. The use of small-animal models in basic and preclinical sciences is a major keystone for these kinds of research and development strategies, representing a bridge between discoveries at the molecular level and clinical implementation in diagnostics and/or therapeutics. The development of high-resolution in vivo imaging technologies provides a unique opportunity for studying disease in real time, in a quantitative way, at the molecular level, along with the ability to repeatedly and non-invasively monitor disease progression or response to treatment. The greatest advantages of preclinical imaging techniques include the reduction of biological variability and the opportunity to acquire, in continuity, an impressive amount of unique information (without interfering with the biological process under study) in distinct forms, repeated or modulated as needed, along with the substantial reduction in the number of animals required for a particular study, fully complying with 3R (Replacement, Reduction and Refinement) policies. The most suitable modalities for small-animal in vivo imaging applications are based on nuclear medicine techniques (essentially, positron emission tomography [PET] and single photon emission computed tomography [SPECT]), optical imaging (OI), computed tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy imaging (MRSI), and ultrasound. Each modality has intrinsic advantages and limitations. More recently, aiming to overcome the inherent limitations of each imaging modality, multimodality devices designed to provide complementary information upon the pathophysiological process under study have gained popularity. The combination of high-resolution modalities, like micro-CT or micro-MRI, with highly sensitive techniques providing functional information, such as micro-PET or micro-SPECT, will continue to broaden the horizons of research in such key areas as infection, oncology, cardiology, and neurology, contributing not only to the understanding of the underlying mechanisms of disease, but also providing efficient and unique tools for evaluating new chemical entities and candidate drugs. The added value of small-animal imaging techniques has driven their increasing use by pharmaceutical companies, contract research organizations, and research institutions.
Literatur
1.
Zurück zum Zitat Milne CP, Kaitin KI. Translational medicine: an engine of change for bringing new technology to community health. Sci Transl Med. 2009 Nov 4;1(5):5cm5. Milne CP, Kaitin KI. Translational medicine: an engine of change for bringing new technology to community health. Sci Transl Med. 2009 Nov 4;1(5):5cm5.
2.
Zurück zum Zitat Lewis JS, Achilefu S, Garbow JR, Laforest R, Welch MJ. Small animal imaging: current technology and perspectives for oncological imaging. Eur J Cancer. 2002;38(16):2173–88.PubMedCrossRef Lewis JS, Achilefu S, Garbow JR, Laforest R, Welch MJ. Small animal imaging: current technology and perspectives for oncological imaging. Eur J Cancer. 2002;38(16):2173–88.PubMedCrossRef
3.
Zurück zum Zitat Franc BL, Acton PD, Mari C, Hasegawa BH. Small-animal SPECT and SPECT/CT: important tools for preclinical investigation. J Nucl Med. 2008;49(10):1651–63.PubMedCrossRef Franc BL, Acton PD, Mari C, Hasegawa BH. Small-animal SPECT and SPECT/CT: important tools for preclinical investigation. J Nucl Med. 2008;49(10):1651–63.PubMedCrossRef
4.
Zurück zum Zitat Allport JR, Weissleder R. In vivo imaging of gene and cell therapies. Exp Hematol. 2001;29(11):1237–46.PubMedCrossRef Allport JR, Weissleder R. In vivo imaging of gene and cell therapies. Exp Hematol. 2001;29(11):1237–46.PubMedCrossRef
5.
Zurück zum Zitat Pomper MG, Lee JS. Small animal imaging in drug development. Curr Pharm Des. 2005;11(25):3247–72.PubMedCrossRef Pomper MG, Lee JS. Small animal imaging in drug development. Curr Pharm Des. 2005;11(25):3247–72.PubMedCrossRef
6.
Zurück zum Zitat Deng WP, Wu CC, Lee CC, Yang WK, Wang HE, Liu RS, et al. Serial in vivo imaging of the lung metastases model and gene therapy using HSV1-tk and ganciclovir. J Nucl Med. 2006;47(5):877–84.PubMed Deng WP, Wu CC, Lee CC, Yang WK, Wang HE, Liu RS, et al. Serial in vivo imaging of the lung metastases model and gene therapy using HSV1-tk and ganciclovir. J Nucl Med. 2006;47(5):877–84.PubMed
7.
Zurück zum Zitat Turetschek K, Floyd E, Helbich T, Roberts TP, Shames DM, Wendland MF, et al. MRI assessment of microvascular characteristics in experimental breast tumors using a new blood pool contrast agent (MS-325) with correlations to histopathology. J Magn Reson Imaging. 2001;14(3):237–42.PubMedCrossRef Turetschek K, Floyd E, Helbich T, Roberts TP, Shames DM, Wendland MF, et al. MRI assessment of microvascular characteristics in experimental breast tumors using a new blood pool contrast agent (MS-325) with correlations to histopathology. J Magn Reson Imaging. 2001;14(3):237–42.PubMedCrossRef
8.
Zurück zum Zitat Cheng Z, Mahmood A, Li H, Davison A, Jones AG. [99mTcOAADT]-(CH2)2-NEt2: a potential small-molecule single-photon emission computed tomography probe for imaging metastatic melanoma. Cancer Res. 2005;65(12):4979–86.PubMedCrossRef Cheng Z, Mahmood A, Li H, Davison A, Jones AG. [99mTcOAADT]-(CH2)2-NEt2: a potential small-molecule single-photon emission computed tomography probe for imaging metastatic melanoma. Cancer Res. 2005;65(12):4979–86.PubMedCrossRef
9.
Zurück zum Zitat Gambhir SS, Czernin J, Schwimmer J, Silverman DH, Coleman RE, Phelps ME. A tabulated summary of the FDG PET literature. J Nucl Med. 2001;42(5 Suppl):1S–93S.PubMed Gambhir SS, Czernin J, Schwimmer J, Silverman DH, Coleman RE, Phelps ME. A tabulated summary of the FDG PET literature. J Nucl Med. 2001;42(5 Suppl):1S–93S.PubMed
10.
Zurück zum Zitat Bading JR, Shields AF. Imaging of cell proliferation: status and prospects. J Nucl Med. 2008;49(Suppl 2):64S–80S.PubMedCrossRef Bading JR, Shields AF. Imaging of cell proliferation: status and prospects. J Nucl Med. 2008;49(Suppl 2):64S–80S.PubMedCrossRef
12.
Zurück zum Zitat Gambhir SS, Herschman HR, Cherry SR, Barrio JR, Satyamurthy N, Toyokuni T, et al. Imaging transgene expression with radionuclide imaging technologies. Neoplasia. 2000;2(1–2):118–38.PubMedCentralPubMedCrossRef Gambhir SS, Herschman HR, Cherry SR, Barrio JR, Satyamurthy N, Toyokuni T, et al. Imaging transgene expression with radionuclide imaging technologies. Neoplasia. 2000;2(1–2):118–38.PubMedCentralPubMedCrossRef
13.
Zurück zum Zitat Orlova A, Nilsson FY, Wikman M, Widstrom C, Stahl S, Carlsson J, et al. Comparative in vivo evaluation of technetium and iodine labels on an anti-HER2 affibody for single-photon imaging of HER2 expression in tumors. J Nucl Med. 2006;47(3):512–9.PubMed Orlova A, Nilsson FY, Wikman M, Widstrom C, Stahl S, Carlsson J, et al. Comparative in vivo evaluation of technetium and iodine labels on an anti-HER2 affibody for single-photon imaging of HER2 expression in tumors. J Nucl Med. 2006;47(3):512–9.PubMed
14.
Zurück zum Zitat Foss CA, Mease RC, Fan H, Wang Y, Ravert HT, Dannals RF, et al. Radiolabeled small-molecule ligands for prostate-specific membrane antigen: in vivo imaging in experimental models of prostate cancer. Clin Cancer Res. 2005;11(11):4022–8.PubMedCrossRef Foss CA, Mease RC, Fan H, Wang Y, Ravert HT, Dannals RF, et al. Radiolabeled small-molecule ligands for prostate-specific membrane antigen: in vivo imaging in experimental models of prostate cancer. Clin Cancer Res. 2005;11(11):4022–8.PubMedCrossRef
15.
Zurück zum Zitat Haubner RH, Wester HJ, Weber WA, Schwaiger M. Radiotracer-based strategies to image angiogenesis. Q J Nucl Med. 2003;47(3):189–99.PubMed Haubner RH, Wester HJ, Weber WA, Schwaiger M. Radiotracer-based strategies to image angiogenesis. Q J Nucl Med. 2003;47(3):189–99.PubMed
16.
Zurück zum Zitat Jia B, Shi J, Yang Z, Xu B, Liu Z, Zhao H, et al. 99mTc-labeled cyclic RGDfK dimer: initial evaluation for SPECT imaging of glioma integrin alphavbeta3 expression. Bioconjugate Chem. 2006;17(4):1069–76.CrossRef Jia B, Shi J, Yang Z, Xu B, Liu Z, Zhao H, et al. 99mTc-labeled cyclic RGDfK dimer: initial evaluation for SPECT imaging of glioma integrin alphavbeta3 expression. Bioconjugate Chem. 2006;17(4):1069–76.CrossRef
18.
Zurück zum Zitat Holland JP, Lewis JS, Dehdashti F. Assessing tumor hypoxia by positron emission tomography with Cu-ATSM. Q J Nucl Med Mol Imag. 2009;53(2):193–200. Holland JP, Lewis JS, Dehdashti F. Assessing tumor hypoxia by positron emission tomography with Cu-ATSM. Q J Nucl Med Mol Imag. 2009;53(2):193–200.
19.
Zurück zum Zitat Madar I, Huang Y, Ravert H, Dalrymple SL, Davidson NE, Isaacs JT, et al. Detection and quantification of the evolution dynamics of apoptosis using the PET voltage sensor 18F-fluorobenzyl triphenyl phosphonium. J Nucl Med. 2009;50(5):774–80.PubMedCrossRef Madar I, Huang Y, Ravert H, Dalrymple SL, Davidson NE, Isaacs JT, et al. Detection and quantification of the evolution dynamics of apoptosis using the PET voltage sensor 18F-fluorobenzyl triphenyl phosphonium. J Nucl Med. 2009;50(5):774–80.PubMedCrossRef
20.
Zurück zum Zitat Murakami Y, Takamatsu H, Taki J, Tatsumi M, Noda A, Ichise R, et al. 18F-labelled annexin V: a PET tracer for apoptosis imaging. Eur J Nucl Med Mol Imag. 2004;31(4):469–74.CrossRef Murakami Y, Takamatsu H, Taki J, Tatsumi M, Noda A, Ichise R, et al. 18F-labelled annexin V: a PET tracer for apoptosis imaging. Eur J Nucl Med Mol Imag. 2004;31(4):469–74.CrossRef
21.
Zurück zum Zitat Jaffer FA, Weissleder R. Seeing within: molecular imaging of the cardiovascular system. Circ Res. 2004;94(4):433–45.PubMedCrossRef Jaffer FA, Weissleder R. Seeing within: molecular imaging of the cardiovascular system. Circ Res. 2004;94(4):433–45.PubMedCrossRef
22.
Zurück zum Zitat Lamb HJ, van der Meer RW, de Roos A, Bax JJ. Cardiovascular molecular MR imaging. Eur J Nucl Med Mol Imag. 2007;34(Suppl 1):S99–104.CrossRef Lamb HJ, van der Meer RW, de Roos A, Bax JJ. Cardiovascular molecular MR imaging. Eur J Nucl Med Mol Imag. 2007;34(Suppl 1):S99–104.CrossRef
23.
Zurück zum Zitat Hua J, Dobrucki LW, Sadeghi MM, Zhang J, Bourke BN, Cavaliere P, et al. Noninvasive imaging of angiogenesis with a 99mTc-labeled peptide targeted at alphavbeta3 integrin after murine hindlimb ischemia. Circulation. 2005;111(24):3255–60.PubMedCrossRef Hua J, Dobrucki LW, Sadeghi MM, Zhang J, Bourke BN, Cavaliere P, et al. Noninvasive imaging of angiogenesis with a 99mTc-labeled peptide targeted at alphavbeta3 integrin after murine hindlimb ischemia. Circulation. 2005;111(24):3255–60.PubMedCrossRef
24.
Zurück zum Zitat Khaw BA, Tekabe Y, Johnson LL. Imaging experimental atherosclerotic lesions in ApoE knockout mice: enhanced targeting with Z2D3-anti-DTPA bispecific antibody and 99mTc-labeled negatively charged polymers. J Nucl Med. 2006;47(5):868–76.PubMed Khaw BA, Tekabe Y, Johnson LL. Imaging experimental atherosclerotic lesions in ApoE knockout mice: enhanced targeting with Z2D3-anti-DTPA bispecific antibody and 99mTc-labeled negatively charged polymers. J Nucl Med. 2006;47(5):868–76.PubMed
25.
Zurück zum Zitat Kolodgie FD, Petrov A, Virmani R, Narula N, Verjans JW, Weber DK, et al. Targeting of apoptotic macrophages and experimental atheroma with radiolabeled annexin V: a technique with potential for noninvasive imaging of vulnerable plaque. Circulation. 2003;108(25):3134–9.PubMedCrossRef Kolodgie FD, Petrov A, Virmani R, Narula N, Verjans JW, Weber DK, et al. Targeting of apoptotic macrophages and experimental atheroma with radiolabeled annexin V: a technique with potential for noninvasive imaging of vulnerable plaque. Circulation. 2003;108(25):3134–9.PubMedCrossRef
26.
Zurück zum Zitat Schafers M, Riemann B, Kopka K, Breyholz HJ, Wagner S, Schafers KP, et al. Scintigraphic imaging of matrix metalloproteinase activity in the arterial wall in vivo. Circulation. 2004;109(21):2554–9.PubMedCrossRef Schafers M, Riemann B, Kopka K, Breyholz HJ, Wagner S, Schafers KP, et al. Scintigraphic imaging of matrix metalloproteinase activity in the arterial wall in vivo. Circulation. 2004;109(21):2554–9.PubMedCrossRef
27.
Zurück zum Zitat Acton PD, Kung HF. Small animal imaging with high resolution single photon emission tomography. Nucl Med Biol. 2003;30(8):889–95.PubMedCrossRef Acton PD, Kung HF. Small animal imaging with high resolution single photon emission tomography. Nucl Med Biol. 2003;30(8):889–95.PubMedCrossRef
28.
Zurück zum Zitat Lancelot S, Zimmer L. Small-animal positron emission tomography as a tool for neuropharmacology. Trend Pharmacol Sci. 2010;31(9):411–7.CrossRef Lancelot S, Zimmer L. Small-animal positron emission tomography as a tool for neuropharmacology. Trend Pharmacol Sci. 2010;31(9):411–7.CrossRef
29.
Zurück zum Zitat Zanzonico P. Noninvasive imaging for supporting basic research. In: Kiessling F, Pichler BJ, editors. Small animal imaging—basics and practical guide. Heidelberg: Springer; 2011. p. 3–16.CrossRef Zanzonico P. Noninvasive imaging for supporting basic research. In: Kiessling F, Pichler BJ, editors. Small animal imaging—basics and practical guide. Heidelberg: Springer; 2011. p. 3–16.CrossRef
30.
Zurück zum Zitat Kagadis GC, Loudos G, Katsanos K, Langer SG, Nikiforidis GC. In vivo small animal imaging: current status and future prospects. Med Phys. 2010;37(12):6421–42.PubMedCrossRef Kagadis GC, Loudos G, Katsanos K, Langer SG, Nikiforidis GC. In vivo small animal imaging: current status and future prospects. Med Phys. 2010;37(12):6421–42.PubMedCrossRef
32.
Zurück zum Zitat Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 2003;17(5):545–80.PubMedCrossRef Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 2003;17(5):545–80.PubMedCrossRef
33.
Zurück zum Zitat Grassi R, Lagalla R, Rotondo A. Genomics, proteomics, MEMS and SAIF: which role for diagnostic imaging? La Radiologia medica. 2008;113(6):775–8.PubMedCrossRef Grassi R, Lagalla R, Rotondo A. Genomics, proteomics, MEMS and SAIF: which role for diagnostic imaging? La Radiologia medica. 2008;113(6):775–8.PubMedCrossRef
34.
Zurück zum Zitat Alberti C. From molecular imaging in preclinical/clinical oncology to theranostic applications in targeted tumor therapy. Eur Rev Med Pharmacol Sci. 2012;16(14):1925–33.PubMed Alberti C. From molecular imaging in preclinical/clinical oncology to theranostic applications in targeted tumor therapy. Eur Rev Med Pharmacol Sci. 2012;16(14):1925–33.PubMed
35.
Zurück zum Zitat Meikle SR, Kench P, Kassiou M, Banati RB. Small animal SPECT and its place in the matrix of molecular imaging technologies. Phys Med Biol. 2005;50(22):R45–61.PubMedCrossRef Meikle SR, Kench P, Kassiou M, Banati RB. Small animal SPECT and its place in the matrix of molecular imaging technologies. Phys Med Biol. 2005;50(22):R45–61.PubMedCrossRef
39.
Zurück zum Zitat Kim H, Furenlid LR, Crawford MJ, Wilson DW, Barber HB, Peterson TE, et al. SemiSPECT: a small-animal single-photon emission computed tomography (SPECT) imager based on eight cadmium zinc telluride (CZT) detector arrays. Med Phys. 2006;33(2):465–74.PubMedCentralPubMedCrossRef Kim H, Furenlid LR, Crawford MJ, Wilson DW, Barber HB, Peterson TE, et al. SemiSPECT: a small-animal single-photon emission computed tomography (SPECT) imager based on eight cadmium zinc telluride (CZT) detector arrays. Med Phys. 2006;33(2):465–74.PubMedCentralPubMedCrossRef
40.
41.
Zurück zum Zitat Phelps ME. PET: the merging of biology and imaging into molecular imaging. J Nucl Med. 2000;41(4):661–81.PubMed Phelps ME. PET: the merging of biology and imaging into molecular imaging. J Nucl Med. 2000;41(4):661–81.PubMed
42.
Zurück zum Zitat Kowalski J, Henze M, Schuhmacher J, Mäcke HR, Hofmann M, Haberkorn U. Evaluation of Positron Emission Tomography Imaging Using [68 Ga]-DOTA-D Phe1-Tyr3-Octreotide in Comparison to [111In]-DTPAOC SPECT. First Results in Patients with Neuroendocrine Tumors. Mol Imaging Biol. 2003;5(1):42–8.PubMedCrossRef Kowalski J, Henze M, Schuhmacher J, Mäcke HR, Hofmann M, Haberkorn U. Evaluation of Positron Emission Tomography Imaging Using [68 Ga]-DOTA-D Phe1-Tyr3-Octreotide in Comparison to [111In]-DTPAOC SPECT. First Results in Patients with Neuroendocrine Tumors. Mol Imaging Biol. 2003;5(1):42–8.PubMedCrossRef
43.
Zurück zum Zitat Holland JP, Sheh Y, Lewis JS. Standardized methods for the production of high specific-activity zirconium-89. Nucl Med Biol. 2009;36(7):729–39.PubMedCentralPubMedCrossRef Holland JP, Sheh Y, Lewis JS. Standardized methods for the production of high specific-activity zirconium-89. Nucl Med Biol. 2009;36(7):729–39.PubMedCentralPubMedCrossRef
44.
Zurück zum Zitat Basu S, Urhan M, Rosenbaum J, Alavi A. PET and PET/CT in the management of thyroid cancer. Method Mol Biol. 2011;727:205–24.CrossRef Basu S, Urhan M, Rosenbaum J, Alavi A. PET and PET/CT in the management of thyroid cancer. Method Mol Biol. 2011;727:205–24.CrossRef
46.
Zurück zum Zitat Levin CS, Zaidi H. Current trends in preclinical PET system design. PET Clin. 2007;2(2):125–60.CrossRef Levin CS, Zaidi H. Current trends in preclinical PET system design. PET Clin. 2007;2(2):125–60.CrossRef
47.
Zurück zum Zitat Yao R, Lecomte R, Crawford ES. Small-animal PET: what is it, and why do we need it? J Nucl Med Technol. 2012 Sep;40(3):157-65. Yao R, Lecomte R, Crawford ES. Small-animal PET: what is it, and why do we need it? J Nucl Med Technol. 2012 Sep;40(3):157-65.
48.
Zurück zum Zitat Hutchins GD, Miller MA, Soon VC, Receveur T. Small animal PET imaging. ILAR J. 2008;49(1):54–65.PubMedCrossRef Hutchins GD, Miller MA, Soon VC, Receveur T. Small animal PET imaging. ILAR J. 2008;49(1):54–65.PubMedCrossRef
49.
Zurück zum Zitat Lecomte R. Technology challenges in small animal PET imaging. Nucl Instrum Methods Phys Res A. 2004;527(1–2):157–65.CrossRef Lecomte R. Technology challenges in small animal PET imaging. Nucl Instrum Methods Phys Res A. 2004;527(1–2):157–65.CrossRef
50.
Zurück zum Zitat Comley J. In vivo preclinical imaging: an essential tool in translational research. Drug Discovery World. 2011:58–71. Comley J. In vivo preclinical imaging: an essential tool in translational research. Drug Discovery World. 2011:58–71.
51.
Zurück zum Zitat Beekman F, van der Have F. The pinhole: gateway to ultra-high-resolution three-dimensional radionuclide imaging. Eur J Nucl Med Mol Imaging. 2007;34(2):151–61.PubMedCrossRef Beekman F, van der Have F. The pinhole: gateway to ultra-high-resolution three-dimensional radionuclide imaging. Eur J Nucl Med Mol Imaging. 2007;34(2):151–61.PubMedCrossRef
52.
Zurück zum Zitat Shao Y, Cherry SR, Farahani K, Slates R, Silverman RW, Meadors K, et al. Development of a PET detector system compatible with MRI/NMR systems. IEEE Trans Nucl Sci. 1997;44(3):1167–71.CrossRef Shao Y, Cherry SR, Farahani K, Slates R, Silverman RW, Meadors K, et al. Development of a PET detector system compatible with MRI/NMR systems. IEEE Trans Nucl Sci. 1997;44(3):1167–71.CrossRef
54.
Zurück zum Zitat de Kemp RA, Epstein FH, Catana C, Tsui BM, Ritman EL. Small-animal molecular imaging methods. J Nucl Med. 2010;1(51 Suppl 1):18S–32S.CrossRef de Kemp RA, Epstein FH, Catana C, Tsui BM, Ritman EL. Small-animal molecular imaging methods. J Nucl Med. 2010;1(51 Suppl 1):18S–32S.CrossRef
55.
Zurück zum Zitat Fleming JS, Alaamer AS. Influence of collimator characteristics on quantification in SPECT. J Nucl Med. 1996;37(11):1832–6.PubMed Fleming JS, Alaamer AS. Influence of collimator characteristics on quantification in SPECT. J Nucl Med. 1996;37(11):1832–6.PubMed
56.
Zurück zum Zitat Chatziioannou AF, Cherry SR, Shao Y, Silverman RW, Meadors K, Farquhar TH, et al. Performance evaluation of microPET: a high-resolution lutetium oxyorthosilicate PET scanner for animal imaging. J Nucl Med. 1999;40(7):1164–75.PubMedCentralPubMed Chatziioannou AF, Cherry SR, Shao Y, Silverman RW, Meadors K, Farquhar TH, et al. Performance evaluation of microPET: a high-resolution lutetium oxyorthosilicate PET scanner for animal imaging. J Nucl Med. 1999;40(7):1164–75.PubMedCentralPubMed
57.
Zurück zum Zitat Levin CS, Hoffman EJ. Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution. Phys Med Biol. 1999;44(3):781.PubMedCrossRef Levin CS, Hoffman EJ. Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution. Phys Med Biol. 1999;44(3):781.PubMedCrossRef
58.
Zurück zum Zitat Tai YC, Ruangma A, Rowland D, Siegel S, Newport DF, Chow PL, et al. Performance evaluation of the microPET focus: a third-generation microPET scanner dedicated to animal imaging. J Nucl Med. 2005;46(3):455–63.PubMed Tai YC, Ruangma A, Rowland D, Siegel S, Newport DF, Chow PL, et al. Performance evaluation of the microPET focus: a third-generation microPET scanner dedicated to animal imaging. J Nucl Med. 2005;46(3):455–63.PubMed
59.
Zurück zum Zitat Beekman FJ, van der Have F, Vastenhouw B, van der Linden AJ, van Rijk PP, Burbach JP, et al. U-SPECT-I: a novel system for submillimeter-resolution tomography with radiolabeled molecules in mice. J Nucl Med. 2005;46(7):1194–200.PubMed Beekman FJ, van der Have F, Vastenhouw B, van der Linden AJ, van Rijk PP, Burbach JP, et al. U-SPECT-I: a novel system for submillimeter-resolution tomography with radiolabeled molecules in mice. J Nucl Med. 2005;46(7):1194–200.PubMed
60.
Zurück zum Zitat Vastenhouw B, Beekman F. Submillimeter total-body murine imaging with U-SPECT-I. J Nucl Med. 2007;48(3):487–93.PubMed Vastenhouw B, Beekman F. Submillimeter total-body murine imaging with U-SPECT-I. J Nucl Med. 2007;48(3):487–93.PubMed
61.
Zurück zum Zitat Chatziioannou AF. Instrumentation for molecular imaging in preclinical research: Micro-PET and Micro-SPECT. Proc Am Thorac Soc. 2005;2(6):533-6, 10-11. Chatziioannou AF. Instrumentation for molecular imaging in preclinical research: Micro-PET and Micro-SPECT. Proc Am Thorac Soc. 2005;2(6):533-6, 10-11.
62.
Zurück zum Zitat Henriksen G, Drzezga A. Imaging in neurology research II: PET imaging in CNS disorders. In: Kiessling F, Pichler BJ, editors. Small animal imaging—basics and practical guide. Heidelberg: Springer; 2011. p. 499–513.CrossRef Henriksen G, Drzezga A. Imaging in neurology research II: PET imaging in CNS disorders. In: Kiessling F, Pichler BJ, editors. Small animal imaging—basics and practical guide. Heidelberg: Springer; 2011. p. 499–513.CrossRef
63.
Zurück zum Zitat Hume SP, Gunn RN, Jones T. Pharmacological constraints associated with positron emission tomographic scanning of small laboratory animals. Eur J Nucl Med. 1998;25(2):173–6.PubMedCrossRef Hume SP, Gunn RN, Jones T. Pharmacological constraints associated with positron emission tomographic scanning of small laboratory animals. Eur J Nucl Med. 1998;25(2):173–6.PubMedCrossRef
64.
Zurück zum Zitat Judenhofer MS, Wiehr S, Kukuk D, Fischer K, Pichler BJ. Guidelines for nuclear image analysis. In: Kiessling F, Pichler BJ, editors. Small animal imaging—basics and practical guide. Heidelberg: Springer; 2011. p. 379–86.CrossRef Judenhofer MS, Wiehr S, Kukuk D, Fischer K, Pichler BJ. Guidelines for nuclear image analysis. In: Kiessling F, Pichler BJ, editors. Small animal imaging—basics and practical guide. Heidelberg: Springer; 2011. p. 379–86.CrossRef
65.
Zurück zum Zitat Cavanaugh D, Johnson E, Price RE, Kurie J, Travis EL, Cody DD. In vivo respiratory-gated micro-CT imaging in small-animal oncology models. Mol Imaging. 2004;3(1):55–62.PubMedCrossRef Cavanaugh D, Johnson E, Price RE, Kurie J, Travis EL, Cody DD. In vivo respiratory-gated micro-CT imaging in small-animal oncology models. Mol Imaging. 2004;3(1):55–62.PubMedCrossRef
66.
Zurück zum Zitat Ritman EL. Current status of developments and applications of micro-CT. Annu Rev Biomed Eng. 2011;15(13):531–52.CrossRef Ritman EL. Current status of developments and applications of micro-CT. Annu Rev Biomed Eng. 2011;15(13):531–52.CrossRef
67.
Zurück zum Zitat Badea CT, Drangova M, Holdsworth DW, Johnson GA. In vivo small-animal imaging using micro-CT and digital subtraction angiography. Phys Med Biol. 2008;53(19):R319–50.PubMedCentralPubMedCrossRef Badea CT, Drangova M, Holdsworth DW, Johnson GA. In vivo small-animal imaging using micro-CT and digital subtraction angiography. Phys Med Biol. 2008;53(19):R319–50.PubMedCentralPubMedCrossRef
68.
69.
Zurück zum Zitat Pietsch H. CT contrast agents. In: Kiessling F, Pichler BJ, editors. Small animal imaging—basics and practical guide. Heidelberg: Springer; 2011. p. 141–9.CrossRef Pietsch H. CT contrast agents. In: Kiessling F, Pichler BJ, editors. Small animal imaging—basics and practical guide. Heidelberg: Springer; 2011. p. 141–9.CrossRef
70.
Zurück zum Zitat Kalender WA, Deak P, Engelke K, Karolczak M. X-ray and X-ray CT. In: Kiessling F, Pichler BJ, editors. Small animal imaging—basics and practical guide. Heidelberg: Springer; 2011. p. 125–39.CrossRef Kalender WA, Deak P, Engelke K, Karolczak M. X-ray and X-ray CT. In: Kiessling F, Pichler BJ, editors. Small animal imaging—basics and practical guide. Heidelberg: Springer; 2011. p. 125–39.CrossRef
71.
Zurück zum Zitat Dufort S, Sancey L, Wenk C, Josserand V, Coll JL. Optical small animal imaging in the drug discovery process. Biochim Biophys Acta. 2010;1798(12):2266–73.PubMedCrossRef Dufort S, Sancey L, Wenk C, Josserand V, Coll JL. Optical small animal imaging in the drug discovery process. Biochim Biophys Acta. 2010;1798(12):2266–73.PubMedCrossRef
72.
Zurück zum Zitat Tremoleda JL, Khalil M, Gompels LL, Wylezinska-Arridge M, Vincent T, Gsell W. Imaging technologies for preclinical models of bone and joint disorders. EJNMMI Res. 2011;1(1):11.PubMedCentralPubMedCrossRef Tremoleda JL, Khalil M, Gompels LL, Wylezinska-Arridge M, Vincent T, Gsell W. Imaging technologies for preclinical models of bone and joint disorders. EJNMMI Res. 2011;1(1):11.PubMedCentralPubMedCrossRef
73.
Zurück zum Zitat Koba W, Kim K, Lipton ML, Jelicks L, Das B, Herbst L, et al. Imaging devices for use in small animals. Semin Nucl Med. 2011;41(3):151–65.PubMedCrossRef Koba W, Kim K, Lipton ML, Jelicks L, Das B, Herbst L, et al. Imaging devices for use in small animals. Semin Nucl Med. 2011;41(3):151–65.PubMedCrossRef
74.
Zurück zum Zitat Jakob P. Small animal magnetic resonance imaging: basic principles, instrumentation and practical issues. In: Kiessling F, Pichler BJ, editors. Small animal imaging—basics and practical guide. Heidelberg: Springer; 2011. p. 151–64.CrossRef Jakob P. Small animal magnetic resonance imaging: basic principles, instrumentation and practical issues. In: Kiessling F, Pichler BJ, editors. Small animal imaging—basics and practical guide. Heidelberg: Springer; 2011. p. 151–64.CrossRef
75.
76.
Zurück zum Zitat Leroy-Willig A, Geldwerth-Feniger G. Nuclear magnetic resonance imaging and spectroscopy. In: Ntziachristos V, Leroy-Willig A, Tavitian B, editors. Textbook of in vivo imaging in vertebrates. UK: Wiley; 2007. p. 1–56. Leroy-Willig A, Geldwerth-Feniger G. Nuclear magnetic resonance imaging and spectroscopy. In: Ntziachristos V, Leroy-Willig A, Tavitian B, editors. Textbook of in vivo imaging in vertebrates. UK: Wiley; 2007. p. 1–56.
77.
Zurück zum Zitat Weber WA, Kiessling F. Imaging in oncology research. In: Kiessling F, Pichler BJ, editors. Small animal imaging—basics and practical guide. Heidelberg: Springer; 2011. p. 543–64.CrossRef Weber WA, Kiessling F. Imaging in oncology research. In: Kiessling F, Pichler BJ, editors. Small animal imaging—basics and practical guide. Heidelberg: Springer; 2011. p. 543–64.CrossRef
78.
Zurück zum Zitat Schaefer PW, Grant PE, Gonzalez RG. Diffusion-weighted MR imaging of the brain. Radiology. 2000;217(2):331–45.PubMedCrossRef Schaefer PW, Grant PE, Gonzalez RG. Diffusion-weighted MR imaging of the brain. Radiology. 2000;217(2):331–45.PubMedCrossRef
79.
Zurück zum Zitat Heeger DJ, Ress D. What does fMRI tell us about neuronal activity? Nat Rev Neurosci. 2002;3(2):142–51.PubMedCrossRef Heeger DJ, Ress D. What does fMRI tell us about neuronal activity? Nat Rev Neurosci. 2002;3(2):142–51.PubMedCrossRef
80.
Zurück zum Zitat Goetti R, O’Gorman R, Khan N, Kellenberger CJ, Scheer I. Arterial spin labelling MRI for assessment of cerebral perfusion in children with moyamoya disease: comparison with dynamic susceptibility contrast MRI. Neuroradiology. 2013;55(5):639–47.PubMedCrossRef Goetti R, O’Gorman R, Khan N, Kellenberger CJ, Scheer I. Arterial spin labelling MRI for assessment of cerebral perfusion in children with moyamoya disease: comparison with dynamic susceptibility contrast MRI. Neuroradiology. 2013;55(5):639–47.PubMedCrossRef
81.
Zurück zum Zitat Cutajar M, Thomas DL, Banks T, Clark CA, Golay X, Gordon I. Repeatability of renal arterial spin labelling MRI in healthy subjects. MAGMA. 2012;25(2):145–53.PubMedCrossRef Cutajar M, Thomas DL, Banks T, Clark CA, Golay X, Gordon I. Repeatability of renal arterial spin labelling MRI in healthy subjects. MAGMA. 2012;25(2):145–53.PubMedCrossRef
82.
Zurück zum Zitat Thomas D, Wells J. MR angiography and arterial spin labelling. Method Mol Biol. 2011;711:327–45.CrossRef Thomas D, Wells J. MR angiography and arterial spin labelling. Method Mol Biol. 2011;711:327–45.CrossRef
83.
Zurück zum Zitat Kazan SM, Chappell MA, Payne SJ. Modelling the effects of cardiac pulsations in arterial spin labelling. Phys Med Biol. 2010;55(3):799–816.PubMedCrossRef Kazan SM, Chappell MA, Payne SJ. Modelling the effects of cardiac pulsations in arterial spin labelling. Phys Med Biol. 2010;55(3):799–816.PubMedCrossRef
84.
Zurück zum Zitat Richards TL. Multinuclear Magnetic Resonance Spectroscopic Imaging. Encyclopedia of Analytical Chemistry. New York: Wiley; 2006. Richards TL. Multinuclear Magnetic Resonance Spectroscopic Imaging. Encyclopedia of Analytical Chemistry. New York: Wiley; 2006.
85.
Zurück zum Zitat Rudin M. Imaging techniques. Molecular imaging: basic principles and applications in biomedical research. London: Imperial College Press; 2005. p. 45–140. Rudin M. Imaging techniques. Molecular imaging: basic principles and applications in biomedical research. London: Imperial College Press; 2005. p. 45–140.
86.
Zurück zum Zitat Rosen Y, Lenkinski RE. Recent advances in magnetic resonance neurospectroscopy. Neurotherapeutics. 2007;4(3):330–45.PubMedCrossRef Rosen Y, Lenkinski RE. Recent advances in magnetic resonance neurospectroscopy. Neurotherapeutics. 2007;4(3):330–45.PubMedCrossRef
87.
Zurück zum Zitat Gujar SK, Maheshwari S, Bjorkman-Burtscher I, Sundgren PC. Magnetic resonance spectroscopy. J Neuroophthalmol. 2005;25(3):217–26.PubMedCrossRef Gujar SK, Maheshwari S, Bjorkman-Burtscher I, Sundgren PC. Magnetic resonance spectroscopy. J Neuroophthalmol. 2005;25(3):217–26.PubMedCrossRef
88.
90.
Zurück zum Zitat Forster D, Davies K, Williams S. Magnetic resonance spectroscopy in vivo of neurochemicals in a transgenic model of Alzheimer’s disease: a longitudinal study of metabolites, relaxation time, and behavioral analysis in TASTPM and wild-type mice. Magn Reson Med. 2013;69(4):944–55. Forster D, Davies K, Williams S. Magnetic resonance spectroscopy in vivo of neurochemicals in a transgenic model of Alzheimer’s disease: a longitudinal study of metabolites, relaxation time, and behavioral analysis in TASTPM and wild-type mice. Magn Reson Med. 2013;69(4):944–55.
91.
Zurück zum Zitat He Q, Xu RZ, Shkarin P, Pizzorno G, Lee-French CH, Rothman DL, et al. Magnetic resonance spectroscopic imaging of tumor metabolic markers for cancer diagnosis, metabolic phenotyping, and characterization of tumor microenvironment. Dis Markers. 2003;19(2–3):69–94.PubMed He Q, Xu RZ, Shkarin P, Pizzorno G, Lee-French CH, Rothman DL, et al. Magnetic resonance spectroscopic imaging of tumor metabolic markers for cancer diagnosis, metabolic phenotyping, and characterization of tumor microenvironment. Dis Markers. 2003;19(2–3):69–94.PubMed
92.
Zurück zum Zitat Bremer C, Ntziachristos V, Weissleder R. Optical-based molecular imaging: contrast agents and potential medical applications. Eur Radiol. 2003;13(2):231–43.PubMed Bremer C, Ntziachristos V, Weissleder R. Optical-based molecular imaging: contrast agents and potential medical applications. Eur Radiol. 2003;13(2):231–43.PubMed
93.
Zurück zum Zitat Chin PT, Welling MM, Meskers SC, Valdes Olmos RA, Tanke H, van Leeuwen FW. Optical imaging as an expansion of nuclear medicine: Cerenkov-based luminescence vs fluorescence-based luminescence. Eur J Nucl Med Mol Imaging. 2013;40(8):1283–91.PubMedCrossRef Chin PT, Welling MM, Meskers SC, Valdes Olmos RA, Tanke H, van Leeuwen FW. Optical imaging as an expansion of nuclear medicine: Cerenkov-based luminescence vs fluorescence-based luminescence. Eur J Nucl Med Mol Imaging. 2013;40(8):1283–91.PubMedCrossRef
94.
Zurück zum Zitat Wilson T, Hastings J. Bioluminescence. Annu Rev Cell Dev Biol. 1988;14:197–230.CrossRef Wilson T, Hastings J. Bioluminescence. Annu Rev Cell Dev Biol. 1988;14:197–230.CrossRef
95.
Zurück zum Zitat Greer LF III, Szalay AA. Imaging of light emission from the expression of luciferases in living cells and organisms: a review. Luminescence. 2002;17(1):43-74. Greer LF III, Szalay AA. Imaging of light emission from the expression of luciferases in living cells and organisms: a review. Luminescence. 2002;17(1):43-74.
96.
Zurück zum Zitat Weissleder R. Scaling down imaging: molecular mapping of cancer in mice. Nat Rev Cancer. 2002;2(1):11–8.PubMedCrossRef Weissleder R. Scaling down imaging: molecular mapping of cancer in mice. Nat Rev Cancer. 2002;2(1):11–8.PubMedCrossRef
97.
Zurück zum Zitat Culver J, Akers W, Achilefu S. Multimodality molecular imaging with combined optical and SPECT/PET modalities. J Nucl Med. 2008;49(2):169–72.PubMedCrossRef Culver J, Akers W, Achilefu S. Multimodality molecular imaging with combined optical and SPECT/PET modalities. J Nucl Med. 2008;49(2):169–72.PubMedCrossRef
98.
Zurück zum Zitat Ntziachristos V, Bremer C, Weissleder R. Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur Radiol. 2003;13(1):195–208.PubMed Ntziachristos V, Bremer C, Weissleder R. Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur Radiol. 2003;13(1):195–208.PubMed
101.
Zurück zum Zitat Robertson R, Germanos MS, Li C, Mitchell GS, Cherry SR, Silva MD. Optical imaging of Cerenkov light generation from positron-emitting radiotracers. Phys Med Biol. 2009;54(16):N355–65.PubMedCentralPubMedCrossRef Robertson R, Germanos MS, Li C, Mitchell GS, Cherry SR, Silva MD. Optical imaging of Cerenkov light generation from positron-emitting radiotracers. Phys Med Biol. 2009;54(16):N355–65.PubMedCentralPubMedCrossRef
102.
103.
Zurück zum Zitat Spinelli AE, Ferdeghini M, Cavedon C, Zivelonghi E, Calandrino R, Fenzi A, et al. First human Cerenkography. J Biomed Opt. 2013;18(2):20502.PubMedCrossRef Spinelli AE, Ferdeghini M, Cavedon C, Zivelonghi E, Calandrino R, Fenzi A, et al. First human Cerenkography. J Biomed Opt. 2013;18(2):20502.PubMedCrossRef
104.
Zurück zum Zitat Vooijs M, Jonkers J, Lyons S, Berns A. Noninvasive imaging of spontaneous retinoblastoma pathway-dependent tumors in mice. Cancer Res. 2002;62(6):1862–7.PubMed Vooijs M, Jonkers J, Lyons S, Berns A. Noninvasive imaging of spontaneous retinoblastoma pathway-dependent tumors in mice. Cancer Res. 2002;62(6):1862–7.PubMed
105.
Zurück zum Zitat Liang HD, Blomley MJ. The role of ultrasound in molecular imaging. British J Radiol. 2003;76 Spec No 2:S140–50. Liang HD, Blomley MJ. The role of ultrasound in molecular imaging. British J Radiol. 2003;76 Spec No 2:S140–50.
106.
Zurück zum Zitat Coatney RW. Ultrasound imaging: principles and applications in rodent research. ILAR J. 2001;42(3):233–47.PubMedCrossRef Coatney RW. Ultrasound imaging: principles and applications in rodent research. ILAR J. 2001;42(3):233–47.PubMedCrossRef
107.
Zurück zum Zitat Tremoleda JL, Kerton A, Gsell W. Anaesthesia and physiological monitoring during in vivo imaging of laboratory rodents: considerations on experimental outcomes and animal welfare. EJNMMI Res. 2012;2(1):44.PubMedCentralPubMedCrossRef Tremoleda JL, Kerton A, Gsell W. Anaesthesia and physiological monitoring during in vivo imaging of laboratory rodents: considerations on experimental outcomes and animal welfare. EJNMMI Res. 2012;2(1):44.PubMedCentralPubMedCrossRef
108.
Zurück zum Zitat Skresanova IV, Barannik EA. Correlation functions and power spectra of Doppler response signals in ultrasonic medical applications. Ultrasonics. 2012;52(5):676–84.PubMedCrossRef Skresanova IV, Barannik EA. Correlation functions and power spectra of Doppler response signals in ultrasonic medical applications. Ultrasonics. 2012;52(5):676–84.PubMedCrossRef
109.
110.
Zurück zum Zitat Greco A, Mancini M, Gargiulo S, Gramanzini M, Claudio PP, Brunetti A, et al. Ultrasound biomicroscopy in small animal research: applications in molecular and preclinical imaging. J Biomed Biotechnol. 2012;2012:519238.PubMedCentralPubMedCrossRef Greco A, Mancini M, Gargiulo S, Gramanzini M, Claudio PP, Brunetti A, et al. Ultrasound biomicroscopy in small animal research: applications in molecular and preclinical imaging. J Biomed Biotechnol. 2012;2012:519238.PubMedCentralPubMedCrossRef
111.
Zurück zum Zitat Golden HB, Sunder S, Liu Y, Peng X, Dostal DE. In utero assessment of cardiovascular function in the embryonic mouse heart using high-resolution ultrasound biomicroscopy. Method Mol Biol. 2012;843:245–63.CrossRef Golden HB, Sunder S, Liu Y, Peng X, Dostal DE. In utero assessment of cardiovascular function in the embryonic mouse heart using high-resolution ultrasound biomicroscopy. Method Mol Biol. 2012;843:245–63.CrossRef
112.
Zurück zum Zitat Cheung AM, Brown AS, Cucevic V, Roy M, Needles A, Yang V, et al. Detecting vascular changes in tumour xenografts using micro-ultrasound and micro-ct following treatment with VEGFR-2 blocking antibodies. Ultrasound Med Biol. 2007;33(8):1259–68.PubMedCrossRef Cheung AM, Brown AS, Cucevic V, Roy M, Needles A, Yang V, et al. Detecting vascular changes in tumour xenografts using micro-ultrasound and micro-ct following treatment with VEGFR-2 blocking antibodies. Ultrasound Med Biol. 2007;33(8):1259–68.PubMedCrossRef
113.
Zurück zum Zitat Kaufmann BA, Lankford M, Behm CZ, French BA, Klibanov AL, Xu Y, et al. High-resolution myocardial perfusion imaging in mice with high-frequency echocardiographic detection of a depot contrast agent. J Am Soc Echocardiogr. 2007;20(2):136–43.PubMedCrossRef Kaufmann BA, Lankford M, Behm CZ, French BA, Klibanov AL, Xu Y, et al. High-resolution myocardial perfusion imaging in mice with high-frequency echocardiographic detection of a depot contrast agent. J Am Soc Echocardiogr. 2007;20(2):136–43.PubMedCrossRef
114.
Zurück zum Zitat Alves KZ, Soletti RC, de Britto MA, de Matos DG, Soldan M, Borges HL, et al. In Vivo endoluminal ultrasound biomicroscopic imaging in a mouse model of colorectal cancer. Acad Radiol. 2013;20(1):90–8.PubMedCrossRef Alves KZ, Soletti RC, de Britto MA, de Matos DG, Soldan M, Borges HL, et al. In Vivo endoluminal ultrasound biomicroscopic imaging in a mouse model of colorectal cancer. Acad Radiol. 2013;20(1):90–8.PubMedCrossRef
115.
Zurück zum Zitat Alexandrakis G, Rannou FR, Chatziioannou AF. Effect of optical property estimation accuracy on tomographic bioluminescence imaging: simulation of a combined optical-PET (OPET) system. Phys Med Biol. 2006;51(8):2045–53.PubMedCentralPubMedCrossRef Alexandrakis G, Rannou FR, Chatziioannou AF. Effect of optical property estimation accuracy on tomographic bioluminescence imaging: simulation of a combined optical-PET (OPET) system. Phys Med Biol. 2006;51(8):2045–53.PubMedCentralPubMedCrossRef
116.
Zurück zum Zitat Peter J, Ruehle H, Stamm V, Schulz RB, Smith MF, Welch B, et al. Development and initial results of a dual-modality SPECT/optical small animal imager. Nuclear Science Symposium Conference Record; 2005 IEEE; 2005 23–29 Oct: p. 4. Peter J, Ruehle H, Stamm V, Schulz RB, Smith MF, Welch B, et al. Development and initial results of a dual-modality SPECT/optical small animal imager. Nuclear Science Symposium Conference Record; 2005 IEEE; 2005 23–29 Oct: p. 4.
117.
Zurück zum Zitat Hyde D, de Kleine R, MacLaurin SA, Miller E, Brooks DH, Krucker T, et al. Hybrid FMT-CT imaging of amyloid-beta plaques in a murine Alzheimer’s disease model. Neuroimage. 2009;44(4):1304–11.PubMedCrossRef Hyde D, de Kleine R, MacLaurin SA, Miller E, Brooks DH, Krucker T, et al. Hybrid FMT-CT imaging of amyloid-beta plaques in a murine Alzheimer’s disease model. Neuroimage. 2009;44(4):1304–11.PubMedCrossRef
118.
Zurück zum Zitat Wen Z, Fahrig R, Williams ST, Pelc NJ. Shimming with permanent magnets for the x-ray detector in a hybrid x-ray/ MR system. Med Phys. 2008;35(9):3895–902.PubMedCentralPubMedCrossRef Wen Z, Fahrig R, Williams ST, Pelc NJ. Shimming with permanent magnets for the x-ray detector in a hybrid x-ray/ MR system. Med Phys. 2008;35(9):3895–902.PubMedCentralPubMedCrossRef
119.
Zurück zum Zitat Gulsen G, Birgul O, Unlu MB, Shafiiha R, Nalcioglu O. Combined diffuse optical tomography (DOT) and MRI system for cancer imaging in small animals. Technol Cancer Res Treat. 2006;5(4):351–63.PubMed Gulsen G, Birgul O, Unlu MB, Shafiiha R, Nalcioglu O. Combined diffuse optical tomography (DOT) and MRI system for cancer imaging in small animals. Technol Cancer Res Treat. 2006;5(4):351–63.PubMed
120.
Zurück zum Zitat Kundu BK, Stolin AV, Pole J, Baumgart L, Fontaine M, Wojcik R, et al. Tri-modality small animal imaging system. IEEE Trans Nucl Sci. 2006;53(1):66–70.CrossRef Kundu BK, Stolin AV, Pole J, Baumgart L, Fontaine M, Wojcik R, et al. Tri-modality small animal imaging system. IEEE Trans Nucl Sci. 2006;53(1):66–70.CrossRef
121.
Zurück zum Zitat Veit-Haibach P, Kuhn FP, Wiesinger F, Delso G, von Schulthess G. PET-MR imaging using a tri-modality PET/CT-MR system with a dedicated shuttle in clinical routine. MAGMA. 2013;26(1):25–35. Veit-Haibach P, Kuhn FP, Wiesinger F, Delso G, von Schulthess G. PET-MR imaging using a tri-modality PET/CT-MR system with a dedicated shuttle in clinical routine. MAGMA. 2013;26(1):25–35.
122.
Zurück zum Zitat Tsukamoto E, Ochi S. PET/CT today: system and its impact on cancer diagnosis. Ann Nucl Med. 2006;20(4):255–67.PubMedCrossRef Tsukamoto E, Ochi S. PET/CT today: system and its impact on cancer diagnosis. Ann Nucl Med. 2006;20(4):255–67.PubMedCrossRef
123.
Zurück zum Zitat Bergeron M, Cadorette J, Beaudoin JF, Lepage MD, Robert G, Selivanov V, et al. Performance evaluation of the LabPET APD-based digital PET scanner. IEEE Trans Nucl Sci. 2009;56(1):10–6.CrossRef Bergeron M, Cadorette J, Beaudoin JF, Lepage MD, Robert G, Selivanov V, et al. Performance evaluation of the LabPET APD-based digital PET scanner. IEEE Trans Nucl Sci. 2009;56(1):10–6.CrossRef
124.
Zurück zum Zitat Levin Klausen T, Hogild Keller S, Vinter Olesen O, Aznar M, Andersen FL. Innovations in PET/CT. Q J Nucl Med Mol Imaging. 2012;56(3):268–79.PubMed Levin Klausen T, Hogild Keller S, Vinter Olesen O, Aznar M, Andersen FL. Innovations in PET/CT. Q J Nucl Med Mol Imaging. 2012;56(3):268–79.PubMed
125.
Zurück zum Zitat Beyer T, Freudenberg LS, Townsend DW, Czernin J. The future of hybrid imaging-part 1: hybrid imaging technologies and SPECT/CT. Insight Imaging. 2011;2(2):161–9.CrossRef Beyer T, Freudenberg LS, Townsend DW, Czernin J. The future of hybrid imaging-part 1: hybrid imaging technologies and SPECT/CT. Insight Imaging. 2011;2(2):161–9.CrossRef
126.
Zurück zum Zitat Hammer BE, Christensen NL, Heil BG. Use of a magnetic field to increase the spatial resolution of positron emission tomography. Med Phys. 1994;21(12):1917–20.PubMedCrossRef Hammer BE, Christensen NL, Heil BG. Use of a magnetic field to increase the spatial resolution of positron emission tomography. Med Phys. 1994;21(12):1917–20.PubMedCrossRef
127.
Zurück zum Zitat Beyer T, Freudenberg LS, Czernin J, Townsend DW. The future of hybrid imaging-part 3: PET/MR, small-animal imaging and beyond. Insight Imaging. 2011;2(3):235–46.CrossRef Beyer T, Freudenberg LS, Czernin J, Townsend DW. The future of hybrid imaging-part 3: PET/MR, small-animal imaging and beyond. Insight Imaging. 2011;2(3):235–46.CrossRef
128.
Zurück zum Zitat Wirrwar A, Vosberg H, Herzog H, Halling H, Weber S, MullerGartner HW. 4.5 Tesla magnetic field reduces range of high-energy positrons—potential implications for positron emission tomography. IEEE Trans Nucl Sci. 1997;44(2):184–9.CrossRef Wirrwar A, Vosberg H, Herzog H, Halling H, Weber S, MullerGartner HW. 4.5 Tesla magnetic field reduces range of high-energy positrons—potential implications for positron emission tomography. IEEE Trans Nucl Sci. 1997;44(2):184–9.CrossRef
130.
Zurück zum Zitat Wagenknecht G, Kaiser HJ, Mottaghy FM, Herzog H. MRI for attenuation correction in PET: methods and challenges. MAGMA. 2013;26(1):99–113. Wagenknecht G, Kaiser HJ, Mottaghy FM, Herzog H. MRI for attenuation correction in PET: methods and challenges. MAGMA. 2013;26(1):99–113.
131.
Zurück zum Zitat Tartis MS, Kruse DE, Zheng H, Zhang H, Kheirolomoom A, Marik J, et al. Dynamic microPET imaging of ultrasound contrast agents and lipid delivery. J Controlled Release. 2008;131(3):160–6.CrossRef Tartis MS, Kruse DE, Zheng H, Zhang H, Kheirolomoom A, Marik J, et al. Dynamic microPET imaging of ultrasound contrast agents and lipid delivery. J Controlled Release. 2008;131(3):160–6.CrossRef
133.
Zurück zum Zitat Balcerzyk M, Kontaxakis G, Delgado M, Garcia-Garcia L, Correcher C, Gonzalez AJ, et al. Initial performance evaluation of a high resolution Albira small animal positron emission tomography scanner with monolithic crystals and depth-of-interaction encoding from a user’s perspective. Measurement Sci Technol. 2009;20(10). Balcerzyk M, Kontaxakis G, Delgado M, Garcia-Garcia L, Correcher C, Gonzalez AJ, et al. Initial performance evaluation of a high resolution Albira small animal positron emission tomography scanner with monolithic crystals and depth-of-interaction encoding from a user’s perspective. Measurement Sci Technol. 2009;20(10).
134.
Zurück zum Zitat Szanda I, Mackewn J, Patay G, Major P, Sunassee K, Mullen GE, et al. National electrical manufacturers association NU-4 performance evaluation of the PET component of the NanoPET/CT preclinical PET/CT Scanner. J Nucl Med. 2011;52(11):1741–7. Szanda I, Mackewn J, Patay G, Major P, Sunassee K, Mullen GE, et al. National electrical manufacturers association NU-4 performance evaluation of the PET component of the NanoPET/CT preclinical PET/CT Scanner. J Nucl Med. 2011;52(11):1741–7.
135.
Zurück zum Zitat Goorden MC, van der Have F, Kreuger R, Ramakers RM, Vastenhouw B, Burbach JP, et al. VECTor: a preclinical imaging system for simultaneous submillimeter SPECT and PET. J Nucl Med. 2013;54(2):306–12. Goorden MC, van der Have F, Kreuger R, Ramakers RM, Vastenhouw B, Burbach JP, et al. VECTor: a preclinical imaging system for simultaneous submillimeter SPECT and PET. J Nucl Med. 2013;54(2):306–12.
136.
Zurück zum Zitat Goertzen AL, Bao QN, Bergeron M, Blankemeyer E, Blinder S, Canadas M, et al. NEMA NU 4-2008 comparison of preclinical PET imaging systems. J Nucl Med. 2012;53(8):1300–9.PubMedCrossRef Goertzen AL, Bao QN, Bergeron M, Blankemeyer E, Blinder S, Canadas M, et al. NEMA NU 4-2008 comparison of preclinical PET imaging systems. J Nucl Med. 2012;53(8):1300–9.PubMedCrossRef
137.
Zurück zum Zitat Bao Q, Newport D, Chen M, Stout DB, Chatziioannou AF. Performance evaluation of the inveon dedicated PET preclinical tomograph based on the NEMA NU-4 standards. J Nucl Med. 2009;50(3):401–8.PubMedCentralPubMedCrossRef Bao Q, Newport D, Chen M, Stout DB, Chatziioannou AF. Performance evaluation of the inveon dedicated PET preclinical tomograph based on the NEMA NU-4 standards. J Nucl Med. 2009;50(3):401–8.PubMedCentralPubMedCrossRef
138.
Zurück zum Zitat Herrmann K, Dahlbom M, Nathanson D, Wei L, Radu C, Chatziioannou A, et al. Evaluation of the Genisys4, a bench-top preclinical PET scanner. J Nucl Med. 2013;54(7):1162–7.PubMedCentralPubMedCrossRef Herrmann K, Dahlbom M, Nathanson D, Wei L, Radu C, Chatziioannou A, et al. Evaluation of the Genisys4, a bench-top preclinical PET scanner. J Nucl Med. 2013;54(7):1162–7.PubMedCentralPubMedCrossRef
Metadaten
Titel
Preclinical Imaging: an Essential Ally in Modern Biosciences
verfasst von
Lídia Cunha
Ildiko Horvath
Sara Ferreira
Joana Lemos
Pedro Costa
Domingos Vieira
Dániel S. Veres
Krisztián Szigeti
Teresa Summavielle
Domokos Máthé
Luís F. Metello
Publikationsdatum
01.04.2014
Verlag
Springer International Publishing
Erschienen in
Molecular Diagnosis & Therapy / Ausgabe 2/2014
Print ISSN: 1177-1062
Elektronische ISSN: 1179-2000
DOI
https://doi.org/10.1007/s40291-013-0062-3

Weitere Artikel der Ausgabe 2/2014

Molecular Diagnosis & Therapy 2/2014 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.