Skip to main content
Erschienen in: Malaria Journal 1/2014

Open Access 01.12.2014 | Research

Imported falciparum malaria among adults requiring intensive care: analysis of the literature

verfasst von: Michael Marks, Margaret Armstrong, David Walker, Tom Doherty

Erschienen in: Malaria Journal | Ausgabe 1/2014

Abstract

Background

Malaria is the most important imported tropical disease. Infection with Plasmodium falciparum is responsible for most of the morbidity and mortality. There are differences in both the epidemiology of imported malaria and in the facilities available to treat travellers with severe malaria between different parts of the world. There are limited data to guide clinicians caring for adults with imported malaria in an intensive care unit (ICU). Available data from the English-speaking literature concerning such patients was reviewed.

Methods

PubMed was searched for studies on adults with imported malaria treated in an ICU. Data were extracted on the epidemiology, management, rates of concomitant community-acquired bacterial infection and outcomes.

Results

Thirteen studies were identified, which between them included 1,001 patients over more than 40 years. Forty-one per cent were born and often still resident in an endemic country and were assumed to have at least partial immunity to the disease. Acute kidney injury (AKI) (36%), acute respiratory distress syndrome (ARDS) (31%) and impaired consciousness (25%) were common. Hyperparasitaemia (more than 2%) was seen in 57%. Thirty-four per cent required mechanical ventilation and 22% required renal replacement therapy. Community-acquired bacterial co-infection was seen in 8%; 2% had gram-negative bacteraemia at admission. Overall the case fatality rate was 9%.

Conclusions

Many patients who require admission to ICU were originally from malaria-endemic countries and many did not have hyperparasitaemia. Gram-negative bacteraemia was uncommon among adults with severe malaria. The case fatality rate remains high; however, improvements in ICU care and increasing use of artemisinins may reduce this in the future.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1475-2875-13-79) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

MM undertook the literature search, performed the data collection and analysis and wrote the first draft of the paper. MA contributed to data interpretation, figures and writing of subsequent drafts. DW contributed to data interpretation and writing of subsequent drafts. TD initiated the project, contributed to data interpretation and the writing of subsequent drafts. All authors read and approved the final manuscript.

Background

Malaria is the most important imported tropical disease and responsible for most deaths that occur among individuals returning from the tropics. Plasmodium falciparum is responsible for virtually all cases of imported malaria that require admission to an intensive care unit (ICU), including those that die, which may be as many as 29% [1].
Most descriptions of the clinical spectrum of severe malaria disease come from countries where the disease is endemic and predominantly affects young children. In these settings, adults are assumed to develop some degree of immunity to the disease, although this is rapidly lost if they move away from an endemic area [2]. The precise mechanisms that contribute to this acquired immunity remain poorly understood [2] and there is no agreed definition of ‘immunity’ in studies of imported malaria. Relatively few data have been published concerning the pattern of disease among adult patients with severe imported malaria. The aim of this study was to review all published series of falciparum malaria requiring admission to an ICU in resource-rich countries to determine the reasons for admission, complication and case fatality rates and the frequency of concomitant bacterial sepsis, which has been reported to be very high among African children with the disease [3].

Methods

Search method

PubMed was searched for any papers published. Combinations of the following search terms were used: “malaria”, “falciparum”, “ITU”, “ICU”, “intensive care”, “imported” and “non-endemic”. The abstracts of all these papers were reviewed for eligibility by MM. The bibliographies of eligible articles were screened to identify any other relevant publications.

Study selection

Papers were included only if they reported data on the care and outcome of adult (aged ≥18 years) patients with imported malaria requiring admission to ICU. For pragmatic reasons case series of fewer than ten patients were excluded.

Data extraction

Data from each paper were extracted on to a standardized form. Where possible, data were recorded about demographics, region of travel, use of anti-malarial chemoprophylaxis, the management of malaria, including requirements for organ support, complications of malaria, rates and nature of bacterial co-infection and outcome.

Statistical analyses

Continuous variables were described with mean and standard deviation (SD) or with median and interquartile range (IQR) as appropriate. Categorical data were described with numbers and per cent. All analyses were carried out using Stata 10 (Statacorp).

Results

The literature search identified 61 papers, 13 of which were included (Figure 1) [1, 415]. Forty-eight were excluded; 22 were not published in English, 11 were not primary research articles, four reported only on paediatric cases and 11 were short case series that included fewer than ten patients. The 13 studies reviewed included a total of 1,001 patients over a 41-year period (Table 1). All 13 were retrospective cohort studies; 11 reported patients treated in Europe; the other two were from Singapore and South Africa. Four studies included some patients with severe malaria that were not admitted to an ICU and seven included some aged under 18 years (n = 15 in total); where possible, individual patient data were used to exclude these from further analyses. Where it was not possible to exclude paediatric patients from the analysis, this is made that clear.
Table 1
Included studies
Study
Country
Time period
Study type
Number of patients
Badiaga [4]
France
1996-2002
Single centre
37a
Blumberg [1]
South Africa
1993-1994
Single centre
23b
Bruneel 2003 [5]
France
1988-1999
Single centre
188
Bruneel 2010 [6]
France
2000-2006
Multi centre (n = 45)
400
Gachot [7]
France
1988-1993
Single centre
40
Gonzalez [8]
Spain
1991-2007
Single centre
20c
Khoo [9]
Singapore
1994-1997
Single centre
19d
Marks [10]
United Kingdom
1994-2010
Single centre
124
Nüesch [11]
Switzerland
1970-1992
Multi centre (n = 2)
23
Salord [12]
France
1985-1990
Single centre
19e
Santos [13]
Spain
1990-2011
Single centre
56f
Schwake [14]
Germany
1996-2003
Single centre
13
Thierfelder [15]
Switzerland
1994-2004
Single centre
38g
aTwo paediatric cases excluded.
bFive paediatric cases excluded where possible.
cAt least one patient was aged under 18.
dOne paediatric case excluded.
eTwo paediatric cases excluded from further analyses where possible.
fThree paediatric cases excluded from further analyses where possible.
gAt least one patient was aged under 18 and one patient had Vivax infection: Individual patient data were not available therefore these patients could not be excluded from further analyses.

Epidemiology

Of the 1,001 patients, men aged between 30 and 50 made up the largest group (Table 2). In studies in which ethnicity was reported (nine studies, 916 patients), most were originally from non-endemic countries (59%, range 49-100%). Except for the paper from Singapore [9], P. falciparum was almost always acquired during travel to sub-Saharan Africa. Use of appropriate anti-malarial chemoprophylaxis was poor (<20%) in all studies.
Table 2
Demographics and epidemiology
Study
Male
Median age (Median + IQR, or Mean ± SD)
Semi immunea
Acquired in Africa
Adequate chemoprophylaxis
Badiaga
73%
45 (IQR 29-55)
17%
100%
5%
Blumberg
61%
38 (IQR 30-48 · 5)
Not reported
100%
Not reported
Bruneel 2003 [5]
63%
38 (no IQR available, range 14-74),
49%
94%
4%
Bruneel 2010 [6]
70%
42 · 8 ± 15b + 55 · 6 ± 14 · 2c
40%
96%
16%
Gachot
58%
39 · 2 ± 3 · 7d + 38 · 3 ± 0 · 2e
35%
95%
Not reported
Gonzalez
75%
44 (No IQR available, range 16-68)
0%
95%
0%
Khoo
89%
38 (IQR 29 · 5 – 50 · 5)
Not reported
21%
0%
Marks
63%
46 (IQR 35-55)
45%
94%
1%
Nüesch
83%
42 (IQR 37 · 5-51)
Not reported
Not reported
9%
Salord
74%
37 (IQR 28 · 5-42 · 5)
Not reported
95%
0%
Santos
80%
42 (IQR 33-50)
51%
95%
2%
Schwake
72%
38 · 4 ± 11 · 4f
28%
88%
20%
Thierfelder
50%
38 (no IQR available, range 16-71)g
49%
82%
Not reported
aDefinitions of Semi-Immune provided in Additional file 1.
bSurvivors cNon-Survivors.
dPatients with Acute Lung Injury ePatients without Acute Lung Injury.
fNot all patients in the study were admitted to ICU - Demographic data for only those patients admitted to ICU was not available.
gNot all patients in the study were admitted to ICU - Demographic data for only those patients admitted to ICU was not available. Individual patient data were not available therefore it was not possible to exclude the paediatric cases from these figures.
The definition of “immunity” to malaria varied between studies (Additional file 1). Individual patient data was not available to allow a consistent definition of immunity to be applied across all studies.

Treatment of malaria and ICU care

Quinine was the usual first-line drug in all 13 studies (Table 3). Use of artemisinins was reported in only one paper [10]. In the study by Nüesch [11], chloroquine with or without sulphadoxine/pyrimethamine was the first-line anti-malarial treatment before 1987. In those studies limited exclusively to patients admitted to ICU, the proportion of patients requiring renal replacement therapy, mechanical ventilation and inotropic support were 22% (95% CI 19-25%), 34% (95% CI 32-38%) and 27% (95% CI 24-30%), respectively. Only two small studies (n = 52) provided adequate detail to assess requirements of individual patients for multiple organ support. In these two studies 44% of patients required at least two organ support. Six studies reported the use of exchange transfusion in a median of 25% of patients (IQR 18-29%). The median length of stay on ICU ranged from –four to 11 days.
Table 3
Management of patients
Study
Quinine
Artemisinins
Renal replacement therapy
Invasive ventilation
Inotropic support
Exchange transfusion
Length of ICU admission (Median days, IQR)
Badiaga
100%
0%
Not reported
Not reported
Not reported
Not reported
4 (2-14)
Blumberg
100%
0%
48%
57%
57%
17%
8 (5-13)
Bruneel 2003 [5]
100%
0%
15%
43%
13%
0%
8 (4-13) 2 (1-4)
Bruneel 2010 [6]
98%
Not reported
20%
29%
27%
0%
4 (2-7) 5 (3-8)
Gachot
100%
0%
Not reported
23%
Not reported
Not reported
11 (No IQR available)
Gonzalez
100%
0%
40%
50%
Not reported
30%
5 (3-12)
Khoo
100%
0%
47%
42%
37%
32%
5 +/- 4(Mean)
Marks
99%
17%
35%
37%
35%
27%
10 (7-9)
Nüesch
15% (Pre-1987) 100% (1987-)
0%
9%
26%
22%
22%
6 (2-28)
Salord
89%
0%
5%
42%
11%
16%
Not reported
Santos
100%
0%
14%
37%
49%
Not reported
4 (2-12) 8 (3-27)
Schwake
100%
0%
7%
5%
8%
Not reported
5 (3-6)
Thierfelder
Not reported
Not reported
Not reported
Not reported
Not reported
Not reported
Not reported

Bacterial co-infections

The rate of community-acquired bacterial co-infection was reported in seven studies (n = 855, including four paediatric cases) with an overall prevalence of 8% (n = 66; range 0-13%). Pneumonia was the most common community-acquired co-infection occurring in 28 (3%) cases. Bacteraemia, defined as a positive blood culture within 48 hours of admission, was found in 25 (3%) cases; most of these (18, (72%)) were caused by gram-negative bacteria.

Complications of Plasmodium falciparum infection

Definitions of complications, including hyperparasitaemia, varied between studies (Additional file 2). The frequency with which these complications occurred is shown in Table 4.
Table 4
Complications
Study
Hyper-Parasitaemia
Acidosis
AKI
Impaired consciousness
Shock
Coagulopathy
ARDS
Hypoglycaemia
Jaundice
Seizures
Anaemia
Haema globinuria
Bacterial Co-Infection
Mortality
Badiaga
78%
8%
35%
24%
19%
8%
24%
0%
62%
11%
0%
14%
Not reported
8%
Blumberg
79%
36%
61%
39%
46%
14%
46%
11%
39%
11%
21%
0%
Not reported
29%
Bruneel 2003 [5]
21%
10%
25%
18%
11%
12%
5%
2%
27%
1%
8%
1%
10%
5%
Bruneel 2010 [6]
64%
18%
34%
26%
24%
3%
25%
3%
52%
7%
4%
6%
8%
11%
Gachot
Not reported
Not reported
55%
38%
25%
35%
30%
10%
Not reported
Not reported
8%
Not reported
13%
13%
Gonzalez
60%
30%
35%
20%
25%
55%
10%
15%
90%
10%
0%
5%
0%
25%
Khoo
45%
35%
45%
0%
30%
30%
5%
0%
75%
15%
20%
Not reported
Not reported
15%
Marks
66%
55%
44%
35%
27%
11%
19%
4%
69%
7%
4%
0%
5%
4%
Nüesch
65%
Not reported
26%
17%
9%
4%
4%
Not reported
4%
Not reported
13%
Not reported
13%
17%
Salord
58%
Not reported
32%
47%
Not reported
Not reported
26%
Not reported
42%
16%
Not reported
Not reported
Not reported
0%
Santos
78%
39%
53%
19%
49%
22%
37%
31%
46%
Not reported
0%
Not reported
3%
15%
Schwake
Not reported
31%
38%
23%
38%
31%
15%
23%
Not reported
0%
0%
Not reported
Not reported
0%
Thierfelder
Not reported
Not reported
Not reported
Not reported
Not reported
Not reported
Not reported
Not reported
Not reported
Not reported
Not reported
Not reported
Not reported
0%
Ten studies (n = 918, including 14 paediatric cases) reported the presence of hyperparasitaemia, which was seen in 523 (57%) patients, using a cut-off of 2% (95% CI 54-60%). When only studies using a cut-off of >5% were analysed, the prevalence of hyperparasitaemia was 44% (95% CI 39-49%).
Twelve studies (n = 971, including 14 paediatric cases) reported the presence of AKI, which was seen in 350 patients (36%) (95% CI 33-39%). The proportion of patients with acute kidney injury (AKI) did not differ significantly between studies that defined this as both oliguria and elevated creatinine and those studies that used only an elevated creatinine (40 vs 34%, p = 0 · 1280) to define AKI.
Twelve studies (n = 971, including 14 paediatric cases) reported the presence of acute respiratory distress syndrome (ARDS), which was seen in 301 patients (31%; 95% CI 28-34%). Two studies (n = 161) [6, 10] reported both complications at admission and complications that developed during the ICU stay; ARDS was present at admission in three (2%) and developed later in a further 32 (20%).
Ten studies (n = 952, including 12 paediatric cases) reported the presence of impaired consciousness, used as a proxy for cerebral malaria, which was seen in 238 patients overall (25%; 95% CI 22-28%).
Five studies (n = 624) reported the total number of complications that occurred per patient. The mean number of complications seen was 2.86% (95% CI 2.81-2.91%). Individual patient data was not available to assess if particular combinations of complications occurred with an increased frequency.
WHO defines severe malaria using a range of other criteria that include: acidosis, coagulopathy, hypoglycaemia, jaundice, and anaemia. The rates of these complications, where available, are shown in Table 4.
Case fatality rates were reported in all 13 studies. The overall case fatality rate was 9% (95% CI 8-11%) but a case fatality rate of over 15% was reported in four studies.

Conclusions

This is the first review of imported falciparum malaria among adults who were sufficiently unwell to require admission to ICU. The review supports four important conclusions. First, hyperparasitaemia, however this is defined, is not a feature in almost 50% of patients; second, up to 40% of these patients were originally from or still resident in a malaria-endemic region and may therefore be assumed to have at least partial immunity to the disease; third, co-infection with community-acquired gram-negative bacteraemia is uncommon among adults; and, finally, the case fatality rate for severe imported malaria in ICU is in the region of 10%.
AKI, ARDS and cerebral malaria were all common. Invasive ventilation was required in 22% and renal replacement therapy was required in approximately 22%. Hyperparasitaemia, which is often used as a proxy for severe falciparum, was seen in only 57% of subjects when a cut-off of ≥2% was used. When using a definition of ≥5% parasitaemia, which the WHO recommends as the criterion for severe disease in endemic areas, this proportion fell to 44%. Clinicians would be well advised not to rely on parasite count as the only indicator of severe disease.
Gram-negative bacteraemia, classically with non-typhoidal Salmonellae, is a well recognized complication of malaria in children [3], occurring in up to 20%. Recent studies have suggested that dysfunctional granulocyte mobilization may be responsible for this [16]. While 8% of patients had a presumed community-acquired bacterial co-infection, usually pneumonia, at admission, only 25 (3%) had culture-positive, gram-negative bacteraemia. Previous prescription of antibiotics may have caused some bias and a lower yield but it is possible that this reflects a difference in the pathophysiology of severe malaria in adults compared to children.
The overall case-fatality rate was 9% although one study [1] reported a rate as high as 29%. Quinine was the most commonly used anti-malarial agent in all 13 studies. Artesunate has been shown to significantly reduce case fatality from severe malaria in both Southeast Asia and Africa [17, 18]. Only one of these studies [10] included patients treated with artemisinins, but as these drugs become more widely available the case fatality from severe imported malaria may decline.
This review has several weaknesses. A number of studies that were not published in English were excluded and it is possible that this may have had an effect. Most of the included studies were from Europe and the conclusions may not be relevant to other settings where imported malaria is seen. In particular, indications for ICU admission are likely to have varied both between the study sites and over the period that the studies were conducted, which may partially explain the spectrum of disease severity and outcomes seen. Individual patient data were often unavailable, which meant paediatric cases could not reliably be excluded, although there were only 15 of these. For the same reasons, it was not possible to analyse temporal trends in case fatality rates or perform a detailed meta-analysis of risk factors associated with mortality. However, the review includes all series of more than ten patients published in English over more than 40 years and provides important insights into the management of this relatively uncommon disease.
It is noteworthy that no case series from North America were included in the current paper. In 2011 the United States reported 1,925 cases of America of which 183 were reported to have severe disease [19]. Given the significantly larger population of the United States, compared to the other countries represented in this paper, it is possible that no American centre sees a sufficiently large enough number of cases to inform a study of severe malaria in the USA.
The overall case fatality rate of 9% may not reflect modern practice. Management of ARDS has improved considerably in recent years and newer strategies for fluid resuscitation, in particular, may reduce the incidence of both multi-organ failure and long-term disability [20]. Similarly, optimizing fluid management for patients with ARDS may reduce pulmonary capillary leak and subsequently the length of time that patients require on ICU [21]. Greater awareness of what constitutes AKI [22] may also result in a better outcome. Each of these factors, as well as improved antimicrobial protocols, management of shock and acidosis and increasing use of artemisinins, may further reduce the case fatality associated with severe imported malaria in the future.

Acknowledgements

MA is supported by the Special Trustees of the Hospital for Tropical Diseases. All authors are supported by the University College London Hospitals Comprehensive Biomedical Research Centre Infection Theme. MM is a Wellcome Trust Clinical Research Fellow (Grant no. WT102807) at the London School of Hygiene and Tropical Medicine. The funding agencies had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( https://​creativecommons.​org/​publicdomain/​zero/​1.​0/​ ) applies to the data made available in this article, unless otherwise stated.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

MM undertook the literature search, performed the data collection and analysis and wrote the first draft of the paper. MA contributed to data interpretation, figures and writing of subsequent drafts. DW contributed to data interpretation and writing of subsequent drafts. TD initiated the project, contributed to data interpretation and the writing of subsequent drafts. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Blumberg L, Lee RP, Lipman J, Beards S: Predictors of mortality in severe malaria: a two year experience in a non-endemic area. Anaesth Intensive Care. 1996, 24: 217-223.PubMed Blumberg L, Lee RP, Lipman J, Beards S: Predictors of mortality in severe malaria: a two year experience in a non-endemic area. Anaesth Intensive Care. 1996, 24: 217-223.PubMed
2.
Zurück zum Zitat Jennings RM, De Souza JB, Todd JE, Armstrong M, Flanagan KL, Riley EM, Doherty JF: Imported Plasmodium falciparum malaria: Are patients originating from disease-endemic areas less likely to develop severe disease? A prospective observational study. Am J Trop Med Hyg. 2006, 75: 1195-1199.PubMed Jennings RM, De Souza JB, Todd JE, Armstrong M, Flanagan KL, Riley EM, Doherty JF: Imported Plasmodium falciparum malaria: Are patients originating from disease-endemic areas less likely to develop severe disease? A prospective observational study. Am J Trop Med Hyg. 2006, 75: 1195-1199.PubMed
3.
Zurück zum Zitat Berkley J, Mwarumba S, Bramham K, Lowe B, Marsh K: Bacteraemia complicating severe malaria in children. Trans R Soc Trop Med Hyg. 1999, 93: 283-286. 10.1016/S0035-9203(99)90024-X.CrossRefPubMed Berkley J, Mwarumba S, Bramham K, Lowe B, Marsh K: Bacteraemia complicating severe malaria in children. Trans R Soc Trop Med Hyg. 1999, 93: 283-286. 10.1016/S0035-9203(99)90024-X.CrossRefPubMed
4.
Zurück zum Zitat Badiaga S, Brouqui P, Carpentier JP, Hovette P, Duigou F, Manelli JC, Martin C, Delmont J: Severe imported malaria: clinical presentation at the time of hospital admission and outcome in 42 cases diagnosed from 1996 to 2002. J Emerg Med. 2005, 29: 375-382. 10.1016/j.jemermed.2005.03.009.CrossRefPubMed Badiaga S, Brouqui P, Carpentier JP, Hovette P, Duigou F, Manelli JC, Martin C, Delmont J: Severe imported malaria: clinical presentation at the time of hospital admission and outcome in 42 cases diagnosed from 1996 to 2002. J Emerg Med. 2005, 29: 375-382. 10.1016/j.jemermed.2005.03.009.CrossRefPubMed
5.
Zurück zum Zitat Bruneel F, Hocqueloux L, Alberti C, Wolff M, Chevret S, Bédos J-P, Durand R, Le Bras J, Régnier B, Vachon F: The clinical spectrum of severe imported falciparum malaria in the intensive care unit: report of 188 cases in adults. Am J Respir Crit Care Med. 2003, 167: 684-689. 10.1164/rccm.200206-631OC.CrossRefPubMed Bruneel F, Hocqueloux L, Alberti C, Wolff M, Chevret S, Bédos J-P, Durand R, Le Bras J, Régnier B, Vachon F: The clinical spectrum of severe imported falciparum malaria in the intensive care unit: report of 188 cases in adults. Am J Respir Crit Care Med. 2003, 167: 684-689. 10.1164/rccm.200206-631OC.CrossRefPubMed
6.
Zurück zum Zitat Bruneel F, Tubach F, Corne P, Megarbane B, Mira J-P, Peytel E, Camus C, Schortgen F, Azoulay E, Cohen Y, Georges H, Meybeck A, Hyvernat H, Trouillet J-L, Frenoy E, Nicolet L, Roy C, Durand R, Le Bras J, Wolff M: Severe imported falciparum malaria: a cohort study in 400 critically ill adults. PLoS ONE. 2010, 5: e13236-10.1371/journal.pone.0013236.PubMedCentralCrossRefPubMed Bruneel F, Tubach F, Corne P, Megarbane B, Mira J-P, Peytel E, Camus C, Schortgen F, Azoulay E, Cohen Y, Georges H, Meybeck A, Hyvernat H, Trouillet J-L, Frenoy E, Nicolet L, Roy C, Durand R, Le Bras J, Wolff M: Severe imported falciparum malaria: a cohort study in 400 critically ill adults. PLoS ONE. 2010, 5: e13236-10.1371/journal.pone.0013236.PubMedCentralCrossRefPubMed
7.
Zurück zum Zitat Gachot B, Wolff M, Nissack G, Veber B, Vachon F: Acute lung injury complicating imported Plasmodium falciparum malaria. Chest. 1995, 108: 746-10.1378/chest.108.3.746.CrossRefPubMed Gachot B, Wolff M, Nissack G, Veber B, Vachon F: Acute lung injury complicating imported Plasmodium falciparum malaria. Chest. 1995, 108: 746-10.1378/chest.108.3.746.CrossRefPubMed
8.
Zurück zum Zitat González A, Nicolás JM, Muñoz J, Castro P, Mas J, Valls ME, Coma JR, Aibar J, Gascon J: Severe imported malaria in adults: retrospective study of 20 cases. Am J Trop Med Hyg. 2009, 81: 595-599. 10.4269/ajtmh.2009.08-0637.CrossRefPubMed González A, Nicolás JM, Muñoz J, Castro P, Mas J, Valls ME, Coma JR, Aibar J, Gascon J: Severe imported malaria in adults: retrospective study of 20 cases. Am J Trop Med Hyg. 2009, 81: 595-599. 10.4269/ajtmh.2009.08-0637.CrossRefPubMed
9.
Zurück zum Zitat Khoo KL, Tan WL, Eng P, Ong YY: Malaria requiring intensive care. Ann Acad Med Singap. 1998, 27: 353-357.PubMed Khoo KL, Tan WL, Eng P, Ong YY: Malaria requiring intensive care. Ann Acad Med Singap. 1998, 27: 353-357.PubMed
10.
Zurück zum Zitat Marks ME, Armstrong M, Suvari MM, Batson S, Whitty JMC, Chiodini PL, Bellinghan G, Doherty JF: Severe imported falciparum malaria among adults requiring intensive care: a retrospective study at the hospital for tropical diseases. London. BMC Infect Dis. 2013, 13: 118-10.1186/1471-2334-13-118.CrossRefPubMed Marks ME, Armstrong M, Suvari MM, Batson S, Whitty JMC, Chiodini PL, Bellinghan G, Doherty JF: Severe imported falciparum malaria among adults requiring intensive care: a retrospective study at the hospital for tropical diseases. London. BMC Infect Dis. 2013, 13: 118-10.1186/1471-2334-13-118.CrossRefPubMed
11.
Zurück zum Zitat Nüesch R, Scheller M, Gyr N: Hospital admissions for malaria in Basel, Switzerland: an epidemiological review of 150 cases. J Travel Med. 2000, 7: 95-97.CrossRefPubMed Nüesch R, Scheller M, Gyr N: Hospital admissions for malaria in Basel, Switzerland: an epidemiological review of 150 cases. J Travel Med. 2000, 7: 95-97.CrossRefPubMed
12.
Zurück zum Zitat Salord F, Allaouchiche B, Gaussorgues P, Boibieux A, Sirodot M, Gerard-Boncompain M, Biron F, Peyramond D, Robert D: Severe falciparum malaria (21 cases). Intensive Care Med. 1991, 17: 449-454. 10.1007/BF01690765.CrossRefPubMed Salord F, Allaouchiche B, Gaussorgues P, Boibieux A, Sirodot M, Gerard-Boncompain M, Biron F, Peyramond D, Robert D: Severe falciparum malaria (21 cases). Intensive Care Med. 1991, 17: 449-454. 10.1007/BF01690765.CrossRefPubMed
13.
Zurück zum Zitat Santos LC, Abreu CF, Xerinda SM, Tavares M, Lucas R, Sarmento AC: Severe imported malaria in an intensive care unit: a review of 59 cases. Malar J. 2012, 11: 96-10.1186/1475-2875-11-96.PubMedCentralCrossRefPubMed Santos LC, Abreu CF, Xerinda SM, Tavares M, Lucas R, Sarmento AC: Severe imported malaria in an intensive care unit: a review of 59 cases. Malar J. 2012, 11: 96-10.1186/1475-2875-11-96.PubMedCentralCrossRefPubMed
14.
Zurück zum Zitat Schwake L, Streit JP, Edler L, Encke J, Stremmel W, Junghanss T: Early treatment of imported falciparum malaria in the intermediate and intensive care unit setting: an 8-year single-center retrospective study. Crit Care. 2008, 12: R22-10.1186/cc6796.PubMedCentralCrossRefPubMed Schwake L, Streit JP, Edler L, Encke J, Stremmel W, Junghanss T: Early treatment of imported falciparum malaria in the intermediate and intensive care unit setting: an 8-year single-center retrospective study. Crit Care. 2008, 12: R22-10.1186/cc6796.PubMedCentralCrossRefPubMed
15.
Zurück zum Zitat Thierfelder C, Schill C, Hatz C, Nüesch R: Trends in imported malaria to Basel, Switzerland. J Travel Med. 2008, 15: 432-436. 10.1111/j.1708-8305.2008.00251.x.CrossRefPubMed Thierfelder C, Schill C, Hatz C, Nüesch R: Trends in imported malaria to Basel, Switzerland. J Travel Med. 2008, 15: 432-436. 10.1111/j.1708-8305.2008.00251.x.CrossRefPubMed
16.
Zurück zum Zitat Cunnington AJ, de Souza JB, Walther R-M, Riley EM: Malaria impairs resistance to Salmonella through heme- and heme oxygenase-dependent dysfunctional granulocyte mobilization. Nat Med. 2011, 18: 120-127. 10.1038/nm.2601.PubMedCentralCrossRefPubMed Cunnington AJ, de Souza JB, Walther R-M, Riley EM: Malaria impairs resistance to Salmonella through heme- and heme oxygenase-dependent dysfunctional granulocyte mobilization. Nat Med. 2011, 18: 120-127. 10.1038/nm.2601.PubMedCentralCrossRefPubMed
17.
Zurück zum Zitat Dondorp A, Nosten F, Stepniewska K, Day N, White N: Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial. Lancet. 2005, 366: 717-725.CrossRefPubMed Dondorp A, Nosten F, Stepniewska K, Day N, White N: Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial. Lancet. 2005, 366: 717-725.CrossRefPubMed
18.
Zurück zum Zitat Dondorp AM, Fanello CI, Hendriksen ICE, Gomes E, Seni A, Chhaganlal KD, Bojang K, Olaosebikan R, Anunobi N, Maitland K, Kivaya E, Agbenyega T, Nguah SB, Evans J, Gesase S, Kahabuka C, Mtove G, Nadjm B, Deen J, Mwanga-Amumpaire J, Nansumba M, Karema C, Umulisa N, Uwimana A, Mokuolu OA, Adedoyin OT, Johnson WBR, Tshefu AK, Onyamboko MA, Sakulthaew T: Artesunate versus quinine in the treatment of severe falciparum malaria in African children (AQUAMAT): an open-label, randomised trial. Lancet. 2010, 376: 1647-1657. 10.1016/S0140-6736(10)61924-1.PubMedCentralCrossRefPubMed Dondorp AM, Fanello CI, Hendriksen ICE, Gomes E, Seni A, Chhaganlal KD, Bojang K, Olaosebikan R, Anunobi N, Maitland K, Kivaya E, Agbenyega T, Nguah SB, Evans J, Gesase S, Kahabuka C, Mtove G, Nadjm B, Deen J, Mwanga-Amumpaire J, Nansumba M, Karema C, Umulisa N, Uwimana A, Mokuolu OA, Adedoyin OT, Johnson WBR, Tshefu AK, Onyamboko MA, Sakulthaew T: Artesunate versus quinine in the treatment of severe falciparum malaria in African children (AQUAMAT): an open-label, randomised trial. Lancet. 2010, 376: 1647-1657. 10.1016/S0140-6736(10)61924-1.PubMedCentralCrossRefPubMed
19.
Zurück zum Zitat Cullen KA, Arguin PM: Malaria Surveillance—United States, 2011. MMWR Surveill Summ (Washington, DC: 2002). 2013, 62: 1-17. Cullen KA, Arguin PM: Malaria Surveillance—United States, 2011. MMWR Surveill Summ (Washington, DC: 2002). 2013, 62: 1-17.
20.
Zurück zum Zitat The Acute Respiratory Distress Syndrome Network: Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome, the acute respiratory distress syndrome network. N Engl J Med. 2000, 342: 1301-1308.CrossRef The Acute Respiratory Distress Syndrome Network: Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome, the acute respiratory distress syndrome network. N Engl J Med. 2000, 342: 1301-1308.CrossRef
21.
Zurück zum Zitat The National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network: Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006, 354: 2564-2575.CrossRef The National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network: Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006, 354: 2564-2575.CrossRef
22.
Zurück zum Zitat Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P, Acute Dialysis Quality Initiative workgroup: Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004, 8: R204-R212. 10.1186/cc2872.PubMedCentralCrossRefPubMed Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P, Acute Dialysis Quality Initiative workgroup: Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004, 8: R204-R212. 10.1186/cc2872.PubMedCentralCrossRefPubMed
Metadaten
Titel
Imported falciparum malaria among adults requiring intensive care: analysis of the literature
verfasst von
Michael Marks
Margaret Armstrong
David Walker
Tom Doherty
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
Malaria Journal / Ausgabe 1/2014
Elektronische ISSN: 1475-2875
DOI
https://doi.org/10.1186/1475-2875-13-79

Weitere Artikel der Ausgabe 1/2014

Malaria Journal 1/2014 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Bei seelischem Stress sind Checkpoint-Hemmer weniger wirksam

03.06.2024 NSCLC Nachrichten

Wie stark Menschen mit fortgeschrittenem NSCLC von einer Therapie mit Immun-Checkpoint-Hemmern profitieren, hängt offenbar auch davon ab, wie sehr die Diagnose ihre psychische Verfassung erschüttert

Antikörper mobilisiert Neutrophile gegen Krebs

03.06.2024 Onkologische Immuntherapie Nachrichten

Ein bispezifischer Antikörper formiert gezielt eine Armee neutrophiler Granulozyten gegen Krebszellen. An den Antikörper gekoppeltes TNF-alpha soll die Zellen zudem tief in solide Tumoren hineinführen.

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.