Skip to main content
Erschienen in: Cancer Cell International 1/2022

Open Access 01.12.2022 | Review

Targeting Ras-ERK cascade by bioactive natural products for potential treatment of cancer: an updated overview

verfasst von: Eunus S. Ali, Shamima Akter, Sarker Ramproshad, Banani Mondal, Thoufiqul Alam Riaz, Muhammad Torequl Islam, Ishaq N. Khan, Anca Oana Docea, Daniela Calina, Javad Sharifi-Rad, William C. Cho

Erschienen in: Cancer Cell International | Ausgabe 1/2022

Abstract

MAPK (mitogen-activated protein kinase) or ERK (extracellular-signal-regulated kinase) pathway is an important link in the transition from extracellular signals to intracellular responses. Because of genetic and epigenetic changes, signaling cascades are altered in a variety of diseases, including cancer. Extant studies on the homeostatic and pathologic behavior of MAPK signaling have been conducted; however, much remains to be explored in preclinical and clinical research in terms of regulation and action models. MAPK has implications for cancer therapy response, more specifically in response to experimental MAPK suppression, compensatory mechanisms are activated. The current study investigates MAPK as a very complex cell signaling pathway that plays roles in cancer treatment response, cellular normal conduit maintenance, and compensatory pathway activation. Most MAPK inhibitors, unfortunately, cause resistance by activating compensatory feedback loops in tumor cells and tumor microenvironment components. As a result, innovative combinatorial treatments for cancer management must be applied to limit the likelihood of alternate pathway initiation as a possibility for generating novel therapeutics based on incorporation in translational research. We summarize current knowledge about the implications of ERK (MAPK) in cancer, as well as bioactive products from plants, microbial organisms or marine organisms, as well as the correlation with their chemical structures, which modulate this pathway for the treatment of different types of cancer.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Cancer is the abnormal and anarchic development of cells, with the potential to invade or spread to various parts of the body [1, 2]. Cancer can occur in any part of the body, and cancer cells can invade other organs in different ways (neighbourhood invasion, hematogenous or lymphatic) [35]. In 2020, there have been an estimated 18.1 million cancer cases worldwide. Men accounted for 9.3 million of the cases, while women accounted for 8.8 million. Because of recent advances in novel therapeutics, the diagnosis rate has been increasing in recent years, which has improved the general life expectancy for patients [6, 7]. Each cancer type can be subdivided now based on mutations of several genes with the aid of advances in molecular diagnostics [810], indicative of the molecular patterns that are malfunctioning. Consequently, this allows effective intervention with tailored treatments by blocking certain biological processes of tumor cells which allows effective interference with targeted therapeutics by impeding specific biological pathways of tumor-infected cells [9, 11]. Cancer is frequently associated with the number of mutations that interrupt the key signaling pathways [1214]. Cellular signaling pathways are organized as modular networks that communicate in real-time [15, 16]. Pathway components work together in a switch-like fashion, with interactions between two proteins that result in either indirect or direct inhibition or activation of the next factor [1720]. The pathogenesis of numerous signaling pathways is maintained by transcriptomic, epigenetic, and genetic changes [21, 22].
Nowadays, molecular diagnostic tools became more widely available in clinical settings and that help identifies specific mutational patterns of cancer [23, 24]. Subsequently, this condition becomes an effective method for identifying patients with similar alterations, which was used to determine effective treatment modules [22, 25, 26]. Despite this progress, resistance to cancer therapy remains the main issue i.e., common side effects in patients who have received first-line treatment. Targeted therapy, which employs a variety of small molecules that play a role as inhibitors for the key signaling stages, can result in resistance in a few instances even from first doses. Resistance develops as a consequence of tumor cells being positively designated for mechanisms that can compensate for the specifically targeted pathway [18, 27, 28].
Cancer cells have a low dependence on external proliferative stimuli and often do not need such stimulation to multiply; through the mutations of some oncogenes, these cells acquire a proliferative autonomy, producing their mitogenic signals [29]. One of the key characteristics of cancer cells is probably their ability to permanently stimulate their growth and proliferation [30]z. To understand this property, it is useful to remember that normal cells need the growth and division of external mitogenic signals (mainly represented by growth factors), produced (in a diffusible form) by other cells (paracrine signaling). These molecules (ligands) bind to specific transmembrane receptors, which, after activation, transmit the signal—through branched intracellular signaling pathways—to the nucleus, triggering division. The whole process is regulated by negative feedback mechanisms, which attenuate excessive proliferative signaling (make it transient) and, if it persists, induce cell senescence and apoptosis [31].
Cancer cells have a low dependence on external proliferative stimuli and often do not need such stimulation to multiply; through the mutations of some oncogenes, these cells acquire a proliferative autonomy, producing their mitogenic signals [24, 32]. The major strategies used by tumor cells to achieve proliferative independence are as follows:
  • Production of their growth factors, to which they respond by proliferation (autocrine signaling) (for example, TGF-α in sarcomas) [33]
  • Disorder of growth factor receptors, which transduce proliferative signals inside the cell; Disorder involves either overexpression of receptors in many cancers (e.g., amplification of the HER2/neu receptor in about 30% of breast cancers or EGFR in non-small cell lung cancer) or alteration of their structure, which results in receptor activation and therefore signaling, without ligand (for example, truncated version of EGF receptor) [34].
  • Alteration of the components of cytoplasmic signaling pathways, which produce a flow of mitogenic signaling without their stimulation by receptors; for example, the mitogen-activated protein kinase pathway, which consists of RAS → RAF → MEK → MAPK → ERK → FOS proteins, plays a central role in about 25% of human cancers [35].
In addition to their ability to intensely stimulate their growth and proliferation (by activating oncogenes), cancer cells are insensitive to signals that could stop cell division. In normal tissues, multiple antiproliferative signals act, external or internal, which maintain tissue homeostasis [36]. Exogenous inhibitory signals—either soluble (TGF-β) or embedded in the extracellular matrix and the surface of neighbouring cells (by cadherin-like adhesion molecules, which cause “contact inhibition”) 2—are received by transmembrane receptors coupled with intracytoplasmic circuits. signaling, which blocks cell division. Cells move from the postmitotic G1 stage to the resting G0 phase, from where they can return to the cell cycle—when conditions allow—or permanently give up division and differentiate into specific cells [37].
Complex like MAPK is one compound that linked signaling cascade with frequent participation in tumor development, oncogenesis, and resistance of the drug [38, 39]. The MAPK family includes a large number of kinases that are altered in cancer and for which several targeted therapies have been developed [40]. Resistance to MAPK inhibitors is a current issue, owing to the high degree of interactions and perhaps compensating responses. Thus, in this review, we look at the many repercussions of MAPK pathways in cancer, with a specific emphasis on tumor signaling regulation via MAPK interaction with critical signaling pathways in pathological situations [8]. The current review will concentrate particularly on the pathways of the canonical primary signal transduction depicted in Fig. 1.

Review methodology

This review has been based on the use of several databases such as PubMed/Medline, Web of Science, TRIP Database, and Up-to-Date using for searching the next MeSH terms: “Antineoplastic Agents/pharmacology”, “Biological Products/chemistry”, “Biological Products/therapeutic use”, “Cell Line”, “MAP Kinase Signaling System/drug effects”, “Extracellular Signal-Regulated MAP Kinases/metabolism”, “Mitogen-Activated Protein Kinase Kinases/antagonists and inhibitors”, “Mitogen-Activated Protein Kinase Kinases/metabolism”, “Neoplasms/drug therapy”, “Neoplasms/metabolism”, Neoplasms/pathology”, “Plants/chemistry”, “Proto-Oncogene Proteins p21(Ras)”, “Signal Transduction/drug effects”, “Ras Proteins/antagonists and inhibitors”, “Ras Proteins/genetics”, “Ras Proteins/metabolism”, “Xenograft Model Antitumor Assays”.
The study included papers published in English that contained molecular pharmacological data on the anticancer action of the phytochemicals mentioned in our study, studies with broad therapeutic perspectives of application, and studies with a high rate of citations. Studies published in languages other than English, studies without obvious pharmacological mechanisms, and studies that included homeoopathic preparations as complementary treatment were excluded.

Ras-ERK and natural bioactive compounds in chemotherapy and chemoprevention: structure—activity relationship and experimental evidence

Phytochemicals and similar derivative compounds have been shown to play an essential role as cancer treatment agents [2, 4143]. The majority of protein kinase inhibitors found in plants are flavonoids, which are polyketides. Anthraquinones and anthrones, which contain representatives such as hypericin and emodin, are also part of this chemical group. Both compounds have been shown to inhibit protein kinases like CK2 and p65lck [44]. With alkaloids, most of the flavonoid group are valuable “folk medicine” effective for a variety of ailments other than cancer. However, even when proved to be beneficial in the treatment of cancer, various mechanisms other than intervening with protein kinases have been reported [45, 46].
The extracts of wine polyphenol inhibit the cell cycle progression, cause apoptosis via the caspase activation, and alter the activity of the metalloproteinase (MMP) enzyme. Resveratrol, which is stilbene present in lots of foods including red wine grapes, is thought to provide several health advantages. Protein kinases including MEK/ERK1/2, AKT, RAF, JNK and CamKK, have been demonstrated to be inhibited by it. As a result, it is tempting to infer that the reported “anticancer effects” are due to interfering with the different protein kinases. However, considering the modest levels of resveratrol absorbed by wine intake, this may be more apparent than genuine. Even consuming the ultra-pure resveratrol component should not be enough to have a discernible influence on the activity of cellular protein kinase. Furthermore, considering the relatively high number of distinct protein kinases that are affected by resveratrol, it is impossible to rule out unfavourable side effects when significant doses are used.
A similar argument may be made for the other natural chemicals discussed in this review. An example: secondary metabolites include alkaloids, which are mostly constituted of nitrogen and are commonly employed in medicine [47]. Alkaloids are one of the most diverse classes of natural chemicals, with over 12,000 known structures. The ability of the secondary plant metabolites to inhibit the expression of both non-coding and coding genes is then used to modulate a variety of cellular pathways, including MAPK [48, 49]; Table 1 contains several examples.
Table 1
Some examples of naturally occurring biologically active compounds to regulate the MAPK in parallel with another associated pathway involved in cancer invasion and progression
Natural compounds
Type of cancer
Preclinical Model
In vitro/cancer cell lines
Molecular targets
Effects
Refs.
Caffeic acid phenethyl ester (CAPE) + U0126
https://static-content.springer.com/image/art%3A10.1186%2Fs12935-022-02666-z/MediaObjects/12935_2022_2666_Stra_HTML.gif
Pancreatic ductal adenocarcinoma
PANC-1
MIAPaCa-2
↓ NF-κB
↓ MAPK
↓ Cell growth, ↑ Apoptosis
(PANC-1 caspase-independent mode and MIAPaCa-2 caspase-dependent)
[51]
Apigenin
https://static-content.springer.com/image/art%3A10.1186%2Fs12935-022-02666-z/MediaObjects/12935_2022_2666_Strb_HTML.gif
Choriocarcinoma
JEG3
JAR
↓ ERK1/2
↓ PI3K/AKT
↓ Migratory capacity
↓ Cell viability, ↑apoptosis
[53]
Coumestrol
https://static-content.springer.com/image/art%3A10.1186%2Fs12935-022-02666-z/MediaObjects/12935_2022_2666_Strc_HTML.gif
Prostate cancer
LNCaP
PC3
↓ Phosphorylation of AKT proteins
↑ Phosphorylation f P90RSK, JNK,
ERK1/2, p53
↓Cell proliferation
↓migration
↑apoptosis
[54]
Quercetin
https://static-content.springer.com/image/art%3A10.1186%2Fs12935-022-02666-z/MediaObjects/12935_2022_2666_Strd_HTML.gif
Choriocarcinoma
JEG3
JAR
↑ Phosphorylation of p38, JNK, ERK1/2, and P90RSK proteins
↓ Phosphorylation of P70S6K, AKT, S6
↓ Proliferation
↓ Invasion
↓ Cell-cycle progression
[55]
Kaempferol
https://static-content.springer.com/image/art%3A10.1186%2Fs12935-022-02666-z/MediaObjects/12935_2022_2666_Stre_HTML.gif
Endometrial
Malignant transformation
EBM-2
HUVECs
↓ VEGFR2
↓ HIF-1α proteins
↓ Phosphorylation of and p38, ↓ ERK, ↓ Akt
↓ Angiogenesis
[56]
Genistein
https://static-content.springer.com/image/art%3A10.1186%2Fs12935-022-02666-z/MediaObjects/12935_2022_2666_Strf_HTML.gif
Melanoma
B16F10
↓ ERK, ↓ p38, ↓ JNK,
↓ Phosphorylation of tensin-2, ↓ FAK, ↓ paxillin, ↓ vinculin
↓ Cells growth
↓ Cells migration
[57]
Genistein and Novasoy
https://static-content.springer.com/image/art%3A10.1186%2Fs12935-022-02666-z/MediaObjects/12935_2022_2666_Strg_HTML.gif
Endometrial cancer
RL-95–2
ECC-1 cells
↑ Phosphorylation of S6 only in RL-95–2 cells
↑ Phosphorylation of the p42/44 in both cell line
↓ Cellular proliferation
↓ Cell-cycle arrest in G2 phase
↑ Apoptosis
[58]
Resveratrol
https://static-content.springer.com/image/art%3A10.1186%2Fs12935-022-02666-z/MediaObjects/12935_2022_2666_Strh_HTML.gif
T-cell acute lymphoblastic leukemia
Jurkat (glucocorticoid resistant) and T-ALL cell lines, Molt-4 (glucocorticoid resistant)
↑ p38-MAPK
↓ Akt/p70S6K/mTOR/4E-BP1
↑ Autophagy
↑ Apoptosis
[59, 60]
Escine
https://static-content.springer.com/image/art%3A10.1186%2Fs12935-022-02666-z/MediaObjects/12935_2022_2666_Stri_HTML.gif
Osteosarcoma
MNNG, MG-63, Saos-2, U-2OS
↑ p38
↑ Autophagy
↑ Apoptosis
[61]
Triterpenoids
(21α-methylmelianodiol)
https://static-content.springer.com/image/art%3A10.1186%2Fs12935-022-02666-z/MediaObjects/12935_2022_2666_Strj_HTML.gif
Lung cancer
A549
↓ ERK, ↓p-JNK,
↓p-ERK, ↓p38, ↓JNK,
no effect on p-p38
Targeting drug resistance via P-glycoprotein
(P-gp)/MDR1-association
[62]
Toosendanin
https://static-content.springer.com/image/art%3A10.1186%2Fs12935-022-02666-z/MediaObjects/12935_2022_2666_Strk_HTML.gif
Lung cancer
H1975 and A549 cells
↓ Snail, ↓TGFβ1,
↓ Phosphorylation of ERK
Prevents TGFβ1-induced EMT and invasion, migration, and adhesion
[63]
Luteolin
https://static-content.springer.com/image/art%3A10.1186%2Fs12935-022-02666-z/MediaObjects/12935_2022_2666_Strl_HTML.gif
Cervical cancer
Hela cells
↑ Fas, ↑ phospho-JNK, ↑ p53, ↑ phospho-p38,
↑ Bax, ↓ PARP, ↓ mTOR, ↓ Bcl-2
↓ Cellular proliferation
↑ Apoptosis
[64]
Baicalein
https://static-content.springer.com/image/art%3A10.1186%2Fs12935-022-02666-z/MediaObjects/12935_2022_2666_Strm_HTML.gif
Hepatocellular carcinoma
HepG2cell xenograft in
nude mice
↓ MEK1
↓ Bad
↓ ERK1/2
↑ Intrinsic apoptosis
[65]
Fisetin
https://static-content.springer.com/image/art%3A10.1186%2Fs12935-022-02666-z/MediaObjects/12935_2022_2666_Strn_HTML.gif
Laryngeal cancer
TU212 cell
↓ RAS
↓ RAF
↓ ERK1/2
↓ Cell migration
↓ Proliferation
[66]
Naringenin
https://static-content.springer.com/image/art%3A10.1186%2Fs12935-022-02666-z/MediaObjects/12935_2022_2666_Stro_HTML.gif
Prostate cancer
LNCaP and PC3 cells
↓ p38 ERK1/2,
↓ S6, ↓ P70S6K, ↓ JNK
↑ Apoptosis, ↑ ROS
↓ Proliferation
↓ Migration
[67]
Silibinin
https://static-content.springer.com/image/art%3A10.1186%2Fs12935-022-02666-z/MediaObjects/12935_2022_2666_Strp_HTML.gif
Hepatocellular carcinoma
Bel-7404 xenografts in nude mice
Bel-7404
Combined treatment with the sorafenib
↓ Phosphorylation of ERK, STAT3, AKT, MAPK p38
↓ Proliferation
↑ Apoptosis
[68, 69]
Taxifolin
https://static-content.springer.com/image/art%3A10.1186%2Fs12935-022-02666-z/MediaObjects/12935_2022_2666_Strq_HTML.gif
Skin cancer
skin carcinogenesis mouse model,
JB6
Pþ mouse skin epidermal cells
↓ Phosphorylation of p38, EGFR, ERKs, JNKs
↓ Tumor incidence,
↓ Multiplicity in a solar UV (SUV)-induced skin carcinogenesis
[70]
Delphinidin
https://static-content.springer.com/image/art%3A10.1186%2Fs12935-022-02666-z/MediaObjects/12935_2022_2666_Strr_HTML.gif
Osteosarcoma
HOS, U2OS,
MG-63 cells
↓ Phosphorylated forms of p38
↓ ERK
↓ Cell migration
↓ EMT
↓ Cellular proliferation ↑ Apoptosis
[71]
Parthenolide
https://static-content.springer.com/image/art%3A10.1186%2Fs12935-022-02666-z/MediaObjects/12935_2022_2666_Strs_HTML.gif
Non-small cell lung cancer
GLC-82 cells
↓ c-Myc, ↓ B-Raf,
↓ Phosphorylation of Erk, MEK,
↓ Invasion
↓ Proliferation
↑ Apoptosis
[72, 73]
Oridonin
https://static-content.springer.com/image/art%3A10.1186%2Fs12935-022-02666-z/MediaObjects/12935_2022_2666_Strt_HTML.gif
Esophageal cancer
KYSE-150 c
xenograft KYSE-150 cancer nude mice
↓ Ras/Raf/MEK/ERK
↓ EGFR-mediated PI3K/AKT
↓ Tumor angiogenesis
↓ Angiogenesis-marker CD31
↑ Apoptosis
[74]
Curcumin
https://static-content.springer.com/image/art%3A10.1186%2Fs12935-022-02666-z/MediaObjects/12935_2022_2666_Stru_HTML.gif
Lung and pancreatic adenocarcinoma
p34, H1299,
PC-14, Panc1
↓ Erk1/2
↓ COX-2, ↓ EGFR
↓ Survival of cancer cell
↑ Apoptosis
[75]
Licochalcone A
https://static-content.springer.com/image/art%3A10.1186%2Fs12935-022-02666-z/MediaObjects/12935_2022_2666_Strv_HTML.gif
Human
gastric cancer
BGC-823
↑ JNK, ↑ ERK,
↑ p38 MAPK
↑ Oxidative stress
↑ Apoptosis
[76]
Pterostilbene
https://static-content.springer.com/image/art%3A10.1186%2Fs12935-022-02666-z/MediaObjects/12935_2022_2666_Strw_HTML.gif
Breast cancer
MCF-7
MDA-MB-231
↓ Akt, ↓ ERK1/2
↑ Apoptosis
↓ Proliferation
[77]
Arctigenin
https://static-content.springer.com/image/art%3A10.1186%2Fs12935-022-02666-z/MediaObjects/12935_2022_2666_Strx_HTML.gif
Gallbladder cancer
GBC-SD, NOZ GBC-SD
↓ EGFR, ↓ p-b-Raf,
↓ p–c-Rafp-MEK, ↓ ERK, ↓ MEK, ↓ p-AKT, ↓AKT
↑ Cancer
senescence
[78]
α-mangostin
https://static-content.springer.com/image/art%3A10.1186%2Fs12935-022-02666-z/MediaObjects/12935_2022_2666_Stry_HTML.gif
Cervical cancer
SiHa and HeLa cells and xenograft model
↑ p-ASK1, p-p38
p-MKK3/6
↑ Apoptosis
[79]
Vitisin A
https://static-content.springer.com/image/art%3A10.1186%2Fs12935-022-02666-z/MediaObjects/12935_2022_2666_Strz_HTML.gif
Pro-tumorigenic inflammation
RAW 264.7 cells
↓ p38, ↓ERK, ↓ NF-κB
↓ Proliferation
[80]
Azaspirene
https://static-content.springer.com/image/art%3A10.1186%2Fs12935-022-02666-z/MediaObjects/12935_2022_2666_Straa_HTML.gif
Renal carcinoma
Renal carcinoma xenograft model HUVEC
↓ Raf‐1
↓ Angiogenesis
[81]
Rocaglamide
https://static-content.springer.com/image/art%3A10.1186%2Fs12935-022-02666-z/MediaObjects/12935_2022_2666_Strab_HTML.gif
Leukemia
Jurkat leukemic cells
↓ Raf-MEK-ERK
Targeting prohibitin 1 and 2
[82]
L-783277
https://static-content.springer.com/image/art%3A10.1186%2Fs12935-022-02666-z/MediaObjects/12935_2022_2666_Strac_HTML.gif
Human pancreatic cancer
PSN1
↓ Phosphorylation of Ras-dependent MAP kinase
↓ Proliferation
[83]
Magnolin
https://static-content.springer.com/image/art%3A10.1186%2Fs12935-022-02666-z/MediaObjects/12935_2022_2666_Strad_HTML.gif
Non-small cell lung carcinoma
NCI-H1975
A549
↓ ERKs/RSK2
↓NF-κB
[84]
Tomatidine
https://static-content.springer.com/image/art%3A10.1186%2Fs12935-022-02666-z/MediaObjects/12935_2022_2666_Strae_HTML.gif
Sarcoma
HT1080
↓ ERK
↓ p38
↓ p38, ↓ ERK
↓ Modulation of gelatinase
[85]
Catechol
https://static-content.springer.com/image/art%3A10.1186%2Fs12935-022-02666-z/MediaObjects/12935_2022_2666_Straf_HTML.gif
Lung cancer
H460
KP2
↓ ERK2
↑ c-Myc degradation ↓ ERK2
[86]
1,2,3-Triazole Curcumin
https://static-content.springer.com/image/art%3A10.1186%2Fs12935-022-02666-z/MediaObjects/12935_2022_2666_Strag_HTML.gif
Non-small cell lung carcinoma
A549
↓ NF-κB/STAT3
↑ mitogen-activated protein kinases
↓ Cell proliferation
[87]
↑ increase, ↓ decrease, ROS reactive oxygen species; T-ALL T-cell acute lymphoblastic leukemia; HIF Hypoxia-inducible factors; JNKs c-Jun N-terminal kinases; TGFβ transforming growth factor-beta; ERK extracellular regulated MAP kinase; p38 p38 kinase; AKT v-akt murine thymoma viral oncogene homolog 1; VEGFR vascular endothelial growth factor
For the suppression of cell proliferation in pancreatic cells, the NF-kB and MAPK survival pathways were empirically suppressed using CAPE (caffeic acid phenethyl ester) and U0126. CAPE only activated the apoptosis mechanism after autophagy was inhibited [48, 50]; in MIAPaCa-2 cells, this occurred in a caspase-dependent fashion, but in PANC-1 cells, it occurred in a caspase-independent mode [51]. CAPE is a complicated therapeutic agent that affects not only programmed cell death but also angiogenesis and EMT pathways [52]. Furthermore, this study emphasizes the significance of selecting the appropriate cell culture model and understanding the characteristics of the cell lines to collect meaningful results [51].
Apigenin, a flavonoid is another chemopreventive drug that suppresses the development of choriocarcinoma cells by regulating the ERK1/2 MAPK and PI3K/AKT signal transduction mechanisms. The presence of ERK1/2 inhibitors and PI3K/AKT inhibitors enhances these effects [53].
Kaempferol, another flavanol, has been linked to angiogenesis inhibition by affecting HIF-1 and VEGFR2 in endothelial cells via a process involving PI3K/AKT/mTOR and ERK/p38. Endothelial cells were treated with kaempferol in combination with a p38 inhibitor (SB203580) or an ERK inhibitor (PD98059), and the therapeutic effectiveness of kaempferol was found to be enhanced [88].
Coumestrol, phaseol, and isotrifoliol have been shown significant anti-inflammatory effects on LPS (Lipopolysaccharide)-induced RAW264.7 macrophages, mostly via TLR/MAPK signaling and TLR (Toll-like receptors)/NF-kB [89]. Coumestrol, a phytoestrogen, inhibits cell proliferation through modulating MAPK-related genes and an AKT-related compensatory mechanism [54]. Quercetin, a flavonol molecule found in high concentrations, has been shown to inhibit choriocarcinoma growth by interfering with PI3K and MAPK signal transduction. Furthermore, quercetin enhanced the chemotherapeutic effects of paclitaxel and cisplatin in the cell lines of choriocarcinoma (JEG3 and JAR) [55].
Isoflavones were recently thought to be promising anti-cancer medicines [90]. The consequences of genistein and novasoy were studied in endometrial cancer cells. These cells were found to have an antiproliferative impact associated with the activation of the MAPK and AKT/mTOR signaling pathways [58]. Furthermore, it has been established that genistein can reduce ER expression while increasing PR (progesterone receptor) expression [58]. In melanoma cells, genistein inhibits the proliferation of cells, migration and invasion, via the MAPK and FAK/paxillin pathways [57]. Furthermore, 5,6,7,3′,4′,5′-hexamethoxyflavone which is a polymethoxyflavone has been demonstrated to impede the cellular proliferation of triple-negative breast cancer (through MAPK/AKT targeting) and cell-cycle arresting [91].
Resveratrol is a controversial natural chemical with anti-tumour properties that is being investigated as a possible treatment possibility [92]. Resveratrol can preferentially trigger autophagy and apoptosis in the T-cell acute lymphoblastic leukaemia cells via suppression of mTOR/AKT/4E-BP1/p70S6K and initiation of p38-MAPK pathways [93].
Escin, a combination of triterpene and saponins derived from the Aesculus hippocastanum, has anti-tumor ability via autophagy and apoptosis regulation via ROS/p38 MAPK signaling [94].
Furthermore, 21-methylmelianodiol (21-MMD) obtained from Poncirus trifoliata, has anti-tumor effect in the cancer of the lung via interfering with MAPK signaling and AKT/ PI3K/AMPK signaling it is also related to multi-drug resistance reversal by reducing the expressions of P-gp/MDR1 (P-glycoprotein/multidrug resistance protein 1) [95].
Toosendanin is a natural insecticide that has been shown in lung cancer models to switch EMT markers expression via ERK/Snail signaling pathway [96].
Sulforaphane (SFN) is another natural chemical that has been studied for its potential use in the treatment of OS (osteosarcoma) [97]. This isothiocyanate chemical is derived from vegetables such as broccoli, Brussels sprouts, and cabbage. Sawai et al. examined the effects of SFN on the cell line of murine osteosarcoma (LM8). These cells were grown with SFN at various doses, which caused improved cell populations in the phase of G2/M. The combination of 2 Gy of radiation and SFN inhibited the phosphorylation of ERK and AKT. SFN was also shown to cause apoptosis via G2/M phase arrest and to decrease ERK and AKT activation [98]. Another study found that SFN caused genomic instability in the cell lines of MG63 OS by mitotic and nuclear abnormalities, clastogenicity and DNA breaks. Increased production of micronuclei and apoptotic bodies indicated viability loss. SFN might be an effective molecular targeting chemotherapeutic drug for ovarian cancer [99].
Figure 2 depicts some of the most essential areas of action of those natural chemicals and Table 1 presents the most representative chemical structures of bioactive compounds which modulate the Ras-ERK cascade.

Natural bioactive compounds as kinase inhibitors

Plants have a vast store of natural bioactive compounds with beneficial effects on human health [46, 100102]. According to one study, 80% of the world's population still uses plant-derived medications to meet their healthcare needs [45, 103, 104]. Traditional medicine utilizes a combination of many ingredients; however, the ingredients might not show activities as a single entity but sometimes a combination of ingredients plays an important role in having synergistic effects and modulating other proteins which improve the efficacy of the bioactive principle [105107]. Protein kinase inhibitors have recently been shown to be chemically linked to a class of plant chemicals known as sesquiterpenes, alkaloids, flavonoids, polyphenolics, and diterpenoids, which are present in a variety of fruits, vegetables, and medicinal plants and have anti-cancer properties [44, 108]. The FDA authorized 1453 new chemical entities in 2013 with natural products or analogues of natural substances accounting for 40% of the total [109].
DLW (Danggui Longhui Wan) is a common traditional Chinese herbal medicine to treat chronic myeloid leukemia (CML) [110]. It’s made up of eleven different plant ingredients. Only indirubin was shown to be effective against CML during the hunt for the active chemical. The other ten compounds were all inactive. Indirubin is an effective inhibitor of CDKs (cyclin-dependent kinases), which are important in cell division. Because tumor cells rely largely on cell division, inhibiting CDKs will prevent cell division progression and therefore tumor development. Indirubin, on the other hand, performed well but was hard to absorb in the digestive system [111]. Gliotoxin is a sulfur-containing mycotoxin generated by a pathogenic fungus such as Aspergillus fumigatus that inhibits Ras protein and hence cell development [112]. Magnolin, a natural chemical present in Magnolia flos, inhibits cell proliferation caused by tumor promoters such as EGF (epidermal growth factor) and focuses on ERK1 and ERK2 [113].

Discussions

There is proof that the usage of natural compounds originating from microbes, animals, or plants for medical purposes goes back to the Neanderthal epoch [114, 115]. People have gathered knowledge and become an expert in their applications due to various biological activities of isolated natural items [116118]. The invention of the chemical structure aided the manufacturing of the essential compounds rather than separating them from natural sources [119]. This process was also less expensive and allowed for the use of the active element of the medicinal plant rather than the basic plant extraction [106, 107]. Marketed medications like camptothecin, artemisinin, maytansine, lovastatin, penicillin, paclitaxel, silibinin and reserpine were either indirectly or directly developed from natural compounds [120]. Natural goods are now being viewed as a viable substitute for manufactured medications. These natural compounds can be found in a variety of sources, including plants, microbes, and fungus [118]. Today, pharmaceutical research is shifting away toward multiple target approaches than single-molecule target techniques.
Natural products have been shown to initiate apoptosis and chemosensitive cell lines that were previously resistant to conventional treatments [121123]. The heterogeneity of natural compounds' inefficiency found in the cell line-centred tests and rodent models used throughout the phase of the drug discovery, which leads to the ultimate effectiveness in patients, is a significant barrier in the creation of a particular inhibitor [124].
Since the first kinase inhibitor was developed in the 1980s, more than 40 kinase inhibitors have been approved by the FDA for the treatment of malignant cells such as lung and breast cancer cells. Furthermore, around 150 kinase-targeted medicines are in clinical trials, and preclinical research is also going on numerous kinase-specific inhibitors [125]. Despite the promising anti-tumour activity and survival improvements gained by licensed RAF, MEK, and ERK inhibitors, drug resistance is the main limitation of the development of new MAPK pathway inhibitors [125]. The underlying processes, which are often associated with genomic instability and cancer heterogeneity, are largely associated with the compensatory initiation of the upstream component. More research into the MAPK pathway has led to the hypothesis that targets the downstream kinase of the ERK, and also the combination of ERK inhibition with MEK and RAF inhibition may be advantageous [125].
B-Raf is in therapeutic use among a few serine/threonine kinases inhibitors. These inhibitors of serine/threonine kinase for MAPK Aurora kinases, and CK2 and mTOR are being developed for therapeutic use [126]. We concentrated on the pathways of the canonical primary signal transduction depicted in Fig. 1. The emphasis is primarily on natural products made from plant sources, particularly flavonoids. Protein kinase B, cyclin-dependent kinases, polo-like kinase I, and other enzymes are affected. CDKs have also been targeted using natural chemicals derived from sources other than plants, such as marine creatures. New microorganisms that can survive in extreme environmental conditions called “extremophiles” have opened new perspectives in the biotechnology/pharmaceutical industry with anti-cancer therapeutic potential by blocking the cell cycle. They also have antioxidant effects. It has been observed that most extremophilic microorganisms have an increased resistance to ultraviolet radiation and can be used to develop anticancer drugs [127]. This might be a new source for developing more strong kinase inhibitors.

Limitations and future perspectives

This review has some limitations that need to be addressed in the future, such as the lack of in vivo studies that provide mechanistic perspectives on molecular interactions and targets of action of phytochemicals included in this study. Also, future in silico studies such as molecular docking may address molecular targets for a better understanding of phytochemical interactions in different signaling pathways.
Another limitation is the lack of large-scale and well-controlled clinical trials to validate the efficacy of these molecular targets, their adverse effects, and the safety of their administration for the treatment of cancer.
Although natural products show excellent results in vitro, the development of cytostatic drugs in them is a complex process, except for a few. The therapeutic advantage of these natural products is their minimal toxicity and reduced side effects [92, 128, 129]. But natural bioactive compounds can interact with many proteins, which is why it is very important to elucidate the mechanisms of action of natural products, especially those that are used in our diet [130].
In recent decades, kinase inhibitors have received more attention in search of new drugs and bioactive natural compounds that target a wide range of kinases. However, there are some therapeutic limitations of natural bioactive compounds, such as poor solubility, complexity, and biodisponibility [131133]. Therefore, to overcome these clinical pitfalls and to obtain food supplements officially approved by the competent authorities, a comprehensive quality analysis must be performed in terms of bioavailability, efficacy, safety, composition, technological manufacturing processes, pharmaceutical regulatory practices and compliance with international standards.

Conclusion

At the time, too many diverse biological features are known, making it easy to infer that they are to blame for the reported health impacts. Each ingredient in plant extracts is not effective enough to account for successful cancer treatment on its own. There is a growing body of evidence that protein kinase inhibitors can be isolated from sources other than plants. Protein kinase inhibitors have recently been obtained from marine sources. This is a novel and promising strategy for discovering new forms of kinase inhibitors. However, there are a lot of other factors, such as genetics, environment, physical activity, dietary habits, and so on, and food-related considerations alone are insufficient. When a specific molecule would be targeted, which may pave the door for larger use of flavonoids, simply because they interfere with multiple cellular ‘war fields’. When employed appropriately, this finding might lead to an effective anticancer treatment in the future.

Declarations

Not applicable.
Not applicable.

Competing interests

No competing interest.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Sell S, Nicolini A, Ferrari P, Biava PM. Cancer: a problem of developmental biology; scientific evidence for reprogramming and differentiation therapy. Curr Drug Targets. 2016;17(10):1103–10.PubMedCrossRef Sell S, Nicolini A, Ferrari P, Biava PM. Cancer: a problem of developmental biology; scientific evidence for reprogramming and differentiation therapy. Curr Drug Targets. 2016;17(10):1103–10.PubMedCrossRef
2.
Zurück zum Zitat Sharifi-Rad J, Quispe C, Bouyahya A, El Menyiy N, El Omari N, Shahinozzaman M, Ara Haque Ovey M, Koirala N, Panthi M, Ertani A, et al. Ethnobotany, phytochemistry, biological activities, and health-promoting effects of the Genus Bulbophyllum. Evid Based Complement Alternat Med. 2022;2022:6727609.PubMedPubMedCentralCrossRef Sharifi-Rad J, Quispe C, Bouyahya A, El Menyiy N, El Omari N, Shahinozzaman M, Ara Haque Ovey M, Koirala N, Panthi M, Ertani A, et al. Ethnobotany, phytochemistry, biological activities, and health-promoting effects of the Genus Bulbophyllum. Evid Based Complement Alternat Med. 2022;2022:6727609.PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Quetglas-Llabrés MM, Quispe C, Herrera-Bravo J, Catarino MD, Pereira OR, Cardoso SM, Dua K, Chellappan DK, Pabreja K, Satija S, et al. Pharmacological properties of bergapten: mechanistic and therapeutic aspects. Oxid Med Cell Longev. 2022;2022:8615242.PubMedPubMedCentralCrossRef Quetglas-Llabrés MM, Quispe C, Herrera-Bravo J, Catarino MD, Pereira OR, Cardoso SM, Dua K, Chellappan DK, Pabreja K, Satija S, et al. Pharmacological properties of bergapten: mechanistic and therapeutic aspects. Oxid Med Cell Longev. 2022;2022:8615242.PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Kato Y, Maeda T, Suzuki A, Baba Y. Cancer metabolism: new insights into classic characteristics. Jpn Dent Sci Rev. 2018;54(1):8–21.PubMedCrossRef Kato Y, Maeda T, Suzuki A, Baba Y. Cancer metabolism: new insights into classic characteristics. Jpn Dent Sci Rev. 2018;54(1):8–21.PubMedCrossRef
6.
Zurück zum Zitat Sharifi-Rad J, Quispe C, Patra JK, Singh YD, Panda MK, Das G, Adetunji CO, Michael OS, Sytar O, Polito L, et al. Paclitaxel: application in modern oncology and nanomedicine-based cancer therapy. Oxid Med Cell Longev. 2021;2021:3687700.PubMedPubMedCentral Sharifi-Rad J, Quispe C, Patra JK, Singh YD, Panda MK, Das G, Adetunji CO, Michael OS, Sytar O, Polito L, et al. Paclitaxel: application in modern oncology and nanomedicine-based cancer therapy. Oxid Med Cell Longev. 2021;2021:3687700.PubMedPubMedCentral
7.
Zurück zum Zitat Docea AO, Mitrut P, Grigore D, Pirici D, Calina DC, Gofita E. Immunohistochemical expression of TGF beta (TGF-beta), TGF beta receptor 1 (TGFBR1), and Ki67 in intestinal variant of gastric adenocarcinomas. Rom J Morphol Embryol. 2012;53(3):683–92.PubMed Docea AO, Mitrut P, Grigore D, Pirici D, Calina DC, Gofita E. Immunohistochemical expression of TGF beta (TGF-beta), TGF beta receptor 1 (TGFBR1), and Ki67 in intestinal variant of gastric adenocarcinomas. Rom J Morphol Embryol. 2012;53(3):683–92.PubMed
8.
Zurück zum Zitat Braicu C, Buse M, Busuioc C, Drula R, Gulei D, Raduly L, Rusu A, Irimie A, Atanasov AG, Slaby O. A comprehensive review on MAPK: a promising therapeutic target in cancer. Cancers. 2019;11(10):1618.PubMedCentralCrossRef Braicu C, Buse M, Busuioc C, Drula R, Gulei D, Raduly L, Rusu A, Irimie A, Atanasov AG, Slaby O. A comprehensive review on MAPK: a promising therapeutic target in cancer. Cancers. 2019;11(10):1618.PubMedCentralCrossRef
9.
Zurück zum Zitat Cainap C, Nagy V, Seicean A, Gherman A, Laszlo I, Lisencu C, Nadim AH, Constantin A-M, Cainap S. Results of third-generation epirubicin/cisplatin/xeloda adjuvant chemotherapy in patients with radically resected gastric cancer. J BUON. 2016;21:349–59.PubMed Cainap C, Nagy V, Seicean A, Gherman A, Laszlo I, Lisencu C, Nadim AH, Constantin A-M, Cainap S. Results of third-generation epirubicin/cisplatin/xeloda adjuvant chemotherapy in patients with radically resected gastric cancer. J BUON. 2016;21:349–59.PubMed
10.
Zurück zum Zitat Jain D, Chaudhary P, Varshney N, Bin Razzak KS, Verma D, Zahra TRK, Janmeda P, Sharifi-Rad J, Dastan SD, Mahmud S, et al. Tobacco smoking and liver cancer risk: potential avenues for carcinogenesis. J Oncol. 2021;2021:11.CrossRef Jain D, Chaudhary P, Varshney N, Bin Razzak KS, Verma D, Zahra TRK, Janmeda P, Sharifi-Rad J, Dastan SD, Mahmud S, et al. Tobacco smoking and liver cancer risk: potential avenues for carcinogenesis. J Oncol. 2021;2021:11.CrossRef
11.
Zurück zum Zitat Mitrut P, Docea AO, Kamal AM, Mitrut R, Calina D, Gofita E, Padureanu V, Gruia C, Streba L. Colorectal cancer and inflammatory bowel disease. Houston: Intech; 2016.CrossRef Mitrut P, Docea AO, Kamal AM, Mitrut R, Calina D, Gofita E, Padureanu V, Gruia C, Streba L. Colorectal cancer and inflammatory bowel disease. Houston: Intech; 2016.CrossRef
12.
Zurück zum Zitat Dhyani P, Quispe C, Sharma E, Bahukhandi A, Sati P, Attri DC, Szopa A, Sharifi-Rad J, Docea AO, Mardare I, et al. Anticancer potential of alkaloids: a key emphasis to colchicine, vinblastine, vincristine, vindesine, vinorelbine and vincamine. Cancer Cell Int. 2022;22(1):206.PubMedPubMedCentralCrossRef Dhyani P, Quispe C, Sharma E, Bahukhandi A, Sati P, Attri DC, Szopa A, Sharifi-Rad J, Docea AO, Mardare I, et al. Anticancer potential of alkaloids: a key emphasis to colchicine, vinblastine, vincristine, vindesine, vinorelbine and vincamine. Cancer Cell Int. 2022;22(1):206.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Semwal P, Painuli S, Abu-Izneid T, Rauf A, Sharma A, Daştan SD, Kumar M, Alshehri MM, Taheri Y, Das R, et al. Diosgenin: an updated pharmacological review and therapeutic perspectives. Oxid Med Cell Longev. 2022;2022:1035441.PubMedPubMedCentralCrossRef Semwal P, Painuli S, Abu-Izneid T, Rauf A, Sharma A, Daştan SD, Kumar M, Alshehri MM, Taheri Y, Das R, et al. Diosgenin: an updated pharmacological review and therapeutic perspectives. Oxid Med Cell Longev. 2022;2022:1035441.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Zijlstra A, Von Lersner A, Yu D, Borrello L, Oudin M, Kang Y, Sahai E, Fingleton B, Stein U, Cox TR, et al. The importance of developing therapies targeting the biological spectrum of metastatic disease. Clin Exp Metastasis. 2019;36(4):305–9.PubMedPubMedCentralCrossRef Zijlstra A, Von Lersner A, Yu D, Borrello L, Oudin M, Kang Y, Sahai E, Fingleton B, Stein U, Cox TR, et al. The importance of developing therapies targeting the biological spectrum of metastatic disease. Clin Exp Metastasis. 2019;36(4):305–9.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Buga AM, Docea AO, Albu C, Malin RD, Branisteanu DE, Ianosi G, Ianosi SL, Iordache A, Calina D. Molecular and cellular stratagem of brain metastases associated with melanoma. Oncol Lett. 2019;17(5):4170–5.PubMedPubMedCentral Buga AM, Docea AO, Albu C, Malin RD, Branisteanu DE, Ianosi G, Ianosi SL, Iordache A, Calina D. Molecular and cellular stratagem of brain metastases associated with melanoma. Oncol Lett. 2019;17(5):4170–5.PubMedPubMedCentral
16.
Zurück zum Zitat Kato Y, Ozawa S, Miyamoto C, Maehata Y, Suzuki A, Maeda T, Baba Y. Acidic extracellular microenvironment and cancer. Cancer Cell Int. 2013;13(1):89.PubMedPubMedCentralCrossRef Kato Y, Ozawa S, Miyamoto C, Maehata Y, Suzuki A, Maeda T, Baba Y. Acidic extracellular microenvironment and cancer. Cancer Cell Int. 2013;13(1):89.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Plotnikov A, Zehorai E, Procaccia S. Seger R (2011) The MAPK cascades signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim Biophys Acta Mol Cell Res. 1813;9:1619–33. Plotnikov A, Zehorai E, Procaccia S. Seger R (2011) The MAPK cascades signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim Biophys Acta Mol Cell Res. 1813;9:1619–33.
18.
19.
Zurück zum Zitat Ali ES, Rychkov GY, Barritt GJ. Targeting Ca(2+) signaling in the initiation, promotion and progression of hepatocellular carcinoma. Cancers (Basel). 2020;12(10):2755.CrossRef Ali ES, Rychkov GY, Barritt GJ. Targeting Ca(2+) signaling in the initiation, promotion and progression of hepatocellular carcinoma. Cancers (Basel). 2020;12(10):2755.CrossRef
20.
Zurück zum Zitat Sutoo S, Maeda T, Suzuki A, Kato Y. Adaptation to chronic acidic extracellular pH elicits a sustained increase in lung cancer cell invasion and metastasis. Clin Exp Metastasis. 2020;37(1):133–44.PubMedCrossRef Sutoo S, Maeda T, Suzuki A, Kato Y. Adaptation to chronic acidic extracellular pH elicits a sustained increase in lung cancer cell invasion and metastasis. Clin Exp Metastasis. 2020;37(1):133–44.PubMedCrossRef
21.
Zurück zum Zitat Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, Dimitriadoy S, Liu DL, Kantheti HS, Saghafinia S. Oncogenic signaling pathways in the cancer genome atlas. Cell. 2018;173(2):321-337. e310.PubMedPubMedCentralCrossRef Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, Dimitriadoy S, Liu DL, Kantheti HS, Saghafinia S. Oncogenic signaling pathways in the cancer genome atlas. Cell. 2018;173(2):321-337. e310.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Seles M, Hutterer GC, Kiesslich T, Pummer K, Berindan-Neagoe I, Perakis S, Schwarzenbacher D, Stotz M, Gerger A, Pichler M. Current insights into long non-coding RNAs in renal cell carcinoma. Int J Mol Sci. 2016;17(4):573.PubMedPubMedCentralCrossRef Seles M, Hutterer GC, Kiesslich T, Pummer K, Berindan-Neagoe I, Perakis S, Schwarzenbacher D, Stotz M, Gerger A, Pichler M. Current insights into long non-coding RNAs in renal cell carcinoma. Int J Mol Sci. 2016;17(4):573.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Zlatian OM, Comanescu MV, Rosu AF, Rosu L, Cruce M, Gaman AE, Calina CD, Sfredel V. Histochemical and immunohistochemical evidence of tumor heterogeneity in colorectal cancer. Rom J Morphol Embryol. 2015;56(1):175–81.PubMed Zlatian OM, Comanescu MV, Rosu AF, Rosu L, Cruce M, Gaman AE, Calina CD, Sfredel V. Histochemical and immunohistochemical evidence of tumor heterogeneity in colorectal cancer. Rom J Morphol Embryol. 2015;56(1):175–81.PubMed
24.
Zurück zum Zitat Ianoși SL, Batani A, Ilie MA, Tampa M, Georgescu SR, Zurac S, Boda D, Ianosi NG, Neagoe D, Calina D, et al. Non-invasive imaging techniques for the in vivo diagnosis of Bowen’s disease: three case reports. Oncol Lett. 2019;17(5):4094–101.PubMedPubMedCentral Ianoși SL, Batani A, Ilie MA, Tampa M, Georgescu SR, Zurac S, Boda D, Ianosi NG, Neagoe D, Calina D, et al. Non-invasive imaging techniques for the in vivo diagnosis of Bowen’s disease: three case reports. Oncol Lett. 2019;17(5):4094–101.PubMedPubMedCentral
25.
Zurück zum Zitat Braicu C, Catana C, Calin A G, Berindan-Neagoe I. NCRNA combined therapy as future treatment option for cancer. Curr Pharm Des. 2014;20(42):6565–74.PubMedCrossRef Braicu C, Catana C, Calin A G, Berindan-Neagoe I. NCRNA combined therapy as future treatment option for cancer. Curr Pharm Des. 2014;20(42):6565–74.PubMedCrossRef
26.
Zurück zum Zitat Braicu C, Zimta A-A, Harangus A, Iurca I, Irimie A, Coza O, Berindan-Neagoe I. The function of non-coding RNAs in lung cancer tumorigenesis. Cancers. 2019;11(5):605.PubMedCentralCrossRef Braicu C, Zimta A-A, Harangus A, Iurca I, Irimie A, Coza O, Berindan-Neagoe I. The function of non-coding RNAs in lung cancer tumorigenesis. Cancers. 2019;11(5):605.PubMedCentralCrossRef
27.
Zurück zum Zitat Braicu C, Pileczki V, Irimie A, Berindan-Neagoe I. p53siRNA therapy reduces cell proliferation, migration and induces apoptosis in triple negative breast cancer cells. Mol Cell Biochem. 2013;381(1–2):61–8.PubMedCrossRef Braicu C, Pileczki V, Irimie A, Berindan-Neagoe I. p53siRNA therapy reduces cell proliferation, migration and induces apoptosis in triple negative breast cancer cells. Mol Cell Biochem. 2013;381(1–2):61–8.PubMedCrossRef
28.
Zurück zum Zitat Ganapathi MK, Jones WD, Sehouli J, Michener CM, Braicu IE, Norris EJ, Biscotti CV, Vaziri SA, Ganapathi RN. Expression profile of COL2A1 and the pseudogene SLC6A10P predicts tumor recurrence in high-grade serous ovarian cancer. Int J Cancer. 2016;138(3):679–88.PubMedCrossRef Ganapathi MK, Jones WD, Sehouli J, Michener CM, Braicu IE, Norris EJ, Biscotti CV, Vaziri SA, Ganapathi RN. Expression profile of COL2A1 and the pseudogene SLC6A10P predicts tumor recurrence in high-grade serous ovarian cancer. Int J Cancer. 2016;138(3):679–88.PubMedCrossRef
30.
Zurück zum Zitat Sani TA, Mohammadpour E, Mohammadi A, Memariani T, Yazdi MV, Rezaee R, Calina D, Docea AO, Goumenou M, Etemad L, et al. Cytotoxic And apoptogenic properties Of Dracocephalum Kotschyi aerial part different fractions on calu-6 and mehr-80 lung cancer cell lines. Farmacia. 2017;65(2):189–99. Sani TA, Mohammadpour E, Mohammadi A, Memariani T, Yazdi MV, Rezaee R, Calina D, Docea AO, Goumenou M, Etemad L, et al. Cytotoxic And apoptogenic properties Of Dracocephalum Kotschyi aerial part different fractions on calu-6 and mehr-80 lung cancer cell lines. Farmacia. 2017;65(2):189–99.
33.
34.
Zurück zum Zitat Wee P, Wang Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers (Basel). 2017;9(5):52.CrossRef Wee P, Wang Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers (Basel). 2017;9(5):52.CrossRef
36.
Zurück zum Zitat Debela DT, Muzazu SG, Heraro KD, Ndalama MT, Mesele BW, Haile DC, Kitui SK, Manyazewal T. New approaches and procedures for cancer treatment: current perspectives. SAGE Open Med. 2021;9:20503121211034370–20503121211034370.PubMedPubMedCentralCrossRef Debela DT, Muzazu SG, Heraro KD, Ndalama MT, Mesele BW, Haile DC, Kitui SK, Manyazewal T. New approaches and procedures for cancer treatment: current perspectives. SAGE Open Med. 2021;9:20503121211034370–20503121211034370.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Silk JD, Abbott RJM, Adams KJ, Bennett AD, Brett S, Cornforth TV, Crossland KL, Figueroa DJ, Jing J, O’Connor C, et al. Engineering cancer antigen-specific T cells to overcome the immunosuppressive effects of TGF-β. J Immunol. 2022;208(1):169–80.PubMedCrossRef Silk JD, Abbott RJM, Adams KJ, Bennett AD, Brett S, Cornforth TV, Crossland KL, Figueroa DJ, Jing J, O’Connor C, et al. Engineering cancer antigen-specific T cells to overcome the immunosuppressive effects of TGF-β. J Immunol. 2022;208(1):169–80.PubMedCrossRef
38.
Zurück zum Zitat Ali ES, Sahu U, Villa E, O’Hara BP, Gao P, Beaudet C, Wood AW, Asara JM, Ben-Sahra I. ERK2 Phosphorylates PFAS to mediate posttranslational control of de novo purine synthesis. Mol Cell. 2020;78(6):1178-1191.e1176.PubMedPubMedCentralCrossRef Ali ES, Sahu U, Villa E, O’Hara BP, Gao P, Beaudet C, Wood AW, Asara JM, Ben-Sahra I. ERK2 Phosphorylates PFAS to mediate posttranslational control of de novo purine synthesis. Mol Cell. 2020;78(6):1178-1191.e1176.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Lee S, Rauch J, Kolch W. Targeting MAPK signaling in cancer: mechanisms of drug resistance and sensitivity. Int J Mol Sci. 2020;21(3):1102.PubMedCentralCrossRef Lee S, Rauch J, Kolch W. Targeting MAPK signaling in cancer: mechanisms of drug resistance and sensitivity. Int J Mol Sci. 2020;21(3):1102.PubMedCentralCrossRef
40.
Zurück zum Zitat Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev. 2011;75(1):50–83.PubMedPubMedCentralCrossRef Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev. 2011;75(1):50–83.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Sharifi-Rad J, Quispe C, Butnariu M, Rotariu LS, Sytar O, Sestito S, Rapposelli S, Akram M, Iqbal M, Krishna A, et al. Chitosan nanoparticles as a promising tool in nanomedicine with particular emphasis on oncological treatment. Cancer Cell Int. 2021;21(1):318–318.PubMedPubMedCentralCrossRef Sharifi-Rad J, Quispe C, Butnariu M, Rotariu LS, Sytar O, Sestito S, Rapposelli S, Akram M, Iqbal M, Krishna A, et al. Chitosan nanoparticles as a promising tool in nanomedicine with particular emphasis on oncological treatment. Cancer Cell Int. 2021;21(1):318–318.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Taheri Y, Quispe C, Herrera-Bravo J, Sharifi-Rad J, Ezzat SM, Merghany RM, Shaheen S, Azmi L, Prakash Mishra A, Sener B, et al. Urtica dioica-derived phytochemicals for pharmacological and therapeutic applications. Evid Based Complement Alternat Med. 2022;2022:4024331.PubMedPubMedCentralCrossRef Taheri Y, Quispe C, Herrera-Bravo J, Sharifi-Rad J, Ezzat SM, Merghany RM, Shaheen S, Azmi L, Prakash Mishra A, Sener B, et al. Urtica dioica-derived phytochemicals for pharmacological and therapeutic applications. Evid Based Complement Alternat Med. 2022;2022:4024331.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Painuli S, Quispe C, Herrera-Bravo J, Semwal P, Martorell M, Almarhoon ZM, Seilkhan A, Ydyrys A, Rad JS, Alshehri MM, et al. Nutraceutical profiling, bioactive composition, and biological applications of Lepidium sativum L. Oxid Med Cell Longev. 2022;2022:2910411.PubMedPubMedCentralCrossRef Painuli S, Quispe C, Herrera-Bravo J, Semwal P, Martorell M, Almarhoon ZM, Seilkhan A, Ydyrys A, Rad JS, Alshehri MM, et al. Nutraceutical profiling, bioactive composition, and biological applications of Lepidium sativum L. Oxid Med Cell Longev. 2022;2022:2910411.PubMedPubMedCentralCrossRef
44.
45.
Zurück zum Zitat Rajib H, Muhammad Torequl I, Pranta R, Divya J, Abu Saim Mohammad S, Lutfun N, Anupam Das T, Satyajit S, Seyed Abdulmajid A, Miquel M, et al. Amentoflavone, new hope against SARS-CoV-2: an outlook through its scientific records and an in silico study. Pharmacogn Res. 2021. https://doi.org/10.5530/pres.13.3.7.CrossRef Rajib H, Muhammad Torequl I, Pranta R, Divya J, Abu Saim Mohammad S, Lutfun N, Anupam Das T, Satyajit S, Seyed Abdulmajid A, Miquel M, et al. Amentoflavone, new hope against SARS-CoV-2: an outlook through its scientific records and an in silico study. Pharmacogn Res. 2021. https://​doi.​org/​10.​5530/​pres.​13.​3.​7.CrossRef
47.
Zurück zum Zitat Hossain R, Quispe C, Saikat ASM, Jain D, Habib A, Janmeda P, Islam MT, Radha SD, Kumar M, et al. Biosynthesis of secondary metabolites based on the regulation of microRNAs. Biomed Res Int. 2022;2022:9349897.PubMedPubMedCentral Hossain R, Quispe C, Saikat ASM, Jain D, Habib A, Janmeda P, Islam MT, Radha SD, Kumar M, et al. Biosynthesis of secondary metabolites based on the regulation of microRNAs. Biomed Res Int. 2022;2022:9349897.PubMedPubMedCentral
48.
Zurück zum Zitat Budisan L, Gulei D, Zanoaga OM, Irimie AI, Sergiu C, Braicu C, Gherman CD, Berindan-Neagoe I. Dietary intervention by phytochemicals and their role in modulating coding and non-coding genes in cancer. Int J Mol Sci. 2017;18(6):1178.PubMedCentralCrossRef Budisan L, Gulei D, Zanoaga OM, Irimie AI, Sergiu C, Braicu C, Gherman CD, Berindan-Neagoe I. Dietary intervention by phytochemicals and their role in modulating coding and non-coding genes in cancer. Int J Mol Sci. 2017;18(6):1178.PubMedCentralCrossRef
49.
Zurück zum Zitat Braicu C, Mehterov N, Vladimirov B, Sarafian V, Nabavi SM, Atanasov AG, Berindan-Neagoe I. Nutrigenomics in cancer: revisiting the effects of natural compounds. Semin Cancer Biol. 2017;46:84–106.PubMedCrossRef Braicu C, Mehterov N, Vladimirov B, Sarafian V, Nabavi SM, Atanasov AG, Berindan-Neagoe I. Nutrigenomics in cancer: revisiting the effects of natural compounds. Semin Cancer Biol. 2017;46:84–106.PubMedCrossRef
50.
Zurück zum Zitat Budisan L, Gulei D, Jurj A, Braicu C, Zanoaga O, Cojocneanu R, Pop L, Raduly L, Barbat A, Moldovan A, et al. Inhibitory effect of CAPE and Kaempferol in colon cancer cell lines-possible implications in new therapeutic strategies. Int J Mol Sci. 2019;20(5):1199.PubMedCentralCrossRef Budisan L, Gulei D, Jurj A, Braicu C, Zanoaga O, Cojocneanu R, Pop L, Raduly L, Barbat A, Moldovan A, et al. Inhibitory effect of CAPE and Kaempferol in colon cancer cell lines-possible implications in new therapeutic strategies. Int J Mol Sci. 2019;20(5):1199.PubMedCentralCrossRef
51.
Zurück zum Zitat Papademetrio DL, Lompardia SL, Simunovich T, Costantino S, Mihalez CY, Cavaliere V, Alvarez E. Inhibition of survival pathways MAPK and NF-kB triggers apoptosis in pancreatic ductal adenocarcinoma cells via suppression of autophagy. Target Oncol. 2016;11(2):183–95.PubMedCrossRef Papademetrio DL, Lompardia SL, Simunovich T, Costantino S, Mihalez CY, Cavaliere V, Alvarez E. Inhibition of survival pathways MAPK and NF-kB triggers apoptosis in pancreatic ductal adenocarcinoma cells via suppression of autophagy. Target Oncol. 2016;11(2):183–95.PubMedCrossRef
52.
Zurück zum Zitat Gherman C, Braicu OL, Zanoaga O, Jurj A, Pileczki V, Maralani M, Drigla F, Braicu C, Budisan L, Achimas-Cadariu P, et al. Caffeic acid phenethyl ester activates pro-apoptotic and epithelial-mesenchymal transition-related genes in ovarian cancer cells A2780 and A2780cis. Mol Cell Biochem. 2016;413(1–2):189–98.PubMedCrossRef Gherman C, Braicu OL, Zanoaga O, Jurj A, Pileczki V, Maralani M, Drigla F, Braicu C, Budisan L, Achimas-Cadariu P, et al. Caffeic acid phenethyl ester activates pro-apoptotic and epithelial-mesenchymal transition-related genes in ovarian cancer cells A2780 and A2780cis. Mol Cell Biochem. 2016;413(1–2):189–98.PubMedCrossRef
53.
Zurück zum Zitat Lim W, Park S, Bazer FW, Song G. Apigenin reduces survival of choriocarcinoma cells by inducing apoptosis via the PI3K/AKT and ERK1/2 MAPK pathways. J Cell Physiol. 2016;231(12):2690–9.PubMedCrossRef Lim W, Park S, Bazer FW, Song G. Apigenin reduces survival of choriocarcinoma cells by inducing apoptosis via the PI3K/AKT and ERK1/2 MAPK pathways. J Cell Physiol. 2016;231(12):2690–9.PubMedCrossRef
54.
Zurück zum Zitat Lim W, Jeong M, Bazer FW, Song G. coumestrol inhibits proliferation and migration of prostate cancer cells by regulating AKT, ERK1/2, and JNK MAPK cell signaling cascades. J Cell Physiol. 2017;232(4):862–71.PubMedCrossRef Lim W, Jeong M, Bazer FW, Song G. coumestrol inhibits proliferation and migration of prostate cancer cells by regulating AKT, ERK1/2, and JNK MAPK cell signaling cascades. J Cell Physiol. 2017;232(4):862–71.PubMedCrossRef
55.
Zurück zum Zitat Lim W, Yang C, Park S, Bazer FW, Song G. Inhibitory effects of quercetin on progression of human choriocarcinoma cells are mediated through PI3K/AKT and MAPK signal transduction cascades. J Cell Physiol. 2017;232(6):1428–40.PubMedCrossRef Lim W, Yang C, Park S, Bazer FW, Song G. Inhibitory effects of quercetin on progression of human choriocarcinoma cells are mediated through PI3K/AKT and MAPK signal transduction cascades. J Cell Physiol. 2017;232(6):1428–40.PubMedCrossRef
56.
Zurück zum Zitat Kim GD. Kaempferol inhibits angiogenesis by suppressing HIF-1alpha and VEGFR2 activation via ERK/p38 MAPK and PI3K/Akt/mTOR signaling pathways in endothelial cells. Prev Nutr Food Sci. 2017;22(4):320–6.PubMedPubMedCentralCrossRef Kim GD. Kaempferol inhibits angiogenesis by suppressing HIF-1alpha and VEGFR2 activation via ERK/p38 MAPK and PI3K/Akt/mTOR signaling pathways in endothelial cells. Prev Nutr Food Sci. 2017;22(4):320–6.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Cui S, Wang J, Wu Q, Qian J, Yang C, Bo P. Genistein inhibits the growth and regulates the migration and invasion abilities of melanoma cells via the FAK/paxillin and MAPK pathways. Oncotarget. 2017;8(13):21674–91.PubMedPubMedCentralCrossRef Cui S, Wang J, Wu Q, Qian J, Yang C, Bo P. Genistein inhibits the growth and regulates the migration and invasion abilities of melanoma cells via the FAK/paxillin and MAPK pathways. Oncotarget. 2017;8(13):21674–91.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Malloy KM, Wang J, Clark LH, Fang Z, Sun W, Yin Y, Kong W, Zhou C, Bae-Jump VL. Novasoy and genistein inhibit endometrial cancer cell proliferation through disruption of the AKT/mTOR and MAPK signaling pathways. Am J Transl Res. 2018;10(3):784–95.PubMedPubMedCentral Malloy KM, Wang J, Clark LH, Fang Z, Sun W, Yin Y, Kong W, Zhou C, Bae-Jump VL. Novasoy and genistein inhibit endometrial cancer cell proliferation through disruption of the AKT/mTOR and MAPK signaling pathways. Am J Transl Res. 2018;10(3):784–95.PubMedPubMedCentral
59.
Zurück zum Zitat Ge J, Liu Y, Li Q, Guo X, Gu L, Ma ZG, Zhu YP. Resveratrol induces apoptosis and autophagy in T-cell acute lymphoblastic leukemia cells by inhibiting Akt/mTOR and activating p38-MAPK. Biomed Environ Sci. 2013;26(11):902–11.PubMed Ge J, Liu Y, Li Q, Guo X, Gu L, Ma ZG, Zhu YP. Resveratrol induces apoptosis and autophagy in T-cell acute lymphoblastic leukemia cells by inhibiting Akt/mTOR and activating p38-MAPK. Biomed Environ Sci. 2013;26(11):902–11.PubMed
60.
Zurück zum Zitat Salehi B, Mishra AP, Nigam M, Sener B, Kilic M, Sharifi-Rad M, Fokou PVT, Martins N, Sharifi-Rad J. Resveratrol: a double-edged sword in health benefits. Biomedicines. 2018;6(3):91.PubMedCentralCrossRef Salehi B, Mishra AP, Nigam M, Sener B, Kilic M, Sharifi-Rad M, Fokou PVT, Martins N, Sharifi-Rad J. Resveratrol: a double-edged sword in health benefits. Biomedicines. 2018;6(3):91.PubMedCentralCrossRef
61.
Zurück zum Zitat Zhu J, Yu W, Liu B, Wang Y, Shao J, Wang J, Xia K, Liang C, Fang W, Zhou C, et al. Escin induces caspase-dependent apoptosis and autophagy through the ROS/p38 MAPK signalling pathway in human osteosarcoma cells in vitro and in vivo. Cell Death Dis. 2017;8(10): e3113.PubMedPubMedCentralCrossRef Zhu J, Yu W, Liu B, Wang Y, Shao J, Wang J, Xia K, Liang C, Fang W, Zhou C, et al. Escin induces caspase-dependent apoptosis and autophagy through the ROS/p38 MAPK signalling pathway in human osteosarcoma cells in vitro and in vivo. Cell Death Dis. 2017;8(10): e3113.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Aldonza MB, Hong JY, Bae SY, Song J, Kim WK, Oh J, Shin Y, Lee SH, Lee SK. Suppression of MAPK signaling and reversal of mTOR-dependent MDR1-associated multidrug resistance by 21alpha-methylmelianodiol in lung cancer cells. PLoS ONE. 2015;10(6): e0127841.PubMedPubMedCentralCrossRef Aldonza MB, Hong JY, Bae SY, Song J, Kim WK, Oh J, Shin Y, Lee SH, Lee SK. Suppression of MAPK signaling and reversal of mTOR-dependent MDR1-associated multidrug resistance by 21alpha-methylmelianodiol in lung cancer cells. PLoS ONE. 2015;10(6): e0127841.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Luo W, Liu X, Sun W, Lu JJ, Wang Y, Chen X. Toosendanin, a natural product, inhibited TGF-β1-induced epithelial-mesenchymal transition through ERK/Snail pathway. Phytother Res. 2018;32(10):2009–20.PubMedCrossRef Luo W, Liu X, Sun W, Lu JJ, Wang Y, Chen X. Toosendanin, a natural product, inhibited TGF-β1-induced epithelial-mesenchymal transition through ERK/Snail pathway. Phytother Res. 2018;32(10):2009–20.PubMedCrossRef
64.
Zurück zum Zitat Shao J, Wang C, Li L, Liang H, Dai J, Ling X, Tang H. Luteoloside inhibits proliferation and promotes intrinsic and extrinsic pathway-mediated apoptosis involving MAPK and mTOR signaling pathways in human cervical cancer cells. Int J Mol Sci. 2018;19(6):1664.PubMedCentralCrossRef Shao J, Wang C, Li L, Liang H, Dai J, Ling X, Tang H. Luteoloside inhibits proliferation and promotes intrinsic and extrinsic pathway-mediated apoptosis involving MAPK and mTOR signaling pathways in human cervical cancer cells. Int J Mol Sci. 2018;19(6):1664.PubMedCentralCrossRef
65.
Zurück zum Zitat Liang RR, Zhang S, Qi JA, Wang ZD, Li J, Liu PJ, Huang C, Le XF, Yang J, Li ZF. Preferential inhibition of hepatocellular carcinoma by the flavonoid Baicalein through blocking MEK-ERK signaling. Int J Oncol. 2012;41(3):969–78.PubMedCrossRef Liang RR, Zhang S, Qi JA, Wang ZD, Li J, Liu PJ, Huang C, Le XF, Yang J, Li ZF. Preferential inhibition of hepatocellular carcinoma by the flavonoid Baicalein through blocking MEK-ERK signaling. Int J Oncol. 2012;41(3):969–78.PubMedCrossRef
66.
Zurück zum Zitat Zhang XJ, Jia SS. Fisetin inhibits laryngeal carcinoma through regulation of AKT/NF-kappaB/mTOR and ERK1/2 signaling pathways. Biomed Pharmacother. 2016;83:1164–74.PubMedCrossRef Zhang XJ, Jia SS. Fisetin inhibits laryngeal carcinoma through regulation of AKT/NF-kappaB/mTOR and ERK1/2 signaling pathways. Biomed Pharmacother. 2016;83:1164–74.PubMedCrossRef
67.
Zurück zum Zitat Lim W, Park S, Bazer FW, Song G. Naringenin-induced apoptotic cell death in prostate cancer cells is mediated via the PI3K/AKT and MAPK signaling pathways. J Cell Biochem. 2017;118(5):1118–31.PubMedCrossRef Lim W, Park S, Bazer FW, Song G. Naringenin-induced apoptotic cell death in prostate cancer cells is mediated via the PI3K/AKT and MAPK signaling pathways. J Cell Biochem. 2017;118(5):1118–31.PubMedCrossRef
68.
Zurück zum Zitat Mao J, Yang H, Cui T, Pan P, Kabir N, Chen D, Ma J, Chen X, Chen Y, Yang Y. Combined treatment with sorafenib and silibinin synergistically targets both HCC cells and cancer stem cells by enhanced inhibition of the phosphorylation of STAT3/ERK/AKT. Eur J Pharmacol. 2018;832:39–49.PubMedCrossRef Mao J, Yang H, Cui T, Pan P, Kabir N, Chen D, Ma J, Chen X, Chen Y, Yang Y. Combined treatment with sorafenib and silibinin synergistically targets both HCC cells and cancer stem cells by enhanced inhibition of the phosphorylation of STAT3/ERK/AKT. Eur J Pharmacol. 2018;832:39–49.PubMedCrossRef
69.
Zurück zum Zitat Jain D, Murti Y, Khan WU, Hossain R, Hossain MN, Agrawal KK, Ashraf RA, Islam MT, Janmeda P, Taheri Y, et al. Roles of therapeutic bioactive compounds in hepatocellular carcinoma. Oxid Med Cell Longev. 2021;2021:9068850.PubMedPubMedCentralCrossRef Jain D, Murti Y, Khan WU, Hossain R, Hossain MN, Agrawal KK, Ashraf RA, Islam MT, Janmeda P, Taheri Y, et al. Roles of therapeutic bioactive compounds in hepatocellular carcinoma. Oxid Med Cell Longev. 2021;2021:9068850.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Oi N, Chen H, Ok Kim M, Lubet RA, Bode AM, Dong Z. Taxifolin suppresses UV-induced skin carcinogenesis by targeting EGFR and PI3K. Cancer Prev Res (Phila). 2012;5(9):1103–14.CrossRef Oi N, Chen H, Ok Kim M, Lubet RA, Bode AM, Dong Z. Taxifolin suppresses UV-induced skin carcinogenesis by targeting EGFR and PI3K. Cancer Prev Res (Phila). 2012;5(9):1103–14.CrossRef
71.
Zurück zum Zitat Kang HM, Park BS, Kang HK, Park HR, Yu SB, Kim IR. Delphinidin induces apoptosis and inhibits epithelial-to-mesenchymal transition via the ERK/p38 MAPK-signaling pathway in human osteosarcoma cell lines. Environ Toxicol. 2018;33(6):640–9.PubMedPubMedCentralCrossRef Kang HM, Park BS, Kang HK, Park HR, Yu SB, Kim IR. Delphinidin induces apoptosis and inhibits epithelial-to-mesenchymal transition via the ERK/p38 MAPK-signaling pathway in human osteosarcoma cell lines. Environ Toxicol. 2018;33(6):640–9.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Lin M, Bi H, Yan Y, Huang W, Zhang G, Zhang G, Tang S, Liu Y, Zhang L, Ma J, et al. Parthenolide suppresses non-small cell lung cancer GLC-82 cells growth via B-Raf/MAPK/Erk pathway. Oncotarget. 2017;8(14):23436–47.PubMedPubMedCentralCrossRef Lin M, Bi H, Yan Y, Huang W, Zhang G, Zhang G, Tang S, Liu Y, Zhang L, Ma J, et al. Parthenolide suppresses non-small cell lung cancer GLC-82 cells growth via B-Raf/MAPK/Erk pathway. Oncotarget. 2017;8(14):23436–47.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Singh VJ, Sharma B, Chawla PA. Recent developments in mitogen activated protein kinase inhibitors as potential anticancer agents. Bioorg Chem. 2021;114: 105161.PubMedCrossRef Singh VJ, Sharma B, Chawla PA. Recent developments in mitogen activated protein kinase inhibitors as potential anticancer agents. Bioorg Chem. 2021;114: 105161.PubMedCrossRef
74.
Zurück zum Zitat Pi J, Jiang J, Cai H, Yang F, Jin H, Yang P, Cai J, Chen ZW. GE11 peptide conjugated selenium nanoparticles for EGFR targeted oridonin delivery to achieve enhanced anticancer efficacy by inhibiting EGFR-mediated PI3K/AKT and Ras/Raf/MEK/ERK pathways. Drug Deliv. 2017;24(1):1549–64.PubMedPubMedCentralCrossRef Pi J, Jiang J, Cai H, Yang F, Jin H, Yang P, Cai J, Chen ZW. GE11 peptide conjugated selenium nanoparticles for EGFR targeted oridonin delivery to achieve enhanced anticancer efficacy by inhibiting EGFR-mediated PI3K/AKT and Ras/Raf/MEK/ERK pathways. Drug Deliv. 2017;24(1):1549–64.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Lev-Ari S, Starr A, Vexler A, Karaush V, Loew V, Greif J, Fenig E, Aderka D, Ben-Yosef R. Inhibition of pancreatic and lung adenocarcinoma cell survival by curcumin is associated with increased apoptosis, down-regulation of COX-2 and EGFR and inhibition of Erk1/2 activity. Anticancer Res. 2006;26(6B):4423–30.PubMed Lev-Ari S, Starr A, Vexler A, Karaush V, Loew V, Greif J, Fenig E, Aderka D, Ben-Yosef R. Inhibition of pancreatic and lung adenocarcinoma cell survival by curcumin is associated with increased apoptosis, down-regulation of COX-2 and EGFR and inhibition of Erk1/2 activity. Anticancer Res. 2006;26(6B):4423–30.PubMed
76.
Zurück zum Zitat Hao W, Yuan X, Yu L, Gao C, Sun X, Wang D, Zheng Q. Licochalcone A-induced human gastric cancer BGC-823 cells apoptosis by regulating ROS-mediated MAPKs and PI3K/AKT signaling pathways. Sci Rep. 2015;5:10336.PubMedPubMedCentralCrossRef Hao W, Yuan X, Yu L, Gao C, Sun X, Wang D, Zheng Q. Licochalcone A-induced human gastric cancer BGC-823 cells apoptosis by regulating ROS-mediated MAPKs and PI3K/AKT signaling pathways. Sci Rep. 2015;5:10336.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Pan C, Hu Y, Li J, Wang Z, Huang J, Zhang S, Ding L. Estrogen receptor-alpha36 is involved in pterostilbene-induced apoptosis and anti-proliferation in in vitro and in vivo breast cancer. PLoS ONE. 2014;9(8): e104459.PubMedPubMedCentralCrossRef Pan C, Hu Y, Li J, Wang Z, Huang J, Zhang S, Ding L. Estrogen receptor-alpha36 is involved in pterostilbene-induced apoptosis and anti-proliferation in in vitro and in vivo breast cancer. PLoS ONE. 2014;9(8): e104459.PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Zhang M, Cai S, Zuo B, Gong W, Tang Z, Zhou D, Weng M, Qin Y, Wang S, Liu J, et al. Arctigenin induced gallbladder cancer senescence through modulating epidermal growth factor receptor pathway. Tumour Biol. 2017;39(5):1010428317698359.PubMed Zhang M, Cai S, Zuo B, Gong W, Tang Z, Zhou D, Weng M, Qin Y, Wang S, Liu J, et al. Arctigenin induced gallbladder cancer senescence through modulating epidermal growth factor receptor pathway. Tumour Biol. 2017;39(5):1010428317698359.PubMed
79.
Zurück zum Zitat Lee CH, Ying TH, Chiou HL, Hsieh SC, Wen SH, Chou RH, Hsieh YH. Alpha-mangostin induces apoptosis through activation of reactive oxygen species and ASK1/p38 signaling pathway in cervical cancer cells. Oncotarget. 2017;8(29):47425–39.PubMedPubMedCentralCrossRef Lee CH, Ying TH, Chiou HL, Hsieh SC, Wen SH, Chou RH, Hsieh YH. Alpha-mangostin induces apoptosis through activation of reactive oxygen species and ASK1/p38 signaling pathway in cervical cancer cells. Oncotarget. 2017;8(29):47425–39.PubMedPubMedCentralCrossRef
80.
Zurück zum Zitat Mi Jeong S, Davaatseren M, Kim W, Sung Kwang P, Kim SH, Haeng Jeon H, Myung Sunny K, Kim YS, Dae Young K. Vitisin A suppresses LPS-induced NO production by inhibiting ERK, p38, and NF-kappaB activation in RAW 2647 cells. Int Immunopharmacol. 2009;9(3):319–23.CrossRef Mi Jeong S, Davaatseren M, Kim W, Sung Kwang P, Kim SH, Haeng Jeon H, Myung Sunny K, Kim YS, Dae Young K. Vitisin A suppresses LPS-induced NO production by inhibiting ERK, p38, and NF-kappaB activation in RAW 2647 cells. Int Immunopharmacol. 2009;9(3):319–23.CrossRef
81.
Zurück zum Zitat Asami Y, Kakeya H, Komi Y, Kojima S, Nishikawa K, Beebe K, Neckers L, Osada H. Azaspirene, a fungal product, inhibits angiogenesis by blocking Raf-1 activation. Cancer Sci. 2008;99(9):1853–8.PubMedCrossRef Asami Y, Kakeya H, Komi Y, Kojima S, Nishikawa K, Beebe K, Neckers L, Osada H. Azaspirene, a fungal product, inhibits angiogenesis by blocking Raf-1 activation. Cancer Sci. 2008;99(9):1853–8.PubMedCrossRef
82.
Zurück zum Zitat Polier G, Neumann J, Thuaud F, Ribeiro N, Gelhaus C, Schmidt H, Giaisi M, Köhler R, Müller WW, Proksch P, et al. The natural anticancer compounds rocaglamides inhibit the Raf-MEK-ERK pathway by targeting prohibitin 1 and 2. Chem Biol. 2012;19(9):1093–104.PubMedCrossRef Polier G, Neumann J, Thuaud F, Ribeiro N, Gelhaus C, Schmidt H, Giaisi M, Köhler R, Müller WW, Proksch P, et al. The natural anticancer compounds rocaglamides inhibit the Raf-MEK-ERK pathway by targeting prohibitin 1 and 2. Chem Biol. 2012;19(9):1093–104.PubMedCrossRef
83.
Zurück zum Zitat Zhao A, Lee SH, Mojena M, Jenkins R, Patrick DR, Huber HE, Goetz MA, Hensens OD, Zink DL, Vilella D, et al. Resorcylic acid lactones: naturally occurring potent and selective inhibitors of MEK. J Antibiot. 1999;52(12):1086–94.CrossRef Zhao A, Lee SH, Mojena M, Jenkins R, Patrick DR, Huber HE, Goetz MA, Hensens OD, Zink DL, Vilella D, et al. Resorcylic acid lactones: naturally occurring potent and selective inhibitors of MEK. J Antibiot. 1999;52(12):1086–94.CrossRef
84.
Zurück zum Zitat Lee C-J, Lee M-H, Yoo S-M, Choi K-I, Song J-H, Jang J-H, Oh S-R, Ryu H-W, Lee H-S, Surh Y-J, et al. Magnolin inhibits cell migration and invasion by targeting the ERKs/RSK2 signaling pathway. BMC Cancer. 2015;15(1):576.PubMedPubMedCentralCrossRef Lee C-J, Lee M-H, Yoo S-M, Choi K-I, Song J-H, Jang J-H, Oh S-R, Ryu H-W, Lee H-S, Surh Y-J, et al. Magnolin inhibits cell migration and invasion by targeting the ERKs/RSK2 signaling pathway. BMC Cancer. 2015;15(1):576.PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Jeon S, Kim M-M. Tomatidine inhibits cell invasion through the negative modulation of gelatinase and inactivation of p38 and ERK. Chem Biol Interact. 2019;313: 108826.PubMedCrossRef Jeon S, Kim M-M. Tomatidine inhibits cell invasion through the negative modulation of gelatinase and inactivation of p38 and ERK. Chem Biol Interact. 2019;313: 108826.PubMedCrossRef
86.
Zurück zum Zitat Lim DY, Shin SH, Lee M-H, Malakhova M, Kurinov I, Wu Q, Xu J, Jiang Y, Dong Z, Liu K, et al. A natural small molecule, catechol, induces c-Myc degradation by directly targeting ERK2 in lung cancer. Oncotarget. 2016;7(23):35001.PubMedCentralCrossRef Lim DY, Shin SH, Lee M-H, Malakhova M, Kurinov I, Wu Q, Xu J, Jiang Y, Dong Z, Liu K, et al. A natural small molecule, catechol, induces c-Myc degradation by directly targeting ERK2 in lung cancer. Oncotarget. 2016;7(23):35001.PubMedCentralCrossRef
88.
Zurück zum Zitat Kim GD. Kaempferol inhibits angiogenesis by suppressing HIF-1α and VEGFR2 activation via ERK/p38 MAPK and PI3K/Akt/mTOR signaling pathways in endothelial cells. Prev Nutr Food Sci. 2017;22(4):320–6.PubMedPubMedCentralCrossRef Kim GD. Kaempferol inhibits angiogenesis by suppressing HIF-1α and VEGFR2 activation via ERK/p38 MAPK and PI3K/Akt/mTOR signaling pathways in endothelial cells. Prev Nutr Food Sci. 2017;22(4):320–6.PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat Li H, Yoon JH, Won HJ, Ji HS, Yuk HJ, Park KH, Park HY, Jeong TS. Isotrifoliol inhibits pro-inflammatory mediators by suppression of TLR/NF-κB and TLR/MAPK signaling in LPS-induced RAW264.7 cells. Int Immunopharmacol. 2017;45:110–9.PubMedCrossRef Li H, Yoon JH, Won HJ, Ji HS, Yuk HJ, Park KH, Park HY, Jeong TS. Isotrifoliol inhibits pro-inflammatory mediators by suppression of TLR/NF-κB and TLR/MAPK signaling in LPS-induced RAW264.7 cells. Int Immunopharmacol. 2017;45:110–9.PubMedCrossRef
90.
Zurück zum Zitat Sharifi-Rad J, Quispe C, Imran M, Rauf A, Nadeem M, Gondal TA, Ahmad B, Atif M, Mubarak MS, Sytar O, et al. Genistein: an integrative overview of its mode of action, pharmacological properties, and health benefits. Oxid Med Cell Longev. 2021;2021:3268136.PubMedPubMedCentral Sharifi-Rad J, Quispe C, Imran M, Rauf A, Nadeem M, Gondal TA, Ahmad B, Atif M, Mubarak MS, Sytar O, et al. Genistein: an integrative overview of its mode of action, pharmacological properties, and health benefits. Oxid Med Cell Longev. 2021;2021:3268136.PubMedPubMedCentral
91.
Zurück zum Zitat Borah N, Gunawardana S, Torres H, McDonnell S, Van Slambrouck S. 5,6,7,3′,4′,5′-Hexamethoxyflavone inhibits growth of triple-negative breast cancer cells via suppression of MAPK and Akt signaling pathways and arresting cell cycle. Int J Oncol. 2017;51(6):1685–93.PubMedPubMedCentralCrossRef Borah N, Gunawardana S, Torres H, McDonnell S, Van Slambrouck S. 5,6,7,3′,4′,5′-Hexamethoxyflavone inhibits growth of triple-negative breast cancer cells via suppression of MAPK and Akt signaling pathways and arresting cell cycle. Int J Oncol. 2017;51(6):1685–93.PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Sharifi-Rad J, Quispe C, Durazzo A, Lucarini M, Souto EB, Santini A, Imran M, Moussa AY, Mostafa NM, El-Shazly M, et al. Resveratrol’ biotechnological applications: enlightening its antimicrobial and antioxidant properties. J Herb Med. 2022;32: 100550.CrossRef Sharifi-Rad J, Quispe C, Durazzo A, Lucarini M, Souto EB, Santini A, Imran M, Moussa AY, Mostafa NM, El-Shazly M, et al. Resveratrol’ biotechnological applications: enlightening its antimicrobial and antioxidant properties. J Herb Med. 2022;32: 100550.CrossRef
93.
Zurück zum Zitat Wang N, He J, Pan C, Wang J, Ma M, Shi X, Xu Z. Resveratrol activates autophagy via the AKT/mTOR signaling pathway to improve cognitive dysfunction in rats with chronic cerebral hypoperfusion. Front Neurosci. 2019;13:859.PubMedPubMedCentralCrossRef Wang N, He J, Pan C, Wang J, Ma M, Shi X, Xu Z. Resveratrol activates autophagy via the AKT/mTOR signaling pathway to improve cognitive dysfunction in rats with chronic cerebral hypoperfusion. Front Neurosci. 2019;13:859.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Zhao W, Lao Y, Liu Y, Niu J, Xiao Z, Arulselvan P, Shen J. Escin induces apoptosis in ovarian cancer cell line by triggering S-phase cell cycle arrest and p38 MAPK/ERK pathway inhibition. J King Saud Univ Sci. 2022;34(1): 101644.CrossRef Zhao W, Lao Y, Liu Y, Niu J, Xiao Z, Arulselvan P, Shen J. Escin induces apoptosis in ovarian cancer cell line by triggering S-phase cell cycle arrest and p38 MAPK/ERK pathway inhibition. J King Saud Univ Sci. 2022;34(1): 101644.CrossRef
95.
Zurück zum Zitat Munakarmi S, Chand L, Shin HB, Hussein UK, Yun B-S, Park HR, Jeong YJ. Anticancer effects of Poncirus fructus on hepatocellular carcinoma through regulation of apoptosis, migration, and invasion. Oncol Rep. 2020;44(6):2537–46.PubMedPubMedCentralCrossRef Munakarmi S, Chand L, Shin HB, Hussein UK, Yun B-S, Park HR, Jeong YJ. Anticancer effects of Poncirus fructus on hepatocellular carcinoma through regulation of apoptosis, migration, and invasion. Oncol Rep. 2020;44(6):2537–46.PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Rizzo VL, Levine CB, Wakshlag JJ. The effects of sulforaphane on canine osteosarcoma proliferation and invasion. Vet Comp Oncol. 2017;15(3):718–30.PubMedCrossRef Rizzo VL, Levine CB, Wakshlag JJ. The effects of sulforaphane on canine osteosarcoma proliferation and invasion. Vet Comp Oncol. 2017;15(3):718–30.PubMedCrossRef
98.
Zurück zum Zitat Sawai Y, Murata H, Horii M, Koto K, Matsui T, Horie N, Tsuji Y, Ashihara E, Maekawa T, Kubo T, et al. Effectiveness of sulforaphane as a radiosensitizer for murine osteosarcoma cells. Oncol Rep. 2013;29(3):941–5.PubMedCrossRef Sawai Y, Murata H, Horii M, Koto K, Matsui T, Horie N, Tsuji Y, Ashihara E, Maekawa T, Kubo T, et al. Effectiveness of sulforaphane as a radiosensitizer for murine osteosarcoma cells. Oncol Rep. 2013;29(3):941–5.PubMedCrossRef
99.
Zurück zum Zitat de Ferreira Oliveria JM, Remédios C, Oliveira H, Pinto P, Pinho F, Pinho S, Costa M, Santos C. Sulforaphane induces DNA damage and mitotic abnormalities in human osteosarcoma MG-63 cells: correlation with cell cycle arrest and apoptosis. Nutr Cancer. 2014;66(2):325–34.CrossRef de Ferreira Oliveria JM, Remédios C, Oliveira H, Pinto P, Pinho F, Pinho S, Costa M, Santos C. Sulforaphane induces DNA damage and mitotic abnormalities in human osteosarcoma MG-63 cells: correlation with cell cycle arrest and apoptosis. Nutr Cancer. 2014;66(2):325–34.CrossRef
101.
Zurück zum Zitat Sharifi-Rad J, Quispe C, Herrera-Bravo J, Martorell M, Sharopov F, Tumer TB, Kurt B, Lankatillake C, Docea AO, Moreira AC, et al. A pharmacological perspective on plant-derived bioactive molecules for epilepsy. Neurochem Res. 2021;46(9):2205–25.PubMedCrossRef Sharifi-Rad J, Quispe C, Herrera-Bravo J, Martorell M, Sharopov F, Tumer TB, Kurt B, Lankatillake C, Docea AO, Moreira AC, et al. A pharmacological perspective on plant-derived bioactive molecules for epilepsy. Neurochem Res. 2021;46(9):2205–25.PubMedCrossRef
102.
Zurück zum Zitat Sharifi-Rad J, Bahukhandi A, Dhyani P, Sati P, Capanoglu E, Docea AO, Al-Harrasi A, Dey A, Calina D. Therapeutic potential of neoechinulins and their derivatives: an overview of the molecular mechanisms behind pharmacological activities. Front Nutr. 2021;8: 664197.PubMedPubMedCentralCrossRef Sharifi-Rad J, Bahukhandi A, Dhyani P, Sati P, Capanoglu E, Docea AO, Al-Harrasi A, Dey A, Calina D. Therapeutic potential of neoechinulins and their derivatives: an overview of the molecular mechanisms behind pharmacological activities. Front Nutr. 2021;8: 664197.PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat Salehi B, Prakash Mishra A, Nigam M, Karazhan N, Shukla I, Kiełtyka-Dadasiewicz A, Sawicka B, Głowacka A, Abu-Darwish MS, Hussein Tarawneh A, et al. Ficus plants: state of the art from a phytochemical, pharmacological, and toxicological perspective. Phytother Res. 2021;35(3):1187–217.PubMedCrossRef Salehi B, Prakash Mishra A, Nigam M, Karazhan N, Shukla I, Kiełtyka-Dadasiewicz A, Sawicka B, Głowacka A, Abu-Darwish MS, Hussein Tarawneh A, et al. Ficus plants: state of the art from a phytochemical, pharmacological, and toxicological perspective. Phytother Res. 2021;35(3):1187–217.PubMedCrossRef
104.
Zurück zum Zitat Sharifi-Rad J, Quispe C, Herrera-Bravo J, Akram M, Abbaass W, Semwal P, Painuli S, Konovalov DA, Alfred MA, Kumar NVA, et al. Phytochemical constituents, biological activities, and health-promoting effects of the Melissa officinalis. Oxid Med Cell Longev. 2021;2021:6584693. Sharifi-Rad J, Quispe C, Herrera-Bravo J, Akram M, Abbaass W, Semwal P, Painuli S, Konovalov DA, Alfred MA, Kumar NVA, et al. Phytochemical constituents, biological activities, and health-promoting effects of the Melissa officinalis. Oxid Med Cell Longev. 2021;2021:6584693.
105.
Zurück zum Zitat Zhou X, Seto SW, Chang D, Kiat H, Razmovski-Naumovski V, Chan K, Bensoussan A. Synergistic effects of Chinese herbal medicine: a comprehensive review of methodology and current research. Front Pharmacol. 2016;7:201–201.PubMedPubMedCentral Zhou X, Seto SW, Chang D, Kiat H, Razmovski-Naumovski V, Chan K, Bensoussan A. Synergistic effects of Chinese herbal medicine: a comprehensive review of methodology and current research. Front Pharmacol. 2016;7:201–201.PubMedPubMedCentral
106.
107.
Zurück zum Zitat Salehi B, Rescigno A, Dettori T, Calina D, Docea AO, Singh L, Cebeci F, Özçelik B, Bhia M, Dowlati Beirami A, et al. Avocado-soybean unsaponifiables: a panoply of potentialities to be exploited. Biomolecules. 2020;10(1):130.PubMedCentralCrossRef Salehi B, Rescigno A, Dettori T, Calina D, Docea AO, Singh L, Cebeci F, Özçelik B, Bhia M, Dowlati Beirami A, et al. Avocado-soybean unsaponifiables: a panoply of potentialities to be exploited. Biomolecules. 2020;10(1):130.PubMedCentralCrossRef
108.
Zurück zum Zitat Hossain R, Quispe C, Herrera-Bravo J, Beltrán JF, Islam MT, Shaheen S, Cruz-Martins N, Martorell M, Kumar M, Sharifi-Rad J, et al. Neurobiological promises of the bitter diterpene lactone andrographolide. Oxid Med Cell Longev. 2022;2022:3079577.PubMedPubMedCentralCrossRef Hossain R, Quispe C, Herrera-Bravo J, Beltrán JF, Islam MT, Shaheen S, Cruz-Martins N, Martorell M, Kumar M, Sharifi-Rad J, et al. Neurobiological promises of the bitter diterpene lactone andrographolide. Oxid Med Cell Longev. 2022;2022:3079577.PubMedPubMedCentralCrossRef
109.
Zurück zum Zitat Guerra B, Issinger O-G. Natural compounds and derivatives as Ser/Thr protein kinase modulators and inhibitors. Pharmaceuticals (Basel). 2019;12(1):4.CrossRef Guerra B, Issinger O-G. Natural compounds and derivatives as Ser/Thr protein kinase modulators and inhibitors. Pharmaceuticals (Basel). 2019;12(1):4.CrossRef
110.
Zurück zum Zitat Lin HH, Robertson KL, Lellupitiyage Don SS, Taylor SR, Farkas ME. Chapter six - chemical modulation of circadian rhythms and assessment of cellular behavior via indirubin and derivatives. In: Chenoweth DM, editor. Methods in enzymology, vol. 639. Cambridge: Academic Press; 2020. Lin HH, Robertson KL, Lellupitiyage Don SS, Taylor SR, Farkas ME. Chapter six - chemical modulation of circadian rhythms and assessment of cellular behavior via indirubin and derivatives. In: Chenoweth DM, editor. Methods in enzymology, vol. 639. Cambridge: Academic Press; 2020.
111.
Zurück zum Zitat Eisenbrand G, Hippe F, Jakobs S, Muehlbeyer S. Molecular mechanisms of indirubin and its derivatives: novel anticancer molecules with their origin in traditional Chinese phytomedicine. J Cancer Res Clin Oncol. 2004;130(11):627–35.PubMedCrossRef Eisenbrand G, Hippe F, Jakobs S, Muehlbeyer S. Molecular mechanisms of indirubin and its derivatives: novel anticancer molecules with their origin in traditional Chinese phytomedicine. J Cancer Res Clin Oncol. 2004;130(11):627–35.PubMedCrossRef
112.
113.
Zurück zum Zitat Song J-H, Lee C-J, An H-J, Yoo S-M, Kang HC, Lee JY, Kim KD, Kim DJ, Lee HS, Cho Y-Y. Magnolin targeting of ERK1/2 inhibits cell proliferation and colony growth by induction of cellular senescence in ovarian cancer cells. Mol Carcinog. 2019;58(1):88–101.PubMedCrossRef Song J-H, Lee C-J, An H-J, Yoo S-M, Kang HC, Lee JY, Kim KD, Kim DJ, Lee HS, Cho Y-Y. Magnolin targeting of ERK1/2 inhibits cell proliferation and colony growth by induction of cellular senescence in ovarian cancer cells. Mol Carcinog. 2019;58(1):88–101.PubMedCrossRef
114.
Zurück zum Zitat Calina D, Buga AM, Mitroi M, Buha A, Caruntu C, Scheau C, Bouyahya A, El Omari N, El Menyiy N, Docea AO. The treatment of cognitive, behavioural and motor impairments from brain injury and neurodegenerative diseases through cannabinoid system modulation-evidence from in vivo studies. J Clin Med. 2020;9(8):28.CrossRef Calina D, Buga AM, Mitroi M, Buha A, Caruntu C, Scheau C, Bouyahya A, El Omari N, El Menyiy N, Docea AO. The treatment of cognitive, behavioural and motor impairments from brain injury and neurodegenerative diseases through cannabinoid system modulation-evidence from in vivo studies. J Clin Med. 2020;9(8):28.CrossRef
116.
Zurück zum Zitat Sharifi-Rad J, Quispe C, Kumar M, Akram M, Amin M, Iqbal M, Koirala N, Sytar O, Kregiel D, Nicola S, et al. Hyssopus essential oil: an update of its phytochemistry, biological activities, and safety profile. Oxid Med Cell Longev. 2022;2022:8442734.PubMedPubMedCentral Sharifi-Rad J, Quispe C, Kumar M, Akram M, Amin M, Iqbal M, Koirala N, Sytar O, Kregiel D, Nicola S, et al. Hyssopus essential oil: an update of its phytochemistry, biological activities, and safety profile. Oxid Med Cell Longev. 2022;2022:8442734.PubMedPubMedCentral
117.
Zurück zum Zitat Islam MT, Quispe C, El-Kersh DM, Shill MC, Bhardwaj K, Bhardwaj P, Sharifi-Rad J, Martorell M, Hossain R, Al-Harrasi A, et al. A literature-based update on Benincasa hispida (Thunb.) Cogn.: traditional uses, nutraceutical, and phytopharmacological profiles. Oxid Med Cell Longev. 2021;2021:6349041.PubMedPubMedCentralCrossRef Islam MT, Quispe C, El-Kersh DM, Shill MC, Bhardwaj K, Bhardwaj P, Sharifi-Rad J, Martorell M, Hossain R, Al-Harrasi A, et al. A literature-based update on Benincasa hispida (Thunb.) Cogn.: traditional uses, nutraceutical, and phytopharmacological profiles. Oxid Med Cell Longev. 2021;2021:6349041.PubMedPubMedCentralCrossRef
118.
Zurück zum Zitat Hossain R, Quispe C, Herrera-Bravo J, Islam MS, Sarkar C, Islam MT, Martorell M, Cruz-Martins N, Al-Harrasi A, Al-Rawahi A, et al. Lasia spinosa chemical composition and therapeutic potential: a literature-based review. Oxid Med Cell Longev. 2021;2021:1602437.PubMedPubMedCentral Hossain R, Quispe C, Herrera-Bravo J, Islam MS, Sarkar C, Islam MT, Martorell M, Cruz-Martins N, Al-Harrasi A, Al-Rawahi A, et al. Lasia spinosa chemical composition and therapeutic potential: a literature-based review. Oxid Med Cell Longev. 2021;2021:1602437.PubMedPubMedCentral
119.
Zurück zum Zitat Salehi B, Quispe C, Chamkhi I, El Omari N, Balahbib A, Sharifi-Rad J, Bouyahya A, Akram M, Iqbal M, Docea AO, et al. Pharmacological properties of chalcones: a review of preclinical including molecular mechanisms and clinical evidence. Front Pharmacol. 2021;11:592654–592654.PubMedPubMedCentralCrossRef Salehi B, Quispe C, Chamkhi I, El Omari N, Balahbib A, Sharifi-Rad J, Bouyahya A, Akram M, Iqbal M, Docea AO, et al. Pharmacological properties of chalcones: a review of preclinical including molecular mechanisms and clinical evidence. Front Pharmacol. 2021;11:592654–592654.PubMedPubMedCentralCrossRef
120.
Zurück zum Zitat Ji HF, Li XJ, Zhang HY. Natural products and drug discovery. Can thousands of years of ancient medical knowledge lead us to new and powerful drug combinations in the fight against cancer and dementia? EMBO Rep. 2009;10(3):194–200.PubMedPubMedCentralCrossRef Ji HF, Li XJ, Zhang HY. Natural products and drug discovery. Can thousands of years of ancient medical knowledge lead us to new and powerful drug combinations in the fight against cancer and dementia? EMBO Rep. 2009;10(3):194–200.PubMedPubMedCentralCrossRef
121.
Zurück zum Zitat Safarzadeh E, Sandoghchian Shotorbani S, Baradaran B. Herbal medicine as inducers of apoptosis in cancer treatment. Adv Pharm Bull. 2014;4(Suppl 1):421–7.PubMedPubMedCentral Safarzadeh E, Sandoghchian Shotorbani S, Baradaran B. Herbal medicine as inducers of apoptosis in cancer treatment. Adv Pharm Bull. 2014;4(Suppl 1):421–7.PubMedPubMedCentral
122.
Zurück zum Zitat Sharifi-Rad J, Kamiloglu S, Yeskaliyeva B, Beyatli A, Alfred MA, Salehi B, Calina D, Docea AO, Imran M, Kumar NVA, et al. Pharmacological activities of psoralidin: a comprehensive review of the molecular mechanisms of action. Front Pharmacol. 2020;11:11.CrossRef Sharifi-Rad J, Kamiloglu S, Yeskaliyeva B, Beyatli A, Alfred MA, Salehi B, Calina D, Docea AO, Imran M, Kumar NVA, et al. Pharmacological activities of psoralidin: a comprehensive review of the molecular mechanisms of action. Front Pharmacol. 2020;11:11.CrossRef
124.
Zurück zum Zitat Ma C, Peng Y, Li H, Chen W. Organ-on-a-chip: a new paradigm for drug development. Trends Pharmacol Sci. 2021;42(2):119–33.PubMedCrossRef Ma C, Peng Y, Li H, Chen W. Organ-on-a-chip: a new paradigm for drug development. Trends Pharmacol Sci. 2021;42(2):119–33.PubMedCrossRef
125.
Zurück zum Zitat Roskoski R Jr. Properties of FDA-approved small molecule protein kinase inhibitors: a 2021 update. Pharmacol Res. 2021;165: 105463.PubMedCrossRef Roskoski R Jr. Properties of FDA-approved small molecule protein kinase inhibitors: a 2021 update. Pharmacol Res. 2021;165: 105463.PubMedCrossRef
126.
Zurück zum Zitat Shepherd C, Puzanov I, Sosman JA. B-RAF inhibitors: an evolving role in the therapy of malignant melanoma. Curr Oncol Rep. 2010;12(3):146–52.PubMedCrossRef Shepherd C, Puzanov I, Sosman JA. B-RAF inhibitors: an evolving role in the therapy of malignant melanoma. Curr Oncol Rep. 2010;12(3):146–52.PubMedCrossRef
127.
Zurück zum Zitat Singh OV, Gabani P. Extremophiles: radiation resistance microbial reserves and therapeutic implications. J Appl Microbiol. 2011;110(4):851–61.PubMedCrossRef Singh OV, Gabani P. Extremophiles: radiation resistance microbial reserves and therapeutic implications. J Appl Microbiol. 2011;110(4):851–61.PubMedCrossRef
128.
Zurück zum Zitat Salehi B, Sharifi-Rad J, Capanoglu E, Adrar N, Catalkaya G, Shaheen S, Jaffer M, Giri L, Suyal R, Jugran AK, et al. Cucurbita plants: from farm to industry. Appl Sci-Basel. 2019;9(16):21. Salehi B, Sharifi-Rad J, Capanoglu E, Adrar N, Catalkaya G, Shaheen S, Jaffer M, Giri L, Suyal R, Jugran AK, et al. Cucurbita plants: from farm to industry. Appl Sci-Basel. 2019;9(16):21.
129.
Zurück zum Zitat Popović-Djordjević J, Quispe C, Giordo R, Kostić A, Katanić Stanković JS, Tsouh Fokou PV, Carbone K, Martorell M, Kumar M, Pintus G, et al. Natural products and synthetic analogues against HIV: a perspective to develop new potential anti-HIV drugs. Eur J Med Chem. 2022;233: 114217.PubMedCrossRef Popović-Djordjević J, Quispe C, Giordo R, Kostić A, Katanić Stanković JS, Tsouh Fokou PV, Carbone K, Martorell M, Kumar M, Pintus G, et al. Natural products and synthetic analogues against HIV: a perspective to develop new potential anti-HIV drugs. Eur J Med Chem. 2022;233: 114217.PubMedCrossRef
130.
Zurück zum Zitat Quispe C, Herrera-Bravo J, Javed Z, Khan K, Raza S, Gulsunoglu-Konuskan Z, Daştan SD, Sytar O, Martorell M, Sharifi-Rad J, et al. Therapeutic applications of curcumin in diabetes: a review and perspective. Biomed Res Int. 2022;2022:1375892.PubMedPubMedCentralCrossRef Quispe C, Herrera-Bravo J, Javed Z, Khan K, Raza S, Gulsunoglu-Konuskan Z, Daştan SD, Sytar O, Martorell M, Sharifi-Rad J, et al. Therapeutic applications of curcumin in diabetes: a review and perspective. Biomed Res Int. 2022;2022:1375892.PubMedPubMedCentralCrossRef
131.
Zurück zum Zitat Tsoukalas D, Fragkiadaki P, Docea AO, Alegakis AK, Sarandi E, Vakonaki E, Salataj E, Kouvidi E, Nikitovic D, Kovatsi L, et al. Association of nutraceutical supplements with longer telomere length. Int J Mol Med. 2019;44(1):218–26.PubMedPubMedCentral Tsoukalas D, Fragkiadaki P, Docea AO, Alegakis AK, Sarandi E, Vakonaki E, Salataj E, Kouvidi E, Nikitovic D, Kovatsi L, et al. Association of nutraceutical supplements with longer telomere length. Int J Mol Med. 2019;44(1):218–26.PubMedPubMedCentral
132.
Zurück zum Zitat Tsoukalas D, Zlatian O, Mitroi M, Renieri E, Tsatsakis A, Izotov BN, Burada F, Sosoi S, Burada E, Buga AM, et al. A novel nutraceutical formulation can improve motor activity and decrease the stress level in a murine model of middle-age animals. J Clin Med. 2021;10(4):624.PubMedPubMedCentralCrossRef Tsoukalas D, Zlatian O, Mitroi M, Renieri E, Tsatsakis A, Izotov BN, Burada F, Sosoi S, Burada E, Buga AM, et al. A novel nutraceutical formulation can improve motor activity and decrease the stress level in a murine model of middle-age animals. J Clin Med. 2021;10(4):624.PubMedPubMedCentralCrossRef
133.
Zurück zum Zitat Salehi B, Sestito S, Rapposelli S, Peron G, Calina D, Sharifi-Rad M, Sharopov F, Martins N, Sharifi-Rad J. Epibatidine: a promising natural alkaloid in health. Biomolecules. 2019;9(1):6.CrossRef Salehi B, Sestito S, Rapposelli S, Peron G, Calina D, Sharifi-Rad M, Sharopov F, Martins N, Sharifi-Rad J. Epibatidine: a promising natural alkaloid in health. Biomolecules. 2019;9(1):6.CrossRef
Metadaten
Titel
Targeting Ras-ERK cascade by bioactive natural products for potential treatment of cancer: an updated overview
verfasst von
Eunus S. Ali
Shamima Akter
Sarker Ramproshad
Banani Mondal
Thoufiqul Alam Riaz
Muhammad Torequl Islam
Ishaq N. Khan
Anca Oana Docea
Daniela Calina
Javad Sharifi-Rad
William C. Cho
Publikationsdatum
01.12.2022
Verlag
BioMed Central
Erschienen in
Cancer Cell International / Ausgabe 1/2022
Elektronische ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-022-02666-z

Weitere Artikel der Ausgabe 1/2022

Cancer Cell International 1/2022 Zur Ausgabe

Bei seelischem Stress sind Checkpoint-Hemmer weniger wirksam

03.06.2024 NSCLC Nachrichten

Wie stark Menschen mit fortgeschrittenem NSCLC von einer Therapie mit Immun-Checkpoint-Hemmern profitieren, hängt offenbar auch davon ab, wie sehr die Diagnose ihre psychische Verfassung erschüttert

Antikörper mobilisiert Neutrophile gegen Krebs

03.06.2024 Onkologische Immuntherapie Nachrichten

Ein bispezifischer Antikörper formiert gezielt eine Armee neutrophiler Granulozyten gegen Krebszellen. An den Antikörper gekoppeltes TNF-alpha soll die Zellen zudem tief in solide Tumoren hineinführen.

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.