Skip to main content
Erschienen in: Molecular Cancer 1/2019

Open Access 01.12.2019 | Letter to the Editor

Transcriptomic expression profiling identifies ITGBL1, an epithelial to mesenchymal transition (EMT)-associated gene, is a promising recurrence prediction biomarker in colorectal cancer

verfasst von: Takatoshi Matsuyama, Toshiaki Ishikawa, Naoki Takahashi, Yasuhide Yamada, Masamichi Yasuno, Tatsuyuki Kawano, Hiroyuki Uetake, Ajay Goel

Erschienen in: Molecular Cancer | Ausgabe 1/2019

Abstract

The current histopathological risk-stratification criteria in colorectal cancer (CRC) patients following a curative surgery remain inadequate. In this study, we undertook a systematic, genomewide, biomarker discovery approach to identify and validate key EMT-associated genes that may facilitate recurrence prediction in CRC. Genomewide RNA expression profiling results from two datasets (GSE17538; N = 173 and GSE41258; N = 307) were used for biomarker discovery. These results were independently validated in two, large, clinical cohorts (testing cohort; N = 201 and validation cohort; N = 468). We performed Gene Set Enrichment Analysis (GSEA) for understanding the function of the candidate markers, and evaluated their correlation with the mesenchymal CMS4 subtype. We identified integrin subunit beta like 1 (ITGBL1) as a promising candidate biomarker, and its high expression associated with poor overall survival (OS) in stage I-IV patients and relapse-free survival (RFS) in stage I-III patients. Subgroup validation in multiple independent patient cohorts confirmed these findings, and demonstrated that high ITGBL1 expression correlated with shorter RFS in stage II patients. We developed a RFS prediction model which robustly predicted RFS (the area under the receiver operating curve (AUROC): 0.74; hazard ratio (HR): 2.72) in CRC patients. ITGBL1 is a promising EMT-associated biomarker for recurrence prediction in CRC patients, which may contribute to improved risk-stratification in CRC.
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1186/​s12943-019-0945-y) contains supplementary material, which is available to authorized users.
Abkürzungen
AUROC
Area under the receiver operating curve
CMS
Consensus molecular subtypes
CRC
Colorectal cancer
EMT
Epithelial to mesenchymal transition
GSEA
Gene Set Enrichment Analysis
HR
Hazard ratio
ITGBL1
Integrin subunit beta like 1
MSS
Microsatellite stable
NES
Normalized enrichment score
IHC
Immunohistochemistry
OS
Overall survival
RFS
Relapse-free survival
Colorectal cancer (CRC) remains one of the primary causes of cancer-related deaths worldwide [1]. Although surgery remains the best treatment choice, a significant majority of stage II and III CRC patients develop disease recurrence following a curative resection; highlighting the inadequacy of currently used TNM classification for patient prognostication. Due to the high recurrence rates, patients with stage III disease routinely receive adjuvant chemotherapy [2]. Even though a clear benefit of adjuvant treatment in stage II CRC patients remains debatable, adjuvant chemotherapy is thought to be a reasonable treatment modality for the subgroup of high-risk stage II patients [3]. Nonetheless, given the relatively poor therapeutic response and high cancer recurrence rates, the current histopathological risk-stratification criteria remain inadequate. To address this concern, researchers have attempted to develop various biomarkers for patient stratification [4]; however, due a variety of biological and technical reasons, most of these biomarkers fail independent validations and are hence still not adopted in the clinical settings.
Epithelial-to-mesenchymal transition (EMT) is considered an essential regulatory process that mediates invasion and metastasis in cancer [5]. Recently, four consensus molecular subtypes (CMS) were identified in CRC patients following a comprehensive gene expression profiling [6]. Among these subgroups, the CMS4 subtype, characterized by the upregulation of EMT-associated genes, unequivocally emerged as a distinct subtype with worse overall survival (OS) and relapse-free survival (RFS). Although CMS classification holds promise in future, at this time, its clinical application for risk-stratification in CRC patients remains unclear. Nonetheless, given the strong association of CMS4 subgroups with an EMT phenotype, there is an emerging interest to develop EMT-associated biomarkers, which may serve as surrogates for the CMS4 subtype, and may allow more improved patient stratification.
Recently, our group has shown that biomarkers highly expressed in liver metastasis are involved in distant metastasis and the EMT process [7, 8]. In this study, using a genomewide transcriptomic profiling of matched primary CRC and corresponding liver metastasis tissues, followed by their comparison in patients with and without disease recurrence, we identified a novel, EMT-related biomarker that robustly stratified low and high-risk CRC patients. Gene Set Enrichment Analysis (GSEA) revealed that high expression of integrin subunit beta like 1 (ITGBL1) strongly correlated with an EMT-phenotype, and significantly discriminated CRC patients with the CMS4 vs. the others subtypes. Subsequent clinical validation efforts revealed that high expression of ITGBL1 associated with poor OS and RFS in multiple, large, independent CRC patient cohorts, which allowed us to conclude that ITGBL1 is an attractive and promising prognostic biomarker in CRC.

Results and discussion

Overexpression of metastatic-recurrence-related genes in CRC

We first used a systematic biomarker discovery step to identify metastatic recurrence-specific genes for CRC from the publicly available GSE17538 and GSE41258 datasets. We identified two genes, ITGBL1 and SPP1 (osteopontin), which were differentially expressed between the primary CRC vs. metastatic tissues, recurrence vs. non-recurrence groups and normal vs. cancers (> 2 fold change, and adjusted P < 0.05; Fig. 1a-c). Since, SPP1 has been extensively studied in CRC [9], while the clinical significance of ITGBL1 remains poorly but gaining a lot of attention in the field of cancer research [10], we selected ITGBL1 for further evaluation. The detailed methods are provided in the Additional file 1. The flow chart for the study design is illustrated in Additional file 2.

ITGBL1 expression strongly correlates with an epithelial mesenchymal transition in CRC

To gain further insight into the molecular function of ITGBL1 in CRC, we performed GSEA using genes that had a positive correlation with ITGBL1 expression. Based on the normalized enrichment score (NES), the EMT gene set emerged to be most strongly correlated with ITGBL1 expression (NES 2.099, P < 0.001, False discovery rate 0.016; Fig. 1d). Interestingly, several additional EMT-associated genes were also significantly correlated with the ITGBL1 expression (Fig. 1d); suggesting that ITGBL1 expression may serve as an important indicator of an EMT phenotype in CRC. Recent evidence indicates that an EMT phenotype is associated with the dissociation of the primary tumor cells from the primary site, followed by intravasation into blood and/or lymphatic vessels, establishing metastasis [5]. Through such an EMT process, CRCs with High ITGBL1 expression may lead to advanced disease, and present a higher risk for metastasis, which becomes the basis for developing recurrence prediction biomarkers.

ITGBL1 serves as a surrogate for predicting the CMS4 subtype in CRC

We next evaluated the expression of ITGBL1 in the context of CMS status in two public datasets (GSE39582 and GSE33113). We found that ITGBL1 expression was specifically higher in the CMS4 subtype vs. other subtypes in both patient cohorts. The AUROC for distinguishing CMS4 vs. CMS1–3 subtypes in CRC were 0.84 in GSE39582 and 0.91 in GSE33113 (Fig. 1e and f).

ITGBL1 expression associates with poor RFS in CRC patients

Furthermore, to investigate the clinical significance of ITGBL1 expression for risk-stratification of disease recurrence in stage II CRC patients, the group in which adjuvant chemotherapy decision-making is most desirable, we analyzed RFS in patients from the GSE39582 and GSE33113 datasets (Fig. 1g and i, respectively). In line with our earlier findings, we observed that high ITGBL1 expression group consistently demonstrated shorter RFS in stage II patients; yet again confirming the prognostic potential of this EMT-associated gene. In particular, based upon MSI analysis, high ITGBL1 expression allowed identification of high-risk patients more effectively in microsatellite stable (MSS) stage II CRC patients vs. all stage II patients in the GSE39582 cohort (Fig. 1h).

The ITGBL1 protein expression is specifically higher in metastatic tissues from CRC patients

For a better understanding of the expression pattern of ITGBL1, we performed immunohistochemical (IHC) analysis. We found that ITGBL1 expression in normal colonic mucosa was quite weak (Additional file 3: Figure S2D). However, ITGBL1 expression gradually increased from the luminal region to the invasive front in primary CRC, indicating that elevation of ITGBL1 expression might facilitate higher metastatic potential at the invasive front in primary CRC (Additional file 3: Figure S2A, B, and C). Likewise, liver metastasis revealed extremely high expression of ITGBL1 compared to adjacent hepatocytes (Additional file 3: Figure S2E).

High ITGBL1 expression correlated with advanced stage, and presence of lymphovascular and distant metastasis in CRC patients

We next investigated the level of ITGBL1 expression in relationship with various clinicopathological variables in two independent clinical testing and validation cohorts of 669 CRC patients (Additional file 4: Table S1). High ITGBL1 expression significantly correlated with increased tumor size, higher T stage, lymphovascular invasion, and the presence of distant metastasis in both cohorts (Table 1). Furthermore, when all CRC patients were segregated based upon the TNM stage, a gradual increase in ITGBL1 expression levels was observed from the low to high stages in both cohorts (Fig. 2a and d).
Table 1
Association between ITGBL1 expression and clinicopathological factors
Variables
Testing cohort N (%)
Validation cohort N (%)
ITGBL1 level
 
ITGBL1 level
 
Low
High
P value
Low
High
P value
N=130
N=71
 
N=256
N=212
 
Gender
 Male
61
29
0.41
162
113
0.03
 Female
69
42
 
94
99
 
Age
 <65
80
45
0.88
114
81
0.19
 ≥65
50
26
 
142
131
 
Location
 Colon
65
36
0.92
160
131
0.88
 Rectum
65
35
 
96
81
 
Histology
 Differentiated
119
68
0.39
239
191
0.23
 Undifferentiated
11
3
 
17
21
 
Tumor size (mm)
 ≤45
81
29
<0.01
151
72
<0.0001
 >45
49
42
 
91
137
 
Unavailable
0
0
 
14
3
 
T stage
 T1,T2
37
7
<0.01
68
24
<0.0001
 T3,T4
93
64
 
188
188
 
Lymphovascular invasion
 Absent
55
11
<0.0001
41
16
<0.01
 Present
75
60
 
213
196
 
Unavailable
0
0
 
2
0
 
Lymph node Metastasis
 Absent
69
21
0.001
137
113
0.96
 Present
61
50
 
119
99
 
Distant metastasis
 Absent
120
57
0.02
224
163
<0.01
 Present
10
14
 
32
49
 
Stage
 I, II
67
18
<0.001
132
103
0.52
 III, IV
63
53
 
124
109
 
Preoperative CEA (ng/ml)
 <5
88
39
0.07
156
114
0.12
 5≤
42
32
 
100
98
 

Overexpression of ITGBL1 correlated with poor survival in CRC patients

Next, we examined ITGBL1 expression with regard to its prognostic significance in the testing (n = 201), and validation cohorts (n = 468). In both cohorts, we noted that high ITGBL1 expression level correlated with shorter RFS in stage I-III patients (Fig. 2b and e), as well as a shorter OS in stage I-IV patients (Fig. 2c and f).
Cox’s univariate and multivariate analyses for RFS showed that high ITGBL1 expression was an independent prognostic factor for RFS in stage II CRC patients in the validation cohort (Additional file 5; Fig. 2g and h); and was also found to be significant in predicting RFS with a HR of 2.58 (Fig. 2i). Specifically, as evidenced from the findings of the GSE39582 dataset, high ITGBL1 expression could effectively identify high-risk patients in microsatellite stable (MSS) stage II CRC patients, whose risk stratification is very crucial for decision-making of the adjuvant therapy (HR 3.16; Fig. 2j). Taken together, these findings indicate that high ITGBL1 expression has important clinical significance and could potentially serve as an important biomarker for predicting recurrence in CRC patients.
We finally constructed a RFS prediction model with various combinations of parameters including ITGBL1 expression using the Cox’s proportional hazard model in stage II CRC patients. AUROC at five years of this prediction model including Rectum, T4, MSS and ITGBL1 expression further improved from 0.61 to 0.74 (Fig. 2k); highlighting the recurrence predictive potential of ITGBL1 in CRC.

Conclusion

In conclusion, high ITGBL1 expression in primary tumors was associated with recurrence in CRC patients following curative surgery. Our study identified ITGBL1 as a novel, promising EMT-associated gene that could help in risk stratification and recurrence prediction in CRC patients.

Acknowledgements

We thank Yoko Takagi and Junko Inoue for preparing the samples. We also thank Dr. Carson Harrod for proofreading the manuscript.

Funding

The present work was supported by the grants CA72851, CA181572, CA184792 and 187956 from the National Cancer Institute, National Institute of Health, a grant (RP140784) from the Cancer Prevention Research Institute of Texas (CPRIT), pilot grants from the Baylor Sammons Cancer Center and Foundation, as well as funds from the Baylor Research Institute.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.
All participants provided informed written consent, and the study protocol was approved by the Institutional Review Board of Tokyo Medical and Dental University and National Cancer Center Hospital.
All subjects have written informed consent.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.CrossRef Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.CrossRef
2.
Zurück zum Zitat Andre T, Boni C, Mounedji-Boudiaf L, Navarro M, Tabernero J, Hickish T, Topham C, Zaninelli M, Clingan P, Bridgewater J, et al. Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N Engl J Med. 2004;350:2343–51.CrossRef Andre T, Boni C, Mounedji-Boudiaf L, Navarro M, Tabernero J, Hickish T, Topham C, Zaninelli M, Clingan P, Bridgewater J, et al. Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N Engl J Med. 2004;350:2343–51.CrossRef
3.
Zurück zum Zitat Benson AB 3rd, Schrag D, Somerfield MR, Cohen AM, Figueredo AT, Flynn PJ, Krzyzanowska MK, Maroun J, McAllister P, Van Cutsem E, et al. American Society of Clinical Oncology recommendations on adjuvant chemotherapy for stage II colon cancer. J Clin Oncol. 2004;22:3408–19.CrossRef Benson AB 3rd, Schrag D, Somerfield MR, Cohen AM, Figueredo AT, Flynn PJ, Krzyzanowska MK, Maroun J, McAllister P, Van Cutsem E, et al. American Society of Clinical Oncology recommendations on adjuvant chemotherapy for stage II colon cancer. J Clin Oncol. 2004;22:3408–19.CrossRef
4.
Zurück zum Zitat Lopez NE, Weiss AC, Robles J, Fanta P, Ramamoorthy SL. A systematic review of clinically available gene expression profiling assays for stage II colorectal cancer: initial steps toward genetic staging. Am J Surg. 2016;212:700–14.CrossRef Lopez NE, Weiss AC, Robles J, Fanta P, Ramamoorthy SL. A systematic review of clinically available gene expression profiling assays for stage II colorectal cancer: initial steps toward genetic staging. Am J Surg. 2016;212:700–14.CrossRef
5.
Zurück zum Zitat Heerboth S, Housman G, Leary M, Longacre M, Byler S, Lapinska K, Willbanks A, Sarkar S. EMT and tumor metastasis. Clin Transl Med. 2015;4:6.CrossRef Heerboth S, Housman G, Leary M, Longacre M, Byler S, Lapinska K, Willbanks A, Sarkar S. EMT and tumor metastasis. Clin Transl Med. 2015;4:6.CrossRef
6.
Zurück zum Zitat Guinney J, Dienstmann R, Wang X, de Reynies A, Schlicker A, Soneson C, Marisa L, Roepman P, Nyamundanda G, Angelino P, et al. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015;21:1350–6.CrossRef Guinney J, Dienstmann R, Wang X, de Reynies A, Schlicker A, Soneson C, Marisa L, Roepman P, Nyamundanda G, Angelino P, et al. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015;21:1350–6.CrossRef
7.
Zurück zum Zitat Hur K, Toiyama Y, Takahashi M, Balaguer F, Nagasaka T, Koike J, Hemmi H, Koi M, Boland CR, Goel A. MicroRNA-200c modulates epithelial-to-mesenchymal transition (EMT) in human colorectal cancer metastasis. Gut. 2013;62:1315–26.CrossRef Hur K, Toiyama Y, Takahashi M, Balaguer F, Nagasaka T, Koike J, Hemmi H, Koi M, Boland CR, Goel A. MicroRNA-200c modulates epithelial-to-mesenchymal transition (EMT) in human colorectal cancer metastasis. Gut. 2013;62:1315–26.CrossRef
8.
Zurück zum Zitat Hur K, Toiyama Y, Okugawa Y, Ide S, Imaoka H, Boland CR, Goel A: Circulating microRNA-203 predicts prognosis and metastasis in human colorectal cancer. Gut. 2017;66:654–65. Hur K, Toiyama Y, Okugawa Y, Ide S, Imaoka H, Boland CR, Goel A: Circulating microRNA-203 predicts prognosis and metastasis in human colorectal cancer. Gut. 2017;66:654–65.
9.
Zurück zum Zitat Zhao M, Liang F, Zhang B, Yan W, Zhang J. The impact of osteopontin on prognosis and clinicopathology of colorectal cancer patients: a systematic meta-analysis. Sci Rep. 2015;5:12713.CrossRef Zhao M, Liang F, Zhang B, Yan W, Zhang J. The impact of osteopontin on prognosis and clinicopathology of colorectal cancer patients: a systematic meta-analysis. Sci Rep. 2015;5:12713.CrossRef
10.
Zurück zum Zitat Li XQ, Du X, Li DM, Kong PZ, Sun Y, Liu PF, Wang QS, Feng YM. ITGBL1 is a Runx2 transcriptional target and promotes breast Cancer bone metastasis by activating the TGFbeta signaling pathway. Cancer Res. 2015;75:3302–13.CrossRef Li XQ, Du X, Li DM, Kong PZ, Sun Y, Liu PF, Wang QS, Feng YM. ITGBL1 is a Runx2 transcriptional target and promotes breast Cancer bone metastasis by activating the TGFbeta signaling pathway. Cancer Res. 2015;75:3302–13.CrossRef
Metadaten
Titel
Transcriptomic expression profiling identifies ITGBL1, an epithelial to mesenchymal transition (EMT)-associated gene, is a promising recurrence prediction biomarker in colorectal cancer
verfasst von
Takatoshi Matsuyama
Toshiaki Ishikawa
Naoki Takahashi
Yasuhide Yamada
Masamichi Yasuno
Tatsuyuki Kawano
Hiroyuki Uetake
Ajay Goel
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
Molecular Cancer / Ausgabe 1/2019
Elektronische ISSN: 1476-4598
DOI
https://doi.org/10.1186/s12943-019-0945-y

Weitere Artikel der Ausgabe 1/2019

Molecular Cancer 1/2019 Zur Ausgabe

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Perioperative Checkpointhemmer-Therapie verbessert NSCLC-Prognose

28.05.2024 NSCLC Nachrichten

Eine perioperative Therapie mit Nivolumab reduziert das Risiko für Rezidive und Todesfälle bei operablem NSCLC im Vergleich zu einer alleinigen neoadjuvanten Chemotherapie um über 40%. Darauf deuten die Resultate der Phase-3-Studie CheckMate 77T.

Positiver FIT: Die Ursache liegt nicht immer im Dickdarm

27.05.2024 Blut im Stuhl Nachrichten

Immunchemischer Stuhltest positiv, Koloskopie negativ – in solchen Fällen kann die Blutungsquelle auch weiter proximal sitzen. Ein Forschungsteam hat nachgesehen, wie häufig und in welchen Lokalisationen das der Fall ist.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.