Skip to main content
Erschienen in: Journal of Translational Medicine 1/2015

Open Access 01.12.2015 | Research

Dietary flavonoid intake and cardiovascular risk: a population-based cohort study

verfasst von: Valentina Ponzo, Ilaria Goitre, Maurizio Fadda, Roberto Gambino, Antonella De Francesco, Laura Soldati, Luigi Gentile, Paola Magistroni, Maurizio Cassader, Simona Bo

Erschienen in: Journal of Translational Medicine | Ausgabe 1/2015

Abstract

Background

The cardio-protective effects of flavonoids are still controversial; many studies referred to the benefits of specific foods, such as soy, cocoa, tea. A population-based cohort of middle-aged adults, coming from a semi-rural area where the consumption of those foods is almost negligible, was studied.

Aims

The primary objective was establishing if flavonoid intake was inversely associated with the cardiovascular (CV) risk evaluated after 12-year follow-up; the associations between flavonoid intake and CV incidence and mortality and all-cause mortality were also evaluated.

Methods

In 2001–2003, a cohort of 1,658 individuals completed a validated food-frequency questionnaire. Anthropometric, laboratory measurements, medical history and the vital status were collected at baseline and during 2014. The CV risk was estimated with the Framingham risk score.

Results

Individuals with the lowest tertile of flavonoid intake showed a worse metabolic pattern and less healthy lifestyle habits. The 2014 CV risk score and the increase in the risk score from baseline were significantly higher with the lowest intake of total and all subclasses of flavonoids, but isoflavones, in a multiple regression model. During follow-up, 125 CV events and 220 deaths (84 of which due to CV causes) occurred. CV non-fatal events were less frequent in individuals with higher flavonoid intake (HR = 0.64; 95%CI 0.42–1.00 and HR = 0.46; 95%CI 0.28–0.75 for the second and third tertiles, respectively) in Cox-regression models, after multiple adjustments. All subclasses of flavonoids, but flavones and isoflavones, were inversely correlated with incident CV events, with HRs ranging from 0.42 (flavan-3-ols) to 0.56 (anthocyanidins). Being in the third tertile of flavan-3-ols (HR = 0.68; 95% CI 0.48–0.96), anthocyanidins (HR = 0.66; 95% CI 0.46–0.95) and flavanones (HR = 0.59; 95% CI 0.40–0.85) was inversely associated with all-cause mortality. Total and subclasses of flavonoids were not significantly associated with the risk of CV mortality.

Conclusions

Flavonoid intake was inversely associated with CV risk, CV non-fatal events and all-cause mortality in a cohort with a low consumption of soy, tea and cocoa, which are typically viewed as the foods responsible for flavonoid-related benefits.
Abkürzungen
BMI
body mass index
CEPT
cholesteryl ester transfer protein
CI
confidence intervals
CRP
high-sensitivity C-reactive protein
CV
cardiovascular
HR
hazard ratio
ICD
International Classification of Diseases
ROS
reactive oxygen species
STAT
signal transducers and activators of transcription

Background

Flavonoids are a group of plant metabolites widely distributed in the plant kingdom with antioxidant properties, which can be classified into seven subgroups based on their chemical structure: flavanones, flavones, flavonols, flavan-3-ols, anthocyanidins, isoflavones and proanthocyanidins [1]. These compounds are present in small quantities in fruits, vegetables, tea, wine, nuts, seeds, herbs, spices, cocoa, soybean [24].
A wide spectrum of health benefits, such as antioxidant, anti-inflammatory, antibacterial, antithrombotic, anti-carcinogenetic properties have been reported for flavonoids [5].
Many epidemiological studies have reported inverse associations between the total flavonoid intake or the intake of specific classes of flavonoids and the incidence or mortality for cardiovascular (CV) diseases [620]. However, not all studies agreed about the cardio-protective effects of these compounds [2127]. Many studies referred to specific foods, which are the main sources of flavonoids in different populations, such as tea [13, 28, 29], cocoa [28, 30], soy [17].
We have studied a population-based cohort of middle-aged adults, coming from a semi-rural area, where the consumption of some flavonoid-rich foods, such as cocoa and soybean is almost negligible, while the most important sources of flavonoids are fruits and red wine.
The primary objective of this study was establishing if the consumption of flavonoids was inversely associated with the CV risk evaluated after 12-year follow-up; the secondary aims were evaluating the associations between flavonoid intake and CV incidence, CV mortality, and all-cause mortality in our cohort.

Methods

All the Caucasian patients (n = 1,877), aged 45–64 years, of six family physicians were invited to participate in a metabolic screening in 2001–2003. These subjects were representative of the Local Health Units of the province of Asti (northwestern Italy) [31]. Exclusion criteria were: inability to go to the office of the family physician and to give the informed consent.
Of these, 1,658 (88.3%) subjects gave their written informed consent to participate and 219 patients declined. Both the participants and non-participants were similar to the resident population of a corresponding age range with respect to the percentage of males, level of education, prevalence of known diabetes, and residence in a rural area [31]. The study was approved by the local ethics committee. All procedures conformed to the principles of the Helsinki Declaration.

Methods

In the morning and after fasting, weight, height, waist circumference, and blood pressure were measured in the office of the family physicians. Glucose, insulin, total cholesterol, HDL-cholesterol, triglyceride, uric acid and high-sensitivity C-reactive protein (CRP) levels were determined. If the serum glucose value was ≥110 mg/dl, a second fasting glucose determination was performed. Two blood pressure measurements were performed with mercury sphygmomanometers and the appropriate cuff sizes after a 10-min rest in the sitting position, and the values reported are the means of the two measurements. The waist circumference was measured by a plastic tape meter at the level of the umbilicus. The measurements were performed by trained physicians holding a grant.
Patients completed the Minnesota Leisure Time Physical Activity questionnaire [32]. The physical activity level was calculated as the product of the duration and frequency of each activity (in hours/week), weighted by an estimate of the metabolic equivalent of the activity and summed for the activities performed.
From January to November 2014, the patients were submitted to a blood sample analysis and a follow-up visit by their family physicians. Information on the vital status of each patient and the causes of death of those who died was collected from the demographic files of the town of residence or death.
The laboratory methods have been described previously [31, 33]. All samples were run blindly.

Ascertainment of flavonoid intake

The semi-quantitative food-frequency questionnaire used in the EPIC (European Prospective Investigation into Cancer and Nutrition) studies was used for all subjects [34]. It assessed average frequency and portion intake of 148 foods consumed during the 12 months before the enrolment. For each food item, the participants had to mark if the food or dish was consumed or not during the previous year. For all food items consumed, the subjects should select their typical portion size with the help of photographs, the consumption frequency and the time period (day, week, month or year), which suited them best. Questions about the type of fat for cooking were also included. This tool has been previously validated [34]. A dietician, blinded to the study details, checked all questionnaires for completeness, internal coherence, and plausibility. In case of uncertain answers, the patients were interviewed by the dietician.
Each nutrient was adjusted for total energy, using the residual method [35]. The reliability of the reported energy intake was assessed by calculating the ratio of estimated energy intake to predicted basal metabolic rate, using age- and sex-specific formulas derived by Schofield [36]. Subjects with a ratio <0.88 were classified as under-reporters [37].
Dietary intake of total and subclasses of flavonoids were estimated by using the latest detailed food composition tables published by the US Department of Agriculture (USDA) on the seven major classes of flavonoids [24] and extended with information from an European database [38]. Merging of the databases gave a single data-file. Flavonoid intake was computed by multiplying the specific flavonoid content of the serving of each food item (mg aglicone equivalent/100 g food) by the daily consumption (g/day) of the selected food item. Estimated total intake of individual flavonoids was the sum of individual flavonoid intakes from all food sources reported in the questionnaire. Total flavonoid intake was calculated by summing up the seven subclasses (flavanones, flavones, flavonols, flavan-3-ols, anthocyanidins, isoflavones and proanthocyanidins), and were expressed as mg/day aglycones.
The contribution of each food to the total intake of subgroup and total flavonoids was calculated as a percentage; single foods were then grouped into large categories.
All flavonoid subgroups that were estimated, their respective compounds, and the main food sources are shown in Table 1.
Table 1
Flavonoid classes and compounds, and respective dietary intakes and main food sources in the whole cohort
 
Compounds
Median intake (mg/day)
Sources (%)
Total flavonoids
 
251.0
Fruits (38)
Red wine (25)
Vegetables (5)
Tea (5)
Proanthocyanids
Dimers, Trimers, 4-6mers, 7-10mers, polymers of flavon-3-ols or flavanols
96.1
Fruits (50)
Red wine (23)
Legumes (6)
Flavan-3-ols
(−)-Epicatechin
(−)-Epicatechin 3-gallate
(−)-Epigallocatechin
(−)-Epigallocatechin 3-gallate
(+)-Catechin
(+)-Gallocatechin
Theaflavin
Theaflavin-3, 3′-digallate
Theaflavin-3′-gallate
Theaflavin-3-gallate
Thearubigins
50.4
Fruits (26)
Tea (21)
Red wine (19)
Anthocyanidins
Cyanidin
Delphinidin
Malvidin
Pelargonidin
Peonidin
Petunidin
32.9
Red wine (53)
Vegetables (17)
Fruits (11)
Flavanones
Eriodictyol
Hesperetin
Naringenin
24.2
Fruits (71)
Red wine (12)
Flavonols
Isorhamnetin
Kaempferol
Myricetin
Quercetin
14.4
Vegetables (34)
Red wine (14)
Fruits (13)
Flavones
Apigenin
Luteolin
1.2
Vegetables (51)
Red wine (18)
Fruits (8)
Isoflavones
Daidzein
Genistein
Glycitein
0.7
Legumes (90)
Sources contributing to ≥5% of the intake.

Definitions

Alcohol intake was assessed by multiplying the mean daily consumption of each beverage by its ethanol content, to give grams of alcohol/day. Moderate and heavy drinkers were considered in the case of consumption of ≤30 and >30 g/day alcohol, respectively, in line with Italian guidelines [39].
Diabetes mellitus was defined according to published recommendations [40]. Estrogen use included both contraceptive medications or estrogen replacement therapy. The use of nutritional supplements was infrequent in this cohort and was limited to multivitamin, iron, calcium or, less frequently, magnesium.
The CV risk score was estimated with the Framingham risk score [41]. The diagnosis of CV disease was based on documented events that were recorded by the family physician (i.e. angina, previous myocardial infarction, coronary artery by-pass graft or another invasive procedure to treat coronary artery disease, transient ischemic attack, stroke, gangrene, amputation, vascular surgery, intermittent claudication, absent foot pulses and abnormal brachial and posterior tibial blood pressure using Doppler techniques).
The underlying cause of death was available for all the deceased patients and was derived from the death certificate and coded according to the ICD-9 (International Classification of Diseases, Ninth Revision). Deaths due to CV diseases corresponded to ICD codes 410–414 (coronary artery diseases), 430–438 (strokes), 440 (peripheral artery diseases) and other ICD codes between 390–459 and 798.1 (other CV diseases).

Statistical analyses

Considering a type I error of 0.05 and a type II error of 0.90, a minimum of 83 subjects were needed for each tertile to detect a 10% difference in the CV scores between the tertiles of total flavonoid intakes.
Dietary total flavonoid intakes of the cohort were divided into tertiles, separately per sex. Cut-off points were 191.5, 401.2 and 138.3, 322.3 mg/day, respectively for men and women.
The distributions of flavonoid intake, fasting insulin, triglycerides, CRP values were skewed. The characteristics of the cohort according to the tertiles of flavonoid intakes were analyzed by ANOVA, Kruskal–Wallis tests (for not-normally distributed variables) or the χ2 test, as appropriate.
A multiple regression was performed to assess the association between the 2014 CV score and the variations from baseline to follow-up (values at 2014 minus values at baseline) in the CV risk score, and the tertiles of flavonoid intakes, after adjusting for BMI, education (primary/secondary/university), living in a rural area, METs (hour/week), alcohol intake (g/day), history of CV diseases, values of fasting glucose, log-CRP, fiber, and saturated fatty acid intakes. We did not include age, sex, total and HDL-cholesterol, smoking habits and blood pressure values, because these variables were included in the CV score calculation, to avoid over-controlling. However, when we controlled for these variables, results were not significantly different.
The relationships between tertiles of flavonoid intakes and all-cause mortality and CV mortality and incidence were assessed by estimating the hazard ratio (HR) and its 95% confidence intervals (CI) in Cox regression models, adjusted for age, sex, BMI, education, living in a rural area, METs (hour/week), alcohol, fiber, and saturated fatty acid intakes, smoking, values of systolic and diastolic blood pressure, total and HDL-cholesterol, fasting glucose, CRP, statin and aspirin use.
In all these analyses, individuals in the first (lower) tertile of flavonoid intakes were considered as the reference group, and the other groups were introduced as dummy variables (IBM SPSS Statistical Software Version 22).

Results

Out of 1,658 subjects, 138 (8.3%) resulted under-reporters. Among the tertiles of flavonoid intake, the percentage of under-reporters did not differ (8.2, 8.5 and 8.3% in the first, second and third tertiles, respectively).
Mean and median intake of total flavonoids were 320 and 251 mg/day, respectively (Table 1).Pearson correlations between flavonoids ranged from weak (r = 0.04 for flavan-3-ols with isoflavones) to high (r = 0.80 for flavan-3-ols with proanthocyanids).
Descriptive characteristics of the cohort by tertiles of flavonoid intakes are shown in Table 2.
Table 2
Baseline characteristics by tertiles of flavonoid intake (the first the lower; the third, the higher)
 
First tertile
 
Second tertile
 
Third tertile
 
P
Number
552
 
551
 
555
  
Median intake (mg/day)
89.0
 
251.4
 
532.3
  
Current smoking (%)
28.4
 
25.7
 
17.5
 
<0.001
Males (%)
47.1
 
46.8
 
47.2
 
0.99
Living in a rural area (%)
36.8
 
36.8
 
47.4
 
<0.001
Alcohol
   
 Alcohol abstainers (%)
54.9
 
41.0
 
35.7
  
 Moderate alcohol drinking (%)
31.5
 
41.4
 
38.6
  
 Heavy alcohol drinking (%)
13.6
 
17.6
 
25.8
 
<0.001
Education
   
 Primary school (%)
78.6
 
69.9
 
75.3
  
 Secondary school (%)
14.5
 
21.8
 
17.5
  
 University (%)
6.9
 
8.4
 
7.2
 
0.02
 History of hypertension (%)
56.5
 
47.0
 
50.5
 
0.006
 History of diabetes mellitus (%)
8.5
 
4.0
 
4.5
 
0.002
 History of CV disease (%)
6.5
 
5.3
 
5.1
 
0.52
 Estrogen use (%)
4.2
 
5.1
 
5.1
 
0.72
 Supplements use (%)
3.3
 
3.3
 
3.4
 
0.98
 Statin use (%)
3.8
 
3.8
 
4.7
 
0.70
 Aspirin use (%)
6.0
 
6.0
 
4.1
 
0.29
 
Mean
SD
Mean
SD
Mean
SD
 
METS (h/week)
20.5
9.4
21.7
9.5
21.9
9.6
0.04
Age (years)
54.8
5.8
54.3
5.5
54.6
5.5
0.37
BMI (kg/m2)
27.2
5.3
26.3
4.3
26.3
4.3
<0.001
Waist circumference (cm)
92.9
13.0
90.2
12.4
90.9
13.4
0.002
Total caloric intake (kcal/day)
1,917.0
722.7
2,142.7
583.2
2,149.3
667.1
<0.001
CHO intake (% total kcal)
47.6
7.6
48.4
6.8
49.5
6.8
<0.001
Total fat intake (kcal/day)
35.6
6.1
35.2
5.9
34.7
5.7
0.03
Saturated fat (% total kcal)
12.3
3.4
12.1
2.8
11.6
3.0
0.001
Polyunsaturated fat (% total kcal)
4.3
1.3
4.3
1.6
4.3
1.4
0.95
Fiber intake (g/day)
16.5
7.3
22.4
8.3
23.3
10.2
<0.001
Beta-carotene (µg/day)
2,768.7
1,658.9
3,571.5
1,840.2
3,914.8
2,292.4
<0.001
Vitamin C (mg/day)
134.9
44.5
142.4
55.0
142.8
49.4
0.01
Vitamin E (mg/day)
8.1
3.0
8.1
2.3
8.2
2.6
0.62
Systolic blood pressure (mmHg)
135.4
16.6
132.3
15.0
133.3
16.0
0.007
Diastolic blood pressure (mmHg)
84.3
9.1
82.6
9.2
82.9
9.6
0.005
Fasting glucose (mg/dl)
109.0
38.7
102.2
24.3
103.5
26.6
<0.001
Fasting insulin
9.3
6.1
8.3
3.9
8.2
4.4
<0.001*
Total cholesterol
217.9
39.5
215.2
40.0
217.7
42.2
0.46
HDL cholesterol
57.9
12.5
60.9
13.1
62.4
14.1
<0.001
Triglycerides
149.1
82.9
131.7
99.9
137.0
92.4
<0.001*
CRP (mg/l)
3.3
7.0
2.4
4.7
2.3
5.2
<0.001*
Uric acid
3.4
1.0
3.3
1.1
3.3
1.0
0.14
CV risk score
12.6
8.3
10.6
6.8
10.5
7.1
<0.001
CHO carbohydrates, CRP C-reactive protein, CV cardiovascular.
*Kruskall–Wallis test for not-normally distributed variables.
In the lowest tertile, there was a higher percentage of smokers, alcohol abstainers, less educated individuals, hypertensive and diabetic patients (Table 2). On the other hand, subjects with the highest flavonoid intake were more frequently heavy drinkers living in a rural area, were more physically active, ate more calories, fiber and antioxidant vitamins, and less total fat and saturated fat. In individuals within the lowest tertile, the metabolic pattern was significantly worse, CRP values increased, and the CV risk score higher.
The 2014 CV risk score was significantly increased in the individuals with the lowest intake of total flavonoids and their subclasses, with the exception of isoflavones (Table 3). Similarly, after a mean 12-year follow-up, the difference in the scores (2014 score minus baseline score) was higher in those subjects. In a multiple regression models, being in the third (higher) tertile of flavonoid intake was inversely associated with the 2014 CV score and with change in score values from baseline to follow-up, after adjusting for BMI, education, living in a rural area, METs (hour/week), history of CV diseases, values of fasting glucose, log-CRP, alcohol, fiber, and saturated fatty acid intakes.
Table 3
CV risk score by tertiles of flavonoid intake (the first the lower; the third, the higher) in a multiple regression model
 
First tertile
Second tertile
Third tertile
Total flavonoids
Mean
SD
Mean
SD
 
Mean
SD
P
2014 CV risk score
28.8
15.4
25.3
12.6
 
23.8
10.7
<0.001
 
Β
 
β
95% CI
P
Β
95% CI
P
Model 1
Reference
 
−2.58
−4.07 −1.09
<0.001
−4.36
−5.85 −2.87
<0.001
Model 2
Reference
 
−1.27
−2.76 0.22
0.10
−2.69
−4.22 −1.16
<0.001
 
Mean
SD
Mean
SD
 
Mean
SD
P
Changes in CV risk score
16.2
10.1
14.7
8.1
 
13.4
7.4
<0.001
 
Β
 
β
95% CI
P
Β
95% CI
P
Model 1
Reference
 
−0.98
−1.96 0.00
0.05
−2.64
−3.62 −1.66
<0.001
Model 2
Reference
 
−0.46
−1.50 0.58
0.38
−1.92
−2.98 −0.86
<0.001
Proanthocyanids
Mean
SD
Mean
SD
 
Mean
SD
P
2014 CV risk score
28.8
15.4
25.3
12.6
 
23.8
10.7
<0.001
 
Β
 
β
95% CI
P
Β
95% CI
P
Model 1
Reference
 
−2.39
−3.88 −0.90
0.002
−4.29
−5.78 −2.80
<0.001
Model 2
Reference
 
−1.07
−2.56 0.42
0.16
−2.60
−4.13 −1.07
<0.001
 
Mean
SD
Mean
SD
 
Mean
SD
P
Changes in CV risk score
16.1
10.2
14.7
8.0
 
13.3
7.4
<0.001
 
Β
 
β
95% CI
P
Β
95% CI
P
Model 1
Reference
 
−0.96
−1.94 0.02
0.06
−2.65
−3.65 −1.65
<0.001
Model 2
Reference
 
−0.43
−1.47 0.61
0.41
−1.93
−2.99 −0.87
<0.001
Flavan-3-ols
Mean
SD
Mean
SD
 
Mean
SD
P
2014 CV risk score
28.1
15.1
25.6
12.7
 
24.2
11.3
<0.001
 
Β
 
β
95% CI
P
Β
95% CI
P
Model 1
Reference
 
−1.80
−3.29 −0.31
0.02
−3.20
−4.69 −1.71
<0.001
Model 2
Reference
 
−0.70
−2.17 0.77
0.35
−1.92
−3.41 −0.43
0.01
 
Mean
SD
Mean
SD
 
Mean
SD
P
Changes in CV risk score
15.8
9.8
14.9
8.4
 
13.6
7.5
<0.001
 
Β
 
β
95% CI
P
Β
95% CI
P
Model 1
Reference
 
−0.58
−1.58 0.42
0.25
−1.94
−2.94 −0.94
<0.001
Model 2
Reference
 
−0.07
−1.09 0.95
0.89
−1.39
−2.41 −0.37
0.007
Anthocyanidins
Mean
SD
Mean
SD
 
Mean
SD
P
2014 CV risk score
27.9
14.7
25.5
12.6
 
24.5
12.0
<0.001
 
Β
 
β
95% CI
P
Β
95% CI
P
Model 1
Reference
 
−1.60
−3.09 −0.11
0.04
−2.73
−4.22 −1.24
<0.001
Model 2
Reference
 
−0.81
−2.26 0.64
0.28
−1.05
−2.11 0.00
0.05
 
Mean
SD
Mean
SD
 
Mean
SD
P
Changes in CV risk score
15.7
9.4
14.7
8.5
 
13.8
8.0
0.001
 
Β
 
β
95% CI
P
Β
95% CI
P
Model 1
Reference
 
−0.68
−1.68 0.32
0.18
−1.65
−2.65 −0.65
0.001
Model 2
Reference
 
−0.27
−1.29 0.75
0.60
−0.90
−1.74 −0.06
0.03
Flavanones
Mean
SD
Mean
SD
 
Mean
SD
P
2014 CV risk score
28.2
14.8
25.8
12.5
 
23.9
11.9
<0.001
 
Β
 
Β
95% CI
P
Β
95% CI
P
Model 1
Reference
 
−2.38
−3.87 −0.89
0.002
−3.90
−5.39 −2.41
<0.001
Model 2
Reference
 
−1.90
−3.35 −0.45
0.01
−2.70
−4.19 −1.21
<0.001
 
Mean
SD
Mean
SD
 
Mean
SD
P
Changes in CV risk score
15.8
9.3
14.7
8.9
 
13.7
7.7
<0.001
 
Β
 
Β
95% CI
P
Β
95% CI
P
Model 1
Reference
 
−1.13
−2.11 −0.15
0.02
−1.97
−2.95 −0.99
<0.001
Model 2
Reference
 
−0.98
−1.98 0.02
0.06
−1.51
−2.55 −0.47
0.004
Flavonols
Mean
SD
Mean
SD
 
Mean
SD
P
2014 CV risk score
27.5
15.0
25.2
12.2
 
25.2
12.1
0.004
 
Β
 
Β
95% CI
P
Β
95% CI
P
Model 1
Reference
 
−2.10
−3.59 −0.61
0.006
−2.33
−3.82 −0.84
0.002
Model 2
Reference
 
−1.13
−2.60 0.34
0.13
−1.21
−2.40 −0.02
0.04
 
Mean
SD
Mean
SD
 
Mean
SD
P
Changes in CV risk score
15.4
9.5
14.5
7.9
 
14.3
8.6
<0.001
 
Β
 
Β
95% CI
P
Β
95% CI
P
Model 1
Reference
 
−0.84
−1.82 0.14
0.10
−1.29
−2.29 −0.29
0.01
Model 2
Reference
 
−0.44
−1.46 0.58
0.39
−0.72
−1.78 0.34
0.18
Flavones
Mean
SD
Mean
SD
 
Mean
SD
P
2014 CV risk score
28.2
15.2
25.4
12.3
 
24.3
11.6
<0.001
 
Β
 
Β
95% CI
P
Β
95% CI
P
Model 1
Reference
 
−2.59
−4.08 −1.10
<0.001
−3.43
−4.92 −1.94
<0.001
Model 2
Reference
 
−1.74
−3.21 −0.27
0.02
−2.12
−3.65 −0.59
0.007
 
Mean
SD
Mean
SD
 
Mean
SD
P
Changes in CV risk score
15.8
10.1
14.5
8.3
 
13.9
7.3
0.001
 
Β
 
Β
95% CI
P
Β
95% CI
P
Model 1
Reference
 
−1.37
−2.37 −0.37
0.007
−1.75
−2.75 −0.75
<0.001
Model 2
Reference
 
−1.02
−2.02 −0.02
0.04
−1.28
−2.32 −0.24
0.02
Isoflavones
Mean
SD
Mean
SD
 
Mean
SD
P
2014 CV risk score
26.5
13.2
27.1
14.1
 
24.4
12.2
0.002
 
Β
 
Β
95% CI
P
Β
95% CI
P
Model 1
Reference
 
0.72
−0.77 2.21
0.34
−1.54
−3.03 −0.05
0.04
Model 2
Reference
 
0.97
−0.46 2.40
0.19
−0.35
−1.82 1.12
0.64
 
Mean
SD
Mean
SD
 
Mean
SD
P
Changes in CV risk score
14.8
8.4
15.4
9.6
 
14.1
7.9
0.03
 
Β
 
Β
95% CI
P
Β
95% CI
P
Model 1
Reference
 
0.74
−0.25 1.73
0.15
−0.45
−1.45 0.55
0.38
Model 2
Reference
 
0.96
−0.06 1.98
0.06
0.03
−0.99 1.05
0.96
Model 1 adjusted for BMI, education, living in a rural area, Model 2 adjusted for BMI, education, living in a rural area, METS (h/week), alcohol intake, history of CV diseases, values of fasting glucose, log-CRP, fiber, and saturated fatty acid intakes.
During follow-up, 125 incident CV events were diagnosed and 220 deaths occurred, 84 of which due to CV causes (Table 4). The incidence of CV events was significantly lower in individuals with the higher intake of total flavonoids and with higher intake of all subclasses of flavonoids, but flavones and isoflavones, in Cox-regression models after adjustments for age, sex, BMI, education, living in a rural area, METs (hour/week), alcohol, fiber, and saturated fatty acid intakes, smoking, values of systolic and diastolic blood pressure, total and HDL-cholesterol, fasting glucose, CRP, statin and aspirin use. HRs ranged from 0.42 for the higher tertile of flavan-3-ols to 0.56 for the higher tertile of anthocyanidins in the Cox model after multiple adjustments.
Table 4
Cardiovascular events and all-cause and cardiovascular mortality by tertiles of flavonoid intake (the first the lower; the third, the higher)
 
First tertile
Second tertile
Third tertile
Total flavonoids
 Incident CV events
54
40
  
31
  
 
HR
HR
95% CI
P
HR
95% CI
P
  Model 1
1
0.65
0.42–0.99
0.05
0.45
0.28–0.73
0.001
  Model 2
1
0.64
0.42–1.00
0.05
0.46
0.28–0.75
0.002
 CV mortality
34
26
  
24
  
 
HR
HR
95% CI
P
HR
95% CI
P
  Model 1
1
0.97
0.56–1.67
0.90
0.81
0.45–1.44
0.47
  Model 2
1
0.95
0.54–1.66
0.85
0.83
0.46–1.51
0.55
 All-cause mortality
89
69
  
62
  
 
HR
HR
95% CI
P
HR
95% CI
P
  Model 1
1
0.86
0.62–1.21
0.38
0.73
0.51–1.04
0.08
  Model 2
1
0.90
0.65–1.26
0.52
0.78
0.55–1.13
0.19
Proanthocyanids
 Incident CV events
57
37
  
31
  
 
HR
HR
95% CI
P
HR
95% CI
P
  Model 1
1
0.56
0.36–0.86
0.01
0.42
0.26–0.68
<0.001
  Model 2
1
0.56
0.36–0.87
0.009
0.43
0.27–0.70
0.001
 CV mortality
34
27
  
23
  
 
HR
HR
95% CI
P
HR
95% CI
P
  Model 1
1
0.99
0.58–1.70
0.97
0.77
0.43–1.39
0.39
  Model 2
1
0.98
0.56–1.69
0.93
0.80
0.44–1.46
0.46
 All-cause mortality
90
70
  
60
  
 
HR
HR
95% CI
P
HR
95% CI
P
  Model 1
1
0.85
0.61–1.19
0.35
0.69
0.48–0.99
0.05
  Model 2
1
0.88
0.63–1.24
0.46
0.75
0.52–1.08
0.12
Flavan-3-ols
 Incident CV events
57
42
  
26
  
 
HR
HR
95% CI
P
HR
95% CI
P
  Model 1
1
0.69
0.46–1.05
0.08
0.40
0.25–0.65
<0.001
  Model 2
1
0.71
0.47–1.08
0.11
0.42
0.26–0.68
<0.001
 CV mortality
37
23
  
24
  
 
HR
HR
95% CI
P
HR
95% CI
P
  Model 1
1
0.75
0.44–1.29
0.30
0.70
0.40–1.20
0.19
  Model 2
1
0.79
0.46–1.37
0.40
0.72
0.41–1.26
0.25
 All-cause mortality
92
71
  
57
  
 
HR
HR
95% CI
P
HR
95% CI
P
  Model 1
1
0.84
0.61–1.15
0.27
0.63
0.44–0.89
0.009
  Model 2
1
0.86
0.62–1.19
0.36
0.68
0.48–0.96
0.03
Anthocyanidins
 Incident CV events
53
35
  
37
  
 
HR
HR
95% CI
P
HR
95% CI
P
  Model 1
1
0.59
0.38–0.92
0.02
0.58
0.37–0.92
0.02
  Model 2
1
0.58
0.37–0.91
0.02
0.56
0.36–0.89
0.02
 CV mortality
40
20
  
24
  
 
HR
HR
95% CI
P
HR
95% CI
P
  Model 1
1
0.58
0.33–1.01
0.05
0.65
0.37–1.15
0.14
  Model 2
1
0.56
0.32–0.98
0.04
0.67
0.38–1.18
0.16
 All-cause mortality
95
62
  
63
  
 
HR
HR
95% CI
P
HR
95% CI
P
  Model 1
1
0.69
0.50–0.96
0.03
0.66
0.47–0.94
0.02
  Model 2
1
0.66
0.47–0.94
0.02
0.66
0.46–0.95
0.02
Flavanones
 Incident CV events
54
42
  
29
  
 
HR
HR
95% CI
P
HR
95% CI
P
  Model 1
1
0.71
0.47–1.07
0.11
0.45
0.28–0.73
0.001
  Model 2
1
0.73
0.48–1.10
0.13
0.48
0.29–0.77
0.003
 CV mortality
39
24
  
21
  
 
HR
HR
95% CI
P
HR
95% CI
P
  Model 1
1
0.67
0.40–1.13
0.14
0.56
0.32–0.99
0.05
  Model 2
1
0.71
0.42–1.20
0.20
0.66
0.37–1.17
0.15
 All-cause mortality
91
80
  
49
  
 
HR
HR
95% CI
P
HR
95% CI
P
  Model 1
1
0.91
0.67–1.24
0.54
0.54
0.37–0.78
0.001
  Model 2
1
0.94
0.68–1.29
0.69
0.59
0.40–0.85
0.005
Flavonols
 Incident CV events
56
31
  
38
  
 
HR
HR
95% CI
P
HR
95% CI
P
  Model 1
1
0.49
0.31–0.76
0.002
0.53
0.34–0.83
0.006
  Model 2
1
0.51
0.32–0.80
0.003
0.53
0.34–0.83
0.005
 CV mortality
36
22
  
26
  
 
HR
HR
95% CI
P
HR
95% CI
P
  Model 1
1
0.63
0.36–1.09
0.10
0.68
0.39–1.19
0.18
  Model 2
1
0.69
0.40–1.20
0.19
0.72
0.41–1.27
0.26
 All-cause mortality
91
64
  
65
  
 
HR
HR
95% CI
P
HR
95% CI
P
  Model 1
1
0.72
0.51–1.00
0.05
0.70
0.50–0.99
0.05
  Model 2
1
0.78
0.55–1.08
0.14
0.72
0.51–1.02
0.06
Flavones
 Incident CV events
42
51
  
32
  
 
HR
HR
95% CI
P
HR
95% CI
P
  Model 1
1
1.13
0.74–1.72
0.56
0.68
0.41–1.10
0.11
  Model 2
1
1.14
0.75–1.75
0.54
0.66
0.40–1.09
0.10
 CV mortality
30
31
  
23
  
 
HR
HR
95% CI
P
HR
95% CI
P
  Model 1
1
1.08
0.64–1.82
0.77
0.87
0.48–1.56
0.63
  Model 2
1
1.10
0.65–1.87
0.72
0.83
0.45–1.52
0.55
 All-cause mortality
88
71
  
61
  
 
HR
HR
95% CI
P
HR
95% CI
P
  Model 1
1
0.79
0.57–1.09
0.16
0.71
0.50–1.01
0.06
  Model 2
1
0.83
0.60–1.16
0.28
0.73
0.51–1.05
0.09
Isoflavones
 Incident CV events
48
38
  
39
  
 
HR
HR
95% CI
P
HR
95% CI
P
  Model 1
1
0.78
0.51–1.20
0.26
0.77
0.49–1.19
0.23
  Model 2
1
0.81
0.53–1.25
0.35
0.77
0.49–1.21
0.26
 CV mortality
30
34
  
20
  
 
HR
HR
95% CI
P
HR
95% CI
P
  Model 1
1
1.23
0.74–2.03
0.42
0.78
0.44–1.41
0.42
  Model 2
1
1.21
0.73–2.02
0.48
0.74
0.41–1.36
0.34
 All-cause mortality
95
63
  
62
  
 
HR
HR
95% CI
P
HR
95% CI
P
  Model 1
1
0.68
0.49–0.94
0.02
0.70
0.50–0.98
0.04
  Model 2
1
1.45
1.05–2.00
0.03
1.39
1.00–1.95
0.05
Model 1 adjusted for age, sex, BMI, education, living in a rural area, METs (h/week), fiber and saturated fatty acid intakes, Model 2 adjusted for age, sex, BMI, education, living in a rural area, METs (hour/week), fiber, and saturated fatty acid intakes, alcohol intake, smoking, values of systolic and diastolic blood pressure, total and HDL-cholesterol, fasting glucose, CRP, statin and aspirin use.
Total and subclasses of flavonoids were not significantly associated with the risk of CV mortality in the same Cox model (Table 4).
Being in the third tertile of flavan-3-ols (HR = 0.68; 95% CI 0.48–0.96), anthocyanidins (HR = 0.66; 95% CI 0.46–0.95) and flavanones (HR = 0.59; 95% CI 0.40–0.85) was inversely associated with all-cause mortality.
Data did not change after excluding the 138 under-reporters, the 79 women on estrogen therapy, the 55 individuals on nutritional supplements, and after adjusting for antioxidant vitamin intakes.

Discussion

The results of this population-based cohort study suggest that higher dietary intakes of flavonoids may be associated with a reduced CV risk score and a 40–50% lower risk of non-fatal CV events.
This is intriguing since in our cohort the consumption of some flavonoid-rich foods inversely associated with CV risk such as cocoa, soybean and tea [13, 17, 28, 29], is infrequent, being fruits and red wine the main sources of flavonoids. Epidemiological studies have suggested that a Mediterranean diet reduces the CV risk [42] and a high concentration of flavonoids has been found in fruits, vegetables, red wine and other elements of the Mediterranean diet. However, there is inconsistent evidence on the role of flavonoids derived from these foods and CV risk, since previous studies reported either a decreased CV incidence and mortality with increased intake of apples, pears, and red wine [8, 12, 16, 24, 25], or no significant effect [6, 10, 21, 26, 27].
We have found both a lower CV risk score at baseline and at follow-up in the higher tertile of flavonoid intake. Intriguingly, the increase in the score from enrolment to the end of follow-up was higher in those individuals. Accordingly, the consumption of flavonoid-rich food has been associated with lower systolic blood pressure [15, 43, 44], lower total cholesterol [44], higher HDL cholesterol values [4446].
Benefits of flavonoids on blood pressure, lipid values, insulin resistance, and flow-mediated dilatation seem to derive above all from soy, cocoa and tea, as suggested by systematic reviews [47, 48]. However, more recently, flavonoids from fruits and vegetables have been reported to reduce the risk of diabetes mellitus and to improve microvascular reactivity and inflammatory status [4951]. Accordingly, although a small number of incident CV events occurred in our cohort, the risk of non-fatal CV events was significantly lower in individuals with the higher intake of total and all subclasses of flavonoids, but flavones and isoflavones, which were consumed at negligible concentrations in our cohort. Therefore, the dietary intakes of flavonoids seems relevant for healthy CV outcomes at relatively low concentrations, since most inverse associations with CV risk score and non-fatal CV events appeared with intermediate or low intakes of specific subclasses, suggesting that even small amounts may be beneficial. However, a threshold of intake is probably needed, under which these compounds are unlike to be active.
Flavonoids can inhibit or induce a large variety of enzyme systems, involved in pathways regulating platelet aggregation, inflammatory and immune responses [1, 52, 53]. Furthermore, by their antioxidant properties, flavonoids may protect tissues against oxygen free radicals and lipid peroxidation, thus contributing to the prevention of atherosclerosis, chronic inflammation and cancer [1, 52, 53]. Because of their antioxidant and chelating properties, flavonoids may inactivate reactive oxygen species (ROS) and counteract the oxidation of circulating LDL particles [5254]. Other anti-atherogenic actions proposed for these compounds are: reduction of the activity of enzymes increasing ROS production; inhibition of HMG-CoA reductase, cholesteryl ester transfer protein (CEPT), angiotensin-converting enzyme, signal transducers and activators of transcription (STAT), and glucose transporters; synthesis of nitric oxide; inhibition of platelet activation and function; anti-angiogenetic effects; improvement in endothelial function, vascular fragility, cellular permeability [5456]. The anti-inflammatory properties of flavonoids may be due to the inhibition of NF-κB activation and adhesion molecule expression; suppression of the activity and secretion of inflammatory cells; reduction of the concentrations of CRP and cytokines [57, 58].
The associations with fatal events were controversial in our cohort. No significant association was found with CV mortality, probably because the number of fatal CV events was low. Otherwise, many flavonoid subclasses, such as flavan-3-ols, anthocyanidins and flavanones were inversely associated with all-cause mortality. Previous studies have reported a reduced total and/or CV mortality with proanthocyanids [19], flavan-3-ols, [11, 19, 25], anthocyanidins [16, 19], flavonols [13, 19], flavanones [16, 18], flavones [16, 19], and isoflavones [17, 4447]. On the other hand, other authors reported no protective effects of total or specific subclasses of flavonoids on mortality [7, 12, 21, 22, 27].
These highly divergent results among studies might be due to differences in nutritional, socio-cultural and ethnic characteristics.
The median intakes of flavonoids are highly variable among studies, and values ranging from 50 to 450 mg have been reported in European studies [54]. In particular, the following median intakes have been described for Mediterranean countries: 92 mg/day in Greece [59] and 332.4 mg/day in Spain [60]. On the other hand, in non-Mediterranean countries, the median consumption of flavonoids was much lower, varying from 203 mg/day in US population [19] to 88 mg/day in Sweden, and 13 mg/day in Finland [61]. Our values were between these extreme intakes, in line with other Italian data [62, 63]. The high consumption of red wine and fruits, such as apples and citrus fruits, in our Italian cohort justify the higher intake of total flavonoids and proanthocyanidins with respect to other non-Mediterranean cohorts [19, 61]. On the other hand, the low consumption of tea, justified the lower intakes of flavon-3-ols (in particular epigallocatechin 3-gallate, epicatechin 3-gallate and epigallocatechin) with respect to UK and Ireland [61], and the negligible use of soy explain why the intake of isoflavones and flavones was much lower in our cohort when compared with Asian studies [17].
In most studies, the higher consumption of flavonoids was associated with an overall healthy dietary and metabolic pattern, in line with our results [8, 1012, 1621, 25, 26, 49]. Our cohort indeed included individuals with a low level of education, differently from previous studies performed in samples where most participants had at least a high school education [13, 16, 17, 19, 26].
Finally, many compounds tend to be present in the same foods: for example, in our cohort, individuals with lower intakes of flavonoids, ate less fiber and antioxidant vitamins and more saturated fats. It is therefore difficult to ascertain the independent effect of dietary components because of multicollinearity. However, our associations remained significant after adjusting for these dietary factors, thus suggesting that a higher flavonoid intake might not merely be an indicator of a healthier lifestyle.

Limitations

The EPIC questionnaire was not originally designed to measure flavonoid intake, but it has been extensively used and validated for this purpose [60, 64, 65].
The flavonoid intake might have been underestimated because of the limitations of the food composition databases. It should be noted that the presence of particular flavonoids in vegetables and fruits depends on the crop variety, location and type of cultivation. The adaptability of the USDA database to the Italian diet is questionable. The absorption and microbial transformation in the gut of specific subclasses of flavonoids vary considerably, therefore the different flavonoid bioavailability could have an impact on the associations between the assumption of these compounds and chronic diseases. In general, flavonoid subclasses are present simultaneously in foods and establishing which of the compound is responsible for the potential biological effect is difficult. We relied on dietary intake from the questionnaire administered at one point in time; thus misclassification of dietary exposure might have occurred if individuals have changed their diets during the follow-up. Furthermore, measurement error in collecting self-reported dietary intake is inevitable and our observational study was prone to the possibility of unmeasured confounding.
However, the recent versions of the USDA database includes more cooked foods [2], because in culinary preparations important losses in flavonoid content occur, and is the most complete and used database in the estimation of flavonoid intake. Moreover, we have referred also to a European database, and the USDA has been already used for the Italian population [6264]. We have used a validated instrument and, both at baseline and at follow-up, the associations between flavonoid intakes and the CV risk score were consistent. Measurement errors and misclassification was likely to be random and would have attenuated the association found. We have took care to adjust for many potential confounders. Finally, we have studied a large population-based cohort from a localized region, with a high level of participation, which could have limited the number of potential confounders.

Conclusions

Individuals with higher intakes of flavonoids showed a lower CV risk after a mean 12-year follow-up, and a reduced risk of non-fatal CV events. If these results will be confirmed in larger prospective cohorts, it would be useful to obtain reliable markers of flavonoid intake in order to define the optimal doses of specific flavonoids for CV protection.

Authors’ contributions

VP participated in the conception and design of the study, supervision of data collection, data analysis, interpretation of the findings of the study, manuscript writing and revision. IG participated in the data analysis, interpretation of the findings, manuscript writing and revision. MF participated in the data analysis, interpretation of the findings, and manuscript revision. RG participated in the interpretation of the findings, and manuscript revision. ADF participated in the data analysis, interpretation of the findings, and manuscript revision. LS participated in the data collection, interpretation of the findings of the study and manuscript revision. LG participated in the data collection, interpretation of the findings of the study and manuscript revision. PM participated in the data analysis, interpretation of the findings of the study and manuscript revision. MC participated in the data analysis, interpretation of the findings of the study and manuscript revision. SB participated in the conception and design of the study, interpretation of the findings of the study, manuscript writing and revision. All authors have read and approved the final manuscript.

Acknowledgements

This study was supported by a grant from the Ministry of Education, University and Research of Italy (ex-60% 2014).

Compliance with ethical guidelines

Competing interests The authors declare that they have no competing interests.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Hollman PCH, Katan MB (1999) Dietary flavonoids: intake, health effects and bioavailability. Food Chem Toxicol 37:937–942PubMedCrossRef Hollman PCH, Katan MB (1999) Dietary flavonoids: intake, health effects and bioavailability. Food Chem Toxicol 37:937–942PubMedCrossRef
5.
Zurück zum Zitat Middleton E, Kandaswami C, Theoharides TC (2000) The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev 52:673–751PubMed Middleton E, Kandaswami C, Theoharides TC (2000) The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev 52:673–751PubMed
6.
Zurück zum Zitat Hertog MGL, Feskens EJM, Hollman PCH, Katan MB, Kromhout D (1993) Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet 342:1007–1011PubMedCrossRef Hertog MGL, Feskens EJM, Hollman PCH, Katan MB, Kromhout D (1993) Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet 342:1007–1011PubMedCrossRef
7.
Zurück zum Zitat Hertog MG, Kromhout D, Aravanis C, Blackburn H, Buzina R, Fidanza F et al (1995) Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. Arch Intern Med 155:381–386PubMedCrossRef Hertog MG, Kromhout D, Aravanis C, Blackburn H, Buzina R, Fidanza F et al (1995) Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. Arch Intern Med 155:381–386PubMedCrossRef
8.
Zurück zum Zitat Knekt P, Järvinen R, Reunanen A, Maatela J (1996) Flavonoid intake and coronary mortality in Finland: a cohort study. Br Med J 312:478–481CrossRef Knekt P, Järvinen R, Reunanen A, Maatela J (1996) Flavonoid intake and coronary mortality in Finland: a cohort study. Br Med J 312:478–481CrossRef
9.
Zurück zum Zitat Hertog MG, Feskens EJM, Kromhout D (1997) Antioxidant flavonols and coronary heart disease risk. Lancet 349:699PubMedCrossRef Hertog MG, Feskens EJM, Kromhout D (1997) Antioxidant flavonols and coronary heart disease risk. Lancet 349:699PubMedCrossRef
10.
Zurück zum Zitat Yochum L, Kushi LH, Meyer K, Folsom AR (1999) Dietary flavonoid intake and risk of cardiovascular disease in postmenopausal women. Am J Epidemiol 149:943–949PubMedCrossRef Yochum L, Kushi LH, Meyer K, Folsom AR (1999) Dietary flavonoid intake and risk of cardiovascular disease in postmenopausal women. Am J Epidemiol 149:943–949PubMedCrossRef
11.
Zurück zum Zitat Arts IC, Hollman PCH, Feskens EJM, de Mesquita HBB, Kromhout D (2001) Cathechin intake might explain the inverse relation between tea consumption and ischemic heart disease: the Zutphen Elderly Study. Am J Clin Nutr 74:227–232PubMed Arts IC, Hollman PCH, Feskens EJM, de Mesquita HBB, Kromhout D (2001) Cathechin intake might explain the inverse relation between tea consumption and ischemic heart disease: the Zutphen Elderly Study. Am J Clin Nutr 74:227–232PubMed
12.
Zurück zum Zitat Hirvonen T, Pietinen P, Virtanen M, Ovaskainen ML, Häkkinen S, Albanes D et al (2001) Intake of flavonols and flavones and risk of coronary heart disease in male smokers. Epidemiology 12:62–67PubMedCrossRef Hirvonen T, Pietinen P, Virtanen M, Ovaskainen ML, Häkkinen S, Albanes D et al (2001) Intake of flavonols and flavones and risk of coronary heart disease in male smokers. Epidemiology 12:62–67PubMedCrossRef
13.
Zurück zum Zitat Geleijnse JM, Launer LJ, van der Kuip DAM, Hofman A, Witteman JCM (2002) Inverse association of tea and flavonoid intakes with incident myocardial infarction: the Rotterdam Study. Am J Clin Nutr 75:880–886PubMed Geleijnse JM, Launer LJ, van der Kuip DAM, Hofman A, Witteman JCM (2002) Inverse association of tea and flavonoid intakes with incident myocardial infarction: the Rotterdam Study. Am J Clin Nutr 75:880–886PubMed
14.
Zurück zum Zitat Knekt P, Kumpulainen J, Järvinen R, Rissanen H, Heliövaara M, Reunanen A et al (2002) Flavonoid intake and risk of chronic diseases. Am J Clin Nutr 76:560–568PubMed Knekt P, Kumpulainen J, Järvinen R, Rissanen H, Heliövaara M, Reunanen A et al (2002) Flavonoid intake and risk of chronic diseases. Am J Clin Nutr 76:560–568PubMed
15.
Zurück zum Zitat Mennen LI, Sapinho D, de Bree A, Arnault N, Bertrais S, Galan P et al (2004) Consumption of foods rich in flavonoids is related to a decreased cardiovascular risk in apparently healthy French women. J Nutr 134:923–926PubMed Mennen LI, Sapinho D, de Bree A, Arnault N, Bertrais S, Galan P et al (2004) Consumption of foods rich in flavonoids is related to a decreased cardiovascular risk in apparently healthy French women. J Nutr 134:923–926PubMed
16.
Zurück zum Zitat Mink PJ, Scrafford CG, Barraj LM, Harnack L, Hong CP, Nettleton JA et al (2007) Flavonoid intake and cardiovascular disease mortality: a prospective study in postmenopausal women. Am J Clin Nutr 85:895–909PubMed Mink PJ, Scrafford CG, Barraj LM, Harnack L, Hong CP, Nettleton JA et al (2007) Flavonoid intake and cardiovascular disease mortality: a prospective study in postmenopausal women. Am J Clin Nutr 85:895–909PubMed
17.
Zurück zum Zitat Kokubo Y, Iso H, Ishihara J, Okada K, Inoue M, Tsugane S, for the JPHC Study Group (2007) Association of dietary intake of soy, beans, and isoflavones with risk of cerebral and myocardial infarctions in Japanese populations. Circulation 116:2553–2562PubMedCrossRef Kokubo Y, Iso H, Ishihara J, Okada K, Inoue M, Tsugane S, for the JPHC Study Group (2007) Association of dietary intake of soy, beans, and isoflavones with risk of cerebral and myocardial infarctions in Japanese populations. Circulation 116:2553–2562PubMedCrossRef
18.
Zurück zum Zitat Mursu J, Voutilainen S, Nurmi T, Tuomainen TP, Kurl S, Salonen JT (2008) Flavonoid intake and the risk of ischaemic stroke and CVD mortality in middle-aged Finnish men: the Kuopio Ischaemic Heart Disease Risk Factor Study. Br J Nutr 100:890–895PubMedCrossRef Mursu J, Voutilainen S, Nurmi T, Tuomainen TP, Kurl S, Salonen JT (2008) Flavonoid intake and the risk of ischaemic stroke and CVD mortality in middle-aged Finnish men: the Kuopio Ischaemic Heart Disease Risk Factor Study. Br J Nutr 100:890–895PubMedCrossRef
19.
Zurück zum Zitat McCullough ML, Peterson JJ, Patel R, Jacques PF, Shah R, Dwyer JT (2012) Flavonoid intake and cardiovascular disease mortality in a prospective cohort of US adults. Am J Clin Nutr 95:454–464PubMedCentralPubMedCrossRef McCullough ML, Peterson JJ, Patel R, Jacques PF, Shah R, Dwyer JT (2012) Flavonoid intake and cardiovascular disease mortality in a prospective cohort of US adults. Am J Clin Nutr 95:454–464PubMedCentralPubMedCrossRef
20.
Zurück zum Zitat Cassidy A, Mukamal KJ, Liu L, Franz M, Eliassen AH, Rimm EB (2013) High anthocyanin intake is associated with a reduced risk in myocardial infarction in young and middle-aged women. Circulation 127:188–196PubMedCentralPubMedCrossRef Cassidy A, Mukamal KJ, Liu L, Franz M, Eliassen AH, Rimm EB (2013) High anthocyanin intake is associated with a reduced risk in myocardial infarction in young and middle-aged women. Circulation 127:188–196PubMedCentralPubMedCrossRef
21.
Zurück zum Zitat Rimm EB, Katan MB, Ascherio A, Stampfer MJ, Willett WC (1996) Relation between intake of flavonoids and risk for coronary heart disease in male health professionals. Ann Intern Med 125:384–389PubMedCrossRef Rimm EB, Katan MB, Ascherio A, Stampfer MJ, Willett WC (1996) Relation between intake of flavonoids and risk for coronary heart disease in male health professionals. Ann Intern Med 125:384–389PubMedCrossRef
22.
Zurück zum Zitat Hertog MGL, Sweetnam PM, Fehily AM, Elwood PC, Kromhout D (1997) Antioxidant flavonols and ischemic heart disease in a Welsh population of men: the Caerphilly Study. Am J Clin Nutr 65:1489–1494PubMed Hertog MGL, Sweetnam PM, Fehily AM, Elwood PC, Kromhout D (1997) Antioxidant flavonols and ischemic heart disease in a Welsh population of men: the Caerphilly Study. Am J Clin Nutr 65:1489–1494PubMed
23.
Zurück zum Zitat Hirvonen T, Virtamo J, Korhonen P, Albanes D, Pietinen P (2000) Intake of flavonoids, carotenoids, vitamins C and E, and risk of stroke in male smokers. Stroke 31:2301–2306PubMedCrossRef Hirvonen T, Virtamo J, Korhonen P, Albanes D, Pietinen P (2000) Intake of flavonoids, carotenoids, vitamins C and E, and risk of stroke in male smokers. Stroke 31:2301–2306PubMedCrossRef
24.
Zurück zum Zitat Knekt P, Isotupa S, Rissanen H, Heliövaara M, Järvinen R, Häkkinen S et al (2000) Quercetin intake and the incidence of cerebrovascular disease. Eur J Clin Nutr 54:415–417PubMedCrossRef Knekt P, Isotupa S, Rissanen H, Heliövaara M, Järvinen R, Häkkinen S et al (2000) Quercetin intake and the incidence of cerebrovascular disease. Eur J Clin Nutr 54:415–417PubMedCrossRef
25.
Zurück zum Zitat Arts ICW, Jacobs DR, Harnack LJ, Gross M, Folsom AR (2001) Dietary catechins in relation to coronary heart disease death among postmenopausal women. Epidemiology 12:668–675PubMedCrossRef Arts ICW, Jacobs DR, Harnack LJ, Gross M, Folsom AR (2001) Dietary catechins in relation to coronary heart disease death among postmenopausal women. Epidemiology 12:668–675PubMedCrossRef
26.
Zurück zum Zitat Sesso HD, Gaziano JM, Liu S, Buring JE (2003) Flavonoid intake and the risk of cardiovascular disease in women. Am J Clin Nutr 77:1400–1408PubMed Sesso HD, Gaziano JM, Liu S, Buring JE (2003) Flavonoid intake and the risk of cardiovascular disease in women. Am J Clin Nutr 77:1400–1408PubMed
27.
Zurück zum Zitat Lin J, Rexrode KM, Hu F, Albert CM, Chae CU, Rimm EB et al (2007) Dietary intakes of flavonols and flavones and coronary heart disease in US women. Am J Epidemiol 165:1305–1313PubMedCrossRef Lin J, Rexrode KM, Hu F, Albert CM, Chae CU, Rimm EB et al (2007) Dietary intakes of flavonols and flavones and coronary heart disease in US women. Am J Epidemiol 165:1305–1313PubMedCrossRef
28.
Zurück zum Zitat Hooper L, Kroon PA, Rimm EB, Cohn JS, Harvey I, Le Cornu CA et al (2008) Flavonoids, flavonoid-rich foods, and cardiovascular risk: a meta-analysis of randomized controlled trails. Am J Clin Nutr 88:38–50PubMed Hooper L, Kroon PA, Rimm EB, Cohn JS, Harvey I, Le Cornu CA et al (2008) Flavonoids, flavonoid-rich foods, and cardiovascular risk: a meta-analysis of randomized controlled trails. Am J Clin Nutr 88:38–50PubMed
29.
Zurück zum Zitat Keli SO, Hertog MGL, Feskens EJM, Kromhout D (1996) Dietary flavonoids, antioxidant vitamins, and incidence of stroke. The Zutphen study. Arch Intern Med. 154:637–642CrossRef Keli SO, Hertog MGL, Feskens EJM, Kromhout D (1996) Dietary flavonoids, antioxidant vitamins, and incidence of stroke. The Zutphen study. Arch Intern Med. 154:637–642CrossRef
30.
Zurück zum Zitat Hooper L, Kay C, Abdelhamid A, Kroon PA, Cohn JS, Rimm EB et al (2012) Effects of chocolate, cocoa, and flavan-3-ols on cardiovascular health: a systematic review and meta-analysis of randomized trials. Am J Clin Nutr 95:740–751PubMedCrossRef Hooper L, Kay C, Abdelhamid A, Kroon PA, Cohn JS, Rimm EB et al (2012) Effects of chocolate, cocoa, and flavan-3-ols on cardiovascular health: a systematic review and meta-analysis of randomized trials. Am J Clin Nutr 95:740–751PubMedCrossRef
31.
Zurück zum Zitat Bo S, Gentile L, Ciccone G, Baldi C, Benini L, Dusio F et al (2005) The metabolic syndrome and high C-reactive protein: prevalence and difference by sex in a southern-European population-based cohort. Diabetes Metab Research Rev 21:515–524CrossRef Bo S, Gentile L, Ciccone G, Baldi C, Benini L, Dusio F et al (2005) The metabolic syndrome and high C-reactive protein: prevalence and difference by sex in a southern-European population-based cohort. Diabetes Metab Research Rev 21:515–524CrossRef
32.
Zurück zum Zitat Taylor HL, Jacobs DR Jr, Schucker B, Knudsen J, Leon AS, Debacker G (1978) Questionnaire for the assessment of leisure time physical activities. J Chronic Diseases 31:741–755CrossRef Taylor HL, Jacobs DR Jr, Schucker B, Knudsen J, Leon AS, Debacker G (1978) Questionnaire for the assessment of leisure time physical activities. J Chronic Diseases 31:741–755CrossRef
33.
Zurück zum Zitat Bo S, Durazzo M, Guidi S, Carello M, Sacerdote C, Silli B et al (2006) Dietary magnesium and fiber intake, inflammatory and metabolic parameters in middle-aged subjects from a population-based cohort. Am J Clin Nutr 84:1062–1069PubMed Bo S, Durazzo M, Guidi S, Carello M, Sacerdote C, Silli B et al (2006) Dietary magnesium and fiber intake, inflammatory and metabolic parameters in middle-aged subjects from a population-based cohort. Am J Clin Nutr 84:1062–1069PubMed
34.
Zurück zum Zitat Kroke A, Klipstein-Grobusch K, Voss S, Moseneder J, Thielecke F, Noack R et al (1999) Validation of a self-administered food-frequency questionnaire administered in the European Prospective Investigation into Cancer and Nutrition (EPIC) study: comparison of energy, protein, and macronutrient intakes estimated with the doubly labeled water, urinary nitrogen, and repeated 24-h dietary recall methods. Am J Clin Nutr 70:439–447PubMed Kroke A, Klipstein-Grobusch K, Voss S, Moseneder J, Thielecke F, Noack R et al (1999) Validation of a self-administered food-frequency questionnaire administered in the European Prospective Investigation into Cancer and Nutrition (EPIC) study: comparison of energy, protein, and macronutrient intakes estimated with the doubly labeled water, urinary nitrogen, and repeated 24-h dietary recall methods. Am J Clin Nutr 70:439–447PubMed
35.
Zurück zum Zitat Willett W, Stampfer MJ (1986) Total energy intake: implications for epidemiologic analyses. Am J Epidemiol 124:17–27PubMed Willett W, Stampfer MJ (1986) Total energy intake: implications for epidemiologic analyses. Am J Epidemiol 124:17–27PubMed
36.
Zurück zum Zitat Schofield WN (1985) Predicting basal metabolic rate, new standards and review of previous work. Hum Nutr Clin Nutr 39:5–41PubMed Schofield WN (1985) Predicting basal metabolic rate, new standards and review of previous work. Hum Nutr Clin Nutr 39:5–41PubMed
37.
Zurück zum Zitat Goldberg GR, Black AE, Jebb SA, Cole TJ, Murgatroyd PR, Coward WA et al (1991) Critical evaluation of energy intake data using fundamental principles of energy physiology: 1. derivation of cut-off limits to identify under-recording. Eur J Clin Nutr 45:569–581PubMed Goldberg GR, Black AE, Jebb SA, Cole TJ, Murgatroyd PR, Coward WA et al (1991) Critical evaluation of energy intake data using fundamental principles of energy physiology: 1. derivation of cut-off limits to identify under-recording. Eur J Clin Nutr 45:569–581PubMed
38.
Zurück zum Zitat Gry J, Black L, Eriksen FD, Pilegaard K, Plumb J, Rhodes M et al (2007) EuroFIR-BASIS—a combined composition and biological activity database for bioactive compounds in plant-based foods. Trends Food Sci Tech 18:434–444CrossRef Gry J, Black L, Eriksen FD, Pilegaard K, Plumb J, Rhodes M et al (2007) EuroFIR-BASIS—a combined composition and biological activity database for bioactive compounds in plant-based foods. Trends Food Sci Tech 18:434–444CrossRef
40.
Zurück zum Zitat American Diabetes Association (2014) Diagnosis and classification of diabetes mellitus. Diabetes Care 37:S81–S90CrossRef American Diabetes Association (2014) Diagnosis and classification of diabetes mellitus. Diabetes Care 37:S81–S90CrossRef
41.
Zurück zum Zitat D’Agostino RB, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM et al (2008) General cardiovascular risk profile for use in primari care: the Framingham Heart Study. Circulation 117:743–753PubMedCrossRef D’Agostino RB, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM et al (2008) General cardiovascular risk profile for use in primari care: the Framingham Heart Study. Circulation 117:743–753PubMedCrossRef
42.
Zurück zum Zitat Grosso G, Mistretta A, Frigiola A, Gruttadauria S, Biondi A, Basile F et al (2014) Mediterranean diet and cardiovascular risk factors: a systematic review. Crit Rev Food Sci Nutr 54:593–610PubMedCrossRef Grosso G, Mistretta A, Frigiola A, Gruttadauria S, Biondi A, Basile F et al (2014) Mediterranean diet and cardiovascular risk factors: a systematic review. Crit Rev Food Sci Nutr 54:593–610PubMedCrossRef
43.
Zurück zum Zitat Cassidy A, O’Reilly EJ, Kay C, Sampson L, Franz M, Forman JP et al (2011) Habitual intake of flavonoid subclasses and incident hypertension in adults. Am J Clin Nutr 93:338–347PubMedCentralPubMedCrossRef Cassidy A, O’Reilly EJ, Kay C, Sampson L, Franz M, Forman JP et al (2011) Habitual intake of flavonoid subclasses and incident hypertension in adults. Am J Clin Nutr 93:338–347PubMedCentralPubMedCrossRef
44.
Zurück zum Zitat Sagara M, Kanda T, Jelekera MN, Teramoto T, Armitage L, Birt N et al (2003) Effects of dietary intake of soy protein and isoflavones on cardiovascular disease risk factors in high risk, middle-aged men in Scotland. J Am Coll Nutr 23:85–91CrossRef Sagara M, Kanda T, Jelekera MN, Teramoto T, Armitage L, Birt N et al (2003) Effects of dietary intake of soy protein and isoflavones on cardiovascular disease risk factors in high risk, middle-aged men in Scotland. J Am Coll Nutr 23:85–91CrossRef
45.
Zurück zum Zitat Kurowska EM, Spence JD, Jordan J, Wetmore S, Freeman DJ, Pinché LA et al (2000) HDL-cholesterol-raising effect of orange juice in subjects with hypercholesterolemia. Am J Clin Nutr 72:1095–1100PubMed Kurowska EM, Spence JD, Jordan J, Wetmore S, Freeman DJ, Pinché LA et al (2000) HDL-cholesterol-raising effect of orange juice in subjects with hypercholesterolemia. Am J Clin Nutr 72:1095–1100PubMed
46.
Zurück zum Zitat Qin Y, Xia M, Ma J, Hao JT, Liu J, Mou H et al (2009) Anthocyanin supplementation improves serum LDL- and HDL-cholesterol concentrations associated with the inhibition of cholesteryl ester transfer protein in dyslipidemic subjects. Am J Clin Nutr 90:485–492PubMedCrossRef Qin Y, Xia M, Ma J, Hao JT, Liu J, Mou H et al (2009) Anthocyanin supplementation improves serum LDL- and HDL-cholesterol concentrations associated with the inhibition of cholesteryl ester transfer protein in dyslipidemic subjects. Am J Clin Nutr 90:485–492PubMedCrossRef
47.
Zurück zum Zitat Hooper L, Kroom PA, Rimm EB, Cohn JS, Harvey I, Le Cornu KA et al (2008) Flavonoids, flavonoid-rich foods, and cardiovascular risk: a meta-analysis of randomized controlled trials. Am J Clin Nutr 88:38–50PubMed Hooper L, Kroom PA, Rimm EB, Cohn JS, Harvey I, Le Cornu KA et al (2008) Flavonoids, flavonoid-rich foods, and cardiovascular risk: a meta-analysis of randomized controlled trials. Am J Clin Nutr 88:38–50PubMed
48.
Zurück zum Zitat Hooper L, Key C, Abdelhamid A, Kroom PA, Cohn JS, Rimm EB et al (2012) Effects of chocolate, cocoa and flavan-3-ols on cardiovascular health: a systematic review and meta-analysis of randomized trials. Am J Clin Nutr 95:740–751PubMedCrossRef Hooper L, Key C, Abdelhamid A, Kroom PA, Cohn JS, Rimm EB et al (2012) Effects of chocolate, cocoa and flavan-3-ols on cardiovascular health: a systematic review and meta-analysis of randomized trials. Am J Clin Nutr 95:740–751PubMedCrossRef
49.
Zurück zum Zitat Wedick NM, Pan A, Cassidy A, Rimm EB, Sampson L, Rosner B et al (2012) Dietary flavonoids intakes and risk of type 2 diabetes in US men and women. Am J Clin Nutr 95:925–933PubMedCentralPubMedCrossRef Wedick NM, Pan A, Cassidy A, Rimm EB, Sampson L, Rosner B et al (2012) Dietary flavonoids intakes and risk of type 2 diabetes in US men and women. Am J Clin Nutr 95:925–933PubMedCentralPubMedCrossRef
50.
Zurück zum Zitat Jennings A, Welch AA, Fairweather-Tait SJ, Kay C, Minihane AM, Chowienczyk P et al (2012) Higher anthocyanin intake is associated with lower arterial stiffness and central blood pressure in women. Am J Clin Nutr 96:781–788PubMedCrossRef Jennings A, Welch AA, Fairweather-Tait SJ, Kay C, Minihane AM, Chowienczyk P et al (2012) Higher anthocyanin intake is associated with lower arterial stiffness and central blood pressure in women. Am J Clin Nutr 96:781–788PubMedCrossRef
51.
Zurück zum Zitat Macready AL, George TW, Chong MF, Alimbertov DS, Jin Y, Vidal A et al (2014) Flavonoid-rich fruit and vegetables improve microvascular reactivity and inflammatory status in men at risk of cardiovascular disease-FLAVURS: a randomized controlled trial. Am J Clin Nutr 99:479–489PubMedCrossRef Macready AL, George TW, Chong MF, Alimbertov DS, Jin Y, Vidal A et al (2014) Flavonoid-rich fruit and vegetables improve microvascular reactivity and inflammatory status in men at risk of cardiovascular disease-FLAVURS: a randomized controlled trial. Am J Clin Nutr 99:479–489PubMedCrossRef
52.
Zurück zum Zitat De Pascual-Teresa S, Moreno DA, García-Viguera C (2010) Flavanols and anthocyanins in cardiovascular health: a review of current evidence. Int J Mol Sci 11:1679–1703PubMedCentralPubMedCrossRef De Pascual-Teresa S, Moreno DA, García-Viguera C (2010) Flavanols and anthocyanins in cardiovascular health: a review of current evidence. Int J Mol Sci 11:1679–1703PubMedCentralPubMedCrossRef
53.
Zurück zum Zitat Middleton E, Kandaswami C, Theoharides TC (2000) The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev 52:673–751PubMed Middleton E, Kandaswami C, Theoharides TC (2000) The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev 52:673–751PubMed
54.
Zurück zum Zitat Kozkowska A, Szostak-Węgierek D (2014) Flavonoids—food sources and health benefits. Rocz Państw Zakł Hig 65:79–85 Kozkowska A, Szostak-Węgierek D (2014) Flavonoids—food sources and health benefits. Rocz Państw Zakł Hig 65:79–85
55.
Zurück zum Zitat Rein D, Paglieroni TG, Wun T, Pearson DA, Schmitz HH, Gosselin R et al (2000) Cocoa inhibits platelet activation and function. Am J Clin Nutr 72:30–35PubMed Rein D, Paglieroni TG, Wun T, Pearson DA, Schmitz HH, Gosselin R et al (2000) Cocoa inhibits platelet activation and function. Am J Clin Nutr 72:30–35PubMed
56.
Zurück zum Zitat Vita JA (2005) Polyphenols and cardiovascular disease: effects on endothelial and platelet function. Am J Clin Nutr 81:292S–297SPubMed Vita JA (2005) Polyphenols and cardiovascular disease: effects on endothelial and platelet function. Am J Clin Nutr 81:292S–297SPubMed
57.
Zurück zum Zitat Landberg R, Sun Q, Rimm EB, Cassidy A, Scalbert A, Mantzoros CS et al (2011) Selected dietary flavonoids are associated with markers of inflammation and endothelial dysfunction in US women. J Nutr 141:618–625PubMedCentralPubMedCrossRef Landberg R, Sun Q, Rimm EB, Cassidy A, Scalbert A, Mantzoros CS et al (2011) Selected dietary flavonoids are associated with markers of inflammation and endothelial dysfunction in US women. J Nutr 141:618–625PubMedCentralPubMedCrossRef
58.
Zurück zum Zitat Chun OK, Chung SJ, Claycombe KJ, Song WO (2008) Serum C-reactive protein concentrations are inversely associated with dietary flavonoid intake in US adults. J Nutr 138:753–760PubMed Chun OK, Chung SJ, Claycombe KJ, Song WO (2008) Serum C-reactive protein concentrations are inversely associated with dietary flavonoid intake in US adults. J Nutr 138:753–760PubMed
59.
Zurück zum Zitat Dilis V, Trichopoulou A (2010) Antioxidant intakes and food sources in Greek adults. J Nutr 140:1274–1279PubMedCrossRef Dilis V, Trichopoulou A (2010) Antioxidant intakes and food sources in Greek adults. J Nutr 140:1274–1279PubMedCrossRef
60.
Zurück zum Zitat Zamora-Ros R, Sacerdote C, Ricceri F, Weiderpass E, Roswall N, Buckland G et al (2014) Flavonoid and lignan intake in relation to bladder cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Br J Cancer 111:1870–1880PubMedCrossRef Zamora-Ros R, Sacerdote C, Ricceri F, Weiderpass E, Roswall N, Buckland G et al (2014) Flavonoid and lignan intake in relation to bladder cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Br J Cancer 111:1870–1880PubMedCrossRef
61.
Zurück zum Zitat Vogiatzoglou A, Mulligan AA, Lentjes MA, Luben RN, Spencer JP, Schroeter H et al (2015) Flavonoid intake in European adults (18 to 64 years). PLoS One 10:e0128132PubMedCentralPubMedCrossRef Vogiatzoglou A, Mulligan AA, Lentjes MA, Luben RN, Spencer JP, Schroeter H et al (2015) Flavonoid intake in European adults (18 to 64 years). PLoS One 10:e0128132PubMedCentralPubMedCrossRef
62.
Zurück zum Zitat Rossi M, Negri E, Lagiou P, Talamini R, Del Maso L, Montella M et al (2008) Flavonoids and ovarian cancer: a case-control study in Italy. Int J Cancer 123:895–898PubMedCrossRef Rossi M, Negri E, Lagiou P, Talamini R, Del Maso L, Montella M et al (2008) Flavonoids and ovarian cancer: a case-control study in Italy. Int J Cancer 123:895–898PubMedCrossRef
63.
Zurück zum Zitat Società Italiana di Nutrizione Umana (2014) Livelli di assunzione di riferimento di nutrienti ed energia per la popolazione italiana. SICS Ed, October 2014, 4th Revision Società Italiana di Nutrizione Umana (2014) Livelli di assunzione di riferimento di nutrienti ed energia per la popolazione italiana. SICS Ed, October 2014, 4th Revision
64.
Zurück zum Zitat Bosetti C, Rossi M, McLaughlin JK, Negri E, Talamini R, Lagiou P et al (2007) Flavonoids and the risk of renal cell carcinoma. Cancer Epidemiol Biomarkers Prev 16:98–101PubMedCrossRef Bosetti C, Rossi M, McLaughlin JK, Negri E, Talamini R, Lagiou P et al (2007) Flavonoids and the risk of renal cell carcinoma. Cancer Epidemiol Biomarkers Prev 16:98–101PubMedCrossRef
65.
Zurück zum Zitat Zamora-Ros R, Agudo A, Luján-Barroso L, Romieu I, Ferrari P, Knaze V et al (2012) Dietary flavonoid and lignin intake and gastric adenocarcinoma risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Am J Clin Nutr 96:1398–1408PubMedCrossRef Zamora-Ros R, Agudo A, Luján-Barroso L, Romieu I, Ferrari P, Knaze V et al (2012) Dietary flavonoid and lignin intake and gastric adenocarcinoma risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Am J Clin Nutr 96:1398–1408PubMedCrossRef
Metadaten
Titel
Dietary flavonoid intake and cardiovascular risk: a population-based cohort study
verfasst von
Valentina Ponzo
Ilaria Goitre
Maurizio Fadda
Roberto Gambino
Antonella De Francesco
Laura Soldati
Luigi Gentile
Paola Magistroni
Maurizio Cassader
Simona Bo
Publikationsdatum
01.12.2015
Verlag
BioMed Central
Erschienen in
Journal of Translational Medicine / Ausgabe 1/2015
Elektronische ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-015-0573-2

Weitere Artikel der Ausgabe 1/2015

Journal of Translational Medicine 1/2015 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.