Skip to main content
Erschienen in: Journal of Translational Medicine 1/2019

Open Access 01.12.2019 | Research

Identification of an immune signature predicting prognosis risk of patients in lung adenocarcinoma

verfasst von: Qian Song, Jun Shang, Zuyi Yang, Lanlin Zhang, Chufan Zhang, Jianing Chen, Xianghua Wu

Erschienen in: Journal of Translational Medicine | Ausgabe 1/2019

Abstract

Background

Lung cancer has become the most common cancer type and caused the most cancer deaths. Lung adenocarcinoma (LUAD) is one of the major type of lung cancer. This study aimed to establish a signature based on immune related genes that can predict patients’ OS for LUAD.

Methods

The expression data of 976 LUAD patients from The Cancer Genome Atlas database (training set) and the Gene Expression Omnibus database (four testing sets) and 1534 immune related genes from the ImmPort database were used for generation and validation of the signature. The glmnet Cox proportional hazards model was used to find the best gene model and construct the signature. To assess the independently prognostic ability of the signature, the Kaplan–Meier survival analysis and Cox’s proportional hazards model were performed.

Results

A gene model consisting of 30 immune related genes with the highest frequency after 1000 iterations was used as our signature. The signature demonstrated robust prognostic ability in both training set and testing set and could serve as an independent predictor for LUAD patients in all datasets except GSE31210. Besides, the signature could predict the overall survival (OS) of LUAD patients in different subgroups. And this signature was strongly associated with important clinicopathological factors like recurrence and TNM stage. More importantly, patients with high risk score presented high tumor mutation burden.

Conclusions

This signature could predict prognosis and reflect the tumor immune microenvironment of LUAD patients, which can promote individualized treatment and provide potential novel targets for immunotherapy.
Begleitmaterial
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1186/​s12967-019-1824-4) contains supplementary material, which is available to authorized users.
Qian Song and Jun Shang contributed equally to this work
Abkürzungen
NSCLC
non-small cell lung cancer
LUAD
Lung Adenocarcinoma
TKIs
tyrosine kinase inhibitors
EGFR
epidermal growth factor receptor
ROS1
ROS proto-oncogene 1
ALK
anaplastic lymphoma kinase
PD-1
programmed death 1
CTLA-4
cytotoxic T lymphocyte-associated antigen-4
TIM
tumor immune microenvironment
ImmPort
The Immunology Database and Analysis Portal
RNA-seq
RNA sequencing
TCGA
The Cancer Genome Atlas
GEO
the Gene Expression Omnibus
UCSC
University of California Santa Cruz
c-index
concordance index
K–M
Kaplan–Meier
OS
overall survival
MAF
Mutation Annotation Format
GDC
Genomic Data Commons
SNP
single nucleotide polymorphism

Background

According to the latest cancer statistics released in 2018, lung cancer has become the most frequently diagnosed cancer type and the top-ranked reason for cancer death in the combined population of women and men world widely [1]. In the United States, there were approximately 234,030 new cases and 154,050 deaths in 2018 [2]. Lung cancer mainly has two subtypes, including non-small cell lung cancer (NSCLC) and small cell lung cancer. Adenocarcinoma (LUAD) and squamous cell carcinoma are two main types of NSCLC [3], of which LUAD is the most common type [4]. With the decreasing of smoking rates, lung cancer cases of never-smoker are increasing, most of which comprise LUAD. For those patients, molecularly targeted therapies considerably enhance their survival outcomes. Tyrosine kinase inhibitors (TKIs) targeting epidermal growth factor receptor (EGFR) have been observed as the first-line treatment method for advanced LUAD patients with sensitizing EGFR mutation [5]. ROS proto-oncogene 1 (ROS1) and anaplastic lymphoma kinase (ALK) gene rearrangements are other common oncogenes which are somatically activated for the targeted therapies of LUAD [6]. However, a large amount of advanced LUAD patients do not have targetable mutations. For these patients, antibodies against immune checkpoints like programmed death 1 (PD-1) and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) demonstrate established treatment activity and safety [7, 8]. This highlights the importance of tumor immune microenvironment (TIM) on the clinical outcomes of LUAD patients.
The TIM constitutes of a variety of immune cells with either immune promoter or immune suppressor ability. TIM is able to limit the accumulation of T cells to where cancer cells locate [9]. Studies focusing on the impact of immune suppression elements like tumor-associated macrophages and myeloid-derived suppressor cells on LUAD patients’ survival outcomes have achieved tremendous development [1013]. However, there has been no signature that can systematically evaluate the TIM on the basis of immune-related genes and predict LUAD patients’ overall survival or response to immunotherapies. Zheng et al. [14] recently demonstrated a signature based on B7-CD28 family that can predict LUAD patients’ prognosis. Nevertheless, their investigations were limited to B7-CD28 family members, which may not represent the status of the entire TIM. Therefore, it’s essential to develop an immune signature on the basis of a comprehensive list of immune-related genes that can stand for the immune status of TIM and be with prognostic ability in LUAD.
Our efforts concentrated on developing an immune signature with prognostic ability based on the comprehensive list of immune-related genes downloaded from The Immunology Database and Analysis Portal (ImmPort) database. The RNA sequencing (RNA-seq) data and microarray data from The Cancer Genome Atlas (TCGA) database and the Gene Expression Omnibus (GEO) database were used for analysis. Then, we evaluated whether this signature was associated with the survival outcome of subgroups of LUAD patients and clinicopathological factors. And finally, we tried to figure out the relationship between the signature and tumor immune-related indexes including mutation load and neoantigen in LUAD.

Methods

Publicly attainable expression datasets and immune related genes

The expression data were downloaded from the TCGA database and the GEO database. The RNA-seq data of 500 LUAD patients were collected from the TCGA database and used as the training set, which were downloaded from University of California Santa Cruz (UCSC) Genome Browser (https://​xena.​ucsc.​edu/​public-hubs/​). GSE 81089 was the other RNA-seq data of 108 LUAD patients downloaded from the GEO database (http://​www.​ncbi.​nlm.​nih.​gov/​geo), which was used as one of the testing sets for constructing this signature. Fragments per kilobase of exon per million fragments mapped (FPKM) value was used to measure all of the RNA-seq data. The microarray data from GSE30219 (N = 85), GSE31210 (N = 226), GSE3141 (N = 57) were also collected from the GEO database and used as testing sets, respectively. A total of 976 patients were included for analysis. The clinical and survival information of the included datasets were summarized in Table 1. The comprehensive list of immune related genes containing a total of 1534 genes were downloaded from the ImmPort database (https://​immport.​niaid.​nih.​gov) [15].
Table 1
Clinical characteristics of the included datasets
Features
TCGA (n, %)
GSE30219 (n, %)
GSE31210 (n, %)
GSE3141 (n, %)
GSE81089 (n, %)
Platform
Illumina HiSeq2000 RNA sequencing platform
Affymetrix Human Genome U133 Plus 2.0 Array
Affymetrix Human Genome U133 Plus 2.0 Array
Affymetrix Human Genome U133 Plus 2.0 Array
Illumina HiSeq2000 RNA sequencing platform
Age
 ≤ 60 y
157 (31.4%)
43 (50.6%)
108 (47.8%)
20 (18.5%)
 > 60 y
333 (66.6%)
42 (49.4%)
118 (52.2%)
88 (81.5%)
 NA
10 (2.0%)
0 (0.0%)
0 (0.0%)
0 (0.0%)
Gender
 Male
230 (46.0%)
66 (77.6%)
105 (46.5%)
39 (36.1%)
 Female
270 (54.0%)
19 (22.4%)
121 (53.5%)
69 (63.9%)
 NA
0 (0.0%)
0 (0.0%)
0 (0.0%)
0 (0.0%)
Recurrence
 Yes
155 (31.0%)
27 (31.8%)
64 (28.3%)
 No
285 (57.0%)
58 (68.2%)
162 (71.7%)
 NA
60 (12.0%)
0 (0.0%)
0 (0.0%)
AJCC stage
 Stage I
268 (53.6%)
168 (74.3%)
62 (57.4%)
 Stage II
119 (23.8%)
58 (25.7%)
19 (17.6%)
 Stage III
80 (16.0%)
0 (0.0%)
24 (22.2%)
 Stage IV
25 (5.0%)
0 (0.0%)
3 (2.8%)
 Stage X
8 (1.6%)
0 (0.0%)
0 (0.0%)
T stage
 T1
167 (33.4%)
71 (83.5%)
 T2
267 (53.4%)
12 (14.1%)
 T3
45 (9%)
2 (2.4%)
 T4
18 (3.6%)
0 (0.0%)
 TX
3 (0.6%)
0 (0.0%)
N stage
 N0
324 (64.8%)
82 (96.5%)
 N1–3
165 (33.0%)
3 (3.5%)
 NX
11 (2.2%)
0 (0.0%)
M stage
 M0
332 (66.4%)
85 (100%)
 M1
24 (4.8%)
0 (100%)
 MX
144 (28.8%)
0 (100%)
Survival status
 Alive
318 (63.6%)
40 (47.1%)
191 (84.5%)
26 (45.6%)
59 (54.6%)
 Dead
182 (36.4%)
45 (52.9%)
35 (15.5%)
31 (54.4%)
49 (45.4%)
y years, TCGA The Cancer Genome Atlas

Development and validation of the immune signature for LUAD

The cases from the TCGA database were used as the training set to develop the immune signature. Univariate analysis and logRank test were used to identify immune related genes with prognostic ability. For the genes with prognostic ability, Cox proportional hazards model (iteration = 1000) with an lasso penalty was used to find the best gene model utilizing a R package called “glmnet” [16]. The best gene model was used to establish the immune signature. Then, the concordance (c)-index proposed by Harrell et al. [17] was applied to validate the predictive ability of the signature in all of the five datasets, by using the “survcomp” R package [18]. The larger c-index indicated the more accurate predictive ability of the model.

Survival analysis

The Kaplan–Meier (K–M) survival curves were generated to graphically demonstrate the overall survival (OS) of the high-risk group and low-risk group which were stratified by the immune signature. The univariate and multivariate analyses of survival were conducted for both the immune signature and clinicopathologic factors. The R package called “survival” was utilized to perform the survival analysis.

Mutation load and neoantigen analysis

Mutation data that contained somatic variants were stored in Mutation Annotation Format (MAF) form and were downloaded from Genomic Data Commons (GDC) (https://​portal.​gdc.​cancer.​gov/​).
Nonsynonymous mutations were used for our investigations, considering the uncertainty of functional consequences of synonymous mutations. And nonsynonymous mutations were potential sources of neoantigen epitopes. Nonsynonymous mutations included missense mutation, nonsense mutation, splice site mutation, frameshift mutation, and inframe mutation. The total number of nonsynonymous mutations were utilized as the mutation burden of LUAD patients to investigate the relationship between the immune signature and patients’ mutation load. The single nucleotide polymorphism (SNP) was also analyzed for its association with our signature. The number of neoantigens was cited from a published study [19] so as to figure out the correlation of the signature with the number of neoantigens in LUAD patients.

Statistical analysis

Student’s t test was conducted to make statistical comparison. The “ggplot” R package was used to generate boxplots. “ComplexHeatmap” R package was applied to generate heatmaps [20]. Two-tailed p values less than 0.05 were thought to be statistically significant. All of our analyses were conducted using R software version 3.5.1 (https://​www.​r-project.​org/​).

Results

Construction of immune signature

To make our investigations clearer, a workflow that illustrated the generation of the signature was demonstrated in Fig. 1. The univariate analysis was performed in all of the 1534 immune related genes for TCGA LUAD datasets. There were 144 genes with prognostic ability after the univariate analysis and logRank test (P < 0.05). The 144 immune related genes then underwent the Cox proportional hazards regression with tenfold cross-validation to generate the best gene model. We totally performed 1000 iterations and included 10 gene groups for further screening. The gene lists of the 10 gene groups were shown in Additional file 1: Table S1. As illustrated in Fig. 2a, a gene model with 30 immune related genes was with the highest frequencies of 211 compared to other nine gene models. Thus, this gene model became the most suitable role to generate the immune signature for LUAD. Therefore, we utilized the 30 immune related genes in this gene model to construct our immune signature, as listed in Additional file 1: Table S1. The coefficient value of the 30 genes were listed in Additional file 2: Table S2. The prognostic ability of the 30 immune related genes in LUAD patients was confirmed in the training set (The TCGA dataset, Additional file 3: Figure S1), which showed that all of the 30 genes were able to predict survival outcome of LUAD patients. However, the prognostic ability of the 30 genes was not consistent in the four testing sets (The GEO datasets, Additional files 4, 5, 6, 7: Figures S2–S5).

Validation of immune signature

To validate our signature, we firstly calculated the c-index for the prediction of OS. The c-index for TCGA dataset, GSE30219, GSE31210, GSE3141, and GSE81089 were 0.723, 0.657, 0.7061, 0.641, and 0.619 respectively (P < 0.05, Fig. 2b), which indicated the high predictive accuracy of the signature for survival. Then, the risk score for each patient was calculated according to the coefficient value of the 30 genes. Patients were divided into high-risk and low-risk groups with the median risk score utilized as the cutoff value, as demonstrated in Fig. 3a–e. Patients of high-risk were with poor OS compared with those of low-risk in both TCGA and GEO datasets (Fig. 4a–e, P < 0.05). We further validated the prognostic ability of the signature in subgroups of LUAD, and we found the immune signature could also predict the survival outcome of patients in clinically important subgroups. In TCGA datasets, patients in high risk group demonstrated poor prognosis in T1–3 stage, N0–3 stage, M0–1 stage, stage I–IV, recurrence, and no recurrence (P < 0.05, Additional file 8: Figure S6). In GSE30219 datasets, patients in high risk group showed poor prognosis in T1 stage, N0 stage (P < 0.05, Additional file 9: Figure S7). In GSE31210 dataset, high risk patients in stage I group demonstrated poor survival outcome (P < 0.05, Additional file 10: Figure S8). In GSE81089 datasets, patients in stage III exhibited a negative correlation between the risk score and patients’ OS (P < 0.05, Additional file 11: Figure S9). The univariate Cox analysis of the immune signature also indicated the significant association of the signature with LUAD patients’ OS in both TCGA and GEO datasets (P < 0.05, Fig. 5). Multivariate Cox analysis further exhibited that our signature could serve as an independent predictor of patients’ survival outcome after adjusted by clinicopathologic factors including age, TNM stage, recurrence, and gender in TCGA cohort [Hazard ratio (HR) = 2.1868, 95% confidence intervals (95% CI) 1.7612 to 2.7152, P < 0.001], GSE30219 cohort (HR = 1.6354, 95% CI 1.1632–2.2993, P = 0.0047), and GSE81089 (HR = 1.5156, 95% CI 1.1425–2.0106, P = 0.0039), as demonstrated in Fig. 6. As for the prognostic ability of clinical factors, we found only tumor recurrence and stage IV could serve as independent predictors for patients’ OS, which indicated the strong prognostic ability of our signature.

Association with clinicopathologic factors

To further validate the clinical value of the 30-genes immune signature, we evaluated the relationship between the signature and clinicopathologic factors. In TCGA cohort, patients of high-risk were tended to have advanced T stage, N stage, M stage, pathological stage and were under high risk of recurrence (P < 0.05, Additional file 12: Figure S10). In GSE30219 cohort, high-risk score was associated with higher T stage and N stage (P < 0.05, Additional file 13: Figure S11). In GSE31210 cohort, the risk score was only positively related to advanced pathological stage (P < 0.05, Additional file 14: Figure S12). And we did not find the association of the risk score and pathological stage in GSE81089 (Additional file 15: Figure S13).

Association with mutation load and neoantigen

Higher nonsynonymous mutation burden load and neoantigen number have shown associations with clinical efficacy of immune checkpoint inhibitor therapy [21, 22]. Therefore, we would like to investigate whether our immune signature could affect mutation load and number of neoantigen of LUAD for the possibility of the risk score to be the predictor of response to immune checkpoint inhibitor. Patients with high risk score exhibited higher nonsynonymous mutation load than those with low risk score (P = 0.0112, Fig. 7a). To further explore which types of nonsynonymous mutation were the major contributors to this relationship, we evaluated the association of the signature with different types of nonsynonymous mutation. High-risk group patients had higher missense mutation (P = 0.0098, Fig. 7b), nonsense mutation (P = 0.0166, Fig. 7c), splice site mutation (P = 0.0217, Fig. 7d), and inframe deletion (P = 0.0085, Fig. 7g). We did not find this relationship in frameshift mutation (Fig. 7e, f), inframe insertion (Fig. 7h), total deletion mutation (Fig. 7j), and total insertion mutation (Fig. 7k). Besides, we found there demonstrated a positive correlation between the signature and the number of SNP (P = 0.0098, Fig. 7i). However, we did not find correlation between the signature and the number of neoantigens in LUAD (Fig. 7l).

Discussion

The treatment of LUAD has experienced huge evolvement in the past 30 years, especially with the efficacy of immunotherapy. This shades light on the important role of TIM in the development and progression of LUAD. In this investigation, we established a robust prognostic signature on the basis of TIM in TCGA dataset and proved its efficacy in four GEO datasets. Our signature may represent the status of TIM for LUAD patients and provide potential biomarkers for the response to immunotherapy and targets for immunotherapy.
The study found that our signature was significantly correlated with LUAD patients’ OS. And their correlation showed a high statistical significance in the training set, testing sets, and the subgroups of LUAD patients, which indicates the signature is able to provide a robust prognostic tool for the total cohort and subgroups of LUAD patients. Besides, the signature showed strong correlation with clinicopathologic factors, further highlighting the firmly prognostic ability of our signature. In addition, we found that some of the 30 immune genes had different prognostic ability in different datasets. This indicates the instability of a single gene in predicting the OS of LUAD patients, while the signature which integrates the efficacy of all the 30 immune related genes showed a consistent predictive ability of OS in all of the datasets. Therefore, this immune signature has a greater value than a single gene in predicting patients’ survival outcome.
More importantly, our signature was on the basis of immune related genes and demonstrated a positive association with nonsynonymous mutation load and different types of nonsynonymous mutation. Considering the importance of tumor mutation load in predicting the response to immunotherapy [23], we could confer there may be a connection between our signature and response to immunotherapy. The NF-κB is a key participant in both immune response and human cancer initiation and progression [2426]. Therefore, NF-κB is a crucial part linking immunity and cancer. Interestingly, there was a study demonstrating that inhibition of NF-κB c-Rel could impair regulatory T cells mediated immunosuppression and potentiate anti-PD-1 therapy efficacy [27]. Among the 30 immune related genes in our signature, RELA is a subunit of NF-κB that is essential for NF-κB activation [28]. Hence, this further indicates that our signature may be related to response to immunotherapy. Considering the neoantigen have also shown its ability to predict the response to immunotherapy in cancer patients, we investigated the relationship between the signature and the neoantigens. However, we did not find the correlation between the signature and number of neoantigens. Therefore, further validations are needed to evaluate this immune signature in LUAD patients treated with immune checkpoint blockade.
Nonetheless, there were several limitations in our investigation. First, the signature was developed using retrospective data. Therefore, clinical validation, or even gene expression data of the thirty genes in enough number of LUAD samples are needed to prove the efficacy of the signature. And we did not find the independently prognostic ability of the signature in all of the datasets, which may be caused by the diversity of different platforms, batch effects and limited number of samples. Besides, in some subgroups of LUAD patients, there was no correlation between the signature and OS, which was also caused by the limited sample number in subgroups. Finally, lacking in patients treated with immune checkpoint inhibitors, we are unable to confirm relationship between the signature and the response to immunotherapy.

Conclusions

In conclusion, this study generates a signature that can not only predict LUAD patients’ survival outcome but also reflect the immune status of LUAD. This signature can be clinically used for the improvement of patients’ OS, individualized therapy methods based on the risk score and possible response to immunotherapy.

Authors’ contributions

QS, JS and XHW designed the study. ZYY, QS collected the literature. JS and QS performed statistical analyses. QS, JS, ZYY, LLZ, CFZ, JNC, and XHW analyzed the data. QS and JS wrote the manuscript. All authors read and approved the final manuscript.

Acknowledgements

None.

Competing interests

The authors declare that they have no competing interests.

Availability of data and materials

The datasets of this article were generated from the TCGA database and the GEO database.
Not applicable.
Not applicable.

Funding

None.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Anhänge

Additional files

Literatur
1.
Zurück zum Zitat Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.PubMed Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.PubMed
2.
Zurück zum Zitat Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30.PubMed Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30.PubMed
3.
Zurück zum Zitat Gridelli C, Rossi A, Carbone DP, Guarize J, Karachaliou N, Mok T, et al. Non-small-cell lung cancer. Nat Rev Dis Primers. 2015;1:15009.PubMed Gridelli C, Rossi A, Carbone DP, Guarize J, Karachaliou N, Mok T, et al. Non-small-cell lung cancer. Nat Rev Dis Primers. 2015;1:15009.PubMed
4.
Zurück zum Zitat Network CGAR. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511(7511):543. Network CGAR. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511(7511):543.
5.
Zurück zum Zitat Zhou C, Di Yao L. Strategies to improve outcomes of patients with EGFR-mutant non–small cell lung cancer: review of the literature. J Thoracic Oncol. 2016;11(2):174–86. Zhou C, Di Yao L. Strategies to improve outcomes of patients with EGFR-mutant non–small cell lung cancer: review of the literature. J Thoracic Oncol. 2016;11(2):174–86.
6.
Zurück zum Zitat Hanna N, Johnson D, Temin S, Baker S Jr, Brahmer J, Ellis PM, et al. Systemic therapy for stage IV non-small-cell lung cancer: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol. 2017;35(30):3484–515.PubMed Hanna N, Johnson D, Temin S, Baker S Jr, Brahmer J, Ellis PM, et al. Systemic therapy for stage IV non-small-cell lung cancer: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol. 2017;35(30):3484–515.PubMed
7.
Zurück zum Zitat Hellmann MD, Rizvi NA, Goldman JW, Gettinger SN, Borghaei H, Brahmer JR, et al. Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): results of an open-label, phase 1, multicohort study. Lancet Oncol. 2017;18(1):31–41.PubMed Hellmann MD, Rizvi NA, Goldman JW, Gettinger SN, Borghaei H, Brahmer JR, et al. Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): results of an open-label, phase 1, multicohort study. Lancet Oncol. 2017;18(1):31–41.PubMed
8.
Zurück zum Zitat Xu X, Huang Z, Zheng L, Fan Y. The efficacy and safety of anti-PD-1/PD-L 1 antibodies combined with chemotherapy or CTLA 4 antibody as a first-line treatment for advanced lung cancer. Int J Cancer. 2018;142(11):2344–54.PubMed Xu X, Huang Z, Zheng L, Fan Y. The efficacy and safety of anti-PD-1/PD-L 1 antibodies combined with chemotherapy or CTLA 4 antibody as a first-line treatment for advanced lung cancer. Int J Cancer. 2018;142(11):2344–54.PubMed
9.
Zurück zum Zitat Joyce JA, Fearon DT. T cell exclusion, immune privilege, and the tumor microenvironment. Science. 2015;348(6230):74–80.PubMed Joyce JA, Fearon DT. T cell exclusion, immune privilege, and the tumor microenvironment. Science. 2015;348(6230):74–80.PubMed
10.
Zurück zum Zitat Lesokhin AM, Hohl TM, Kitano S, Cortez C, Hirschhorn-Cymerman D, Avogadri F, et al. Monocytic CCR2 + myeloid-derived suppressor cells promote immune escape by limiting activated CD8 T-cell infiltration into the tumor microenvironment. Cancer research. 2012;72:876–86.PubMed Lesokhin AM, Hohl TM, Kitano S, Cortez C, Hirschhorn-Cymerman D, Avogadri F, et al. Monocytic CCR2 + myeloid-derived suppressor cells promote immune escape by limiting activated CD8 T-cell infiltration into the tumor microenvironment. Cancer research. 2012;72:876–86.PubMed
11.
Zurück zum Zitat Bayne LJ, Beatty GL, Jhala N, Clark CE, Rhim AD, Stanger BZ, et al. Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell. 2012;21(6):822–35.PubMedPubMedCentral Bayne LJ, Beatty GL, Jhala N, Clark CE, Rhim AD, Stanger BZ, et al. Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell. 2012;21(6):822–35.PubMedPubMedCentral
12.
Zurück zum Zitat Strachan DC, Ruffell B, Oei Y, Bissell MJ, Coussens LM, Pryer N, et al. CSF1R inhibition delays cervical and mammary tumor growth in murine models by attenuating the turnover of tumor-associated macrophages and enhancing infiltration by CD8+ T cells. Oncoimmunology. 2013;2(12):e26968.PubMedPubMedCentral Strachan DC, Ruffell B, Oei Y, Bissell MJ, Coussens LM, Pryer N, et al. CSF1R inhibition delays cervical and mammary tumor growth in murine models by attenuating the turnover of tumor-associated macrophages and enhancing infiltration by CD8+ T cells. Oncoimmunology. 2013;2(12):e26968.PubMedPubMedCentral
13.
Zurück zum Zitat Zhu Y, Knolhoff BL, Meyer MA, Nywening TM, West BL, Luo J, et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 2014;74:5057–69.PubMedPubMedCentral Zhu Y, Knolhoff BL, Meyer MA, Nywening TM, West BL, Luo J, et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 2014;74:5057–69.PubMedPubMedCentral
14.
Zurück zum Zitat Zheng S, Luo X, Dong C, Zheng D, Xie J, Zhuge L, et al. A B7-CD28 family based signature demonstrates significantly different prognoses and tumor immune landscapes in lung adenocarcinoma. Int J Cancer. 2018;143:2592–601.PubMed Zheng S, Luo X, Dong C, Zheng D, Xie J, Zhuge L, et al. A B7-CD28 family based signature demonstrates significantly different prognoses and tumor immune landscapes in lung adenocarcinoma. Int J Cancer. 2018;143:2592–601.PubMed
15.
Zurück zum Zitat Bhattacharya S, Andorf S, Gomes L, Dunn P, Schaefer H, Pontius J, et al. ImmPort: disseminating data to the public for the future of immunology. Immunol Res. 2014;58(2–3):234–9.PubMed Bhattacharya S, Andorf S, Gomes L, Dunn P, Schaefer H, Pontius J, et al. ImmPort: disseminating data to the public for the future of immunology. Immunol Res. 2014;58(2–3):234–9.PubMed
16.
Zurück zum Zitat Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw. 2010;33(1):1.PubMedPubMedCentral Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw. 2010;33(1):1.PubMedPubMedCentral
17.
Zurück zum Zitat Harrell FE, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996;15(4):361–87.PubMed Harrell FE, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996;15(4):361–87.PubMed
18.
Zurück zum Zitat Schröder MS, Culhane AC, Quackenbush J, Haibe-Kains B. survcomp: an R/Bioconductor package for performance assessment and comparison of survival models. Bioinformatics. 2011;27(22):3206–8.PubMedPubMedCentral Schröder MS, Culhane AC, Quackenbush J, Haibe-Kains B. survcomp: an R/Bioconductor package for performance assessment and comparison of survival models. Bioinformatics. 2011;27(22):3206–8.PubMedPubMedCentral
19.
Zurück zum Zitat Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell. 2015;160(1–2):48–61.PubMedPubMedCentral Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell. 2015;160(1–2):48–61.PubMedPubMedCentral
20.
Zurück zum Zitat Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32(18):2847–9.PubMed Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32(18):2847–9.PubMed
21.
Zurück zum Zitat Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer. Science. 2015;348(6230):124–8.PubMedPubMedCentral Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer. Science. 2015;348(6230):124–8.PubMedPubMedCentral
22.
Zurück zum Zitat Gibney GT, Weiner LM, Atkins MB. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol. 2016;17(12):e542–51.PubMedPubMedCentral Gibney GT, Weiner LM, Atkins MB. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol. 2016;17(12):e542–51.PubMedPubMedCentral
23.
Zurück zum Zitat Goodman AM, Kato S, Bazhenova L, Patel SP, Frampton GM, Miller V, et al. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol Cancer Ther. 2017;16:2598–608.PubMedPubMedCentral Goodman AM, Kato S, Bazhenova L, Patel SP, Frampton GM, Miller V, et al. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol Cancer Ther. 2017;16:2598–608.PubMedPubMedCentral
24.
Zurück zum Zitat Ghosh S, May MJ, Kopp EB. NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol. 1998;16(1):225–60.PubMed Ghosh S, May MJ, Kopp EB. NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol. 1998;16(1):225–60.PubMed
25.
Zurück zum Zitat Karin M, Cao Y, Greten FR, Li Z-W. NF-κB in cancer: from innocent bystander to major culprit. Nat Rev Cancer. 2002;2(4):301.PubMed Karin M, Cao Y, Greten FR, Li Z-W. NF-κB in cancer: from innocent bystander to major culprit. Nat Rev Cancer. 2002;2(4):301.PubMed
26.
Zurück zum Zitat Karin M, Greten FR. NF-κB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol. 2005;5(10):749.PubMed Karin M, Greten FR. NF-κB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol. 2005;5(10):749.PubMed
27.
Zurück zum Zitat Grinberg-Bleyer Y, Oh H, Desrichard A, Bhatt DM, Caron R, Chan TA, et al. NF-κB c-Rel is crucial for the regulatory T cell immune checkpoint in cancer. Cell. 2017;170(6):1096–1108. e13.PubMedPubMedCentral Grinberg-Bleyer Y, Oh H, Desrichard A, Bhatt DM, Caron R, Chan TA, et al. NF-κB c-Rel is crucial for the regulatory T cell immune checkpoint in cancer. Cell. 2017;170(6):1096–1108. e13.PubMedPubMedCentral
28.
Zurück zum Zitat Ghosh S, Karin M. Missing pieces in the NF-κB puzzle. Cell. 2002;109(2):S81–96.PubMed Ghosh S, Karin M. Missing pieces in the NF-κB puzzle. Cell. 2002;109(2):S81–96.PubMed
Metadaten
Titel
Identification of an immune signature predicting prognosis risk of patients in lung adenocarcinoma
verfasst von
Qian Song
Jun Shang
Zuyi Yang
Lanlin Zhang
Chufan Zhang
Jianing Chen
Xianghua Wu
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
Journal of Translational Medicine / Ausgabe 1/2019
Elektronische ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-019-1824-4

Weitere Artikel der Ausgabe 1/2019

Journal of Translational Medicine 1/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.