Skip to main content
Erschienen in: Journal of Ovarian Research 1/2020

Open Access 01.12.2020 | Research

Integrated bioinformatics analysis for the screening of hub genes and therapeutic drugs in ovarian cancer

verfasst von: Dan Yang, Yang He, Bo Wu, Yan Deng, Nan Wang, Menglin Li, Yang Liu

Erschienen in: Journal of Ovarian Research | Ausgabe 1/2020

Abstract

Background

Ovarian cancer (OC) ranks fifth as a cause of gynecological cancer-associated death globally. Until now, the molecular mechanisms underlying the tumorigenesis and prognosis of OC have not been fully understood. This study aims to identify hub genes and therapeutic drugs involved in OC.

Methods

Four gene expression profiles (GSE54388, GSE69428, GSE36668, and GSE40595) were downloaded from the Gene Expression Omnibus (GEO), and the differentially expressed genes (DEGs) in OC tissues and normal tissues with an adjusted P-value < 0.05 and a |log fold change (FC)| > 1.0 were first identified by GEO2R and FunRich software. Next, Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) analyses were performed for functional enrichment analysis of these DEGs. Then, the hub genes were identified by the cytoHubba plugin and the other bioinformatics approaches including protein-protein interaction (PPI) network analysis, module analysis, survival analysis, and miRNA-hub gene network construction was also performed. Finally, the GEPIA2 and DGIdb databases were utilized to verify the expression levels of hub genes and to select the candidate drugs for OC, respectively.

Results

A total of 171 DEGs were identified, including 114 upregulated and 57 downregulated DEGs. The results of the GO analysis indicated that the upregulated DEGs were mainly involved in cell division, nucleus, and protein binding, whereas the biological functions showing enrichment in the downregulated DEGs were mainly negative regulation of transcription from RNA polymerase II promoter, protein complex and apicolateral plasma membrane, and glycosaminoglycan binding. As for the KEGG-pathway, the upregulated DEGs were mainly associated with metabolic pathways, biosynthesis of antibiotics, biosynthesis of amino acids, cell cycle, and HTLV-I infection. Additionally, 10 hub genes (KIF4A, CDC20, CCNB2, TOP2A, RRM2, TYMS, KIF11, BIRC5, BUB1B, and FOXM1) were identified and survival analysis of these hub genes showed that OC patients with the high-expression of CCNB2, TYMS, KIF11, KIF4A, BIRC5, BUB1B, FOXM1, and CDC20 were statistically more likely to have poorer progression free survival. Meanwhile, the expression levels of the hub genes based on GEPIA2 were in accordance with those based on GEO. Finally, DGIdb database was used to identify 62 small molecules as the potentially targeted drugs for OC treatment.

Conclusions

In summary, the data may produce new insights regarding OC pathogenesis and treatment. Hub genes and candidate drugs may improve individualized diagnosis and therapy for OC in future.
Hinweise

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s13048-020-0613-2.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
BP
Biological process
CC
Cellular component
DAVID
Database for Annotation, Visualization and Integrated Discovery
DEGs
Differentially expressed genes
DGIdb
Drug-Gene Interaction Database
ENCORI
The Encyclopedia of RNA Interactomes
FDA
Food and Drug Administration
GEO
Gene Expression Omnibus
GEPIA2
Gene Expression Profiling Interactive Analysis
GO
Gene Ontology
KEGG
Kyoto Encyclopedia of Genes and Genomes
MCODE
Molecular Complex Detection
MF
Molecular function
OC
Ovarian cancer
PFS
Progression free survival
PPI
Protein-protein interaction
SOC
Serous ovarian cancer
STRING
Search Tool for the Retrieval of Interacting Genes/Proteins
TCGA
The Cancer Genome Atlas

Introduction

Ovarian cancer (OC) ranks fifth as a cause of gynecological cancer-associated deaths globally [1], with an estimated 238,700 new cases and 151,900 deaths in 2012 [2]. There are many risk factors associated with OC, such as a family history of breast cancer or OC, excess body weight, smoking, earlier menstruation or later menopause, and not giving birth [2]. Due to the vague symptoms, more than 70% of OC cases are diagnosed at an advanced stage [3]. In most countries, the 5-year survival rate of OC is usually lower than 40% [4]. The poor prognosis and high mortality can be mainly attributed to the lack of early and effective detection methods [5]. Therefore, more efforts need to be invested towards the identification and understanding of novel biomarkers and specific targets of OC, which is considered the key to developing more effective diagnostic and therapeutic strategies.
Recently, gene profiles and gene chips have been used to screen differentially expressed genes (DEGs) [6]. Reanalyzing these data can provide new insights into current research on OC [7]. However, current studies on biomarkers may be insufficient, and the DEG results may be inconsistent because of the complex tumor heterogeneity and complicated molecular regulatory mechanism of OC. Furthermore, chemotherapy resistance remains a major challenge and causes most failures of treatment and the short overall survival (OS) and progression free survival (PFS) of OC patients. Many bioinformatical studies on OC have been proven to be effective and reliable [7, 8], which means integrated bioinformatics analysis could assist with exploring the biomarkers and the mechanisms underlying the tumorigenesis and progression of cancer.
In this study, four original gene expression profiles (GSE54388, GSE69428, GSE36668, and GSE40595) were downloaded from the Gene Expression Omnibus (GEO) database. DEGs were first screened based on the above four datasets. Subsequently, integrated bioinformatics analyses including Gene Ontology (GO) term analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, protein-protein interaction (PPI) construction, and the identification of hub genes were performed. Furthermore, survival analysis and validation of the hub genes were also performed. Finally, the miRNA-hub gene network was constructed, and targeted small molecular drugs for OC were identified.

Materials and methods

Data sources

The NCBI-GEO database is a free and public database containing gene profiles. Four microarray datasets (GSE54388, GSE69428, GSE36668, and GSE40595) were obtained from the GEO database (https://​www.​ncbi.​nlm.​nih.​gov/​gds/​). The inclusion criteria for the above gene expression profiles were set as follows: (1) the tissue samples were obtained from human OC tissues and normal tissues; (2) the number of samples in each dataset was more than 8; (3) and all these profiles were based on GPL570 (Affymetrix Human Genome U133 Plus 2.0 Array).

Identification of DEGs

GEO2R is an interactive web tool that can compare and analyze two different groups of samples under the same experimental conditions [9]. In this study, the selected datasets of OC tissues and normal tissues were first analyzed by GEO2R. Subsequently, the analyzed results were downloaded in Microsoft Excel format, and genes that met the cutoff criteria of the adjusted P-value < 0.05 and |log fold change (FC)| > 1.0 were considered DEGs [8]. Finally, the FunRich tool (version 3.1.3) was applied to illustrate the intersection of the DEGs. Additionally, an online tool, ClustVis, was used to draw the heatmap of the DEGs [10]. Specifically, the gene expression matrix for the heatmap was derived from GSE69428.

Functional enrichment analysis of DEGs

GO functional analysis and KEGG pathway analysis were carried out to predict the potential functions of the DEGs by using the Database for Annotation, Visualization and Integrated Discovery (DAVID; https://​david.​ncifcrf.​gov/​; version 6.8). Upregulated and downregulated DEGs were submitted to the DAVID online program. The top 10 items of the cellular component (CC), biological process (BP), and molecular function (MF) categories and KEGG pathways were then sorted and presented in the form of bubble maps. These bubble plots were drawn using the ggplot2 R package based on P-value through the statistical software R (version 3.6.1). P < 0.05 was considered statistically significant.

PPI network construction and module analysis

The PPI network of the identified DEGs was constructed by an online tool, the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING; https://​string-db.​org/​), with an interaction score > 0.4. The active interaction sources included text mining, experiments, databases, coexpression, neighborhood, gene fusion, and corecurrence. Furthermore, the interaction network between the DEGs and their related genes was presented with the minimum number of interactions = 2. Subsequently, the modules of the PPI network were screened by the Cytoscape software (version 3.7.1) plugin Molecular Complex Detection (MCODE) with default parameters as follows: degree cutoff = 2, node score cutoff = 0.2, k-score = 2, and max. Depth = 100. In this study, the criteria of the top four modules were set with MCODE scores ≥2.8 and nodes ≥3. KEGG pathway analysis of the genes in each module was performed by DAVID. Finally, based on highest degree of connectivity, the top 10 genes were selected as the target hub genes by using the Cytoscape plugin cytoHubba. The construction of the PPI network and coexpression analysis of the hub genes were performed by STRING. The criteria of the PPI network included a confidence score ≥ 0.4 and a maximum number of interactions ≤5.

Survival analysis and validation of the hub genes

The Kaplan-Meier plotter can assess the prognostic effect of genes on survival in many types of cancer, including 6234 breast, 2190 ovarian, 3452 lung, and 1440 gastric cancer samples (http://​kmplot.​com/​analysis/​). Patients with OC were categorized into two groups, namely, a high-expression group and a low-expression group, according to the expression of a particular gene. The general inclusion criteria for the survival analysis were set as follows: (1) used only the JetSet best probe set; (2) used a 2017 version dataset; (3) excluded biased arrays. Then, the PFS was analyzed for the above two groups for each hub gene for the OC patients and the serous OC (SOC) patients for “all stages”, “early stages (stages 1 and 2)”, and “advanced stages (stages 3 and 4)”. These analyses are shown in the form of a survival prognosis forest map and survival curves according to the hazard ratio (HR), 95% confidence interval (95% CI), and log-rank P-value. The forest map was constructed by STATA version 15.0 (StataCorp, College Station, Texas, USA).
Additionally, the expression levels of the hub genes between OC and normal samples were verified by Gene Expression Profiling Interactive Analysis (GEPIA2; http://​gepia2.​cancer-pku.​cn/​#index). Then, GEPIA2 was also used to explore the variations among OC samples at different stages. ANOVA was used to assess the statistical significance of the variations. Pr (>F) < 0.05 was considered statistically significant. Furthermore, the cBio Cancer Genomics Portal (https://​www.​cbioportal.​org/​; version 3.0.2) online tool was used to present the genetic alteration information of the hub genes.

miRNA-hub gene network construction

The Encyclopedia of RNA Interactomes (ENCORI) is an open-source platform mainly focusing on miRNA-target interactions (http://​starbase.​sysu.​edu.​cn/​; version 3.0). ENCORI utilizes eight established miRNA-target prediction databases, including PITA, RNA22, miRmap, microT, miRanda, PicTar, TargetScan, and pancancerNum. In this study, miRNAs were considered the targeted miRNAs of hub genes based on at least two databases being selected among the following databases: miRanda, PITA, PicTar, and TargetScan [11]. Subsequently, the coexpression network of the hub genes and their targeted miRNAs was visualized by Cytoscape software.

Drug-hub gene interaction

Drugs were selected based on the hub genes that served as promising targets by using the Drug-Gene Interaction Database (DGIdb; http://​www.​dgidb.​org/​search_​interactions; version 3.0.2 – sha1 ec916b2). In this study, the final drug list included only drugs that were approved by the Food and Drug Administration (FDA). The online tool named STITCH (http://​stitch.​embl.​de/​cgi/​input.​pl?​UserId=​E40G4aCOYHFw&​sessionId=​8fGboRzTdag6; version 5.0) was applied to construct the interaction network between the potential drugs and the hub genes [11].

Results

Identification of DEGs in OC

Four expression profiles (GSE54388, GSE69428, GSE36668, and GSE40595) were obtained from the GEO database. The specific details of the above datasets are presented in Table 1. In this study, the microarray datasets were all based on the GPL570 platform (Affymetrix Human Genome U133 Plus 2.0 Array). Three of the datasets were from SOC, and GSE40595 was from OC stroma (Table 1). GSE54388 consisted of 16 cases and 6 controls; GSE69428 contained 10 cases and 10 controls; GSE36668 included 4 cases and 4 controls; and GSE40595 contained 63 cases and 14 controls (Table 1). The Venn diagrams indicated that a total of 171 DEGs were identified from the four microarray profile datasets, including 114 upregulated genes and 57 downregulated genes in OC tissues compared to normal controls (Fig. 1 and Table 2). In addition, the expression levels of these DEGs are visualized in the form of a heatmap in Additional file 1: Figure S1.
Table 1
Detailed information on the GEO microarray profiles of OC patients
No. of GEO profile
Type
Source
Case
Control
Platform
Annotation platform
GSE54388
mRNA
serous ovarian cancer
16
6
GPL570
Affymetrix Human Genome U133 Plus 2.0 Array
GSE69428
mRNA
serous ovarian cancer
10
10
GPL570
Affymetrix Human Genome U133 Plus 2.0 Array
GSE36668
mRNA
serous ovarian cancer
4
4
GPL570
Affymetrix Human Genome U133 Plus 2.0 Array
GSE40595
mRNA
ovarian cancer stroma
63
14
GPL570
Affymetrix Human Genome U133 Plus 2.0 Array
GEO Gene Expression Omnibus
Table 2
Information on the overlapping DEGs screened from the datasets
DEGs
Gene name
Upregulated (114)
WHSC1, VEGFA, TYMS, TSTA3, TPI1, TPD52L2, TOP2A, TNNT1, TMPRSS4, TIMELESS, C20orf24, TBC1D7, TACC3, STC2, SORT1, BOLA2, SLC52A2, SLC4A11, SLC39A4, SLC38A1, SLC2A1, SLC19A1, SHMT2, SCRIB, SAC3D1, S100A2, RRM2, RNASEH2A, RACGAP1, PXDN, PUF60, PTTG1, PSAT1, PPP1R14B, PIK3R3, PBK, OVOL2, NR2F6, NOV, NDUFB9, NDC80, NCAPG, MYCL, MUC16, MT1F, MRPS15, MRPL12, MLF2, MCM4, MCAM, MAL, LSM4, LPCAT1, C1orf186, LAPTM4B, KLK8, KLK7, KLK6, KLHL14, KIF4A, KIF11, KIAA0101, ISG15, IRAK1, IDH2, HN1, HMGB3, HMGA1, H2AFX, GPSM2, FOXM1, FGF18, FEN1, FDPS, ESRP1, EPT1, ENO1, E2F8, DYRK2, DTL, DSC2, DPP3, DHCR24, DGAT1, DDX39A, DBN1, CYC1, CTPS1, CRABP2, COPE, COL4A1, CLPTM1L, CLDN3, CHD7, CDH6, CDCA3, CDC20, CD47, CCNE1, CCNB2, C9orf16, C1orf106, BUB1B, BOLA2B, BIRC5, BAK1, AURKAIP1, ATP6V1B1, ASS1, ARL4C, ARF3, APOA1, AIF1L, ABHD11
Downregulated (57)
ZEB2, ZBTB20, WHAMMP2, WHAMMP3, WDR17, TLE4, THBD, TFPI, SYTL3, SNCAIP, SMIM14, SLC4A4, SCD5, RUNX1T1, RUNDC3B, RNASE4, PTPN13, PRKAR1A, PLCL2, PIP5K1B, PDK4, PDGFRA, NDNF, NBEA, N4BP2L2, N4BP2L1, MPDZ, MITF, MEF2C, MAF, FAM153A, FAM153B, FAM153C, KLHDC1, KLF2, KAT2B, KANSL1L, ITM2A, IL6ST, GPRASP1, GNG11, FOXP2, DPYD, DPY19L2P2, DMD, DCN, CXorf57, CIRBP, CHGB, CELF2, CDC14A, BNC2, ARMCX1, ALDH1A1, ABCA8, ABCA5, AASS
A total of 171 DEGs were identified from the four gene expression profiles, including 114 upregulated DEGs and 57 downregulated DEGs in OC tissues compared to normal tissues

Functional enrichment analysis of DEGs

A total of 114 upregulated genes and 57 downregulated genes were analyzed by DAVID software. The top 5 significant terms from the GO enrichment analysis showed that in the BP category, the upregulated DEGs were involved in cell division, mitotic nuclear division, regulation of the cell cycle, DNA replication, and cellular response to DNA damage stimulus (Fig. 2a), whereas the downregulated DEGs were significantly involved in the negative regulation of transcription from the RNA polymerase II promoter, the positive regulation of transcription from the RNA polymerase II promoter, skeletal muscle tissue development, the viral process, and the regulation of phosphatidylinositol 3-kinase signaling (Additional file 2: Table S1). For the CC category, the upregulated DEGs were correlated with the nucleus, cytoplasm, cytosol, nucleoplasm, and extracellular exosomes (Fig. 2b), whereas the downregulated DEGs were associated with the protein complex and apicolateral plasma membrane (Additional file 2: Table S1). For the MF category, the upregulated DEGs were enriched in protein binding, identical protein binding, protein homodimerization activity, enzyme binding, and protein heterodimerization activity (Fig. 2c), whereas the downregulated DEGs were related to glycosaminoglycan binding (Additional file 2: Table S1). For KEGG pathway enrichment analysis, the downregulated DEGs were not enriched, whereas the top five significant KEGG pathways of the upregulated DEGs included metabolic pathways, biosynthesis of antibiotics, biosynthesis of amino acids, the cell cycle, and human T-lymphotropic virus type I (HTLV-I) infection (Fig. 2d). Furthermore, specific information on the upregulated DEGs identified in each category in the functional enrichment analysis are presented in Additional file 3: Table S2.

PPI network construction and module analysis

The PPI network of the DEGs in OC was constructed based on the information obtained from the STRING database. When 171 DEGs were submitted to the STRING database, there were 3 unidentified gene IDs, namely, WHAMMP2, WHAMMP3, and FAM153C. Subsequently, 168 genes were mapped into the PPI network. The PPI network included 168 nodes and 450 edges, and its PPI enrichment P-value was lower than 1.0e − 16 (Additional file 4: Figure S2). In addition, an interaction network of 168 DEGs and their neighboring genes was constructed through FunRich (Additional file 5: Figure S3). Then, the significant modules were identified via the MCODE plugin. As illustrated in Additional file 6: Figure S4, the top four functional clusters of modules were selected (module 1, MCODE score = 21.826; module 2, MCODE score = 3.333; module 3, MCODE score = 3; and module 4, MCODE score = 2.8). KEGG pathway analysis of each module was performed by DAVID, as shown in Additional file 7: Table S3. As shown in Additional file 6: Figure S4, module 1 consisted of 24 nodes and 251 edges, the average node degree was 20.9, and the PPI enrichment P-value was lower than 1.0e − 16 (Additional file 6: Figure S4A). The KEGG pathway analysis of module 1 indicated that these genes were involved in the cell cycle, DNA replication, and oocyte meiosis (Additional file 7: Table S3). Module 2 consisted of 4 nodes and 5 edges (Additional file 6: Figure S4B), with genes enriched in ribosomes (Additional file 7: Table S3). Module 3 contained 3 nodes and 3 edges (Additional file 6: Figure S4C), with genes related to the biosynthesis of amino acids, the HIF-1 signaling pathway, and carbon metabolism (Additional file 7: Table S3). Finally, module 4 comprised 6 nodes and 7 edges (Additional file 6: Figure S4D), with genes associated with fat digestion and absorption and the PPAR signaling pathway (Additional file 7: Table S3). The PPI enrichment P-value of each module was lower than 0.05.
Ten genes (TYMS, CCNB2, KIF11, RRM2, CDC20, TOP2A, BUB1B, BIRC5, KIF4A, and FOXM1) with the highest degree scores were identified as the hub genes for OC by applying the cytoHubba plugin (Additional file 8: Table S4). All the hub genes were upregulated DEGs, as shown in Table 2. Additionally, the STRING online database was used to construct the PPI network of the hub genes (Fig. 3a), and FunRich software was used to draw the interaction network of the hub genes and their related genes (Fig. 3b). As shown in Fig. 3a, the PPI network of the hub genes consisted of 10 nodes and 45 edges, while its average local clustering coefficient was 1, and its PPI enrichment P-value was lower than 1.0e − 16. Additionally, the results of the gene coexpression analysis of the ten hub genes showed that these hub genes might actively interact with each other (Fig. 3c).

Survival analysis, genetic information and hub gene expression

The prognostic information of these 10 hub genes for OC and SOC at different stages was analyzed by the Kaplan-Meier plotter database. A survival prognosis forest map of these genes in early stage (Stages 1 and 2) is shown in Fig. 4a, and the survival curves of these genes are presented in Fig. 4b-k. Among the 10 hub genes, 8 hub genes were significantly associated with the PFS of OC patients at an early stage (stages 1 and 2) (Fig. 4). Except for TOP2A [HR = 1.19 (0.67–2.09), P = 0.55] (Fig. 4j) and RRM2 [HR = 1.22 (0.69–2.15), P = 0.50] (Fig. 4i), early-stage OC patients with higher expression levels of CCNB2 [HR = 1.87 (1.04–3.37), P = 0.033] (Fig. 4d), TYMS [HR = 2.04 (1.14–3.67), P = 0.014] (Fig. 4k), KIF11 [HR = 2.73 (1.48–5.03), P < 0.001] (Fig. 4h), KIF4A [HR = 2.82 (1.51–5.27), P < 0.001] (Fig. 4g), BIRC5 [HR = 2.85 (1.53–5.31), P < 0.001] (Fig. 4b), BUB1B [HR = 2.86 (1.55–5.29), P < 0.001] (Fig. 4c), FOXM1 [HR = 3.03 (1.60–5.73), P < 0.001] (Fig. 4f), and CDC20 [HR = 3.87 (2.01–7.46), P < 0.001] (Fig. 4e) were significantly related to poorer PFS (Fig. 4). For SOC patients at stages 1 and 2, except for RRM2, FOXM1, and TOP2A, the remaining 7 hub genes presented statistically significant trends (Additional file 9: Figure S5). In addition, the relationship between PFS and the expression of these 10 hub genes in OC and SOC patients in “all stages” and “advanced stages” are presented in Additional file 10: Figures S6, Additional file 11: Figure S7, Additional file 12: Figure S8, and Additional file 13: Figure S9. More interestingly, increased expression of KIF4A and TYMS were related to poorer PFS in early stage (stages 1 and 2) OC and SOC patients (Fig. 4g, k, Additional file 9: Figure S5G & K), whereas decreased expression of the above 2 hub genes were associated with better PFS in advanced stage (stages 3 and 4) OC and SOC patients (Additional file 12: Figure S8 and Additional file 13: Figure S9).
Subsequently, cBioPortal was used to determine the genetic alteration information of the 10 hub genes, as illustrated in Fig. 5. The network shown in Fig. 5a consists of 60 nodes, including 10 hub genes and the 50 most frequently altered neighboring genes (out of a total of 767). Drugs targeting the 10 hub genes are also presented in Fig. 5a. From this network, only KIF11, TOP2A, RRM2, TYMS, and BIRC5 are currently considered chemotherapy targets (Fig. 5a). Alteration information of the 10 hub genes is shown in Fig. 5b and c. As presented in Fig. 5b, the hub genes were altered in 173 (30%) queried patients or samples. CDC20 and FOXM1 were altered most often (7 and 7%, respectively). These alterations included amplification, deep deletion, truncating mutation, missense mutation, inframe mutation, and fusion (Fig. 5b). Among the different types of alterations, amplification accounted for the highest percentage (Fig. 5c).
Additionally, the GEPIA2 database was used to verify the expression levels of the 10 hub genes in tumor and normal tissues. As shown in Fig. 6a-j, the expression levels of the 10 hub genes were all statistically significant (P < 0.01) in OC and normal tissues on the basis of gene expression profiles from The Cancer Genome Atlas (TCGA) and the genotype-tissue expression (GTEx) projects. The results of the expression trends in OC patients and healthy people based on the GEPIA2 database were in accordance with those based on the GEO datasets (Fig. 6a-j and Table 2). Thus, both the GEPIA2 and GEO databases indicated that the mRNA expression levels of the 10 hub genes were upregulated in tumor tissues (Fig. 6a-j and Table 2). Additionally, the expression levels of the 10 hub genes in different stage OC patients are shown in Fig. 7. According to these results, it is easy to see that there were significant variations in the expression levels of BUB1B [Pr (>F) < 0.001] (Fig. 7b), FOXM1 [Pr (>F) = 0.007] (Fig. 7e), KIF4A [Pr (>F) = 0.022] (Fig. 7f), RRM2 [Pr (>F) = 0.025] (Fig. 7h), and TYMS [Pr (>F) = 0.002] (Fig. 7j) in OC patients in different stages. The overall trends indicated that the expression of the above five genes decreased gradually with the continuous progression of OC (Fig. 7).

miRNA-hub gene network

ENCORI was applied to screen the targeted miRNAs of the hub genes. The miRNAs predicted by at least two databases (among the following databases: miRanda, PITA, PicTar, and TargetScan) were identified as the targeted miRNAs of the hub genes. Then, Cytoscape software was used to draw the miRNA-hub gene network. As illustrated in Fig. 8, the interaction network consists of 9 hub genes and 116 miRNAs. Moreover, the contribution level of the miRNAs to their surrounding hub genes is presented as the number of arrows (Fig. 8). According to the top 10 molecules in the network ranked by their degree of connectivity using cytoHubba, KIF11 (degree score = 47), RRM2 (degree score = 38), TOP2A (degree score = 23), and FOXM1 (degree score = 20) were clearly the four interactive hub genes that most miRNAs would target (Fig. 8), followed by BIRC5 (degree score = 14), KIF4A (degree score = 11), BUB1B (degree score = 6), and TYMS (degree score = 5). Furthermore, hsa-miR-377-3p (degree score = 4) and hsa-miR-335-5p (degree score = 4) were the top two interactive miRNAs that targeted the most target hub genes (Fig. 8). Additionally, the respective miRNAs targeting the 10 hub genes are presented in Additional file 14: Table S5.

Drug-gene interaction

A total of 62 potential drugs for treating OC patients were identified when the drug-gene interactions were explored using DGIdb (Table 3). In this study, according to the statistically significant results of the survival analysis, TYMS and BIRC5 were selected as the potential targets of 62 drugs (Table 3). Both hub genes have been verified as current chemotherapy targets based on cBioPortal (Fig. 5a). As demonstrated in Table 3, the promising 62 candidate drugs were all approved by the FDA. Most potential drugs might interact with the TYMS (32/62), either in some unknown manners or as an inhibitor (Table 3). The downstream interaction networks of TYMS and BIRC5 were constructed by STITCH (Additional file 15: Figure S10). As shown in Additional file 15: Figure S10, TYMS might have downstream effects on 5-thymidylic acid (poly(dT)), 5-fluorouracil, deoxyuridine monophosphate (dUMP), pemetrexed, methotrexate, OSI-7904 L, raltitrexed, FdUMP, dihydrofolate, and dihydrofolate reductase (DHFR) (Additional file 15: Figure S10A), whereas BIRC5 might have downstream effects on exportin 1 (XPO1), poly-like kinase 1 (PLK1), cyclin-dependent kinase 1 (CDK1), cell division cycle associated 8 (CDCA8), aurora kinase A (AURKA), aurora kinase (AURKB), inner centromere protein antigens (INCENP), baculoviral IAP repeat-containing 2 (BIRC2), caspase 9 (CASP-9), and IAP-binding mitochondrial protein (DIABLO) (Additional file 15: Figure S10B).
Table 3
Candidate drugs targeted by the hub genes
No.
Gene
Drug
Interaction types
Sources
PMIDs
1
TYMS
ETOPOSIDE
PharmGKB
2
TYMS
IRINOTECAN
CIViC
20,628,391
3
TYMS
VINCRISTINE
NCI
2,804,079
4
TYMS
FOLIC ACID
PharmGKB
5
TYMS
TOPOTECAN
NCI
10,803,925
6
TYMS
CYTARABINE
PharmGKB
7
TYMS
MITOMYCIN
NCI
15,218,314
8
TYMS
PREDNISONE
PharmGKB
9
TYMS
TRIFLURIDINE
inhibitor
DrugBank
18,600,528; 16,902,987; 20,372,850; 19,816,940; 19,886,911; 4,719,131; 6,436,227; 15,571,283; 17,179,993; 14,719,072; 16,010,590; 15,125,867; 11,752,352; 18,798,063; 6,010,427
10
TYMS
DAUNORUBICIN
NCI
2,967,076
11
TYMS
HYDROCORTISONE
NCI
2,707,640
12
TYMS
PRALATREXATE
inhibitor
DrugBank
23,409,799
13
TYMS
PHENTOLAMINE
NCI
2,866,100
14
TYMS
TRIMETHOPRIM
inhibitor
DrugBank
8,538,681; 10,090,784; 10,592,235; 17,139,284; 8,920,005; 17,016,423; 19,622,858
15
TYMS
INDOMETHACIN
NCI
2,707,640
16
TYMS
GEMCITABINE
inhibitor
DrugBank
16,563,096; 15,795,320; 17,166,391; 16,818,276; 11,752,352; 15,655,942; 16,818,496
17
TYMS
ASPARAGINASE
PharmGKB
18
TYMS
CAPECITABINE
inhibitor
ClearityFoundationBiomarkers; ClearityFoundationClinicalTrial; GuideToPharmacologyInteractions; ChemblInteractions; DrugBank
15,134,221; 16,926,630; 15,866,500; 15,132,128; 11,752,352; 15,709,193
19
TYMS
FLOXURIDINE
inhibitor
TdgClinicalTrial; ClearityFoundationClinicalTrial; ChemblInteractions; TEND; DrugBank
10,697,523; 10,891,536; 10,697,524; 10,482,907; 10,553,409
20
TYMS
LEUCOVORIN
TdgClinicalTrial; TEND
21
TYMS
TAMOXIFEN
NCI
9,615,734
22
TYMS
VERAPAMIL
NCI
3,436,366
23
TYMS
RALTITREXED
inhibitor
PharmGKB; TdgClinicalTrial; GuideToPharmacologyInteractions; TEND; DrugBank
18,773,878; 10,598,555; 10,430,100; 10,592,235; 11,752,352; 10,499,608; 10,482,907; 10,047,461; 10,496,350
24
TYMS
PEMETREXED DISODIUM
inhibitor
ChemblInteractions
25
TYMS
DEXAMETHASONE
NCI
2,707,640; 3,398,844
26
TYMS
INTERFERON GAMA-1B
NCI
1,557,656
27
TYMS
FLUOROURACIL
inhibitor
ClearityFoundationClinicalTrial; ChemblInteractions; CIViC; DrugBank
16,563,096; 20,628,391; 16,609,021; 16,719,540; 16,596,248; 16,538,493; 11,752,352; 15,353,299
28
TYMS
OXALIPLATIN
PharmGKB
29
TYMS
TEGAFUR
TdgClinicalTrial
30
TYMS
SULFASALAZINE
PharmGKB
31
TYMS
PEMETREXED (CHEMBL1201258)
inhibitor
ClearityFoundationBiomarkers; TdgClinicalTrial; GuideToPharmacologyInteractions; CIViC; TEND
23,645,741; 23,060,591; 21,367,480; 26,502,926
32
TYMS
METHOTREXATE
CIViC
23,652,803
33
BIRC5
IRINOTECAN
NCI
15,956,246
34
BIRC5
INTERFERON BETA-1A
NCI
12,117,359
35
BIRC5
DOXORUBICIN
NCI
16,211,302
36
BIRC5
CYTARABINE
NCI
14,713,572
37
BIRC5
TRASTUZUMAB
NCI|CIViC
16,452,223; 23,204,226
38
BIRC5
LAPATINIB
NCI
16,452,223
39
BIRC5
PROXYPHYLLINE
NCI
12,895,357
40
BIRC5
PACLITAXEL
ClearityFoundationBiomarkers; NCI
16,211,241; 15,347,474
41
BIRC5
DOCETAXEL
ClearityFoundationBiomarkers
42
BIRC5
FLUTAMIDE
NCI
15,735,703
43
BIRC5
VORINOSTAT
NCI
16,951,239
44
BIRC5
PRASTERONE
NCI
16,461,558
45
BIRC5
ARSENIC TRIOXIDE
NCI
15,587,394; 16,950,207
46
BIRC5
ERLOTINIB
NCI
17,047,074
47
BIRC5
INDOMETHACIN
NCI
17,270,149
48
BIRC5
IMATINIB
NCI
16,254,145
49
BIRC5
ROMIDEPSIN
NCI
14,767,553
50
BIRC5
EPIRUBICIN
NCI
16,608,080
51
BIRC5
PLICAMYCIN
NCI
17,124,180
52
BIRC5
OMACETAXINE MEPESUCCINATE
NCI
15,854,289
53
BIRC5
MYCOPHENOLIC ACID
NCI
15,571,295
54
BIRC5
DEXAMETHASONE
NCI
16,787,583
55
BIRC5
FLUOROURACIL
NCI
15,067,352
56
BIRC5
DACTINOMYCIN
NCI
15,883,285
57
BIRC5
CALCITONIN
NCI
16,222,118
58
BIRC5
CARBOPLATIN
NCI
15,347,474
59
BIRC5
EPOETIN ALFA
NCI
17,112,829
60
BIRC5
TRETINOIN
NCI
11,939,262; 14,587,026; 16,403,261
61
BIRC5
METHOTREXATE
NCI
15,670,151
62
BIRC5
SULINDAC
NCI
16,707,021; 16,950,207
These data were obtained from the DGIdb database

Discussion

Although great progress on surgical and medical therapy has been made for OC, the overall mortality of OC remains the fifth cause of death among malignant gynecologic tumors. The causes of death from OC are mainly attributed to a lack of detection methods at an early stage, a high tendency for metastasis, and chemotherapy resistance [12, 13]. Therefore, exploring reliable biomarkers and precise molecular mechanisms for the early diagnosis, treatment, and prognosis of OC is urgent and necessary. In recent years, with the rapid development of bioinformatics, an increasing amount of microarray and sequencing data have provided a convenient and comprehensive platform to explore general genetic alterations, identify DEGs, and elucidate molecular mechanisms for the diagnosis, therapy, and prognosis of tumors [14].
In this study, four GEO datasets, namely, GSE54388, GSE69428, GSE36668, and GSE40595, were selected to screen DEGs. Applying the GEO2R tool and FunRich software, the intersection of 171 DEGs was identified, including 114 upregulated DEGs and 57 downregulated DEGs. Then, GO and KEGG pathway analyses of the DEGs were performed by DAVID. The KEGG pathway results showed that the upregulated DEGs were mainly associated with metabolic pathways, the biosynthesis of antibiotics, the biosynthesis of amino acids, the cell cycle, and HTLV-I infection, whereas the downregulated DEGs were not enriched. These results also provided significant clues to studying molecular interactions in the progression of OC. Indeed, many studies have indicated that metabolic pathways and the cell cycle are highly associated with the tumorigenesis and progression of OC [1517]. For example, autophagy is well known to affect various processes, such as survival under harsh metabolic conditions, and the actual level of autophagy in OC cells could also be affected by cancer-associated fibroblasts [15]. Previously, many studies have reported that antibiotics, such as minocycline, salinomycin, monensin, and pegylated liposomal doxorubicin, could be effective in treating OC [1821]. Furthermore, Plewa S et al. once quantitated 42 serum-free amino acids and distinguished amino acid metabolic pathways related to OC growth and development [22]. However, the association between HTLV-I and OC remains unclear. In this study, the upregulated DEGs were mainly involved in biological functions such as cell division, the nucleus, and protein binding. The downregulated DEGs were mainly enriched in biological functions such as the negative regulation of transcription from the RNA polymerase II promoter, the protein complex, the apicolateral plasma membrane, and glycosaminoglycan binding.
Furthermore, a PPI network with 168 nodes and 450 edges was constructed based on the DEGs, and 10 hub genes with the highest degrees of connectivity in the PPI network were identified. Subsequently, survival analysis of these hub genes demonstrated that 8 upregulated hub genes (CCNB2, TYMS, KIF11, KIF4A, BIRC5, BUB1B, FOXM1, and CDC20) were significantly associated with a poorer PFS in OC patients at an early stage (stages 1 and 2). Then, the GEPIA2 database was used to further verify the expression levels of these hub genes in tumor and normal tissues, and the results were in accordance with those from the GEO database. The expression levels of hub genes in different stage OC patients were also conducted. Considering the significant variations in the expression levels of KIF4A and TYMS in early and advanced stage OC patients (Fig. 7), we hypothesized that this result may explain why KIF4A and TYMS were related to poorer PFS in early stage (stages 1 and 2) OC and SOC patients (Fig. 4g, k, Additional file 9: Figure S5G, & K), whereas the 2 hub genes described above were associated with better PFS in advanced stage (stages 3 and 4) OC and SOC patients (Additional file 12: Figure S8 and Additional file 13: Figure S9). Thus, we further hypothesized whether KIF4A and TYMS might be considered as the tumor marker in the diagnosis of early OC. It is well known that tumor invasion and metastasis are always accompanied by complicated molecular regulatory mechanisms. In this study, the expression levels of all hub genes were dysregulated in OC tissues compared with normal tissues, meaning that these genes may be crucial to tumorigenesis and progression in OC. Although many studies have studied these hub genes connected with the diagnosis, treatment, and prognosis of various carcinomas, the molecular mechanisms underlying the tumorigenesis and progression of OC have not been fully understood.
First, kinesin family member 4A (KIF4A) is a microtubule-based motor protein that has been reported to be associated with various cancers, such as oral squamous cell carcinoma, cervical cancer, breast cancer, prostate cancer, colorectal cancer, and lung cancer [2328]. However, there have been no studies conducted on KIF4A in regard to OC. In this study, the downregulated expression of KIF4A was correlated with poorer PFS in OC patients, especially in SOC patients at an early stage (Fig. 4g, Additional file 6: Figure S4G). We also found 11 potential miRNAs (hsa-miR-183-5p, hsa-miR-223-3p, hsa-miR-136-5p, hsa-miR-150-5p, hsa-miR-376c-3p, hsa-miR-375, hsa-miR-335-5p, hsa-miR-494-3p, hsa-miR-411-5p, hsa-miR-421, and hsa-miR-543) that KIF4A might target (Fig. 8).
The overexpression of many cyclins has been reported in many tumors [29]; cyclin B2 (CCNB2) is located on the Golgi apparatus during the whole cell cycle and may cause a compromised G2/M transition in Hec1-depleted mouse oocytes [30, 31]. However, the association between CCNB2 and OC is not clearly understood. Cell division cycle 20 (CDC20) is an activator of the ligase anaphase-promoting complex/C (APC/C) that has been identified as a key candidate gene in OC patients based on many bioinformatics studies [32, 33]. High expression levels of CDC20 have been reported to be correlated with poor prognosis in a variety of cancers [3436]. However, its specific molecular mechanisms underlying OC have not been fully explained. In this study, the survival analysis of CDC20 in OC patients at an early stage suggested that higher CDC20 expression could be related to poorer prognosis (Fig. 4e).
Thymidylate synthase (TYMS) is crucial for DNA synthesis in both normal and tumor cells. Biason P et al. calculated six TYMS polymorphisms related to OS in epithelial OC (EOC) through a multivariate analysis and found that the TYMS 1494ins/del, 1053C > T and IVS6-68C > T polymorphisms might be considered prognostic markers for OS in EOC patients [37]. Additionally, Kelemen LE et al. also reported that re495139 in the TYMS-ENOSF1 region was associated with the risk of OC by evaluating large samples of assembled cases [38, 39]. KIF11, a member of the kinesin-like protein family, was once identified as a hub gene in OC by Zhanzhan Xu et al. [8], and they also found that KIF11 was potentially targeted by hsa-miR-424 and hsa-miR-381. A recent study explored whether death receptor 6 can promote OC cell migration by interacting with KIF11 and TNF receptor-associated factor 4 [40]. In this study, KIF11 was also considered a chemotherapy target for OC using cBioPortal (Fig. 5a). Ribonucleotide reductase M2 (RRM2) is the regulatory subunit of ribonucleotide reductase and is not only involved in the tumorigenesis and progression of a variety of carcinomas (such as colon, breast, and pancreatic cancer) [4143] but also leads to resistance to cancer chemotherapy [44]. Katherine M Aird et al. found that the knockdown of RRM2 expression could inhibit the growth of human EOC cells by triggering cellular senescence [45], which suggests that RRM2 might be a novel prosenescence therapeutic strategy to improve the OS of EOC patients. Our drug-hub gene interaction result was consistent with that of Katherine M Aird et al. Type 2 topoisomerase alpha (TOP2A) is a gene close to the HER2 gene that encodes a nuclear enzyme that is crucial in the cell cycle. Mano et al. first explored TOP2A amplifications in EOC [46], whereas in our study, we found that the type of alteration for TOP2A in SOC mainly included truncating mutations, missense mutations, and deep deletions (Fig. 5b). Mitotic checkpoint serine/threonine kinase B (BUB1B), the mammalian homolog of yeast Mad 3, is susceptible to cancer and causes chromosome loss and apoptotic cell death in human cancer cells [47, 48]. Many studies have reported that BUB1B is highly associated with advanced stages, serous histology and high grades in EOC, and a weakened spindle checkpoint with the downregulated expression of BUB1B is also related to acquired paclitaxel resistance in OC cells [49, 50]. Forkhead box protein M1 (FOXM1), a transcription factor with a “winged helix” DNA-binding domain, plays a significant role in tumor progression through cell proliferation, tumor invasion, migration, and angiogenesis [51, 52]. Yu Wang et al. reported that FOXM1 promotes the reprogramming of glucose metabolism in EOC by activating GLUT1 and HK2 transcription [53]. Finally, baculoviral inhibitor of apoptosis repeat-containing 5 (BIRC5) is an inhibitor of apoptosis that is always absent in normal tissues and is associated with various cancers, such as breast cancer and OC [54, 55]. Epithelial to mesenchymal transition (EMT) is a biological process that is associated with tumor metastasis and chemoresistance in ovarian tumors [56]. Zhao G et al. reported that higher expression of BIRC5 always promoted EMT in ovarian cancer cells [57]. In this study, both the cBioPortal and DGIdb databases considered BIRC5 to be a target of chemotherapy drugs used to treat OC (Fig. 5a, Table 3).
Furthermore, 10 genes were identified as the hub genes, and their expression levels in OC patients of different stages were all verified according to both the GEO and GEPIA2 databases. A list of 62 drugs with potential therapeutic efficacy against OC were selected (Table 3). For the 10 hub genes, the potential gene targets of these drugs were TYMS and BIRC5. However, the mechanisms of most of these drugs were unknown. The effects of the screened drugs were verified for many other types of cancers such as lung cancer, liver cancer, and colon cancer. Only a few of the TYMS- and BIRC5-targeting drugs have been used for OC treatment, such as fluorouracil/oxaliplatin (5-fluorouracil can induce the upregulation of human TYMS expression through TYMS mRNA transcription) [58], paclitaxel (the inhibition of BIRC5 expression can activate cell responses to paclitaxel treatment) [57], and carboplatin [59]. Additional studies and clinical trials are needed to identify and explore the drugs that are effective for OC treatment in future. Nevertheless, this study used multiple available databases to provide novel insights into the OC pathogenesis and treatment, and the identified conventional drugs might find potential new uses.
Therefore, considering the crucial roles of these 10 hub genes on the basis of this study and other previous studies mentioned above, further studies may be focused on exploring their precise mechanisms in the tumorigenesis and prognosis of OC, especially studying KIF4A, CCNB2, and CDC20. There were still several limitations in this study. One is that the microarray data and other analyses were obtained from many public databases, not generated by authors. The other is that only the TCGA and GEPIA2 databases were used to verify the expression levels of the hub genes, and experiments were not performed by the authors. Furthermore, due to a lack of experimental studies and verifications, we could not further explore how hub gene-miRNAs networks have effects on the diagnosis and therapy of ovarian cancer in depth. Despite these limitations, this study may provide more accurate results based on integrated bioinformatic analysis compared to the single dataset studies.

Conclusions

In summary, a total of 171 DEGs, including 114 upregulated DEGs and 57 downregulated DEGs in OC, were screened through integrated bioinformatic analysis, and 10 hub genes, namely, KIF4A, CDC20, CCNB2, TOP2A, RRM2, TYMS, KIF11, BIRC5, BUB1B, and FOXM1, may play crucial roles in the tumorigenesis and prognosis of OC. Among these hub genes, one gene, KIF4A, has not been previously reported to be related to OC, which indicates that KIF4A might be a potential biomarker for OC diagnosis and prognosis at an early stage. Additionally, the miRNA-hub gene network and potential targeted drugs related to these hub genes were constructed and selected, respectively, and may contribute to studying the mechanisms of OC. In-depth molecular mechanisms of the novel hub genes in OC are needed in future, and relevant experimental models can be constructed on the basis of these genes for the early detection, prognostic judgment, risk assessment, and targeted therapy of OC.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s13048-020-0613-2.

Acknowledgments

We thank the GEO, TCGA, DAVID, KEGG, STRING, GEPIA2, STITCH, Kaplan-Meier plotter, and DGIdb databases for providing their platforms and the contributors for their valuable data sets.
Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
2.
Zurück zum Zitat Torre LA, Islami F, Siegel RL, Ward EM, Jemal A. Global cancer in women: burden and trends. Cancer Epidemiol Biomark Prev. 2017;26(4):444–57.CrossRef Torre LA, Islami F, Siegel RL, Ward EM, Jemal A. Global cancer in women: burden and trends. Cancer Epidemiol Biomark Prev. 2017;26(4):444–57.CrossRef
3.
Zurück zum Zitat Maringe C, Walters S, Butler J, Coleman MP, Hacker N, Hanna L, Mosgaard BJ, Nordin A, Rosen B, Engholm G, et al. Stage at diagnosis and ovarian cancer survival: evidence from the international cancer benchmarking partnership. Gynecol Oncol. 2012;127(1):75–82.PubMedCrossRef Maringe C, Walters S, Butler J, Coleman MP, Hacker N, Hanna L, Mosgaard BJ, Nordin A, Rosen B, Engholm G, et al. Stage at diagnosis and ovarian cancer survival: evidence from the international cancer benchmarking partnership. Gynecol Oncol. 2012;127(1):75–82.PubMedCrossRef
4.
Zurück zum Zitat Allemani C, Weir HK, Carreira H, Harewood R, Spika D, Wang X-S, Bannon F, Ahn JV, Johnson CJ, Bonaventure A, et al. Global surveillance of cancer survival 1995–2009: analysis of individual data for 25 676 887 patients from 279 population-based registries in 67 countries (CONCORD-2). Lancet. 2015;385(9972):977–1010.PubMedCrossRef Allemani C, Weir HK, Carreira H, Harewood R, Spika D, Wang X-S, Bannon F, Ahn JV, Johnson CJ, Bonaventure A, et al. Global surveillance of cancer survival 1995–2009: analysis of individual data for 25 676 887 patients from 279 population-based registries in 67 countries (CONCORD-2). Lancet. 2015;385(9972):977–1010.PubMedCrossRef
5.
Zurück zum Zitat Jayson GC, Kohn EC, Kitchener HC, Ledermann JA. Ovarian cancer. Lancet. 2014;384(9951):1376–88.PubMedCrossRef Jayson GC, Kohn EC, Kitchener HC, Ledermann JA. Ovarian cancer. Lancet. 2014;384(9951):1376–88.PubMedCrossRef
6.
7.
Zurück zum Zitat Feng H, Gu ZY, Li Q, Liu QH, Yang XY, Zhang JJ. Identification of significant genes with poor prognosis in ovarian cancer via bioinformatical analysis. J Ovarian Res. 2019;12(1):35.PubMedPubMedCentralCrossRef Feng H, Gu ZY, Li Q, Liu QH, Yang XY, Zhang JJ. Identification of significant genes with poor prognosis in ovarian cancer via bioinformatical analysis. J Ovarian Res. 2019;12(1):35.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Xu Z, Zhou Y, Cao Y, Dinh TL, Wan J, Zhao M. Identification of candidate biomarkers and analysis of prognostic values in ovarian cancer by integrated bioinformatics analysis. Med Oncol. 2016;33(11):130.PubMedCrossRef Xu Z, Zhou Y, Cao Y, Dinh TL, Wan J, Zhao M. Identification of candidate biomarkers and analysis of prognostic values in ovarian cancer by integrated bioinformatics analysis. Med Oncol. 2016;33(11):130.PubMedCrossRef
9.
Zurück zum Zitat Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, et al. NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res. 2013;41(Database issue):D991–5.PubMed Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, et al. NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res. 2013;41(Database issue):D991–5.PubMed
10.
Zurück zum Zitat Metsalu T, Vilo J. ClustVis: a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Res. 2015;43(W1):W566–70.PubMedPubMedCentralCrossRef Metsalu T, Vilo J. ClustVis: a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Res. 2015;43(W1):W566–70.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Yang W, Zhao X, Han Y, Duan L, Lu X, Wang X, et al. Identification of hub genes and therapeutic drugs in esophageal squamous cell carcinoma based on integrated bioinformatics strategy. Cancer Cell Int. 2019;19:142.PubMedPubMedCentralCrossRef Yang W, Zhao X, Han Y, Duan L, Lu X, Wang X, et al. Identification of hub genes and therapeutic drugs in esophageal squamous cell carcinoma based on integrated bioinformatics strategy. Cancer Cell Int. 2019;19:142.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Zheng MJ, Li X, Hu YX, Dong H, Gou R, Nie X, Liu Q, Ying-Ying H, Liu JJ, Lin B. Identification of molecular marker associated with ovarian cancer prognosis using bioinformatics analysis and experiments. J Cell Physiol. 2019;234(7):11023–36.PubMedCrossRef Zheng MJ, Li X, Hu YX, Dong H, Gou R, Nie X, Liu Q, Ying-Ying H, Liu JJ, Lin B. Identification of molecular marker associated with ovarian cancer prognosis using bioinformatics analysis and experiments. J Cell Physiol. 2019;234(7):11023–36.PubMedCrossRef
13.
Zurück zum Zitat Wan J, Shi F, Xu Z, Zhao M. Knockdown of eIF4E suppresses cell proliferation, invasion and enhances cisplatin cytotoxicity in human ovarian cancer cells. Int J Oncol. 2015;47(6):2217–25.PubMedCrossRef Wan J, Shi F, Xu Z, Zhao M. Knockdown of eIF4E suppresses cell proliferation, invasion and enhances cisplatin cytotoxicity in human ovarian cancer cells. Int J Oncol. 2015;47(6):2217–25.PubMedCrossRef
14.
15.
Zurück zum Zitat Thuwajit C, Ferraresi A, Titone R, Thuwajit P, Isidoro C. The metabolic cross-talk between epithelial cancer cells and stromal fibroblasts in ovarian cancer progression: autophagy plays a role. Med Res Rev. 2018;38(4):1235–54.PubMedCrossRef Thuwajit C, Ferraresi A, Titone R, Thuwajit P, Isidoro C. The metabolic cross-talk between epithelial cancer cells and stromal fibroblasts in ovarian cancer progression: autophagy plays a role. Med Res Rev. 2018;38(4):1235–54.PubMedCrossRef
16.
Zurück zum Zitat Craig ER, Londono AI, Norian LA, Arend RC. Metabolic risk factors and mechanisms of disease in epithelial ovarian cancer: a review. Gynecol Oncol. 2016;143(3):674–83.PubMedPubMedCentralCrossRef Craig ER, Londono AI, Norian LA, Arend RC. Metabolic risk factors and mechanisms of disease in epithelial ovarian cancer: a review. Gynecol Oncol. 2016;143(3):674–83.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Xia B, Yang S, Liu T, Lou G. miR-211 suppresses epithelial ovarian cancer proliferation and cell-cycle progression by targeting Cyclin D1 and CDK6. Mol Cancer. 2015;14:57.PubMedPubMedCentralCrossRef Xia B, Yang S, Liu T, Lou G. miR-211 suppresses epithelial ovarian cancer proliferation and cell-cycle progression by targeting Cyclin D1 and CDK6. Mol Cancer. 2015;14:57.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Pourgholami MH, Mekkawy AH, Badar S, Morris DL. Minocycline inhibits growth of epithelial ovarian cancer. Gynecol Oncol. 2012;125(2):433–40.PubMedCrossRef Pourgholami MH, Mekkawy AH, Badar S, Morris DL. Minocycline inhibits growth of epithelial ovarian cancer. Gynecol Oncol. 2012;125(2):433–40.PubMedCrossRef
19.
Zurück zum Zitat Zhang XF, Gurunathan S. Combination of salinomycin and silver nanoparticles enhances apoptosis and autophagy in human ovarian cancer cells: an effective anticancer therapy. Int J Nanomedicine. 2016;11:3655–75.PubMedPubMedCentralCrossRef Zhang XF, Gurunathan S. Combination of salinomycin and silver nanoparticles enhances apoptosis and autophagy in human ovarian cancer cells: an effective anticancer therapy. Int J Nanomedicine. 2016;11:3655–75.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Deng Y, Zhang J, Wang Z, Yan Z, Qiao M, Ye J, Wei Q, Wang J, Wang X, Zhao L, et al. Antibiotic monensin synergizes with EGFR inhibitors and oxaliplatin to suppress the proliferation of human ovarian cancer cells. Sci Rep. 2015;5:17523.PubMedPubMedCentralCrossRef Deng Y, Zhang J, Wang Z, Yan Z, Qiao M, Ye J, Wei Q, Wang J, Wang X, Zhao L, et al. Antibiotic monensin synergizes with EGFR inhibitors and oxaliplatin to suppress the proliferation of human ovarian cancer cells. Sci Rep. 2015;5:17523.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Gabizon AA, Patil Y, La-Beck NM. New insights and evolving role of pegylated liposomal doxorubicin in cancer therapy. Drug Resist Updat. 2016;29:90–106.PubMedCrossRef Gabizon AA, Patil Y, La-Beck NM. New insights and evolving role of pegylated liposomal doxorubicin in cancer therapy. Drug Resist Updat. 2016;29:90–106.PubMedCrossRef
22.
Zurück zum Zitat Plewa S, Horala A, Derezinski P, Klupczynska A, Nowak-Markwitz E, Matysiak J, Kokot ZJ. Usefulness of amino acid profiling in ovarian cancer screening with special emphasis on their role in cancerogenesis. Int J Mol Sci. 2017;18(12):2727.PubMedCentralCrossRef Plewa S, Horala A, Derezinski P, Klupczynska A, Nowak-Markwitz E, Matysiak J, Kokot ZJ. Usefulness of amino acid profiling in ovarian cancer screening with special emphasis on their role in cancerogenesis. Int J Mol Sci. 2017;18(12):2727.PubMedCentralCrossRef
23.
Zurück zum Zitat Zhang Y, Liu S, Qu D, Wang K, Zhang L, Jing X, Li C, Wei F, Qu X. Kif4A mediate the accumulation and reeducation of THP-1 derived macrophages via regulation of CCL2-CCR2 expression in crosstalking with OSCC. Sci Rep. 2017;7(1):2226.PubMedPubMedCentralCrossRef Zhang Y, Liu S, Qu D, Wang K, Zhang L, Jing X, Li C, Wei F, Qu X. Kif4A mediate the accumulation and reeducation of THP-1 derived macrophages via regulation of CCL2-CCR2 expression in crosstalking with OSCC. Sci Rep. 2017;7(1):2226.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Wu DM, Shi J, Liu T, Deng SH, Han R, Xu Y. Integrated analysis reveals down-regulation of SPARCL1 is correlated with cervical cancer development and progression. Cancer Biomark. 2018;21(2):355–65.PubMedCrossRef Wu DM, Shi J, Liu T, Deng SH, Han R, Xu Y. Integrated analysis reveals down-regulation of SPARCL1 is correlated with cervical cancer development and progression. Cancer Biomark. 2018;21(2):355–65.PubMedCrossRef
25.
Zurück zum Zitat Wang H, Lu C, Li Q, Xie J, Chen T, Tan Y, Wu C, Jiang J. The role of Kif4A in doxorubicin-induced apoptosis in breast cancer cells. Mol Cells. 2014;37(11):812–8.PubMedPubMedCentralCrossRef Wang H, Lu C, Li Q, Xie J, Chen T, Tan Y, Wu C, Jiang J. The role of Kif4A in doxorubicin-induced apoptosis in breast cancer cells. Mol Cells. 2014;37(11):812–8.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Gao H, Chen X, Cai Q, Shang Z, Niu Y. Increased KIF4A expression is a potential prognostic factor in prostate cancer. Oncol Lett. 2018;15(5):7941–7.PubMedPubMedCentral Gao H, Chen X, Cai Q, Shang Z, Niu Y. Increased KIF4A expression is a potential prognostic factor in prostate cancer. Oncol Lett. 2018;15(5):7941–7.PubMedPubMedCentral
27.
Zurück zum Zitat Hou PF, Jiang T, Chen F, Shi PC, Li HQ, Bai J, Song J. KIF4A facilitates cell proliferation via induction of p21-mediated cell cycle progression and promotes metastasis in colorectal cancer. Cell Death Dis. 2018;9(5):477.PubMedPubMedCentralCrossRef Hou PF, Jiang T, Chen F, Shi PC, Li HQ, Bai J, Song J. KIF4A facilitates cell proliferation via induction of p21-mediated cell cycle progression and promotes metastasis in colorectal cancer. Cell Death Dis. 2018;9(5):477.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Taniwaki M, Takano A, Ishikawa N, Yasui W, Inai K, Nishimura H, Tsuchiya E, Kohno N, Nakamura Y, Daigo Y. Activation of KIF4A as a prognostic biomarker and therapeutic target for lung cancer. Clin Cancer Res. 2007;13(22 Pt 1):6624–31.PubMedCrossRef Taniwaki M, Takano A, Ishikawa N, Yasui W, Inai K, Nishimura H, Tsuchiya E, Kohno N, Nakamura Y, Daigo Y. Activation of KIF4A as a prognostic biomarker and therapeutic target for lung cancer. Clin Cancer Res. 2007;13(22 Pt 1):6624–31.PubMedCrossRef
29.
Zurück zum Zitat Wang A, Yoshimi N, Ino N, et al. Overexpression of cyclin B1 in human colorectal cancers. J Cancer Res Clin Oncol. 1997;123(2):124–7.PubMedCrossRef Wang A, Yoshimi N, Ino N, et al. Overexpression of cyclin B1 in human colorectal cancers. J Cancer Res Clin Oncol. 1997;123(2):124–7.PubMedCrossRef
30.
Zurück zum Zitat Brandeis M, Rosewell I, Carrington M, et al. Cyclin B2-null mice develop normally and are fertile whereas cyclin B1-null mice die in utero. Proc Natl Acad Sci U S A. 1998;95(8):4344–9.PubMedPubMedCentralCrossRef Brandeis M, Rosewell I, Carrington M, et al. Cyclin B2-null mice develop normally and are fertile whereas cyclin B1-null mice die in utero. Proc Natl Acad Sci U S A. 1998;95(8):4344–9.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Gui L, Homer H. Hec1-dependent cyclin B2 stabilization regulates the G2-M transition and early prometaphase in mouse oocytes. Dev Cell. 2013;25(1):43–54.PubMedPubMedCentralCrossRef Gui L, Homer H. Hec1-dependent cyclin B2 stabilization regulates the G2-M transition and early prometaphase in mouse oocytes. Dev Cell. 2013;25(1):43–54.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Sun Y, Xiaoyan H, Yun L, Chaoqun L, Jialing W, Liu Y, Yingqi Z, Peipei Y, Junjun P, Yuanming L. Identification of key candidate genes and pathways for relationship between ovarian cancer and diabetes mellitus using bioinformatical analysis. Asian Pac J Cancer Prev. 2019;20(1):145–55.PubMedPubMedCentralCrossRef Sun Y, Xiaoyan H, Yun L, Chaoqun L, Jialing W, Liu Y, Yingqi Z, Peipei Y, Junjun P, Yuanming L. Identification of key candidate genes and pathways for relationship between ovarian cancer and diabetes mellitus using bioinformatical analysis. Asian Pac J Cancer Prev. 2019;20(1):145–55.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Sun Q, Zhao H, Zhang C, et al. Gene co-expression network reveals shared modules predictive of stage and grade in serous ovarian cancers. Oncotarget. 2017;8(26):42983–96.PubMedPubMedCentralCrossRef Sun Q, Zhao H, Zhang C, et al. Gene co-expression network reveals shared modules predictive of stage and grade in serous ovarian cancers. Oncotarget. 2017;8(26):42983–96.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Kim Y, Choi JW, Lee JH, Kim YS. MAD2 and CDC20 are upregulated in high-grade squamous intraepithelial lesions and squamous cell carcinomas of the uterine cervix. Int J Gynecol Pathol. 2014;33(5):517–23.PubMedCrossRef Kim Y, Choi JW, Lee JH, Kim YS. MAD2 and CDC20 are upregulated in high-grade squamous intraepithelial lesions and squamous cell carcinomas of the uterine cervix. Int J Gynecol Pathol. 2014;33(5):517–23.PubMedCrossRef
35.
Zurück zum Zitat Moura IM, Delgado ML, Silva PM, Lopes CA, do Amaral JB, Monteiro LS, Bousbaa H. High CDC20 expression is associated with poor prognosis in oral squamous cell carcinoma. J Oral Pathol Med. 2014;43(3):225–31.PubMedCrossRef Moura IM, Delgado ML, Silva PM, Lopes CA, do Amaral JB, Monteiro LS, Bousbaa H. High CDC20 expression is associated with poor prognosis in oral squamous cell carcinoma. J Oral Pathol Med. 2014;43(3):225–31.PubMedCrossRef
36.
37.
Zurück zum Zitat Biason P, Visentin M, Talamini R, et al. Polymorphic thymidylate synthase gene impacts on overall survival of patients with epithelial ovarian cancer after platinum-based chemotherapy. Pharmacogenomics. 2012;13(14):1609–19.PubMedCrossRef Biason P, Visentin M, Talamini R, et al. Polymorphic thymidylate synthase gene impacts on overall survival of patients with epithelial ovarian cancer after platinum-based chemotherapy. Pharmacogenomics. 2012;13(14):1609–19.PubMedCrossRef
38.
Zurück zum Zitat Kelemen LE, Goodman MT, McGuire V, Rossing MA, Webb PM, Australian Cancer Study G, Kobel M, Anton-Culver H, Beesley J, Berchuck A, et al. Genetic variation in TYMS in the one-carbon transfer pathway is associated with ovarian carcinoma types in the Ovarian Cancer Association Consortium. Cancer Epidemiol Biomark Prev. 2010;19(7):1822–30.CrossRef Kelemen LE, Goodman MT, McGuire V, Rossing MA, Webb PM, Australian Cancer Study G, Kobel M, Anton-Culver H, Beesley J, Berchuck A, et al. Genetic variation in TYMS in the one-carbon transfer pathway is associated with ovarian carcinoma types in the Ovarian Cancer Association Consortium. Cancer Epidemiol Biomark Prev. 2010;19(7):1822–30.CrossRef
39.
Zurück zum Zitat Kelemen LE, Earp M, Fridley BL, Chenevix-Trench G, Australian Ovarian Cancer Study G, Fasching PA, Beckmann MW, Ekici AB, Hein A, Lambrechts D, et al. rs495139 in the TYMS-ENOSF1 region and risk of ovarian carcinoma of mucinous histology. Int J Mol Sci. 2018;19(9):2473.PubMedCentralCrossRef Kelemen LE, Earp M, Fridley BL, Chenevix-Trench G, Australian Ovarian Cancer Study G, Fasching PA, Beckmann MW, Ekici AB, Hein A, Lambrechts D, et al. rs495139 in the TYMS-ENOSF1 region and risk of ovarian carcinoma of mucinous histology. Int J Mol Sci. 2018;19(9):2473.PubMedCentralCrossRef
40.
41.
Zurück zum Zitat Liu X, Zhang H, Lai L, Wang X, Loera S, Xue L, He H, Zhang K, Hu S, Huang Y, et al. Ribonucleotide reductase small subunit M2 serves as a prognostic biomarker and predicts poor survival of colorectal cancers. Clin Sci (Lond). 2013;124(9):567–78.CrossRef Liu X, Zhang H, Lai L, Wang X, Loera S, Xue L, He H, Zhang K, Hu S, Huang Y, et al. Ribonucleotide reductase small subunit M2 serves as a prognostic biomarker and predicts poor survival of colorectal cancers. Clin Sci (Lond). 2013;124(9):567–78.CrossRef
42.
Zurück zum Zitat Jones DT, Lechertier T, Mitter R, Herbert JM, Bicknell R, Jones JL, Li JL, Buffa F, Harris AL, Hodivala-Dilke K. Gene expression analysis in human breast cancer associated blood vessels. PLoS One. 2012;7(10):e44294.PubMedPubMedCentralCrossRef Jones DT, Lechertier T, Mitter R, Herbert JM, Bicknell R, Jones JL, Li JL, Buffa F, Harris AL, Hodivala-Dilke K. Gene expression analysis in human breast cancer associated blood vessels. PLoS One. 2012;7(10):e44294.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Fujita H, Ohuchida K, Mizumoto K, Itaba S, Ito T, Nakata K, Yu J, Kayashima T, Souzaki R, Tajiri T, et al. Gene expression levels as predictive markers of outcome in pancreatic cancer after gemcitabine-based adjuvant chemotherapy. Neoplasia. 2010;12(10):807–17.PubMedPubMedCentralCrossRef Fujita H, Ohuchida K, Mizumoto K, Itaba S, Ito T, Nakata K, Yu J, Kayashima T, Souzaki R, Tajiri T, et al. Gene expression levels as predictive markers of outcome in pancreatic cancer after gemcitabine-based adjuvant chemotherapy. Neoplasia. 2010;12(10):807–17.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Lin ZP, Belcourt MF, Cory JG, Sartorelli AC. Stable suppression of the R2 subunit of ribonucleotide reductase by R2-targeted short interference RNA sensitizes p53(−/−) HCT-116 colon cancer cells to DNA-damaging agents and ribonucleotide reductase inhibitors. J Biol Chem. 2004;279(26):27030–8.PubMedCrossRef Lin ZP, Belcourt MF, Cory JG, Sartorelli AC. Stable suppression of the R2 subunit of ribonucleotide reductase by R2-targeted short interference RNA sensitizes p53(−/−) HCT-116 colon cancer cells to DNA-damaging agents and ribonucleotide reductase inhibitors. J Biol Chem. 2004;279(26):27030–8.PubMedCrossRef
45.
Zurück zum Zitat Aird KM, Li H, Xin F, Konstantinopoulos PA, Zhang R. Identification of ribonucleotide reductase M2 as a potential target for pro-senescence therapy in epithelial ovarian cancer. Cell Cycle. 2014;13(2):199–207.PubMedCrossRef Aird KM, Li H, Xin F, Konstantinopoulos PA, Zhang R. Identification of ribonucleotide reductase M2 as a potential target for pro-senescence therapy in epithelial ovarian cancer. Cell Cycle. 2014;13(2):199–207.PubMedCrossRef
46.
Zurück zum Zitat Mano MS, Awada A, Di Leo A, Durbecq V, Paesmans M, Cardoso F, Larsimont D, Piccart M. Rates of topoisomerase II-alpha and HER-2 gene amplification and expression in epithelial ovarian carcinoma. Gynecol Oncol. 2004;92(3):887–95.PubMedCrossRef Mano MS, Awada A, Di Leo A, Durbecq V, Paesmans M, Cardoso F, Larsimont D, Piccart M. Rates of topoisomerase II-alpha and HER-2 gene amplification and expression in epithelial ovarian carcinoma. Gynecol Oncol. 2004;92(3):887–95.PubMedCrossRef
47.
Zurück zum Zitat Kops GJ, Foltz DR, Cleveland DW, et al. Lethality to human cancer cells through massive chromosome loss by inhibition of the mitotic checkpoint. Proc Natl Acad Sci U S A. 2004;101(23):8699–704.PubMedPubMedCentralCrossRef Kops GJ, Foltz DR, Cleveland DW, et al. Lethality to human cancer cells through massive chromosome loss by inhibition of the mitotic checkpoint. Proc Natl Acad Sci U S A. 2004;101(23):8699–704.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Wang Q, Liu T, Fang Y, Xie S, Huang X, Mahmood R, Ramaswamy G, Sakamoto KM, Darzynkiewicz Z, Xu M, et al. BUBR1 deficiency results in abnormal megakaryopoiesis. Blood. 2004;103(4):1278–85.PubMedCrossRef Wang Q, Liu T, Fang Y, Xie S, Huang X, Mahmood R, Ramaswamy G, Sakamoto KM, Darzynkiewicz Z, Xu M, et al. BUBR1 deficiency results in abnormal megakaryopoiesis. Blood. 2004;103(4):1278–85.PubMedCrossRef
49.
Zurück zum Zitat Lee YK, Choi E, Kim MA, Park PG, Park NH, Lee H. BubR1 as a prognostic marker for recurrence-free survival rates in epithelial ovarian cancers. Br J Cancer. 2009;101(3):504–10.PubMedPubMedCentralCrossRef Lee YK, Choi E, Kim MA, Park PG, Park NH, Lee H. BubR1 as a prognostic marker for recurrence-free survival rates in epithelial ovarian cancers. Br J Cancer. 2009;101(3):504–10.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Fu Y, Ye D, Chen H, Lu W, Ye F, Xie X. Weakened spindle checkpoint with reduced BubR1 expression in paclitaxel-resistant ovarian carcinoma cell line SKOV3-TR30. Gynecol Oncol. 2007;105(1):66–73.PubMedCrossRef Fu Y, Ye D, Chen H, Lu W, Ye F, Xie X. Weakened spindle checkpoint with reduced BubR1 expression in paclitaxel-resistant ovarian carcinoma cell line SKOV3-TR30. Gynecol Oncol. 2007;105(1):66–73.PubMedCrossRef
51.
Zurück zum Zitat Koo CY, Muir KW, Lam EW. FOXM1: from cancer initiation to progression and treatment. Biochim Biophys Acta. 2012;1819(1):28–37.PubMedCrossRef Koo CY, Muir KW, Lam EW. FOXM1: from cancer initiation to progression and treatment. Biochim Biophys Acta. 2012;1819(1):28–37.PubMedCrossRef
52.
Zurück zum Zitat Wierstra I. FOXM1 (Forkhead box M1) in tumorigenesis: overexpression in human cancer, implication in tumorigenesis, oncogenic functions, tumor-suppressive properties, and target of anticancer therapy. Adv Cancer Res. 2013;119:191–419.PubMedCrossRef Wierstra I. FOXM1 (Forkhead box M1) in tumorigenesis: overexpression in human cancer, implication in tumorigenesis, oncogenic functions, tumor-suppressive properties, and target of anticancer therapy. Adv Cancer Res. 2013;119:191–419.PubMedCrossRef
53.
Zurück zum Zitat Wang Y, Yun Y, Wu B, et al. FOXM1 promotes reprogramming of glucose metabolism in epithelial ovarian cancer cells via activation of GLUT1 and HK2 transcription. Oncotarget. 2016;7(30):47985–97.PubMedPubMedCentralCrossRef Wang Y, Yun Y, Wu B, et al. FOXM1 promotes reprogramming of glucose metabolism in epithelial ovarian cancer cells via activation of GLUT1 and HK2 transcription. Oncotarget. 2016;7(30):47985–97.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Ghaffari K, Hashemi M, Ebrahimi E, et al. BIRC5 genomic copy number variation in early-onset breast cancer. Iran Biomed J. 2016;20(4):241–5.PubMedPubMedCentral Ghaffari K, Hashemi M, Ebrahimi E, et al. BIRC5 genomic copy number variation in early-onset breast cancer. Iran Biomed J. 2016;20(4):241–5.PubMedPubMedCentral
55.
Zurück zum Zitat Wang B, Li X, Zhao G, Yan H, Dong P, Watari H, Sims M, Li W, Pfeffer LM, Guo Y, et al. miR-203 inhibits ovarian tumor metastasis by targeting BIRC5 and attenuating the TGFbeta pathway. J Exp Clin Cancer Res. 2018;37(1):235.PubMedPubMedCentralCrossRef Wang B, Li X, Zhao G, Yan H, Dong P, Watari H, Sims M, Li W, Pfeffer LM, Guo Y, et al. miR-203 inhibits ovarian tumor metastasis by targeting BIRC5 and attenuating the TGFbeta pathway. J Exp Clin Cancer Res. 2018;37(1):235.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Vergara D, Merlot B, Lucot JP, Collinet P, Vinatier D, Fournier I, Salzet M. Epithelial-mesenchymal transition in ovarian cancer. Cancer Lett. 2010;291(1):59–66.PubMedCrossRef Vergara D, Merlot B, Lucot JP, Collinet P, Vinatier D, Fournier I, Salzet M. Epithelial-mesenchymal transition in ovarian cancer. Cancer Lett. 2010;291(1):59–66.PubMedCrossRef
57.
Zurück zum Zitat Zhao GWQ, Gu Q, Qiang W, Wei JJ, Dong P, Watari H, Li W, Yue J. Lentiviral CRISPR/Cas9 nickase vector mediated BIRC5 editing inhibits epithelial to mesenchymal transition in ovarian cancer cells. Oncotarget. 2017;8(55):94666–80.PubMedPubMedCentralCrossRef Zhao GWQ, Gu Q, Qiang W, Wei JJ, Dong P, Watari H, Li W, Yue J. Lentiviral CRISPR/Cas9 nickase vector mediated BIRC5 editing inhibits epithelial to mesenchymal transition in ovarian cancer cells. Oncotarget. 2017;8(55):94666–80.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Ligabue A, Marverti G, Liebl U, Myllykallio H. Transcriptional activation and cell cycle block are the keys for 5-fluorouracil induced up-regulation of human thymidylate synthase expression. PLoS One. 2012;7(10):e47318.PubMedPubMedCentralCrossRef Ligabue A, Marverti G, Liebl U, Myllykallio H. Transcriptional activation and cell cycle block are the keys for 5-fluorouracil induced up-regulation of human thymidylate synthase expression. PLoS One. 2012;7(10):e47318.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Dziegielewska B, Casarez EV, Yang WZ, Gray LS, Dziegielewski J, Slack-Davis JK. T-type Ca2+ channel inhibition sensitizes ovarian cancer to carboplatin. Mol Cancer Ther. 2016;15(3):460–70.PubMedPubMedCentralCrossRef Dziegielewska B, Casarez EV, Yang WZ, Gray LS, Dziegielewski J, Slack-Davis JK. T-type Ca2+ channel inhibition sensitizes ovarian cancer to carboplatin. Mol Cancer Ther. 2016;15(3):460–70.PubMedPubMedCentralCrossRef
Metadaten
Titel
Integrated bioinformatics analysis for the screening of hub genes and therapeutic drugs in ovarian cancer
verfasst von
Dan Yang
Yang He
Bo Wu
Yan Deng
Nan Wang
Menglin Li
Yang Liu
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
Journal of Ovarian Research / Ausgabe 1/2020
Elektronische ISSN: 1757-2215
DOI
https://doi.org/10.1186/s13048-020-0613-2

Weitere Artikel der Ausgabe 1/2020

Journal of Ovarian Research 1/2020 Zur Ausgabe

Mammakarzinom: Brustdichte beeinflusst rezidivfreies Überleben

26.05.2024 Mammakarzinom Nachrichten

Frauen, die zum Zeitpunkt der Brustkrebsdiagnose eine hohe mammografische Brustdichte aufweisen, haben ein erhöhtes Risiko für ein baldiges Rezidiv, legen neue Daten nahe.

Mehr Lebenszeit mit Abemaciclib bei fortgeschrittenem Brustkrebs?

24.05.2024 Mammakarzinom Nachrichten

In der MONARCHE-3-Studie lebten Frauen mit fortgeschrittenem Hormonrezeptor-positivem, HER2-negativem Brustkrebs länger, wenn sie zusätzlich zu einem nicht steroidalen Aromatasehemmer mit Abemaciclib behandelt wurden; allerdings verfehlte der numerische Zugewinn die statistische Signifikanz.

Blutdrucksenkung könnte Uterusmyome verhindern

Frauen mit unbehandelter oder neu auftretender Hypertonie haben ein deutlich erhöhtes Risiko für Uterusmyome. Eine Therapie mit Antihypertensiva geht hingegen mit einer verringerten Inzidenz der gutartigen Tumoren einher.

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Update Gynäkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.