Skip to main content
Erschienen in: Journal of Translational Medicine 1/2013

Open Access 01.12.2013 | Research

CDC20 overexpression predicts a poor prognosis for patients with colorectal cancer

verfasst von: Wen-jing Wu, Kai-shun Hu, De-shen Wang, Zhao-lei Zeng, Dong-sheng Zhang, Dong-liang Chen, Long Bai, Rui-hua Xu

Erschienen in: Journal of Translational Medicine | Ausgabe 1/2013

Abstract

Background

The cell division cycle 20 homolog (CDC20) is an essential cofactor of the anaphase-promoting complex (APC/C). CDC20 overexpression has been detected in many types of human cancers; however, its clinical role in colorectal cancer remains unknown.

Methods

Western blotting and immunohistochemistry were used to compare CDC20 expression in adjacent non-cancerous, cancerous and liver metastatic tissues as well as in colon cancer cell lines and normal colon epithelial cell lines. Additionally, the correlation of CDC20 expression with patient clinical parameters and its diagnostic value were statistically analyzed.

Results

CDC20 was overexpressed in colon cancer cell lines/primary cancer tissues compared with normal colon epithelial cell lines/adjacent noncancerous tissue samples. Interestingly, CDC20 expression was further increased in metastatic liver tissues. CDC20 protein expression was significantly correlated with clinical stage (P = 0.008), N classification (P = 0.020), M classification (P = 0.013) and pathologic differentiation (P = 0.008). Patients with higher CDC20 expression had a shorter overall survival than those with lower CDC20 expression. Univariate and multivariate analyses indicated that CDC20 expression was an independent prognostic factor (P < 0.001).

Conclusion

CDC20 may serve as a potential prognostic biomarker of human colorectal cancer.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1479-5876-11-142) contains supplementary material, which is available to authorized users.
Wen-jing Wu, Kai-shun Hu contributed equally to this work.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

WWJ conceived the study, performed the IHC and drafted the manuscript. HKS performed the WB and participated in the IHC. CDL, WDS, ZDS and BL participated in the clinical data collection. ZZL and WDS performed the statistical analysis. XRH conceived the study, participated in its design and gave final approval of the version to be published. All authors read and approved the final manuscript.
Abkürzungen
AJCC
American joint committee on cancer
CRC
Colorectal cancer
DAB
Diaminobenzidine tetrahydrochloride
IHC
Immunohistochemistry
ANT
Non-tumorous tissues
OS
Overall survival
APC/C
Anaphase-promoting complex/cyclosome
CDC20
Cell division cycle 20 homolog
MSI
Microsatellite instability
CIN
Chromosomal instability
CIMP
CpG island methylation phenotype
SAC
Spindle assembly checkpoint.

Background

Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and, in recent years, has been the second leading cause of cancer-related death in China[1]. Surgical resection remains the primary course of action to cure CRC in patients with early clinical stages; however, even at the same stage, the recurrence and survival rates vary among patients. To date, few genomic markers, such as microsatellite instability and loss of heterozygosity at chromosome 18q, are useful for determining the prognosis of CRC. In this case, improving the molecular markers available to distinguish an unfavorable prognosis is of great importance because this group of patients may benefit from more efficient therapy.
The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase that can ubiquitinate certain substrates for sequential degradation through the ubiquitin proteasome pathway[2]. Recent studies have indicated that the APC/C participates in the regulation of mitosis through ubiquitinating key regulators that have distinct functions during mitosis including survivin, securin and cyclins[3, 4].
The cell division cycle 20 homolog (CDC20) is a major cofactor for the APC/C through interaction with specific elements of its substrates such as the KEN-box, A-box or D-Box[5, 6]. In mammalian cells, CDC20 is required for APC/C activation at metaphase and participates in mitotic exit[7]. Recently, the spindle assembly checkpoint (SAC) was found to be a monitor of the bipolar segregation of duplicated chromosomes during the metaphase to anaphase transition[2]. SAC dysfunction during mitosis leads to chromosomal instability and, thus, the generation of aneuploid cells, which are considered to be cancer cells[8]. To date, 7 components of the SAC, which are MAD1, MAD2, MAD3, BUB1, BUBR1, BUB3 and CDC20, have been identified. When an error occurs during sister chromatid segregation, the mitotic checkpoint complex (MCC) is activated, and CDC20 is sequestered by Mad2 and BubR1/Bub3, which arrests the cell cycle[8]. An abnormal level or dysfunction of CDC20 may therefore abolish mitotic arrest and thus promote premature anaphase by deregulating APC activation, resulting in aneuploidy in the daughter cells[9]. Interestingly, CDC20 was recently found to be overexpressed in many types of human cancers, including human non-small cell lung cancer, pancreatic cancer, glioma and oral cancer[1013].
However, the clinical role and function of CDC20 in CRC development remain poorly understood. In this current study, we investigated CDC20 expression in CRC and evaluated its prognostic significance by correlating CDC20 protein expression with the clinicopathologic features and survival of patients in 244 archived CRC samples.

Methods

Cell culture

The human colon epithelial cell line, NCM460, was obtained from Sun Yat-sen University Cancer Center; two other human colon epithelial cell lines, CCD841-coN and CCD112-coN, were purchased from ATCC. Human colon cancer cell lines DLD1, HT29, HCT116, Lovo, SW620 and THC8307 were obtained from Sun Yat-sen University Cancer Center. NCM460, CCD841-coN and CCD112-coN cells were cultured in MEM medium supplemented with 10% fetal bovine serum (FBS). DLD1, HT29, HCT116, Lovo and THC8307 cells were cultured in RPMI 1640 medium supplemented with 10% FBS. SW620 cells were cultured in Leibovitz’s L-15 medium supplemented with 10% FBS. All cells were grown in 10-centimeter cell culture dishes (NEST Biotechnology, Wuxi, China) in 5% CO2 in a humidified atmosphere at 37°C.

Tumor specimens

A total of 244 paraffin-embedded archived samples were used for immunohistochemistry, including 126 samples with adjacent non-tumorous (ANT) tissues and 20 samples with liver metastasis. All patients underwent their initial surgery between 2001 and 2009 at Sun Yat-sen University Cancer Center after providing informed consent. None of these patients received preoperative therapy. Informed consent from patients and approval from the Institute Research Ethics Committee were obtained before the use of the clinical materials. Clinical and pathologic classification and staging were determined according to the American Joint Committee on Cancer (AJCC) TNM staging system. Table 1 shows the clinical information related to the 244 CRC samples. Overall survival (OS) was defined as the interval between the date of surgery and the date of death or last known follow up.
Table 1
Clinicopathological characteristics and CDC20 expression of 244 patient samples of colorectal cancer
 
Number of cases (%)
Gender
 
Male
158 (64.8)
Female
86 (35.2)
Age (years)
 
≤ 50
85 (34.8)
> 50
159 (65.2)
Location
 
colon
113 (46.3)
rectal
131 (53.7)
Clinical stage
 
I
42 (17.2)
II
53 (21.7)
III
72 (29.5)
IV
77 (31.6)
T classification
 
T1
16 (6.6)
T2
40 (16.4)
T3
104 (42.6)
T4
84 (34.4)
N classification
 
N0
107 (43.9)
N1
75 (30.7)
N2
62 (25.4)
M classification
 
M0
167 (68.4)
M1
77 (31.6)
Pathologic differentiation
 
Poor
55 (22.5)
Moderate
168 (68.9)
Well
21 (8.6)
Vital status (at follow-up)
 
Alive
142 (58.2)
Death (All colorectal cancer-related)
102 (41.8)
Expression of CDC20
 
Low expression
130 (53.3)
High expression
114 (46.7)

Western blotting

CDC20 expression was compared between colon cancer cells and colon normal epithelial cells by Western blotting analysis, as described previously[14]. CDC20 protein expression was determined with anti-rabbit immunoglobulin G (1:2000; Bethyl) according to the manufacturer's suggested protocols. A rabbit anti-α-tubulin monoclonal antibody (1:20,000; Abcam) was used as the loading control.

Immunohistochemistry (IHC)

Altered CDC20 protein expression was also studied in 244 human colorectal cancer tissues by immunohistochemistry, as described previously[15]. Briefly, the tissue sections were deparaffinized, rehydrated, endogenous-peroxide-blocked and antigen-retrieved sequentially and were then incubated with a rabbit anti-CDC20 antibody (1:150; Bethyl) overnight at 4°C. Then, the tissue sections were washed with PBS and treated with anti-rabbit secondary antibody for 20 minutes, followed by further incubation with the streptavidin horseradish peroxidase complex. The sections were developed with diaminobenzidine tetrahydrochloride (DAB) and further counterstained with hematoxylin. The degree of immunostaining was evaluated by two independent observers who were blind to the clinical data of the patients. The percent of positive cells was scored as ≤ 10% = 0, >10% to ≤ 25% = 1, >25% to ≤ 50% = 2, >50% to ≤ 75% = 3 or >75% = 4. The intensity of nuclear staining was scored as negative = 0, weak = 1, moderate = 2, or strong = 3. The two scores were then multiplied to calculate the final score. CDC20 expression was considered low if the final score was equal to or less than four; otherwise, CDC20 expression was considered high.

Statistical analysis

All statistical analyses were carried out using the SPSS 16.0 statistical software package (SPSS Inc., Chicago, IL). CDC20 expression was compared between tumor tissues and matched ANT tissues or matched liver metastatic tissues using the Wilcoxon signed rank test. The relationship between CDC20 expression and clinicopathologic characteristics was analyzed by Pearson’s chi-squared test. Survival curves were plotted by the Kaplan-Meier method and compared using the log-rank test. Survival data were evaluated using univariate and multivariate Cox regression analyses. A P-value of less than 0.05 was considered statistically significant.

Results

Elevated CDC20 expression in colorectal cancer and metastatic liver tissues

As shown in Figure 1, CDC20 expression was evaluated in colorectal cancer cell lines and tissues to investigate the role of CDC20 in tumorigenesis. Western blotting analysis revealed elevated CDC20 expression in colon cancer cell lines (DLD1, HT29, HCT116, Lovo, SW620 and THC8307) compared with normal colon epithelial cell lines (NCM460, CCD841-coN and CCD112-coN) (Figure 1A, upper row) (Figure 1A, lower row). CDC20 overexpression was further evaluated by IHC in 244 paraffin-embedded colon cancer tissues. As shown in Figure 1B, CDC20 was primarily localized in the cancer cell nucleus. Interestingly, a comparison of CDC20 expression in tumor tissues and ANT tissues in the paired 126 cases showed significant CDC20 overexpression in cancer cells (Figure 1B, right panel, P < 0.001, Wilcoxon signed rank test); the representative slides are shown in Figure 1B, left panel. Moreover, CDC20 expression was further increased in the matched metastatic liver tissues compared to the primary cancer tissues, and representative slides are shown in Figure 1C, left panel. The primary colorectal cancer tissues were compared to their respective metastatic liver tissues, and the increase was significant (Figure 1C, right panel, P < 0.001, Wilcoxon signed rank test). These results together suggested CDC20 overexpression in colorectal cancer.

Correlation between CDC20 expression and clinicopathologic features of colorectal cancer

We further analyzed the link between CDC20 expression and the clinical characteristics of colorectal cancer in 244 paraffin-embedded, archival primary colorectal cancer tissues by IHC. The samples included 42 cases of clinical stage I (17.2%), 53 cases of clinical stage II (21.7%), 72 cases of clinical stage III (29.5%) and 77 cases of clinical stage IV (31.6%) colorectal cancer. As shown in Table 1, 114 of the total 244 CRC cases (46.7%) demonstrated high CDC20 expression, whereas 130 cases (53.3%) had low CDC20 expression.
As shown in Table 2, a statistical analysis revealed a strong correlation between CDC20 expression and the clinicopathologic characteristics including clinical stage (P = 0.008), N classification (P = 0.020), M classification (P = 0.013), pathologic differentiation (P = 0.008) and vital status (P < 0.001). Representative IHC stained slides are presented to demonstrate the correlation between CDC20 expression and clinical stage (Figure 2A) and pathologic differentiation (Figure 2B), respectively.
Table 2
Correlation between CDC20 expression and the clinicopathological characteristics of colorectal cancer patients
Characteristics
CDC20
Chi-square
  
Low or none
High
 
  
No. cases (%)
No. cases (%)
testP-value
Gender
Female
39 (30.0)
47 (41.2)
0.067
Male
91 (70.0)
67 (58.8)
Age (years)
≤ 50
43 (33.1)
42 (36.8)
0.538
> 50
87 (66.9)
72 (63.2)
Location
colon
61 (46.9)
52 (45.6)
0.838
 
rectal
69 (53.1)
62 (54.4)
 
Clinical Stage
I
26 (20.0)
16 (14.0)
0.008
 
II
37 (28.5)
16 (14.0)
 
 
III
35 (26.9)
37 (32.5)
 
 
IV
32 (24.6)
45 (39.5)
 
T classification
T1+T2
29 (22.3)
27 (23.7)
0.799
 
T3+T4
101 (77.7)
87 (76.3)
 
N classification
No
66 (50.8)
41 (36.0)
0.020
 
Yes
64 (49.2)
73 (64.0)
M classification
M0
98 (75.4)
69 (60.5)
0.013
M1
32 (24.6)
45 (39.5)
Pathologic Differentiation
Poor
21 (16.2)
34 (29.8)
0.008
Moderate
93 (71.5)
75 (65.8)
Well
16 (12.3)
5 (4.4)
Vital status
(as followed up)
Alive
91 (70.0)
51 (44.7)
<0.001
 
Dead
39 (30.0)
63 (55.3)
 

Association between CDC20 expression and patient survival

A Kaplan-Meier analysis and the log-rank test were carried out to evaluate the effects of CDC20 expression and clinicopathological characteristics on patient survival. Interestingly, CDC20 expression in colorectal cancer showed a negative correlation with patient survival time (P < 0.001). High CDC20 expression indicated a shorter overall survival (OS) (median OS: 44 months) compared to lower CDC20 expression (median OS: not reached) (Figure 3A, P < 0.001). The overall two-, three- and five-year cumulative survival rates of patients with high CDC20 expression were 61.4%, 45.8% and 27.2%, respectively. For patients with low CDC20 expression, the rates were 81.5%, 72.3% and 53.8%, respectively (Figure 3A). Furthermore, CDC20 expression was significantly correlated with OS in the advanced clinical stages (stage III and IV) (Figure 3C-3D, P = 0.026 (C); P < 0.001(D)). However, no significant correlation between OS and CDC20 expression was found in the early clinical stages (stages I and II) (Figure 3B, P = 0.826). Moreover, multivariate analysis indicated that N classification, M classification, pathologic differentiation and CDC20 expression were independent prognostic factors for colorectal cancer (Table 3).
Table 3
Univariate and multivariate analyses of various prognostic parameters in patients with colorectal cancer using Cox-regression analysis
Variables
Univariate analysis
Multivariate analysis
 
No.
P value
Hazard ratio
95% CI
P value
CDC20
     
Low expression
130
<0.001
2.945
1.944-4.461
<0.001
High expression
114
    
T classification
     
T1
16
0.014
1.058
0.813-1.376
0.676
T2
40
    
T3
104
    
T4
84
    
N classification
     
N0
107
<0.001
2.036
1.536-2.699
<0.001
N1
75
    
N2
62
    
M classification
     
M0
167
<0.001
5.733
3.641-9.028
<0.001
M1
77
    
Differentiation
     
Poor
55
0.078
0.673
0.476-0.953
0.026
Moderate
168
    
Well
21
    

Discussion

More than one million new cases of CRC occur each year worldwide, and it has been the second leading disease-specific cause of mortality in China in recent years[1]. Genomic instability is considered a key hallmark of CRC. Briefly, there are three subtypes of genomic instability for CRC, including microsatellite instability (MSI), chromosomal instability (CIN) and CpG island methylation phenotype (CIMP)[16, 17]. Studies have revealed that CIN occurs in 80%–85% of CRC and that it is the most common subtype[18]. Later studies discovered that mutations in genes that regulate the mitotic spindle checkpoint were responsible for CIN[19]. The SAC is crucial for high-fidelity mitotic chromosome segregation to maintain genome integrity. When an error is detected during sister chromatid segregation, the mitotic metaphase-to-anaphase checkpoint will be activated, inducing cell arrest. CDC20, a crucial activator of the anaphase-promoting complex/cyclosome (APC/C), is then inhibited by Mad2 and BubR1/Bub3, which prevents premature anaphase. Despite the altered CDC20 expression found in different types of cancer[1013], the tumorigenic role of CDC20 in CRC remains unclear.
In the current study, we demonstrated for the first time that CDC20 was overexpressed in colon cancer cells compared with normal colon epithelial cells (Figure 1A). Although there was relatively high CDC20 expression in normal colon epithelial CCD841-coN cells, most likely due to individual differences, the IHC analysis confirmed the elevated expression of CDC20 protein in the 126 CRC tissues compared with matched, adjacent non-tumor tissues (Figure 1B, P < 0.001, Wilcoxon signed rank test, n =126). Interestingly, CDC20 expression was further increased in metastatic liver tissues (Figure 1C, P < 0.001, Wilcoxon signed rank test, n = 20). Higher CDC20 expression significantly correlated with advanced tumor stage, poor pathologic differentiation and unfavorable prognosis in locally advanced and advanced clinical stages (Figure 3 and Table 2). Moreover, the multivariate analysis suggested that CDC20 was a potential independent prognostic factor for survival in CRC patients (Table 3, P < 0.001). However, no significant correlation was observed between CDC20 expression and overall survival in stage I~II CRC, most likely due to the good prognosis in the early stages of CRC and the limited number of cases.
Recent studies have suggested that CDC20 might be a potential target for cancer therapy. Cancer cells that do not undergo apoptosis after mitotic arrest are resistant to anti-mitotic drugs[20, 21]. Premature exit from mitotic arrest is considered a mechanism for escaping apoptosis[22]. Hsiao-Chun Huang et al. demonstrated that blocking mitotic exit downstream by CDC20 knockdown was a better strategy for killing apoptosis-resistant, slippage-prone or SAC-defective cancer cells[23]. Another study also found that treatment of cancer cells with siRNA against CDC20 successfully induced G2/M arrest and suppressed cell growth[24]. In our present study, we found that clinical stage IV CRC and higher CDC20 expression were significantly associated with shorter survival time (Figure 3D, P < 0.001), implying a potential poor response to oxaliplatin- or irinotecan-based chemotherapy.
To date, the mechanisms involved in the regulation of CDC20 are poorly understood. One potential mechanism is transcriptional downregulation of CDC20 by tumor suppressor gene p53[24]. Moreover, a recent study found that CDC20 could be deacetylated by SIRT2, a member of the sirtuins family[25]. Further studies are required to investigate how CDC20 is regulated in cancer cells.

Conclusions

In the present study, we found that CDC20 was overexpressed in CRC and was important for CRC tumorigenesis. CDC20 expression was highly associated with clinical stage, N classification, M classification and pathologic differentiation. Patients with higher CDC20 expression had a shorter predicted overall survival time, and CDC20 was an independent prognostic factor. These findings may have broad implications in the clinical treatment of CRC.

Acknowledgements

These works were funded by National Natural Science Foundation of China (No. 30672408 to Xu RH).
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

WWJ conceived the study, performed the IHC and drafted the manuscript. HKS performed the WB and participated in the IHC. CDL, WDS, ZDS and BL participated in the clinical data collection. ZZL and WDS performed the statistical analysis. XRH conceived the study, participated in its design and gave final approval of the version to be published. All authors read and approved the final manuscript.
Anhänge

Authors’ original submitted files for images

Literatur
1.
Zurück zum Zitat Siegel R, Ward E, Brawley O, Jemal A: Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin. 2011, 61 (4): 212-236. 10.3322/caac.20121.CrossRefPubMed Siegel R, Ward E, Brawley O, Jemal A: Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin. 2011, 61 (4): 212-236. 10.3322/caac.20121.CrossRefPubMed
2.
Zurück zum Zitat Peters JM: The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat Rev Mol Cell Biol. 2006, 7 (9): 644-656. 10.1038/nrm1988.CrossRefPubMed Peters JM: The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat Rev Mol Cell Biol. 2006, 7 (9): 644-656. 10.1038/nrm1988.CrossRefPubMed
3.
Zurück zum Zitat Kraft C, Vodermaier HC, Maurer-Stroh S, Eisenhaber F, Peters JM: The WD40 propeller domain of Cdh1 functions as a destruction box receptor for APC/C substrates. Mol Cell. 2005, 18 (5): 543-553. 10.1016/j.molcel.2005.04.023.CrossRefPubMed Kraft C, Vodermaier HC, Maurer-Stroh S, Eisenhaber F, Peters JM: The WD40 propeller domain of Cdh1 functions as a destruction box receptor for APC/C substrates. Mol Cell. 2005, 18 (5): 543-553. 10.1016/j.molcel.2005.04.023.CrossRefPubMed
5.
Zurück zum Zitat Yu H: Cdc20: a WD40 activator for a cell cycle degradation machine. Mol Cell. 2007, 27 (1): 3-16. 10.1016/j.molcel.2007.06.009.CrossRefPubMed Yu H: Cdc20: a WD40 activator for a cell cycle degradation machine. Mol Cell. 2007, 27 (1): 3-16. 10.1016/j.molcel.2007.06.009.CrossRefPubMed
6.
Zurück zum Zitat Thornton BR, Toczyski DP: Precise destruction: an emerging picture of the APC. Genes Dev. 2006, 20 (22): 3069-3078. 10.1101/gad.1478306.CrossRefPubMed Thornton BR, Toczyski DP: Precise destruction: an emerging picture of the APC. Genes Dev. 2006, 20 (22): 3069-3078. 10.1101/gad.1478306.CrossRefPubMed
7.
Zurück zum Zitat Pines J: Mitosis: a matter of getting rid of the right protein at the right time. Trends Cell Biol. 2006, 16 (1): 55-63. 10.1016/j.tcb.2005.11.006.CrossRefPubMed Pines J: Mitosis: a matter of getting rid of the right protein at the right time. Trends Cell Biol. 2006, 16 (1): 55-63. 10.1016/j.tcb.2005.11.006.CrossRefPubMed
8.
Zurück zum Zitat Hanahan D, Weinberg RA: The hallmarks of cancer. Cell. 2000, 100 (1): 57-70. 10.1016/S0092-8674(00)81683-9.CrossRefPubMed Hanahan D, Weinberg RA: The hallmarks of cancer. Cell. 2000, 100 (1): 57-70. 10.1016/S0092-8674(00)81683-9.CrossRefPubMed
9.
Zurück zum Zitat Rajagopalan H, Lengauer C: Aneuploidy and cancer. Nature. 2004, 432 (7015): 338-341. 10.1038/nature03099.CrossRefPubMed Rajagopalan H, Lengauer C: Aneuploidy and cancer. Nature. 2004, 432 (7015): 338-341. 10.1038/nature03099.CrossRefPubMed
10.
Zurück zum Zitat Chang DZ, Ma Y, Ji B, Liu Y, Hwu P, Abbruzzese JL, Logsdon C, Wang H: Increased CDC20 expression is associated with pancreatic ductal adenocarcinoma differentiation and progression. J Hematol Oncol. 2012, 5: 15-10.1186/1756-8722-5-15.PubMedCentralCrossRefPubMed Chang DZ, Ma Y, Ji B, Liu Y, Hwu P, Abbruzzese JL, Logsdon C, Wang H: Increased CDC20 expression is associated with pancreatic ductal adenocarcinoma differentiation and progression. J Hematol Oncol. 2012, 5: 15-10.1186/1756-8722-5-15.PubMedCentralCrossRefPubMed
11.
Zurück zum Zitat Kato T, Daigo Y, Aragaki M, Ishikawa K, Sato M, Kaji M: Overexpression of CDC20 predicts poor prognosis in primary non-small cell lung cancer patients. J Surg Oncol. 2012, 106 (4): 423-430. 10.1002/jso.23109.CrossRefPubMed Kato T, Daigo Y, Aragaki M, Ishikawa K, Sato M, Kaji M: Overexpression of CDC20 predicts poor prognosis in primary non-small cell lung cancer patients. J Surg Oncol. 2012, 106 (4): 423-430. 10.1002/jso.23109.CrossRefPubMed
12.
Zurück zum Zitat Bie L, Zhao G, Cheng P, Rondeau G, Porwollik S, Ju Y, Xia XQ, McClelland M: The accuracy of survival time prediction for patients with glioma is improved by measuring mitotic spindle checkpoint gene expression. PLoS One. 2011, 6 (10): e25631-10.1371/journal.pone.0025631.PubMedCentralCrossRefPubMed Bie L, Zhao G, Cheng P, Rondeau G, Porwollik S, Ju Y, Xia XQ, McClelland M: The accuracy of survival time prediction for patients with glioma is improved by measuring mitotic spindle checkpoint gene expression. PLoS One. 2011, 6 (10): e25631-10.1371/journal.pone.0025631.PubMedCentralCrossRefPubMed
13.
Zurück zum Zitat Mondal G, Sengupta S, Panda CK, Gollin SM, Saunders WS, Roychoudhury S: Overexpression of Cdc20 leads to impairment of the spindle assembly checkpoint and aneuploidization in oral cancer. Carcinogenesis. 2007, 28 (1): 81-92. 10.1093/carcin/bgl100.CrossRefPubMed Mondal G, Sengupta S, Panda CK, Gollin SM, Saunders WS, Roychoudhury S: Overexpression of Cdc20 leads to impairment of the spindle assembly checkpoint and aneuploidization in oral cancer. Carcinogenesis. 2007, 28 (1): 81-92. 10.1093/carcin/bgl100.CrossRefPubMed
14.
Zurück zum Zitat Zeng ZL, Wu WJ, Yang J, Tang ZJ, Chen DL, Qiu MZ, Luo HY, Wang ZQ, Jin Y, Wang DS: Prognostic relevance of melanoma antigen D1 expression in colorectal carcinoma. J Transl Med. 2012, 10: 181-10.1186/1479-5876-10-181.PubMedCentralCrossRefPubMed Zeng ZL, Wu WJ, Yang J, Tang ZJ, Chen DL, Qiu MZ, Luo HY, Wang ZQ, Jin Y, Wang DS: Prognostic relevance of melanoma antigen D1 expression in colorectal carcinoma. J Transl Med. 2012, 10: 181-10.1186/1479-5876-10-181.PubMedCentralCrossRefPubMed
15.
Zurück zum Zitat Teng KY, Qiu MZ, Li ZH, Luo HY, Zeng ZL, Luo RZ, Zhang HZ, Wang ZQ, Li YH, Xu RH: DNA polymerase eta protein expression predicts treatment response and survival of metastatic gastric adenocarcinoma patients treated with oxaliplatin-based chemotherapy. J Transl Med. 2010, 8: 126-10.1186/1479-5876-8-126.PubMedCentralCrossRefPubMed Teng KY, Qiu MZ, Li ZH, Luo HY, Zeng ZL, Luo RZ, Zhang HZ, Wang ZQ, Li YH, Xu RH: DNA polymerase eta protein expression predicts treatment response and survival of metastatic gastric adenocarcinoma patients treated with oxaliplatin-based chemotherapy. J Transl Med. 2010, 8: 126-10.1186/1479-5876-8-126.PubMedCentralCrossRefPubMed
16.
Zurück zum Zitat Lengauer C, Kinzler KW, Vogelstein B: Genetic instability in colorectal cancers. Nature. 1997, 386 (6625): 623-627. 10.1038/386623a0.CrossRefPubMed Lengauer C, Kinzler KW, Vogelstein B: Genetic instability in colorectal cancers. Nature. 1997, 386 (6625): 623-627. 10.1038/386623a0.CrossRefPubMed
17.
Zurück zum Zitat Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP: CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA. 1999, 96 (15): 8681-8686. 10.1073/pnas.96.15.8681.PubMedCentralCrossRefPubMed Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP: CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA. 1999, 96 (15): 8681-8686. 10.1073/pnas.96.15.8681.PubMedCentralCrossRefPubMed
18.
Zurück zum Zitat Grady WM, Carethers JM: Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology. 2008, 135 (4): 1079-1099. 10.1053/j.gastro.2008.07.076.PubMedCentralCrossRefPubMed Grady WM, Carethers JM: Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology. 2008, 135 (4): 1079-1099. 10.1053/j.gastro.2008.07.076.PubMedCentralCrossRefPubMed
19.
Zurück zum Zitat Pino MS, Chung DC: The chromosomal instability pathway in colon cancer. Gastroenterology. 2010, 138 (6): 2059-2072. 10.1053/j.gastro.2009.12.065.PubMedCentralCrossRefPubMed Pino MS, Chung DC: The chromosomal instability pathway in colon cancer. Gastroenterology. 2010, 138 (6): 2059-2072. 10.1053/j.gastro.2009.12.065.PubMedCentralCrossRefPubMed
20.
Zurück zum Zitat Shi J, Orth JD, Mitchison T: Cell type variation in responses to antimitotic drugs that target microtubules and kinesin-5. Cancer Res. 2008, 68 (9): 3269-3276. 10.1158/0008-5472.CAN-07-6699.CrossRefPubMed Shi J, Orth JD, Mitchison T: Cell type variation in responses to antimitotic drugs that target microtubules and kinesin-5. Cancer Res. 2008, 68 (9): 3269-3276. 10.1158/0008-5472.CAN-07-6699.CrossRefPubMed
21.
Zurück zum Zitat Symmans WF, Volm MD, Shapiro RL, Perkins AB, Kim AY, Demaria S, Yee HT, McMullen H, Oratz R, Klein P: Paclitaxel-induced apoptosis and mitotic arrest assessed by serial fine-needle aspiration: implications for early prediction of breast cancer response to neoadjuvant treatment. Clin Cancer Res. 2000, 6 (12): 4610-4617.PubMed Symmans WF, Volm MD, Shapiro RL, Perkins AB, Kim AY, Demaria S, Yee HT, McMullen H, Oratz R, Klein P: Paclitaxel-induced apoptosis and mitotic arrest assessed by serial fine-needle aspiration: implications for early prediction of breast cancer response to neoadjuvant treatment. Clin Cancer Res. 2000, 6 (12): 4610-4617.PubMed
22.
Zurück zum Zitat Gascoigne KE, Taylor SS: Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs. Cancer Cell. 2008, 14 (2): 111-122. 10.1016/j.ccr.2008.07.002.CrossRefPubMed Gascoigne KE, Taylor SS: Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs. Cancer Cell. 2008, 14 (2): 111-122. 10.1016/j.ccr.2008.07.002.CrossRefPubMed
23.
Zurück zum Zitat Huang HC, Shi J, Orth JD, Mitchison TJ: Evidence that mitotic exit is a better cancer therapeutic target than spindle assembly. Cancer Cell. 2009, 16 (4): 347-358. 10.1016/j.ccr.2009.08.020.PubMedCentralCrossRefPubMed Huang HC, Shi J, Orth JD, Mitchison TJ: Evidence that mitotic exit is a better cancer therapeutic target than spindle assembly. Cancer Cell. 2009, 16 (4): 347-358. 10.1016/j.ccr.2009.08.020.PubMedCentralCrossRefPubMed
24.
Zurück zum Zitat Kidokoro T, Tanikawa C, Furukawa Y, Katagiri T, Nakamura Y, Matsuda K: CDC20, a potential cancer therapeutic target, is negatively regulated by p53. Oncogene. 2008, 27 (11): 1562-1571. 10.1038/sj.onc.1210799.CrossRefPubMed Kidokoro T, Tanikawa C, Furukawa Y, Katagiri T, Nakamura Y, Matsuda K: CDC20, a potential cancer therapeutic target, is negatively regulated by p53. Oncogene. 2008, 27 (11): 1562-1571. 10.1038/sj.onc.1210799.CrossRefPubMed
25.
Zurück zum Zitat Kim HS, Vassilopoulos A, Wang RH, Lahusen T, Xiao Z, Xu X, Li C, Veenstra TD, Li B, Yu H: SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity. Cancer Cell. 2011, 20 (4): 487-499. 10.1016/j.ccr.2011.09.004.PubMedCentralCrossRefPubMed Kim HS, Vassilopoulos A, Wang RH, Lahusen T, Xiao Z, Xu X, Li C, Veenstra TD, Li B, Yu H: SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity. Cancer Cell. 2011, 20 (4): 487-499. 10.1016/j.ccr.2011.09.004.PubMedCentralCrossRefPubMed
Metadaten
Titel
CDC20 overexpression predicts a poor prognosis for patients with colorectal cancer
verfasst von
Wen-jing Wu
Kai-shun Hu
De-shen Wang
Zhao-lei Zeng
Dong-sheng Zhang
Dong-liang Chen
Long Bai
Rui-hua Xu
Publikationsdatum
01.12.2013
Verlag
BioMed Central
Erschienen in
Journal of Translational Medicine / Ausgabe 1/2013
Elektronische ISSN: 1479-5876
DOI
https://doi.org/10.1186/1479-5876-11-142

Weitere Artikel der Ausgabe 1/2013

Journal of Translational Medicine 1/2013 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.