Skip to main content
Erschienen in: Acta Neuropathologica Communications 1/2020

Open Access 01.12.2020 | Letter to the Editor

Deregulated expression of a longevity gene, Klotho, in the C9orf72 deletion mice with impaired synaptic plasticity and adult hippocampal neurogenesis

verfasst von: Wan Yun Ho, Sheeja Navakkode, Fujia Liu, Tuck Wah Soong, Shuo-Chien Ling

Erschienen in: Acta Neuropathologica Communications | Ausgabe 1/2020

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Hexanucleotide repeat expansion of C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Synergies between loss of C9ORF72 functions and gain of toxicities from the repeat expansions contribute to C9ORF72-mediated pathogenesis. However, how loss of C9orf72 impacts neuronal and synaptic functions remains undetermined. Here, we showed that long-term potentiation at the dentate granule cells and long-term depression at the Schaffer collateral/commissural synapses at the area CA1 were reduced in the hippocampus of C9orf72 knockout mice. Using unbiased transcriptomic analysis, we identified that Klotho, a longevity gene, was selectively dysregulated in an age-dependent manner. Specifically, Klotho protein expression in the hippocampus of C9orf72 knockout mice was incorrectly enriched in the dendritic regions of CA1 with concomitant reduction in granule cell layer of dentate gyrus at 3-month of age followed by an accelerating decline during aging. Furthermore, adult hippocampal neurogenesis was reduced in C9orf72 knockout mice. Taken together, our data suggest that C9ORF72 is required for synaptic plasticity and adult neurogenesis in the hippocampus and Klotho deregulations may be part of C9ORF72-mediated toxicity.
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1186/​s40478-020-01030-4) contains supplementary material, which is available to authorized users.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s40478-020-01030-4.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Hexanucleotide repeat expansion of C9ORF72 is the most frequent genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) [10, 33]. Although loss of C9orf72 does not cause neurodegeneration per se [5, 18, 21, 31], reduced C9orf72 expression exacerbates the gain of toxicities inflicted by the repeat expansion [36, 37, 43]. Specifically, loss of C9orf72 triggers systemic and neuronal inflammation [5, 18, 31], in part, through altering gut microbiota [6]. Molecularly, C9ORF72 acts as GDP/GTP exchange factors (GEFs) for several small RAB GTPases that are potentially involved in membrane trafficking [1, 35, 40, 41]. Furthermore, we and others have showed that C9ORF72 associates with ULK1-autophagy initiation complex to regulate autophagy [17, 19, 35, 3841] and C9ORF72 is required for neuronal and dendritic morphogenesis via ULK1-mediated autophagy [17]. In addition, increased C9ORF72 expression due to intermediate repeat expansion disrupts autophagy and is associated with corticobasal degeneration [7], suggesting that varying C9ORF72 levels may evoke different pathogenic pathways. However, how C9ORF72 may contribute to neuronal and synaptic dysfunction remains to be defined.
Accumulating evidence indicate that synaptic impairment is a common and early event in major neurodegenerative diseases [16, 27, 32]. To investigate whether C9orf72 knockout mice develop synaptic deficits, we measured the long-term potentiation (LTP) and long-term depression (LTD) in the CA1 and dentate gyrus (DG) of the hippocampus (see below). LTP and LTD, which measure the enduring changes in synaptic strength, has been used as the cellular models of synaptic plasticity for learning and memory [20, 30]. Furthermore, LTP and LTD dysfunctions typically correlate and may underlie the cognitive deficit often observed in a broad spectrum of neurological disorders [11, 27].
C9orf72 knockout (c9orf72/) mice, where exon 2–6 were replaced with a neomycin and lacZ cassette, were described previously (Additional file 1: Supplemental Figure 1a) [17, 18]. C9orf72 knockout mice showed premature lethality (Additional file 1: Supplemental Figure 1b). The shortened lifespan of C9orf72 knockout mice has been attributed to systemic inflammation [5, 18, 31]. Consistent with these previous reports, the C9orf72 knockout mice in our colony also have enlarged spleens (splenomegaly) (Additional file 1: Supplemental Figure 2). Thus, it is likely these mice die of auto-immune disease. Furthermore, the survival curve was similar to the Harvard group’s mice [5], but appeared to accelerate when compared with the UCSD group’s mice [18], potentially due to environmental factors [6]. Since the C9orf72 knockout mice began to die after 100 days of age, we focused our analysis on a 3-month timepoint, where C9orf72 knockout mice showed normal locomotor activities in the open field assay (Additional file 1: Supplemental Figure 1c).
To address synaptic dysfunctions that may be associated with loss of C9ORF72 functions, we first examined synaptic plasticity in corticohippocampal connections, where the inputs from entorhinal cortex project via the perforant path to the granule cells of dentate gyrus (DG) (Fig. 1a). We used a theta burst stimulation (TBS) protocol to induce LTP in DG by stimulating the medial perforant path as described previously [9]. After a stable baseline of 30 min in synaptic inputs S1, theta burst stimulation was applied to S1 which resulted in a stable late-LTP which lasted for the recorded time period of 3 h in wild type mice (Fig. 1b, Additional file 1: Supplemental Table 1–2). In contrast, the perforant path mediated-LTP at DG (thereafter abbreviated as DG-LTP) was reduced in C9orf72 knockout mice (p < 0.05, Fig. 1c, Additional file 1: Supplemental Table 1–2).
For assessing synaptic plasticity of the CA1 area, we used an established long-term potentiation (LTP) paradigm by stimulating Schaffer collateral fibers that send input to the CA1 dendritic regions. After recording a stable baseline, strong tetanus stimulation (STET) was given via the stimulating electrode S1, whereas the stimulating electrode S2 served as a control for the input specificity of LTP (Fig. 1d) [34]. Under this condition, LTP was induced and maintained for more than 3 h in both wild type and C9orf72 knockout mice at 3-month of age (Fig. 1e, f, Additional file 1: Supplemental Table 1–2). The control input S2 remained stable throughout the time of recording (Fig. 1e, f). The data indicates that LTP at the area CA1 (thereafter abbreviated as CA1-LTP) was normal in C9orf72 knockout mice at 3 months of age.
Next, we determined whether the induction and maintenance of long-term depression (LTD) is affected in the CA1 synapses. To do so, a strong low frequency stimulation (SLFS) was delivered to the S1 input in the CA1 of hippocampus, whereas S2 served as a control (Fig. 1g). A significant depression (thereafter abbreviated as CA1-LTD) was observed and remained stable throughout the time period of recording in the wild type mice (Fig. 1h, Additional file 1: Supplemental Table 1–2). In contrast, this CA1-LTD was abolished in the C9orf72 knockout mice (p < 0.01, Additional file 1: Supplemental Table 1–2), while the response to the control input S2 remained stable throughout the time period of recording (Fig. 1i). Collectively, these electrophysiological data suggest that there are deficits in the synaptic plasticity in DG and CA1 regions of hippocampus in the C9orf72 knockout mice, where DG-LTP and CA1-LTD, but not CA1-LTP, is reduced.
To investigate how loss of C9orf72 may be required for regulating synaptic plasticity, we performed transcriptomic analysis on the hippocampi isolated from C9orf72 knockout mice and their wild type littermate controls at 3 months of age using Affymetrix GeneChip mouse microarray that covers coding and noncoding RNAs (Fig. 2a). Using a 2-fold-change cut-off, there are 48 up-regulated genes and 12 down-regulated genes. 14 of 48 (29.1%) up- and 7 of 12 (58.3%) down-regulated genes belong to the noncoding RNAs (Fig. 2b). Gene ontology (GO) analysis of these differentially expressed genes (DEGs) revealed that they are enriched with secreted proteins and glycoproteins (Fig. 2c). The most down-regulated genes, including C9orf72 itself, Gm7120 and Zfp932, and the most up-regulated genes, including Htr2c, Kl, Enpp2, Clic6, Kcnj, and Ttr, were further validated using qRT-PCR (Additional file 1: Supplemental Figure 3).
Among these DEGs, Kl (encodes Klotho) is of particular interest. KLOTHO has been proposed to be a longevity gene, where whole body deletion of Klotho in mice causes accelerated aging and premature death [23] and systemic over-expressing Klotho enhances cognition and extend lifespan [12, 24]. Mouse Kl can be alternatively spliced to give rise to a membrane bound form (isoform 1, Kl-L) and secreted form (isoform 2, Kl-S) (Fig. 2d). Using primers that are specific to isoform 1 and isoform 2, we further confirmed that both Kl isoforms were increased to 6- (p < 0.05) and 3.5-fold (p < 0.05), respectively, in the hippocampi of C9orf72 knockout mice when compared with the wild type mice at 3 months of age (Fig. 2di). Intriguingly, the Klotho mRNA expressions of both isoforms became comparable at 6 months of age (Fig. 2dii) and reduced by 80% (isoform 1, p < 0.0001) and 60% (isoform 2, p < 0.0001) at 12 months of age (Fig. 2diii). The data suggest that KLOTHO levels are dysregulated in the C9orf72 knockout mice in an age-dependent manner.
To further investigate the Klotho expression pattern in the C9orf72 knockout mice, Klotho immunofluorescence was performed. The Klotho expression within the dendritic region of CA1 was increased (Fig. 2ei). In contrast, the Klotho expression within the granule cell layer of DG was reduced at 3 months of age (Fig. 2eii). Thus, although total Klotho expression was elevated in 3-month-old C9orf72 knockout mice, the pattern of Klotho expression was altered. Consistent with the qRT-PCR data, Klotho levels were comparable between WT and C9orf72 knockout mice at 6 months of age (Additional file 1: Supplemental Figure 4).
As (i) varying Klotho levels affect adult neurogenesis in the hippocampus [25], and (ii) Klotho expression within DG is reduced in the C9orf72 knockout mice, we hypothesized that adult hippocampal neurogenesis may be affected in the C9orf72 knockout mice. To test this, we determined the rate of adult neurogenesis by performing an EdU-pulse chase experiment (Fig. 2f). EdU, a thymidine analogue that is incorporated into DNA during replication, was used to label new born cells for two constitutive days and then chased for 12 days, until the new born progenitor cells had matured into neurons [15]. The degree of neurogenesis was quantified by co-labeling EdU-positive cells with doublecortin (DCX), an immature neuronal marker (Fig. 2f, g). The total numbers of EdU-positive cells were comparable between the control and the C9orf72 knockout mice (Fig. 2h). However, we observed a 30% of reduction (p < 0.05) of EdU/DCX-double positive cells in the DG region (Fig. 2i), indicating the adult hippocampal neurogenesis is reduced in the C9orf72 knockout mice.
In this study, we showed the loss of C9orf72 impairs DG-LTP and CA1-LTD as well as adult neurogenesis in the hippocampus. New born neurons provide additional plasticity to the brain and are involved in spatial memory, pattern separation and stress resilience [4, 14]. Furthermore, adult hippocampal neurogenesis appears to be reduced dramatically in patients with Alzheimer’s disease [29], highlighting the potential role of impaired adult neurogenesis in the pathogenesis of neurodegenerative diseases. Thus, our results suggest that defective synaptic functions and adult neurogenesis may contribute to C9ORF72-mediated pathogenesis. We further identified that a longevity gene, Klotho, is mis-regulated in the hippocampus of C9orf72 knockout mice. In particular, Klotho levels are reduced in the DG, where adult neurogenesis occurs, followed by an accelerated reduction in the hippocampus at 12 months of age. Klotho is a pleiotropic protein and involved in regulating the homeostasis of phosphate, calcium, and vitamin D [22]. Although the exact function of Klotho in the central nervous system (CNS) is not known, it has been shown to enhance N-methyl-D-aspartate receptor (NMDAR)-mediated synaptic activity [12] and oligodendrocyte maturation [8]. Furthermore, Klotho has been shown to regulate hippocampal synaptic plasticity [12, 26, 28]. Thus, it is conceivable that ablation of C9orf72 alters the Klotho expression and affects Klotho-mediated regulation on synaptic plasticity. Importantly, polymorphisms in the KLOTHO gene (known as KL-VS variant) have been identified to associate with a longer lifespan [2], better cognition in human [12], and is protective for the APOE4 carriers in Alzheimer’s disease [3, 13]. In the context of ALS, overexpressing Klotho was beneficial in protecting neuronal loss in a SOD1 mouse model [42]. In conclusion, our results highlight that (1) C9ORF72 is required for synaptic plasticity and adult neurogenesis in the hippocampus, and (2) the expression of longevity gene, Klotho, may be one of the downstream effectors of C9ORF72 and could have implications in ALS-FTD spectrum diseases.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s40478-020-01030-4.

Acknowledgements

We thank Dr. Edward Lee for comments on the earlier draft of the manuscript, Dr. Yi-Chun Yen and Dr. Peiyan Wong for their assistance on open field test, Dr. Ira Agrawal for the assistance on statistics. We thank all of the Ling laboratory members for support, discussion, and suggestions. This work was supported by grants to S.-C. Ling from the Swee Liew-Wadsworth Endowment fund, National University of Singapore (NUS), National Medical Research Council (NMRC/OFIRG/0001/2016 and NMRC/OFIRG/0042/2017) and Ministry of Education (MOE2016-T2-1-024), Singapore.

Competing interests

The authors declare that they have no conflict of interest.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Aoki Y, Manzano R, Lee Y, Dafinca R, Aoki M, Douglas AGL, Varela MA, Sathyaprakash C, Scaber J, Barbagallo P, Vader P, Mäger I, Ezzat K, Turner MR, Ito N, Gasco S, Ohbayashi N, El Andaloussi S, Takeda S, Fukuda M, Talbot K, Wood MJA (2017) C9orf72 and RAB7L1 regulate vesicle trafficking in amyotrophic lateral sclerosis and frontotemporal dementia. Brain 140:887–897. https://doi.org/10.1093/brain/awx024CrossRefPubMed Aoki Y, Manzano R, Lee Y, Dafinca R, Aoki M, Douglas AGL, Varela MA, Sathyaprakash C, Scaber J, Barbagallo P, Vader P, Mäger I, Ezzat K, Turner MR, Ito N, Gasco S, Ohbayashi N, El Andaloussi S, Takeda S, Fukuda M, Talbot K, Wood MJA (2017) C9orf72 and RAB7L1 regulate vesicle trafficking in amyotrophic lateral sclerosis and frontotemporal dementia. Brain 140:887–897. https://​doi.​org/​10.​1093/​brain/​awx024CrossRefPubMed
7.
Zurück zum Zitat Cali CP, Patino M, Tai YK, Ho WY, McLean CA, Morris CM, Seeley WW, Miller BL, Gaig C, Vonsattel JPG, White CL, Roeber S, Kretzschmar H, Troncoso JC, Troakes C, Gearing M, Ghetti B, Van Deerlin VM, Lee VM-Y, Trojanowski JQ, Mok KY, Ling H, Dickson DW, Schellenberg GD, Ling S-C, Lee EB (2019) C9orf72 intermediate repeats are associated with corticobasal degeneration, increased C9orf72 expression and disruption of autophagy. Acta Neuropathol 138:795–811. https://doi.org/10.1007/s00401-019-02045-5CrossRefPubMedPubMedCentral Cali CP, Patino M, Tai YK, Ho WY, McLean CA, Morris CM, Seeley WW, Miller BL, Gaig C, Vonsattel JPG, White CL, Roeber S, Kretzschmar H, Troncoso JC, Troakes C, Gearing M, Ghetti B, Van Deerlin VM, Lee VM-Y, Trojanowski JQ, Mok KY, Ling H, Dickson DW, Schellenberg GD, Ling S-C, Lee EB (2019) C9orf72 intermediate repeats are associated with corticobasal degeneration, increased C9orf72 expression and disruption of autophagy. Acta Neuropathol 138:795–811. https://​doi.​org/​10.​1007/​s00401-019-02045-5CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, Nicholson AM, Finch NA, Gilmer HF, Adamson J, Kouri N, Wojtas A, Sengdy P, Hsiung G-YR, Karydas A, Seeley WW, Josephs KA, Coppola G, Geschwind DH, Wszolek ZK, Feldman H, Knopman D, Petersen R, Miller BL, Dickson D, Boylan K, Graff-Radford N, Rademakers R (2011) Expanded GGGGCC hexanucleotide repeat in non-coding region of C9ORF72 causes chromosome 9p-linked frontotemporal dementia and amyotrophic lateral sclerosis. Neuron 72:245–256. https://doi.org/10.1016/j.neuron.2011.09.011CrossRefPubMedPubMedCentral DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, Nicholson AM, Finch NA, Gilmer HF, Adamson J, Kouri N, Wojtas A, Sengdy P, Hsiung G-YR, Karydas A, Seeley WW, Josephs KA, Coppola G, Geschwind DH, Wszolek ZK, Feldman H, Knopman D, Petersen R, Miller BL, Dickson D, Boylan K, Graff-Radford N, Rademakers R (2011) Expanded GGGGCC hexanucleotide repeat in non-coding region of C9ORF72 causes chromosome 9p-linked frontotemporal dementia and amyotrophic lateral sclerosis. Neuron 72:245–256. https://​doi.​org/​10.​1016/​j.​neuron.​2011.​09.​011CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Dong Z, Han H, Li H, Bai Y, Wang W, Tu M, Peng Y, Zhou L, He W, Wu X, Tan T, Liu M, Wu X, Zhou W, Jin W, Zhang S, Sacktor TC, Li T, Song W, Wang YT (2015) Long-term potentiation decay and memory loss are mediated by AMPAR endocytosis. J Clin Invest 125:234–247. https://doi.org/10.1172/JCI77888CrossRefPubMed Dong Z, Han H, Li H, Bai Y, Wang W, Tu M, Peng Y, Zhou L, He W, Wu X, Tan T, Liu M, Wu X, Zhou W, Jin W, Zhang S, Sacktor TC, Li T, Song W, Wang YT (2015) Long-term potentiation decay and memory loss are mediated by AMPAR endocytosis. J Clin Invest 125:234–247. https://​doi.​org/​10.​1172/​JCI77888CrossRefPubMed
18.
Zurück zum Zitat Jiang J, Zhu Q, Gendron TF, Saberi S, McAlonis-Downes M, Seelman A, Stauffer JE, Jafar-Nejad P, Drenner K, Schulte D, Chun S, Sun S, Ling S-C, Myers B, Engelhardt J, Katz M, Baughn M, Platoshyn O, Marsala M, Watt A, Heyser CJ, Ard MC, De Muynck L, Daughrity LM, Swing DA, Tessarollo L, Jung CJ, Delpoux A, Utzschneider DT, Hedrick SM, de Jong PJ, Edbauer D, Van Damme P, Petrucelli L, Shaw CE, Bennett CF, Da Cruz S, Ravits J, Rigo F, Cleveland DW, Lagier-Tourenne C (2016) Gain of toxicity from ALS/FTD-linked repeat expansions in C9ORF72 is alleviated by antisense oligonucleotides targeting GGGGCC-containing RNAs. Neuron 90:535–550. https://doi.org/10.1016/j.neuron.2016.04.006CrossRefPubMedPubMedCentral Jiang J, Zhu Q, Gendron TF, Saberi S, McAlonis-Downes M, Seelman A, Stauffer JE, Jafar-Nejad P, Drenner K, Schulte D, Chun S, Sun S, Ling S-C, Myers B, Engelhardt J, Katz M, Baughn M, Platoshyn O, Marsala M, Watt A, Heyser CJ, Ard MC, De Muynck L, Daughrity LM, Swing DA, Tessarollo L, Jung CJ, Delpoux A, Utzschneider DT, Hedrick SM, de Jong PJ, Edbauer D, Van Damme P, Petrucelli L, Shaw CE, Bennett CF, Da Cruz S, Ravits J, Rigo F, Cleveland DW, Lagier-Tourenne C (2016) Gain of toxicity from ALS/FTD-linked repeat expansions in C9ORF72 is alleviated by antisense oligonucleotides targeting GGGGCC-containing RNAs. Neuron 90:535–550. https://​doi.​org/​10.​1016/​j.​neuron.​2016.​04.​006CrossRefPubMedPubMedCentral
19.
23.
Zurück zum Zitat Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E, Iwasaki H, Iida A, Shiraki-Iida T, Nishikawa S, Nagai R, Nabeshima YI (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390:45–51. https://doi.org/10.1038/36285CrossRefPubMed Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E, Iwasaki H, Iida A, Shiraki-Iida T, Nishikawa S, Nagai R, Nabeshima YI (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390:45–51. https://​doi.​org/​10.​1038/​36285CrossRefPubMed
29.
Zurück zum Zitat Moreno-Jiménez EP, Flor-García M, Terreros-Roncal J, Rábano A, Cafini F, Pallas-Bazarra N, Ávila J, Llorens-Martín M (2019) Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat Med 25:554–560. https://doi.org/10.1038/s41591-019-0375-9CrossRefPubMed Moreno-Jiménez EP, Flor-García M, Terreros-Roncal J, Rábano A, Cafini F, Pallas-Bazarra N, Ávila J, Llorens-Martín M (2019) Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat Med 25:554–560. https://​doi.​org/​10.​1038/​s41591-019-0375-9CrossRefPubMed
33.
Zurück zum Zitat Renton AE, Majounie E, Waite A, Simón-Sánchez J, Rollinson S, Gibbs JR, Schymick JC, Laaksovirta H, van Swieten JC, Myllykangas L, Kalimo H, Paetau A, Abramzon Y, Remes AM, Kaganovich A, Scholz SW, Duckworth J, Ding J, Harmer DW, Hernandez DG, Johnson JO, Mok K, Ryten M, Trabzuni D, Guerreiro RJ, Orrell RW, Neal J, Murray A, Pearson J, Jansen IE, Sondervan D, Seelaar H, Blake D, Young K, Halliwell N, Callister J, Toulson G, Richardson A, Gerhard A, Snowden J, Mann D, Neary D, Nalls MA, Peuralinna T, Jansson L, Isoviita V-M, Kaivorinne A-L, Hölttä-Vuori M, Ikonen E, Sulkava R, Benatar M, Wuu J, Chiò A, Restagno G, Borghero G, Sabatelli M, Heckerman D, Rogaeva E, Zinman L, Rothstein J, Sendtner M, Drepper C, Eichler EE, Alkan C, Abdullaev Z, Pack SD, Dutra A, Pak E, Hardy J, Singleton A, Williams NM, Heutink P, Pickering-Brown S, Morris HR, Tienari PJ, Traynor BJ (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72:257–268. https://doi.org/10.1016/j.neuron.2011.09.010CrossRefPubMedPubMedCentral Renton AE, Majounie E, Waite A, Simón-Sánchez J, Rollinson S, Gibbs JR, Schymick JC, Laaksovirta H, van Swieten JC, Myllykangas L, Kalimo H, Paetau A, Abramzon Y, Remes AM, Kaganovich A, Scholz SW, Duckworth J, Ding J, Harmer DW, Hernandez DG, Johnson JO, Mok K, Ryten M, Trabzuni D, Guerreiro RJ, Orrell RW, Neal J, Murray A, Pearson J, Jansen IE, Sondervan D, Seelaar H, Blake D, Young K, Halliwell N, Callister J, Toulson G, Richardson A, Gerhard A, Snowden J, Mann D, Neary D, Nalls MA, Peuralinna T, Jansson L, Isoviita V-M, Kaivorinne A-L, Hölttä-Vuori M, Ikonen E, Sulkava R, Benatar M, Wuu J, Chiò A, Restagno G, Borghero G, Sabatelli M, Heckerman D, Rogaeva E, Zinman L, Rothstein J, Sendtner M, Drepper C, Eichler EE, Alkan C, Abdullaev Z, Pack SD, Dutra A, Pak E, Hardy J, Singleton A, Williams NM, Heutink P, Pickering-Brown S, Morris HR, Tienari PJ, Traynor BJ (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72:257–268. https://​doi.​org/​10.​1016/​j.​neuron.​2011.​09.​010CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Shi Y, Lin S, Staats KA, Li Y, Chang W-H, Hung S-T, Hendricks E, Linares GR, Wang Y, Son EY, Wen X, Kisler K, Wilkinson B, Menendez L, Sugawara T, Woolwine P, Huang M, Cowan MJ, Ge B, Koutsodendris N, Sandor KP, Komberg J, Vangoor VR, Senthilkumar K, Hennes V, Seah C, Nelson AR, Cheng T-Y, Lee S-JJ, August PR, Chen JA, Wisniewski N, Hanson-Smith V, Belgard TG, Zhang A, Coba M, Grunseich C, Ward ME, van den Berg LH, Pasterkamp RJ, Trotti D, Zlokovic BV, Ichida JK (2018) Haploinsufficiency leads to neurodegeneration in C9ORF72 ALS/FTD human induced motor neurons. Nat Med 17:17–23. https://doi.org/10.1038/nm.4490CrossRef Shi Y, Lin S, Staats KA, Li Y, Chang W-H, Hung S-T, Hendricks E, Linares GR, Wang Y, Son EY, Wen X, Kisler K, Wilkinson B, Menendez L, Sugawara T, Woolwine P, Huang M, Cowan MJ, Ge B, Koutsodendris N, Sandor KP, Komberg J, Vangoor VR, Senthilkumar K, Hennes V, Seah C, Nelson AR, Cheng T-Y, Lee S-JJ, August PR, Chen JA, Wisniewski N, Hanson-Smith V, Belgard TG, Zhang A, Coba M, Grunseich C, Ward ME, van den Berg LH, Pasterkamp RJ, Trotti D, Zlokovic BV, Ichida JK (2018) Haploinsufficiency leads to neurodegeneration in C9ORF72 ALS/FTD human induced motor neurons. Nat Med 17:17–23. https://​doi.​org/​10.​1038/​nm.​4490CrossRef
43.
Zurück zum Zitat Zhu Q, Jiang J, Gendron TF, McAlonis-Downes M, Jiang L, Taylor A, Diaz Garcia S, Ghosh Dastidar S, Rodriguez MJ, King P, Zhang Y, La Spada AR, Xu H, Petrucelli L, Ravits J, Da Cruz S, Lagier-Tourenne C, Cleveland DW (2020) Reduced C9ORF72 function exacerbates gain of toxicity from ALS/FTD-causing repeat expansion in C9orf72. Nat Neurosci 23:615–624. https://doi.org/10.1038/s41593-020-0619-5CrossRefPubMedPubMedCentral Zhu Q, Jiang J, Gendron TF, McAlonis-Downes M, Jiang L, Taylor A, Diaz Garcia S, Ghosh Dastidar S, Rodriguez MJ, King P, Zhang Y, La Spada AR, Xu H, Petrucelli L, Ravits J, Da Cruz S, Lagier-Tourenne C, Cleveland DW (2020) Reduced C9ORF72 function exacerbates gain of toxicity from ALS/FTD-causing repeat expansion in C9orf72. Nat Neurosci 23:615–624. https://​doi.​org/​10.​1038/​s41593-020-0619-5CrossRefPubMedPubMedCentral
Metadaten
Titel
Deregulated expression of a longevity gene, Klotho, in the C9orf72 deletion mice with impaired synaptic plasticity and adult hippocampal neurogenesis
verfasst von
Wan Yun Ho
Sheeja Navakkode
Fujia Liu
Tuck Wah Soong
Shuo-Chien Ling
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
Acta Neuropathologica Communications / Ausgabe 1/2020
Elektronische ISSN: 2051-5960
DOI
https://doi.org/10.1186/s40478-020-01030-4

Weitere Artikel der Ausgabe 1/2020

Acta Neuropathologica Communications 1/2020 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Demenzkranke durch Antipsychotika vielfach gefährdet

Demenz Nachrichten

Der Einsatz von Antipsychotika gegen psychische und Verhaltenssymptome in Zusammenhang mit Demenzerkrankungen erfordert eine sorgfältige Nutzen-Risiken-Abwägung. Neuen Erkenntnissen zufolge sind auf der Risikoseite weitere schwerwiegende Ereignisse zu berücksichtigen.

Nicht Creutzfeldt Jakob, sondern Abführtee-Vergiftung

29.05.2024 Hyponatriämie Nachrichten

Eine ältere Frau trinkt regelmäßig Sennesblättertee gegen ihre Verstopfung. Der scheint plötzlich gut zu wirken. Auf Durchfall und Erbrechen folgt allerdings eine Hyponatriämie. Nach deren Korrektur kommt es plötzlich zu progredienten Kognitions- und Verhaltensstörungen.

Schutz der Synapsen bei Alzheimer

29.05.2024 Morbus Alzheimer Nachrichten

Mit einem Neurotrophin-Rezeptor-Modulator lässt sich möglicherweise eine bestehende Alzheimerdemenz etwas abschwächen: Erste Phase-2-Daten deuten auf einen verbesserten Synapsenschutz.

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.