Skip to main content
Erschienen in: BMC Cancer 1/2012

Open Access 01.12.2012 | Research article

The application of nonsense-mediated mRNA decay inhibition to the identification of breast cancer susceptibility genes

verfasst von: Julie K Johnson, Nic Waddell, Georgia Chenevix-Trench, kConFab Investigators

Erschienen in: BMC Cancer | Ausgabe 1/2012

Abstract

Background

Identification of novel, highly penetrant, breast cancer susceptibility genes will require the application of additional strategies beyond that of traditional linkage and candidate gene approaches. Approximately one-third of inherited genetic diseases, including breast cancer susceptibility, are caused by frameshift or nonsense mutations that truncate the protein product [1]. Transcripts harbouring premature termination codons are selectively and rapidly degraded by the nonsense-mediated mRNA decay (NMD) pathway. Blocking the NMD pathway in any given cell will stabilise these mutant transcripts, which can then be detected using gene expression microarrays. This technique, known as gene identification by nonsense-mediated mRNA decay inhibition (GINI), has proved successful in identifying sporadic nonsense mutations involved in many different cancer types. However, the approach has not yet been applied to identify germline mutations involved in breast cancer. We therefore attempted to use GINI on lymphoblastoid cell lines (LCLs) from multiple-case, non- BRCA1/2 breast cancer families in order to identify additional high-risk breast cancer susceptibility genes.

Methods

We applied GINI to a total of 24 LCLs, established from breast-cancer affected and unaffected women from three multiple-case non-BRCA1/2 breast cancer families. We then used Illumina gene expression microarrays to identify transcripts stabilised by the NMD inhibition.

Results

The expression profiling identified a total of eight candidate genes from these three families. One gene, PPARGC1A, was a candidate in two separate families. We performed semi-quantitative real-time reverse transcriptase PCR of all candidate genes but only PPARGC1A showed successful validation by being stabilised in individuals with breast cancer but not in many unaffected members of the same family. Sanger sequencing of all coding and splice site regions of PPARGC1A did not reveal any protein truncating mutations. Haplotype analysis using short tandem repeat microsatellite markers did not indicate the presence of a haplotype around PPARGC1A which segregated with disease in the family.

Conclusions

The application of the GINI method to LCLs to identify transcripts harbouring germline truncating mutations is challenging due to a number of factors related to cell type, microarray sensitivity and variations in NMD efficiency.
Begleitmaterial
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1471-2407-12-246) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

JKJ carried out the experiments and drafted the manuscript. NW participated in the design of the study and advised on data analysis. kConFab provided all the sample material. GCT conceived of the study. All authors read and approved the final manuscript.
Abkürzungen
NMD
nonsense-mediated mRNA decay
GINI
gene identification by nonsense-mediated mRNA decay inhibition
LCL
lymphoblastoid cell line
PTC
premature termination codon
LOH
loss of heterozygosity
RNAi
RNA interference
siRNA
small interfering RNA
PCR
polymerase chain reaction
RT-PCR
reverse transcriptase PCR
FBS
fetal bovine serum
EBV
Epstein-Barr virus
PBS
phosphate-buffered saline
kConFab
the Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer
Ct
cycle threshold.

Background

Germline mutations in either one of the two major breast cancer tumour suppressor genes, BRCA1 or BRCA2, confer a 60-85% lifetime risk of breast cancer but explain only around 20% of the breast cancer cases that have a family history of the disease [28]. However, almost 70% of breast cancer families with four or more cases of early onset breast cancer under the age of 60 show no convincing evidence of linkage to BRCA1 or BRCA2[9]. Nonetheless, for women without mutations in BRCA1 or BRCA2, family history remains a strong predictive risk factor for breast cancer [1012]. This unexplained familial aggregation of the disease suggests the presence of additional high-risk, breast cancer susceptibility genes, particularly in non-BRCA1/2 families with many cases of early onset breast cancer [13].
The largest genome-wide breast cancer linkage study since the identification of BRCA2, conducted on 149 non-BRCA1/2 breast cancer families by the Breast Cancer Linkage Consortium, failed to find any significant linkage signals [14]. However, the selection criteria of the families, differences in the population background, or clinical and genetic heterogeneity might determine the power to detect a linkage signal. Rosa- Rosa et al performed linkage analysis in 41 breast-cancer Spanish families and found a significant linkage signal (HLOD score 3.55) at 21q22. They also found a HLOD of 3.13 on the 3q25 region [15] in a subset of 13 families with bilateral breast cancer. Collectively, the published linkage studies [1517] do not provide conclusive evidence that high risk BRCA-like genes exist, but certainly indicate that if they do, their mutations would only account for a small fraction of the non-BRCA1/2 families. Candidate gene approaches for mutation screening rely on a priori information about biological gene function and are thus limited by how much is known about the biology of the disease. Identification of rare mutations in highly penetrant breast cancer susceptibility genes will therefore require the application of more novel strategies beyond that of traditional linkage and candidate gene approaches. A strategy for disease gene identification by NMD inhibition (GINI) utilising gene expression profiling has been developed to identify dysregulated transcripts which may carry protein truncating mutations, thereby allowing this approach to be used to prioritise genes for mutation analysis [18].
The Breast Cancer Information Core database (BIC; http://​research.​nhgri.​nih.​gov/​bic/​; version modified September 2010) states that almost 50% of all reported BRCA1 mutations and about 30% of reported BRCA2 mutations are either frameshift or nonsense mutations, thus it is reasonable to expect that protein truncating mutations will be common in any other highly penetrant breast cancer susceptibility genes. The NMD pathway selectively and rapidly degrades mutant messenger RNAs harbouring premature termination codons (PTCs) [1921]. Therefore, blocking the NMD pathway will stabilise these mutant transcripts, which can then lead to the identification of potential tumour suppressor genes that contain nonsense mutations [18, 22]. Such genome-wide screens for transcripts harbouring truncating mutations has proved successful in identifying sporadic nonsense mutations involved in colon cancer [18, 19, 23, 24], prostate cancer [25, 26], melanoma [27], mantle cell lymphoma [28] and clear cell renal cell carcinoma [29]. However, the approach has not yet been applied to identify germline mutations involved in breast cancer. In an attempt to identify additional high-risk genes involved in familial breast cancer, we have applied this disease-gene identification technique to affected and unaffected members of multiple- case non-BRCA1/2 breast cancer families.

Methods

Selection of non-BRCA1/2 breast cancer families

The Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer (kConFab; http://​www.​kconfab.​org) provides a comprehensive resource upon which researchers can draw data and biospecimens for peer-reviewed, ethically- approved funded research projects on familial aspects of breast cancer. We selected three families (Family A, B and C) for use in GINI (Table 1), in which no BRCA1 or BRCA2 mutations had been found, and which had Manchester scores >19 [30, 31] suggesting a high probability of having a mutation in a breast cancer susceptibility gene. For each family, there were at least three LCLs from women affected with breast cancer at ages 34–56, and at least three from women who were unaffected at ages 26–72. Ethical approvals were obtained from the Human Research Ethics Committees of the Queensland Institute of Medical Research and the Peter MacCallum Cancer Centre. Written informed consent was obtained from each participant.
Table 1
Multiple-case non- BRCA1 / 2 breast cancer families chosen for GINI analysis
Family
Manchester ScoreBRCA1BRCA2
Number of LCLs from individuals affected with breast cancer
Ages of affected individuals at the time of their diagnosis
Number of LCLs from individuals unaffected by breast cancer
Ages of individuals unaffected by breast cancer
Total number of samples hybridised to gene expression array
A
20
19
5
26, 34, 43, 47, 64
3
32, 38, 63
48
B
24
21
3
39, 39, 41
4
26, 28, 57, 58
42
C
19
19
3
36, 44, 56
6
41, 45, 62, 68, 70, 72
54

Cell lines

We used the colon cancer cell line, HT29, which contains a truncating mutation (c.931C > T p.Q311X) in one allele of the SMAD4 gene and a deletion of the other allele, as a positive control, as well as two positive control LCLs (BRCA1 c.2681_2682delAA and BRCA2 c.539_541insAT). These truncating mutations occur >55 nucleotides upstream from the final exon of each gene and are thus expected to undergo nonsense-mediated mRNA decay. To identify putative novel, breast cancer susceptibility genes by GINI, we used 24 LCLs established from patients affected with breast cancer and unaffected individuals from three non-BRCA1/2 breast cancer families.

Gene inhibition of nonsense mediated decay (GINI)

Twenty-four hours prior to caffeine treatment, we seeded HT29 cells into two 75cm2 cell culture flasks, each containing 1x106 cells in 10mls of tissue culture medium (RPMI-1640 + 10% FBS). We then added fresh medium containing 10mM caffeine (Sigma-Aldrich, St. Louis, MO, USA) to one flask and fresh medium without caffeine to the control flask. After four hours of incubation at 37°C, we removed the medium from both flasks and washed the cells twice with phosphate-buffered saline (PBS). We then added normal medium to the untreated control flask and treated the other flask for a further four hours with 10mM caffeine medium. We then removed the media from both flasks and washed the cells twice with PBS before storing the cells at −80°C until RNA extraction. We repeated this process ten times to ensure repeatability of results. We then performed semi-quantitative real-time reverse transcriptase (RTPCR) of SMAD4 to confirm stabilisation of the target gene after caffeine treatment, and cRNA from four randomly selected replicates were then hybridised to the Illumina HumanHT-12 v3 gene expression arrays.
In order to determine the optimal caffeine concentration for treating LCLs, we treated 3.5x106 LCLs with 2.5mM, 5mM, 7.5mM, 10mM or 15mM caffeine (Sigma-Aldrich) for two lots of four-hour incubations at 37°C in the same GINI process described above for HT29 cells. We determined the optimal concentration by semi-quantitative real-time RT-PCR of BRCA1 and BRCA2 (Additional File 1) and then performed three technical replicates of GINI on the positive control LCLs on different days, and hybridised the cRNA to Illumina HumanHT-12 v3 gene expression arrays.

GINI on LCLs from non-BRCA1/2 breast cancer families

Having optimised the GINI method on positive control LCLs with BRCA1 or BRCA2 mutations, we applied it to LCLs from 11 affected and 13 unaffected individuals from three non-BRCA1/2 breast cancer families, in parallel with positive control HT29 cells. We performed three technical replicates for each sample on different days and then hybridised cRNA from caffeine-treated and untreated control samples to Illumina HumanHT-12 v3 gene expression arrays.

Semi-quantitative real-time reverse transcriptase PCR (RT-PCR) and expression array profiling

We extracted total RNA from frozen cell pellets using the RNeasy RNA Extraction Kit (Qiagen, Hilden, Germany) as per the manufacturer’s instructions. We used semi- quantitative real-time reverse transcriptase PCR (RT-PCR) to validate the expression of the target genes in the positive controls and of the candidate genes found by the GINI method. Primer sequences are provided in Additional File 2. We synthesised cDNA from 1μg of total RNA in a reaction volume of 20μl using oligodT and Superscript III (Invitrogen) according to manufacturer’s instructions. The cDNA reactions were then diluted to 200μl (1:10) in RNase/DNase-free water. We performed semi-quantitative real-time RT-PCR amplifications in quadruplet on the LightCycler480 (Roche) machine using 3.75μl SYBR Green PCR Master Mix (Invitrogen) and 0.33μM forward and reverse primers in a total reaction volume of 7.5μl, using the glyceraldehydes-3-phosphate dehydrogenase (GAPDH) gene as a reference. We normalised the comparative threshold-cycle (Ct) of signal intensities of amplified product to that of GAPDH calibrating to the matched untreated control of each sample using the LightCycler480 software program (Roche Diagnostics Corp., Indianapolis, IN, USA).
For the expression profiling, we prepared biotinylated cRNA from 450ng of total RNA using the IlluminaTotalPrep RNA Amplification Kit (Ambion, Austin, TX, USA) and hybridised 750ng cRNA per sample to HumanHT-12 v3 Expression BeadChips (Illumina Inc., San Diego, CA, USA) as per the Whole-Genome Gene Expression Direct Hybridisation Assay protocol. We collated expression data using BeadStudio Version 1.5.1.3 (Illumina Inc.) and then quantile normalised the raw data using the R-Bioconductor LUMI package [32]. Microarray data were submitted to Gene Expression Omnibus (GEO) [33] and are accessible through GEO (http://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE37210). To identify differentially expressed genes, between each caffeine treated sample to its own untreated control over three technical replicates, we implemented a linear model and empirical Bayes method using the R-Bioconductor LIMMA package [34]. We considered genes with Benjamini and Hochberg adjusted P-values less than 5% that also have a greater than 50% chance of being differentially expressed (positive B- statistic) as having statistically significant changes in their expression profiles. We imported differentially expressed genes into GeneSpring v10.0 (Agilent Technologies) for visualisation and further analysis.
We defined genes that were differentially expressed between all untreated and all caffeine treated samples as “global caffeine response” genes. These genes are unlikely to contain truncating mutations in breast cancer susceptibility genes but are more likely to be expressed in response to caffeine or be naturally occurring NMD targets.
For each family, we selected candidate genes for semi-quantitative real-time RT-PCR validation and mutations screening that were upregulated after caffeine treatment in the individuals affected with breast cancer but were not differentially expressed after caffeine treatment in their unaffected family members, and therefore not part of the “global caffeine response” gene list.

Sequence analysis

We sequenced the exonic and flanking splice sites of the one candidate gene we identified by GINI in the relevant family. We amplified 500ng DNA by polymerase chain reaction (PCR) with 1X PCR Buffer, 2.5mM MgCl2, 0.2mM dNTP, 0.25μM forward and reverse primer, 0.4μl AmpliTaq Gold in a total reaction volume of 50μl. We then purified the PCR products using the QIAquick PCR Purification Kit Spin Protocol (Qiagen) prior to sequencing according to manufacturer’s instructions using BigDye Terminator v3.1 and an ABI 3100 Genetic Analyser (PE Applied Biosystems, Foster City, CA, USA).

Haplotyping around the PPARGC1A region

We used a total of six short tandem repeat microsatellite markers from a 2Mb region around PPARGC1A to haplotype around the PPARGC1A gene in members of Family B. We selected four markers (D4S3017, D4S2953, D4S425, D4S23013) (deCODE Genetics; http://​www.​decode.​com) and designed two (19xTA and 20xTG) more around short tandem repeats within the DNA sequence of PPARGC1A and labelled either the forward or reverse primer with a 6-FAM label. We amplified 500ng DNA by polymerase chain reaction (PCR) with 1X PCR Buffer, 2.5mM MgCl2, 0.2mM dNTP, 0.25μM forward and reverse primer, 0.4μl AmpliTaq Gold in a 50μl final volume. Amplified PCR products were diluted 1:800 with Hi-Di formamide/500 LIZ size standard mix (formamide to size standard ratio of 67:1) (Applied Biosystems) and the mixture was then denatured for 5 min at 95°C. The samples were separated in an ABI PRISM3700 DNA Sequencer and subjected to the fragment analysis protocol. Allele scoring was performed using the GeneMapper 4.0 software (Applied Biosystems).

Results

Optimisation of GINI

We used HT29 cells to test the robustness of the GINI technique with caffeine treatment. Results from semi-quantitative real-time RT-PCR validation of ten replicate experiments identified a consistent 2.5- to 3.7-fold upregulation of SMAD4 mRNA after 10mM caffeine treatment (Figure 1). Microarray results of three replicates identified a total of 553 probes corresponding to 495 genes that were significantly differentially expressed ≥2-fold between untreated and caffeine-treated HT29 cells. When sorted by adjusted P-value, SMAD4 ranked as the 48th most differentially expressed gene and the 28th most significantly upregulated gene (fold change = 2.78; adj P-value = 7.83-E07; B-statistic = 12.94).
In parallel with positive control HT29 cells, we treated LCLs with known BRCA1 or BRCA2 mutations with a caffeine concentration gradient and used semi-quantitative real-time RT-PCR to find the concentration that best stabilises their respective target genes (Additional File 1). The highest level of target gene stabilisation in the LCLs was 2.4-fold at 7.5mM caffeine. We repeated the GINI experiments a total of three times for the BRCA1 and BRCA2 cell lines, and each replicate of every cell line showed at least a 1.5-fold stabilisation of their respective target genes after treatment with 7.5mM caffeine (Figure 2).

Identifying candidate breast cancer susceptibility genes by GINI in nonBRCA1/2 breast cancer families

We applied GINI, with a caffeine concentration of 7.5mM, to 24 LCLs from three non-BRCA1/2 families. We identified a set of 6,520 global caffeine response” genes which were differentially expressed (adjusted P-value < 0.0006 and B-statistic > 0) between untreated and caffeine treated samples from all individuals combined from the three families. Of these “global caffeine response” genes, 1,364 and 292 genes changed more than 1.5- and 2-fold after caffeine treatment, respectively.
We identified candidate protein truncated transcripts within each family as those with statistically significant increased expression after caffeine treatment in affected individuals of that family, but not in unaffected individuals of the other two families, and which were not part of the “global caffeine response” (Figure 3). We identified a total of two, two and five candidate genes for Family A, B and C, respectively (Table 2). Interestingly, only one gene, peroxisome proliferator-activated receptor-γ coactivator-1 α (PPARGC1A), was identified as a candidate in more than one family.
Table 2
Candidate genes identified by GINI analysis
Family
Gene Name
Fold Change
Adjusted P-value
B-statistic
A
WNT5A
1.14
0.005560
0.04
RAB3B
1.17
0.004254
0.33
B
PPARGC1A
1.19
0.001226
4.23
CD14
1.19
0.001875
1.19
C
PPARGC1A
1.41
3.00E-11
25.02
METRNL
1.44
0.001146
2.51
BMP6
1.43
3.61E-05
6.67
PRDM1
1.25
0.000314
4.04
GRSF1
1.69
0.007637
0.23

Semi-quantitative real-time RT-PCR and sequencing of candidate breast cancer susceptibility genes

We tried to validate all nine candidate genes in with semi-quantitative real-time RT-PCR but only PPARGC1A showed consistent stabilisation of mRNA transcript across replicates of Family B in individuals affected by breast cancer and not in their healthy family members (Figure 4 and Additional File 3 9, Additional File 4, Additional File 5, Additional File 6, Additional File 7, Additional File 8). Primer sequences are provided in Supplementary Table 1. The youngest individual in Family B (individual 4: aged 26) showed statistically significant stabilisation of the PPARGC1A transcript in two out of three experimental replicates, suggesting that this individual may be a carrier for a family-specific breast cancer mutation but has not yet developed disease. However, sequencing of all coding regions in all affected and unaffected family members and flanking splice sites did not reveal any protein truncating mutations in PPARGC1A. We identified three coding (rs2970847, rs3755863 and rs8192678) and one non-coding (rs2946385) single nucleotide polymorphisms (SNPs). The only variant identified that was not listed in dbSNP as a common polymorphism was IVS7delT (Figure 5). However, this variant was found in all members sequenced including affected and unaffected individuals. Furthermore, Human Splicing Finder [35] suggested that this intronic variant has no effect on splicing. Haplotype analysis using short tandem repeat microsatellite markers spanning 2Mb around PPARGC1A showed no evidence of a haplotype that might carry a protein truncating mutations segregating with disease within the family (Figure 5).

Discussion

In an attempt to identify germline mutations in additional high risk breast cancer susceptibility genes, we have optimised and applied the GINI method on lymphoblastoid cell lines derived from the blood of women from multiple-case non- BRCA1/2 breast cancer families. By using positive control cell lines with known truncating mutations, we have determined the optimal concentration of caffeine that results in significant stabilisation of target genes, which is suggestive of successful inhibition of the nonsense-mediated mRNA decay pathway. Microarray analysis of the transcripts stabilised after NMD inhibition by caffeine treatment in women affected with breast cancer compared to their unaffected relatives identified a total of eight different genes across three families. One gene, peroxisome proliferator- activated receptor-γ coactivator-1 α (PPARGC1A), was a candidate gene in two families and was the only breast cancer susceptibility candidate gene that we could demonstrate by semi-quantitative real-time RT-PCR as being consistently upregulated after GINI in affected members of the family, but not in most unaffected relatives.
PPARGC1A is a master transcriptional regulator of mitochondrial oxidative phosphorylation and cellular energy metabolism. The gene is expressed in a broad range of tissues with higher levels of expression detected in tissues with high oxidative capacity, such as heart, skeletal muscle, brown adipocyte, kidney and brain [3638]. Upregulation of PPARGC1A in response to oxidative stress can suppress the production of reactive oxygen species [39]. PPARGC1A also plays an important role as an estrogen receptor coactivator in the estrogen receptor (ER) pathway by binding and enhancing transactivation of estrogen receptor alpha (ERα) in a ligand-dependent manner [40, 41]. Persistent estrogen mediated mitogen signalling of ERα has been known to stimulate the growth of a large proportion of breast cancers [4245]. In fact, over half of all breast cancers overexpress ERα [46]. An association study of ~800 BRCA1/2 mutation-negative familial breast cancer cases and over 1,000 controls from Germany found some evidence that the PPARGC1A Thr612Met polymorphism might be a risk factor for familial breast cancer (OR = 1.35, 95% CI 1.00-1.81, P = 0.049), high-risk familial breast cancer (OR = 1.51, 95% CI 1.08-2.12, P = 0.017) and bilateral familial breast cancer (OR = 2.30, 95% CI 1.24-4.28, P = 0.009) [47]. However, haplotype analysis did not identify any additional association with familial breast cancer [47].
Although, we did not identify any truncating mutations in the coding or splice site regions of PPARGC1A, we did find an IVS-7delT variant in both affected and unaffected individuals of two families. However, haplotyping analysis around PPARGC1A did not identify a haplotype that segregated with disease in either family, which may contain a cryptic, deeply intronic, mutation that causes protein truncation.
Caffeine can impact on the alternative splicing of a subset of cancer-associated genes [48]. For example, caffeine can result in alternatively spliced isoforms of chaperonin- containing TCP1 subunit 3 (CCT3), asparagine synthetise (ASNS), COMM-domain containing 5 (COMMD5), ATP binding cassette subfamily F member 2 (ABCF2), SLC39A1/ZIRTL, and yippee-like 5 gene (YPEL5) being expressed. Exposure of HeLa cells to caffeine can also result in differential expression of 40 cancer-associated gene (for example, KLF6 SC35 CCT3 ASNS COMMD5 ABCF2 YPEL5) isoforms [48], although it is worth noting that different patterns of gene expression result from differing concentrations of caffeine [49]. Nevertheless, even though increased stability of mutant RNA is suggested to be more likely [18], GINI does not distinguish between the increased stability of the mutant transcript and the selective depletion of the normal transcript [50]. Therefore, if NMD inhibition by caffeine treatment did result in the stabilisation of one transcript and the reduction of another isoform, then unless the probes present on the microarray can distinguish between these isoforms, the net change in gene expression may not have been detected on the array platform. Furthermore, nonsense codons can reduce the abundance of nuclear mRNA without affecting the abundance of pre-mRNA or the half-life of cytoplasmic mRNA [51] and this might further reduce the sensitivity of GINI.
In order to acquire a more selective list of nonsense transcripts for a particular cell line, it may be necessary to combine the results of multiple different methods of NMD inhibition: 1) siRNA against UPF1[52, 53], 2) caffeine treatment, and 3) emetine treatment, which inhibits the progression of the ribosome along the mRNA [29, 54]. A major problem with using the GINI approach for identifying pathogenic mutations in yet-unidentified high-risk breast cancer genes in the germline DNA of individuals affected with breast cancer is that the mutation is expected to be present in a heterozygous state (at least, in an autosomal dominant disorder). The stabilisation of only one allele reaches the sensitivity limits of gene expression microarrays. Therefore, genes that may have been mutated but are expressed at a moderate to low level may have been excluded from detection. Tumour suppressor genes are usually inactivated during the process of tumorigenesis by a two-step process involving an inactivating mutation in the target gene accompanied by loss of the wildtype allele. However, in LCLs established from peripheral blood mononuclear leukocytes, the normal wildtype allele could mask the effects of GINI on the mutated allele thus reducing the efficiency of GINI [55]. Furthermore, LCLs may not provide an accurate representation of genes that are active in breast tissue, and if the putative breast cancer susceptibility gene is not expressed in LCLs then GINI will not work to identify susceptibility genes.
There is also evidence to suggest that NMD efficiency varies between different people with the same mutation [56, 57], between different tissue types within an organism [58, 59], and even between different strains of the same cell type [60]. It is possible that variable efficiencies of NMD can influence the clinical outcome of hereditary and acquired genetic disease and thus act as a genetic modifier of human genetic diseases.
Inhibition of the nonsense-mediated mRNA decay pathway followed by microarray analysis has been successfully applied to cancer cell lines to identify protein truncating mutations that may underlie sporadic forms of cancer [19, 23, 2529, 54]. The GINI method has recently been applied to the LCLs from six prostate cancer patients and their healthy brothers in order to identify susceptibility genes in hereditary prostate cancer [55]. However, despite sequencing 17 candidate genes, no truncating mutations were found. The GINI method has also failed to identify putative tumour suppressor genes in gastric cancer cell lines with siRNA against UPF1 [61]. It is commonly reported that the GINI strategy leads to a high number of false positives [19, 21, 23, 2628, 55, 61, 62]. The novelty of our approach is the ability to identify transcripts stabilised by NMD inhibition in multiple breast cancer patients within a family and compare this gene list to the transcripts that are stabilised in multiple unaffected members of the same family in an attempt to reduce the number of false positive hits. Despite this analysis identifying few candidate genes per family, we did not identify any detectable nonsense mutations. Therefore, our GINI analysis also results in a high number of false positives. However, it is also possible that the mechanism underlying susceptibility to breast cancer in non-BRCA1/2 families may not be due to truncating mutations in susceptibility genes.

Conclusion

In summary, we applied the gene identification by nonsense-mediated mRNA decay inhibition (GINI) strategy to lymphoblastoid cell lines established from the blood of affected and unaffected members of three multiple-case non-BRCA1/2 breast cancer families but we did not identify any nonsense mutations that may underlie the breast cancer risk in any of the three families investigated. The application of the GINI method to identify germline mutations is challenging due to limitations including microarray sensitivity in detecting small fold changes, and because of individual variations in nonsense-mediated mRNA decay efficiency [24, 50, 56, 59, 60, 63].
With the plummeting costs of next generation sequencing technologies, sequencing of whole exomes and genomes is becoming a much more attractive method to identify rare, yet high risk, pathogenic mutations underlying human genetic disease.

Acknowledgements

We wish to thank Heather Thorne, Eveline Niedermayr, all the kConFab research nurses and staff, the heads and staff of the Family Cancer Clinics, and the Clinical Follow Up Study (funded 2001–2009 by NHMRC and currently by the National Breast Cancer Foundation and Cancer Australia #628333) for their contributions to this resource, and the many families who contribute to kConFab. kConFab is supported by grants from the National Breast Cancer Foundation, the National Health and Medical Research Council (NHMRC) and by the Queensland Cancer Fund, the Cancer Councils of New South Wales, Victoria, Tasmania and South Australia, and the Cancer Foundation of Western Australia. We would also like to thank Sue Healey for her assistance in sequencing candidate genes and Igor Makunin for his advice during manuscript preparation. JKJ was financially supported by a scholarship from The Cancer Council Queensland. GCT is an NHMRC Senior Principal Research Fellow.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

JKJ carried out the experiments and drafted the manuscript. NW participated in the design of the study and advised on data analysis. kConFab provided all the sample material. GCT conceived of the study. All authors read and approved the final manuscript.
Anhänge

Electronic supplementary material

Literatur
1.
Zurück zum Zitat Frischmeyer PA, Dietz HC: Nonsense-mediated mRNA decay in health and disease. Human Molecular Genetics. 1999, 8: 1893-1900. 10.1093/hmg/8.10.1893.CrossRefPubMed Frischmeyer PA, Dietz HC: Nonsense-mediated mRNA decay in health and disease. Human Molecular Genetics. 1999, 8: 1893-1900. 10.1093/hmg/8.10.1893.CrossRefPubMed
3.
Zurück zum Zitat Ponder BA, Antoniou A, Dunning A, Easton DF, Pharoah PD: Polygenic inherited predisposition to breast cancer. Cold Spring Harb Symp Quant Biol. 2005, 70: 35-41. 10.1101/sqb.2005.70.029.CrossRefPubMed Ponder BA, Antoniou A, Dunning A, Easton DF, Pharoah PD: Polygenic inherited predisposition to breast cancer. Cold Spring Harb Symp Quant Biol. 2005, 70: 35-41. 10.1101/sqb.2005.70.029.CrossRefPubMed
5.
Zurück zum Zitat Antoniou A, Pharoah PD, Narod S, Risch HA, Eyfjord JE, Hopper JL, Loman N, Olsson H, Johannsson O, Borg A, et al: Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet. 2003, 72: 1117-1130. 10.1086/375033.CrossRefPubMedPubMedCentral Antoniou A, Pharoah PD, Narod S, Risch HA, Eyfjord JE, Hopper JL, Loman N, Olsson H, Johannsson O, Borg A, et al: Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet. 2003, 72: 1117-1130. 10.1086/375033.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Serova OM, Mazoyer S, Puget N, Dubois V, Tonin P, Shugart YY, Goldgar D, Narod SA, Lynch HT, Lenoir GM: Mutations in BRCA1 and BRCA2 in breast cancer families: are there more breast cancer-susceptibility genes?. Am J Hum Genet. 1997, 60: 486-495.PubMedPubMedCentral Serova OM, Mazoyer S, Puget N, Dubois V, Tonin P, Shugart YY, Goldgar D, Narod SA, Lynch HT, Lenoir GM: Mutations in BRCA1 and BRCA2 in breast cancer families: are there more breast cancer-susceptibility genes?. Am J Hum Genet. 1997, 60: 486-495.PubMedPubMedCentral
7.
Zurück zum Zitat Schubert EL, Lee MK, Mefford HC, Argonza RH, Morrow JE, Hull J, Dann JL, King MC: BRCA2 in American families with four or more cases of breast or ovarian cancer: recurrent and novel mutations, variableexpression, penetrance, and the possibility of families whose cancer is not attributable to BRCA1 or BRCA2. Am J Hum Genet. 1997, 60: 1031-1040.PubMedPubMedCentral Schubert EL, Lee MK, Mefford HC, Argonza RH, Morrow JE, Hull J, Dann JL, King MC: BRCA2 in American families with four or more cases of breast or ovarian cancer: recurrent and novel mutations, variableexpression, penetrance, and the possibility of families whose cancer is not attributable to BRCA1 or BRCA2. Am J Hum Genet. 1997, 60: 1031-1040.PubMedPubMedCentral
8.
Zurück zum Zitat Peto J, Collins N, Barfoot R, Seal S, Warren W, Rahman N, Easton DF, Evans C, Deacon J, Stratton MR: Prevalence of BRCA1 and BRCA2 gene mutations in patients with early-onset breast cancer. J Natl Cancer Inst. 1999, 91: 943-949. 10.1093/jnci/91.11.943.CrossRefPubMed Peto J, Collins N, Barfoot R, Seal S, Warren W, Rahman N, Easton DF, Evans C, Deacon J, Stratton MR: Prevalence of BRCA1 and BRCA2 gene mutations in patients with early-onset breast cancer. J Natl Cancer Inst. 1999, 91: 943-949. 10.1093/jnci/91.11.943.CrossRefPubMed
9.
Zurück zum Zitat Ford D, Easton DF, Stratton M, Narod S, Goldgar D, Devilee P, Bishop DT, Weber B, Lenoir G, Chang-Claude J, et al: Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. American Journal of Human Genetics. 1998, 62: 676-689. 10.1086/301749.CrossRefPubMedPubMedCentral Ford D, Easton DF, Stratton M, Narod S, Goldgar D, Devilee P, Bishop DT, Weber B, Lenoir G, Chang-Claude J, et al: Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. American Journal of Human Genetics. 1998, 62: 676-689. 10.1086/301749.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Claus EB, Schildkraut J, Iversen ES, Berry D, Parmigiani G: Effect of BRCA1 and BRCA2 on the association between breast cancer risk and family history. J Natl Cancer Inst. 1998, 90: 1824-1829. 10.1093/jnci/90.23.1824.CrossRefPubMed Claus EB, Schildkraut J, Iversen ES, Berry D, Parmigiani G: Effect of BRCA1 and BRCA2 on the association between breast cancer risk and family history. J Natl Cancer Inst. 1998, 90: 1824-1829. 10.1093/jnci/90.23.1824.CrossRefPubMed
11.
Zurück zum Zitat Peto J, Mack TM: High constant incidence in twins and other relatives of women with breast cancer. Nat Genet. 2000, 26: 411-414. 10.1038/82533.CrossRefPubMed Peto J, Mack TM: High constant incidence in twins and other relatives of women with breast cancer. Nat Genet. 2000, 26: 411-414. 10.1038/82533.CrossRefPubMed
12.
Zurück zum Zitat Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A, Hemminki K: Environmental and heritable factors in the causation of cancer–analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med. 2000, 343: 78-85. 10.1056/NEJM200007133430201.CrossRefPubMed Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A, Hemminki K: Environmental and heritable factors in the causation of cancer–analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med. 2000, 343: 78-85. 10.1056/NEJM200007133430201.CrossRefPubMed
13.
Zurück zum Zitat Antoniou AC, Pharoah PD, McMullan G, Day NE, Stratton MR, Peto J, Ponder BJ, Easton DF: A comprehensive model for familial breast cancer incorporating BRCA1, BRCA2 and other genes. Br J Cancer. 2002, 86: 76-83. 10.1038/sj.bjc.6600008.CrossRefPubMedPubMedCentral Antoniou AC, Pharoah PD, McMullan G, Day NE, Stratton MR, Peto J, Ponder BJ, Easton DF: A comprehensive model for familial breast cancer incorporating BRCA1, BRCA2 and other genes. Br J Cancer. 2002, 86: 76-83. 10.1038/sj.bjc.6600008.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Smith P, McGuffog L, Easton DF, Mann GJ, Pupo GM, Newman B, Chenevix-Trench G, Szabo C, Southey M, Investigators kConFab, et al: A genome wide linkage search for breast cancer susceptibility genes.Genes. Chromosomes and Cancer. 2006, 45: 646-655.CrossRef Smith P, McGuffog L, Easton DF, Mann GJ, Pupo GM, Newman B, Chenevix-Trench G, Szabo C, Southey M, Investigators kConFab, et al: A genome wide linkage search for breast cancer susceptibility genes.Genes. Chromosomes and Cancer. 2006, 45: 646-655.CrossRef
15.
Zurück zum Zitat Rosa-Rosa JM, Pita G, Urioste M, Llort G, Brunet J, Lazaro C, Blanco I, Ramon y Cajal T, Diez O, de la Hoya M, et al: Genome-wide linkage scan reveals three putative breast-cancer-susceptibility loci. Am J Hum Genet. 2009, 84: 115-122. 10.1016/j.ajhg.2008.12.013.CrossRefPubMedPubMedCentral Rosa-Rosa JM, Pita G, Urioste M, Llort G, Brunet J, Lazaro C, Blanco I, Ramon y Cajal T, Diez O, de la Hoya M, et al: Genome-wide linkage scan reveals three putative breast-cancer-susceptibility loci. Am J Hum Genet. 2009, 84: 115-122. 10.1016/j.ajhg.2008.12.013.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Gonzalez-Neira A, Rosa-Rosa JM, Osorio A, Gonzalez E, Southey M, Sinilnikova O, Lynch H, Oldenburg RA, van Asperen CJ, Hoogerbrugge N, et al: Genomewide high-density SNP linkage analysis of non-BRCA1/2 breast cancer families identifies various candidate regions and has greater power than microsatellite studies. BMC Genomics. 2007, 8: 299-10.1186/1471-2164-8-299.CrossRefPubMedPubMedCentral Gonzalez-Neira A, Rosa-Rosa JM, Osorio A, Gonzalez E, Southey M, Sinilnikova O, Lynch H, Oldenburg RA, van Asperen CJ, Hoogerbrugge N, et al: Genomewide high-density SNP linkage analysis of non-BRCA1/2 breast cancer families identifies various candidate regions and has greater power than microsatellite studies. BMC Genomics. 2007, 8: 299-10.1186/1471-2164-8-299.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Rosa-Rosa JM, Pita G, Gonzalez-Neira A, Milne RL, Fernandez V, Ruivenkamp C, van Asperen CJ, Devilee P, Benitez J: A 7 Mb region within 11q13 may contain a high penetrance gene for breast cancer. Breast Cancer Res Treat. 2009, 118: 151-159. 10.1007/s10549-009-0317-1.CrossRefPubMed Rosa-Rosa JM, Pita G, Gonzalez-Neira A, Milne RL, Fernandez V, Ruivenkamp C, van Asperen CJ, Devilee P, Benitez J: A 7 Mb region within 11q13 may contain a high penetrance gene for breast cancer. Breast Cancer Res Treat. 2009, 118: 151-159. 10.1007/s10549-009-0317-1.CrossRefPubMed
18.
Zurück zum Zitat Noensie EN, Dietz HC: A strategy for disease gene identification through nonsense-mediated mRNA decay inhibition. Nature Biotechnology. 2001, 19: 434-439. 10.1038/88099.CrossRefPubMed Noensie EN, Dietz HC: A strategy for disease gene identification through nonsense-mediated mRNA decay inhibition. Nature Biotechnology. 2001, 19: 434-439. 10.1038/88099.CrossRefPubMed
19.
Zurück zum Zitat Ionov Y, Nowak N, Perucho M, Markowitz S, Cowell JK: Manipulation of nonsense mediated decay identifies gene mutations in colon cancer Cells with microsatellite instability Oncogene. 2004, 23: 639-645.PubMed Ionov Y, Nowak N, Perucho M, Markowitz S, Cowell JK: Manipulation of nonsense mediated decay identifies gene mutations in colon cancer Cells with microsatellite instability Oncogene. 2004, 23: 639-645.PubMed
20.
Zurück zum Zitat Maquat LE: Nonsense-mediated mRNA decay in mammals. Journal of Cell Science. 2005, 118: 1773-1776. 10.1242/jcs.01701.CrossRefPubMed Maquat LE: Nonsense-mediated mRNA decay in mammals. Journal of Cell Science. 2005, 118: 1773-1776. 10.1242/jcs.01701.CrossRefPubMed
21.
Zurück zum Zitat Wolf M, Edgren H, Muggerud A, Kilpinen S, Huusko P, Sorlie T, Mousses S, Kallioniemi O: NMD microarray analysis for rapid genome-wide screen of mutated genes in cancer. Cell Oncology. 2005, 27: 169-173. Wolf M, Edgren H, Muggerud A, Kilpinen S, Huusko P, Sorlie T, Mousses S, Kallioniemi O: NMD microarray analysis for rapid genome-wide screen of mutated genes in cancer. Cell Oncology. 2005, 27: 169-173.
22.
Zurück zum Zitat Khajavi M, Inoue K, Lupski JR: Nonsense-mediated mRNA decay modulates clinical outcome of genetic disease. European Journal of Human Genetics. 2006, 14: 1074-1081. 10.1038/sj.ejhg.5201649.CrossRefPubMed Khajavi M, Inoue K, Lupski JR: Nonsense-mediated mRNA decay modulates clinical outcome of genetic disease. European Journal of Human Genetics. 2006, 14: 1074-1081. 10.1038/sj.ejhg.5201649.CrossRefPubMed
23.
Zurück zum Zitat Ivanov I, Lo KC, Hawthorn L, Cowell JK, Ionov Y: Identifying candidate colon cancer tumor suppressor genes using inhibition of nonsense-mediated mRNA decay in colon cancer cells. Oncogene. 2007, 26: 2873-2884. 10.1038/sj.onc.1210098.CrossRefPubMed Ivanov I, Lo KC, Hawthorn L, Cowell JK, Ionov Y: Identifying candidate colon cancer tumor suppressor genes using inhibition of nonsense-mediated mRNA decay in colon cancer cells. Oncogene. 2007, 26: 2873-2884. 10.1038/sj.onc.1210098.CrossRefPubMed
24.
Zurück zum Zitat El-Bchiri J, Guilloux A, Dartigues P, Loire E, Mercier D, Buhard O, Sobhani I, de la Grange P, Auboeuf D, Praz F, et al: Nonsense-mediated mRNA decay impacts MSI-driven carcinogenesis and anti-tumor immunity in colorectal cancers. PLoS ONE. 2008, 3: e2583-10.1371/journal.pone.0002583.CrossRefPubMedPubMedCentral El-Bchiri J, Guilloux A, Dartigues P, Loire E, Mercier D, Buhard O, Sobhani I, de la Grange P, Auboeuf D, Praz F, et al: Nonsense-mediated mRNA decay impacts MSI-driven carcinogenesis and anti-tumor immunity in colorectal cancers. PLoS ONE. 2008, 3: e2583-10.1371/journal.pone.0002583.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Huusko P, Ponciano-Jackson D, Wolf M, Kiefer JA, Azorsa DO, Tuzmen S, Weaver D, Robbins C, Moses T, Allinen M, et al: Nonsense-mediated decay microarray analysis identifies mutations of EPHB2 in human prostate cancer. Nature Genetics. 2004, 36: 979-983. 10.1038/ng1408.CrossRefPubMed Huusko P, Ponciano-Jackson D, Wolf M, Kiefer JA, Azorsa DO, Tuzmen S, Weaver D, Robbins C, Moses T, Allinen M, et al: Nonsense-mediated decay microarray analysis identifies mutations of EPHB2 in human prostate cancer. Nature Genetics. 2004, 36: 979-983. 10.1038/ng1408.CrossRefPubMed
26.
Zurück zum Zitat Rossi MR, Hawthorn L, Platt J, Burkhardt T, Cowell JK, Ionov Y: Identification of inactivating mutations in the JAK1, SYNJ2, and CLPTM1 genes in prostate cancer cells using inhibition of nonsensemediated decay and microarray analysis. Cancer Genetics and Cytogenetics. 2005, 161: 97-103. 10.1016/j.cancergencyto.2005.02.006.CrossRefPubMed Rossi MR, Hawthorn L, Platt J, Burkhardt T, Cowell JK, Ionov Y: Identification of inactivating mutations in the JAK1, SYNJ2, and CLPTM1 genes in prostate cancer cells using inhibition of nonsensemediated decay and microarray analysis. Cancer Genetics and Cytogenetics. 2005, 161: 97-103. 10.1016/j.cancergencyto.2005.02.006.CrossRefPubMed
27.
Zurück zum Zitat Bloethner S, Mould A, Stark M, Hayward NK: Identification of ARHGEF17, DENND2D, FGFR3, and RB1 mutations in melanoma by inhibition of nonsense-mediated mRNA decay. Genes Chromosomes Cancer. 2008, 47: 1076-1085. 10.1002/gcc.20598.CrossRefPubMed Bloethner S, Mould A, Stark M, Hayward NK: Identification of ARHGEF17, DENND2D, FGFR3, and RB1 mutations in melanoma by inhibition of nonsense-mediated mRNA decay. Genes Chromosomes Cancer. 2008, 47: 1076-1085. 10.1002/gcc.20598.CrossRefPubMed
28.
Zurück zum Zitat Pinyol M, Bea S, Pla L, Ribrag V, Bosq J, Rosenwald A, Campo E, Jares P: Inactivation of RB1 in mantle-cell lymphoma detected by nonsensemediated mRNA decay pathway inhibition and microarray analysis. Blood. 2007, 109: 5422-5429. 10.1182/blood-2006-11-057208.CrossRefPubMed Pinyol M, Bea S, Pla L, Ribrag V, Bosq J, Rosenwald A, Campo E, Jares P: Inactivation of RB1 in mantle-cell lymphoma detected by nonsensemediated mRNA decay pathway inhibition and microarray analysis. Blood. 2007, 109: 5422-5429. 10.1182/blood-2006-11-057208.CrossRefPubMed
29.
Zurück zum Zitat Duns G, van den Berg E, van Duivenbode I, Osinga J, Hollema H, Hofstra RM, Kok K: Histone methyltransferase gene SETD2 is a novel tumor suppressor gene in clear cell renal cell carcinoma. Cancer Res. 2010, 70: 4287-4291. 10.1158/0008-5472.CAN-10-0120.CrossRefPubMed Duns G, van den Berg E, van Duivenbode I, Osinga J, Hollema H, Hofstra RM, Kok K: Histone methyltransferase gene SETD2 is a novel tumor suppressor gene in clear cell renal cell carcinoma. Cancer Res. 2010, 70: 4287-4291. 10.1158/0008-5472.CAN-10-0120.CrossRefPubMed
30.
Zurück zum Zitat Evans DG, Eccles DM, Rahman N, Young K, Bulman M, Amir E, Shenton A, Howell A, Lalloo F: A new scoring system for the chances of identifying a BRCA1/2 mutation outperforms existing models including BRCAPRO. J Med Genet. 2004, 41: 474-480. 10.1136/jmg.2003.017996.CrossRefPubMedPubMedCentral Evans DG, Eccles DM, Rahman N, Young K, Bulman M, Amir E, Shenton A, Howell A, Lalloo F: A new scoring system for the chances of identifying a BRCA1/2 mutation outperforms existing models including BRCAPRO. J Med Genet. 2004, 41: 474-480. 10.1136/jmg.2003.017996.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Evans DG, Lalloo F, Wallace A, Rahman N: Update on the Manchester Scoring System for BRCA1 and BRCA2 testing. J Med Genet. 2005, 42: e39-10.1136/jmg.2005.031989.CrossRefPubMedPubMedCentral Evans DG, Lalloo F, Wallace A, Rahman N: Update on the Manchester Scoring System for BRCA1 and BRCA2 testing. J Med Genet. 2005, 42: e39-10.1136/jmg.2005.031989.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Du P, Kibbe WA, Lin SM: lumi: a pipeline for processing Illumina microarray. Bioinformatics. 2008, 24: 1547-1548. 10.1093/bioinformatics/btn224.CrossRefPubMed Du P, Kibbe WA, Lin SM: lumi: a pipeline for processing Illumina microarray. Bioinformatics. 2008, 24: 1547-1548. 10.1093/bioinformatics/btn224.CrossRefPubMed
33.
Zurück zum Zitat Edgar R, Domrachev M, Lash AE: Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002, 30: 207-210. 10.1093/nar/30.1.207.CrossRefPubMedPubMedCentral Edgar R, Domrachev M, Lash AE: Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002, 30: 207-210. 10.1093/nar/30.1.207.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Smyth GK: Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2003, 3: :Article3. Smyth GK: Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2003, 3: :Article3.
35.
Zurück zum Zitat Desmet FO, Hamroun D, Lalande M, Collod-Beroud G, Claustres M, Beroud C: Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 2009, 37: e67-10.1093/nar/gkp215.CrossRefPubMedPubMedCentral Desmet FO, Hamroun D, Lalande M, Collod-Beroud G, Claustres M, Beroud C: Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 2009, 37: e67-10.1093/nar/gkp215.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Esterbauer H, Oberkofler H, Krempler F, Patsch W: Human peroxisome proliferator activated receptor gamma coactivator 1 (PPARGC1) gene: cDNA sequence, genomic organization, chromosomal localization, and tissue expression. Genomics. 1999, 62: 98-102. 10.1006/geno.1999.5977.CrossRefPubMed Esterbauer H, Oberkofler H, Krempler F, Patsch W: Human peroxisome proliferator activated receptor gamma coactivator 1 (PPARGC1) gene: cDNA sequence, genomic organization, chromosomal localization, and tissue expression. Genomics. 1999, 62: 98-102. 10.1006/geno.1999.5977.CrossRefPubMed
37.
Zurück zum Zitat Knutti D, Kaul A, Kralli A: A tissue-specific coactivator of steroid receptors, identified in a functional genetic screen. Mol Cell Biol. 2000, 20: 2411-2422. 10.1128/MCB.20.7.2411-2422.2000.CrossRefPubMedPubMedCentral Knutti D, Kaul A, Kralli A: A tissue-specific coactivator of steroid receptors, identified in a functional genetic screen. Mol Cell Biol. 2000, 20: 2411-2422. 10.1128/MCB.20.7.2411-2422.2000.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM: Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 1999, 98: 115-124. 10.1016/S0092-8674(00)80611-X.CrossRefPubMed Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM: Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 1999, 98: 115-124. 10.1016/S0092-8674(00)80611-X.CrossRefPubMed
39.
Zurück zum Zitat St-Pierre J, Lin J, Krauss S, Tarr PT, Yang R, Newgard CB, Spiegelman BM: Bioenergetic analysis of peroxisome proliferator-activated receptor gamma coactivators 1alpha and 1beta (PGC-1alpha and PGC-1beta) in muscle cells. J Biol Chem. 2003, 278: 26597-26603. 10.1074/jbc.M301850200.CrossRefPubMed St-Pierre J, Lin J, Krauss S, Tarr PT, Yang R, Newgard CB, Spiegelman BM: Bioenergetic analysis of peroxisome proliferator-activated receptor gamma coactivators 1alpha and 1beta (PGC-1alpha and PGC-1beta) in muscle cells. J Biol Chem. 2003, 278: 26597-26603. 10.1074/jbc.M301850200.CrossRefPubMed
40.
Zurück zum Zitat Kressler D, Schreiber SN, Knutti D, Kralli A: The PGC-1-related protein PERC is a selective coactivator of estrogen receptor alpha. J Biol Chem. 2002, 277: 13918-13925. 10.1074/jbc.M201134200.CrossRefPubMed Kressler D, Schreiber SN, Knutti D, Kralli A: The PGC-1-related protein PERC is a selective coactivator of estrogen receptor alpha. J Biol Chem. 2002, 277: 13918-13925. 10.1074/jbc.M201134200.CrossRefPubMed
41.
Zurück zum Zitat Tcherepanova I, Puigserver P, Norris JD, Spiegelman BM, McDonnell DP: Modulation of estrogen receptor-alpha transcriptional activity by the coactivator PGC-1. J Biol Chem. 2000, 275: 16302-16308. 10.1074/jbc.M001364200.CrossRefPubMed Tcherepanova I, Puigserver P, Norris JD, Spiegelman BM, McDonnell DP: Modulation of estrogen receptor-alpha transcriptional activity by the coactivator PGC-1. J Biol Chem. 2000, 275: 16302-16308. 10.1074/jbc.M001364200.CrossRefPubMed
42.
Zurück zum Zitat Platet N, Cathiard AM, Gleizes M, Garcia M: Estrogens and their receptors in breast cancer progression: a dual role in cancer proliferation and invasion. Crit Rev Oncol Hematol. 2004, 51: 55-67. 10.1016/j.critrevonc.2004.02.001.CrossRefPubMed Platet N, Cathiard AM, Gleizes M, Garcia M: Estrogens and their receptors in breast cancer progression: a dual role in cancer proliferation and invasion. Crit Rev Oncol Hematol. 2004, 51: 55-67. 10.1016/j.critrevonc.2004.02.001.CrossRefPubMed
43.
Zurück zum Zitat Anderson E: The role of oestrogen and progesterone receptors in human mammary development and tumorigenesis. Breast Cancer Res. 2002, 4: 197-201. 10.1186/bcr452.CrossRefPubMedPubMedCentral Anderson E: The role of oestrogen and progesterone receptors in human mammary development and tumorigenesis. Breast Cancer Res. 2002, 4: 197-201. 10.1186/bcr452.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Roger P, Daures JP, Maudelonde T, Pignodel C, Gleizes M, Chapelle J, Marty-Double C, Baldet P, Mares P, Laffargue F, Rochefort H: Dissociated overexpression of cathepsin D and estrogen receptor alpha in preinvasive mammary tumors. Hum Pathol. 2000, 31: 593-600. 10.1053/hp.2000.6687.CrossRefPubMed Roger P, Daures JP, Maudelonde T, Pignodel C, Gleizes M, Chapelle J, Marty-Double C, Baldet P, Mares P, Laffargue F, Rochefort H: Dissociated overexpression of cathepsin D and estrogen receptor alpha in preinvasive mammary tumors. Hum Pathol. 2000, 31: 593-600. 10.1053/hp.2000.6687.CrossRefPubMed
45.
Zurück zum Zitat Osborne CK: Steroid hormone receptors in breast cancer management. Breast Cancer Res Treat. 1998, 51: 227-238. 10.1023/A:1006132427948.CrossRefPubMed Osborne CK: Steroid hormone receptors in breast cancer management. Breast Cancer Res Treat. 1998, 51: 227-238. 10.1023/A:1006132427948.CrossRefPubMed
46.
Zurück zum Zitat Ali S, Coombes RC: Estrogen receptor alpha in human breast cancer: occurrence and significance. J Mammary Gland Biol Neoplasia. 2000, 5: 271-281. 10.1023/A:1009594727358.CrossRefPubMed Ali S, Coombes RC: Estrogen receptor alpha in human breast cancer: occurrence and significance. J Mammary Gland Biol Neoplasia. 2000, 5: 271-281. 10.1023/A:1009594727358.CrossRefPubMed
47.
Zurück zum Zitat Wirtenberger M, Tchatchou S, Hemminki K, Schmutzhard J, Sutter C, Schmutzler RK, Meindl A, Wappenschmidt B, Kiechle M, Arnold N, et al: Associations of genetic variants in the estrogen receptor coactivators PPARGC1A, PPARGC1B and EP300 with familial breast cancer. Carcinogenesis. 2006, 27: 2201-2208. 10.1093/carcin/bgl067.CrossRefPubMed Wirtenberger M, Tchatchou S, Hemminki K, Schmutzhard J, Sutter C, Schmutzler RK, Meindl A, Wappenschmidt B, Kiechle M, Arnold N, et al: Associations of genetic variants in the estrogen receptor coactivators PPARGC1A, PPARGC1B and EP300 with familial breast cancer. Carcinogenesis. 2006, 27: 2201-2208. 10.1093/carcin/bgl067.CrossRefPubMed
48.
Zurück zum Zitat Shi J, Hu Z, Pabon K, Scotto KW: Caffeine regulates alternative splicing in a subset of cancer-associated genes: a role for SC35. Mol Cell Biol. 2008, 28: 883-895. 10.1128/MCB.01345-07.CrossRefPubMed Shi J, Hu Z, Pabon K, Scotto KW: Caffeine regulates alternative splicing in a subset of cancer-associated genes: a role for SC35. Mol Cell Biol. 2008, 28: 883-895. 10.1128/MCB.01345-07.CrossRefPubMed
49.
Zurück zum Zitat Yu L, Coelho JE, Zhang X, Fu Y, Tillman A, Karaoz U, Fredholm BB, Weng Z, Chen JF: Uncovering multiple molecular targets for caffeine using a drug target validation strategy combining A 2A receptor knockout mice with microarray profiling. Physiol Genomics. 2009, 37: 199-210. 10.1152/physiolgenomics.90353.2008.CrossRefPubMedPubMedCentral Yu L, Coelho JE, Zhang X, Fu Y, Tillman A, Karaoz U, Fredholm BB, Weng Z, Chen JF: Uncovering multiple molecular targets for caffeine using a drug target validation strategy combining A 2A receptor knockout mice with microarray profiling. Physiol Genomics. 2009, 37: 199-210. 10.1152/physiolgenomics.90353.2008.CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Jeganathan D, Fox MF, Young JM, Yates JR, Osborne JP, Povey S: Nonsense-mediated RNA decay in the TSC1 gene suggests a useful tool pre- and post-positional cloning. Hum Genet. 2002, 111: 555-565. 10.1007/s00439-002-0821-4.CrossRefPubMed Jeganathan D, Fox MF, Young JM, Yates JR, Osborne JP, Povey S: Nonsense-mediated RNA decay in the TSC1 gene suggests a useful tool pre- and post-positional cloning. Hum Genet. 2002, 111: 555-565. 10.1007/s00439-002-0821-4.CrossRefPubMed
51.
Zurück zum Zitat Cheng J, Maquat LE: Nonsense codons can reduce the abundance of nuclear mRNA without affecting the abundance of pre-mRNA or the halflife of cytoplasmic mRNA. Mol Cell Biol. 1993, 13: 1892-1902.CrossRefPubMedPubMedCentral Cheng J, Maquat LE: Nonsense codons can reduce the abundance of nuclear mRNA without affecting the abundance of pre-mRNA or the halflife of cytoplasmic mRNA. Mol Cell Biol. 1993, 13: 1892-1902.CrossRefPubMedPubMedCentral
52.
Zurück zum Zitat Mendell JT, Ap Rhys CMJ, Dietz HC: Separable roles for rent1/hUpf1 in altered splicing and decay of nonsense transcripts. Science. 2002, 298: 419-422. 10.1126/science.1074428.CrossRefPubMed Mendell JT, Ap Rhys CMJ, Dietz HC: Separable roles for rent1/hUpf1 in altered splicing and decay of nonsense transcripts. Science. 2002, 298: 419-422. 10.1126/science.1074428.CrossRefPubMed
53.
Zurück zum Zitat Mendell JT, Sharifi NA, Meyers JL, Martinez-Murillo F, Dietz HC: Nonsense surveillance regulates expression of diverse classes of mammalian transcripts and mutes genomic noise. Nature Genetics. 2004, 36: 1073-1078. 10.1038/ng1429.CrossRefPubMed Mendell JT, Sharifi NA, Meyers JL, Martinez-Murillo F, Dietz HC: Nonsense surveillance regulates expression of diverse classes of mammalian transcripts and mutes genomic noise. Nature Genetics. 2004, 36: 1073-1078. 10.1038/ng1429.CrossRefPubMed
54.
Zurück zum Zitat Shin N, You KT, Lee H, Kim WK, Song M, Choi HJ, Rhee H, Nam SW, Kim H: Identification of frequently mutated genes with relevance to nonsense mediated mRNA decay in the high microsatellite instability cancers. Int J Cancer. 2010, 128: 2872-2880.CrossRefPubMed Shin N, You KT, Lee H, Kim WK, Song M, Choi HJ, Rhee H, Nam SW, Kim H: Identification of frequently mutated genes with relevance to nonsense mediated mRNA decay in the high microsatellite instability cancers. Int J Cancer. 2010, 128: 2872-2880.CrossRefPubMed
55.
Zurück zum Zitat Mattila H, Schindler M, Isotalo J, Ikonen T, Vihinen M, Oja H, Tammela TL, Wahlfors T, Schleutker J: NMD and microRNA expression profiling of the HPCX1 locus reveal MAGEC1 as a candidate prostate cancer predisposition gene. BMC Cancer. 2011, 11: 327-10.1186/1471-2407-11-327.CrossRefPubMedPubMedCentral Mattila H, Schindler M, Isotalo J, Ikonen T, Vihinen M, Oja H, Tammela TL, Wahlfors T, Schleutker J: NMD and microRNA expression profiling of the HPCX1 locus reveal MAGEC1 as a candidate prostate cancer predisposition gene. BMC Cancer. 2011, 11: 327-10.1186/1471-2407-11-327.CrossRefPubMedPubMedCentral
56.
Zurück zum Zitat Linde L, Boelz S, Neu-Yilik G, Kulozik AE, Kerem B: The efficiency of nonsense-mediated mRNA decay is an inherent character and varies among different cells. Eur J Hum Genet. 2007, 15: 1156-1162. 10.1038/sj.ejhg.5201889.CrossRefPubMed Linde L, Boelz S, Neu-Yilik G, Kulozik AE, Kerem B: The efficiency of nonsense-mediated mRNA decay is an inherent character and varies among different cells. Eur J Hum Genet. 2007, 15: 1156-1162. 10.1038/sj.ejhg.5201889.CrossRefPubMed
57.
Zurück zum Zitat Resta N, Susca FC, Di Giacomo MC, Stella A, Bukvic N, Bagnulo R, Simone C, Guanti G: A homozygous frameshift mutation in the ESCO2 gene: evidence of intertissue and interindividual variation in Nmd efficiency. J Cell Physiol. 2006, 209: 67-73. 10.1002/jcp.20708.CrossRefPubMed Resta N, Susca FC, Di Giacomo MC, Stella A, Bukvic N, Bagnulo R, Simone C, Guanti G: A homozygous frameshift mutation in the ESCO2 gene: evidence of intertissue and interindividual variation in Nmd efficiency. J Cell Physiol. 2006, 209: 67-73. 10.1002/jcp.20708.CrossRefPubMed
58.
Zurück zum Zitat Bahassi el M, Penner CG, Robbins SB, Tichy E, Feliciano E, Yin M, Liang L, Deng L, Tischfield JA, Stambrook PJ: The breast cancer susceptibility allele CHEK2*1100delC promotes genomic instability in a knock-in mouse model. Mutat Res. 2007, 616: 201-209. 10.1016/j.mrfmmm.2006.11.025.CrossRefPubMed Bahassi el M, Penner CG, Robbins SB, Tichy E, Feliciano E, Yin M, Liang L, Deng L, Tischfield JA, Stambrook PJ: The breast cancer susceptibility allele CHEK2*1100delC promotes genomic instability in a knock-in mouse model. Mutat Res. 2007, 616: 201-209. 10.1016/j.mrfmmm.2006.11.025.CrossRefPubMed
59.
Zurück zum Zitat Zetoune AB, Fontaniere S, Magnin D, Anczukow O, Buisson M, Zhang CX, Mazoyer S: Comparison of nonsense-mediated mRNA decay efficiency in various murine tissues. BMC Genet. 2008, 9: 83-CrossRefPubMedPubMedCentral Zetoune AB, Fontaniere S, Magnin D, Anczukow O, Buisson M, Zhang CX, Mazoyer S: Comparison of nonsense-mediated mRNA decay efficiency in various murine tissues. BMC Genet. 2008, 9: 83-CrossRefPubMedPubMedCentral
60.
Zurück zum Zitat Viegas MH, Gehring NH, Breit S, Hentze MW, Kulozik AE: The abundance of RNPS1, a protein component of the exon junction complex, can determine the variability in efficiency of the Nonsense Mediated Decay pathway. Nucleic Acids Res. 2007, 35: 4542-4551. 10.1093/nar/gkm461.CrossRefPubMedPubMedCentral Viegas MH, Gehring NH, Breit S, Hentze MW, Kulozik AE: The abundance of RNPS1, a protein component of the exon junction complex, can determine the variability in efficiency of the Nonsense Mediated Decay pathway. Nucleic Acids Res. 2007, 35: 4542-4551. 10.1093/nar/gkm461.CrossRefPubMedPubMedCentral
61.
Zurück zum Zitat Buffart TE, Tijssen M, El-Bchiri J, Duval A, van de Wiel MA, Ylstra B, Meijer GA, Carvalho B: NMD inhibition fails to identify tumour suppressor genes in microsatellite stable gastric cancer cell lines. BMC Med Genomics. 2009, 2: 39-10.1186/1755-8794-2-39.CrossRefPubMedPubMedCentral Buffart TE, Tijssen M, El-Bchiri J, Duval A, van de Wiel MA, Ylstra B, Meijer GA, Carvalho B: NMD inhibition fails to identify tumour suppressor genes in microsatellite stable gastric cancer cell lines. BMC Med Genomics. 2009, 2: 39-10.1186/1755-8794-2-39.CrossRefPubMedPubMedCentral
62.
Zurück zum Zitat Kunnev D, Ivanov I, Ionov Y: Par-3 partitioning defective 3 homolog (C. elegans) and androgen-induced prostate proliferative shutoff associated protein genes are mutationally inactivated in prostate cancer cells. BMC Cancer. 2009, 9: 318-10.1186/1471-2407-9-318.CrossRefPubMedPubMedCentral Kunnev D, Ivanov I, Ionov Y: Par-3 partitioning defective 3 homolog (C. elegans) and androgen-induced prostate proliferative shutoff associated protein genes are mutationally inactivated in prostate cancer cells. BMC Cancer. 2009, 9: 318-10.1186/1471-2407-9-318.CrossRefPubMedPubMedCentral
63.
Zurück zum Zitat Hamaguchi I, Ooka A, Brun A, Richter J, Dahl N, Karlsson S: Gene transfer improves erythroid development in ribosomal protein S19-deficient Diamond-Blackfan anemia. Blood. 2002, 100: 2724-2731. 10.1182/blood.V100.8.2724.CrossRefPubMed Hamaguchi I, Ooka A, Brun A, Richter J, Dahl N, Karlsson S: Gene transfer improves erythroid development in ribosomal protein S19-deficient Diamond-Blackfan anemia. Blood. 2002, 100: 2724-2731. 10.1182/blood.V100.8.2724.CrossRefPubMed
Metadaten
Titel
The application of nonsense-mediated mRNA decay inhibition to the identification of breast cancer susceptibility genes
verfasst von
Julie K Johnson
Nic Waddell
Georgia Chenevix-Trench
kConFab Investigators
Publikationsdatum
01.12.2012
Verlag
BioMed Central
Erschienen in
BMC Cancer / Ausgabe 1/2012
Elektronische ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-12-246

Weitere Artikel der Ausgabe 1/2012

BMC Cancer 1/2012 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.