Skip to main content
Erschienen in: BMC Cancer 1/2012

Open Access 01.12.2012 | Case report

Reversible Posterior Leukoencephalopathy Syndrome Induced by Pazopanib

verfasst von: Leonidas Chelis, Vasilios Souftas, Kiriakos Amarantidis, Nikolaos Xenidis, Eleni Chamalidou, Prokopios Dimopoulos, Prodromos Michailidis, Evagelos Christakidis, Panagiotis Prassopoulos, Stylianos Kakolyris

Erschienen in: BMC Cancer | Ausgabe 1/2012

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Background

The reversible posterior leukoencephalopathy syndrome is a clinical/radiological syndrome characterized by headache, seizures, impaired vision, acute hypertension, and typical magnetic resonance imaging findings. There are several reports in the literature that depict its occurrence in cancer patients. The list of common anticancer and supportive care drugs that predispose to reversible posterior leukoencephalopathy syndrome is expanding and includes not only a large number of chemotherapeutic agents but also an increased number of new targeted drugs, particularly angiogenesis inhibitors such as bevacizumab,sorefenib and sunitinib. Pazopanib is an oral tyrosine kinase inhibitor targeting vascular endothelial growth factor receptor, platelet-derived growth factor receptor, and c-Kit which after a positive phase III randomized clinical trial in patients with advanced renal cell cancer received FDA approval for the treatment of advanced renal cell carcinoma. Until now no cases of reversible posterior leukoencephalopathy syndrome induced by pazopanib have been reported.

Case report

We present the case of a 40 years old female patient with heavily pre-treated metastatic renal cell carcinoma who received pazopanib as salvage treatment. After 21 days of pazopanib therapy the patient referred to the emergency department with epileptic seizure, impaired vision at both eyes and headache. MRI of the brain revealed subcortical oedema at the occipital and parietal lobes bilaterally. She was treated with anticonvulsants, i.v. administration of mannitol and antihypertensives and she recovered completely from her symptoms and was discharged on the tenth hospital day. A brain MRI performed 3 weeks after showed that the subcortical oedema had been subsided.

Conclusion

In conclusion this is the first case of pazopanib induced reversible posterior leukoencephalopathy syndrome. Although usually reversible, this syndrome is a serious and potentially life threatening adverse effect, if untreated, that should be considered by physicians treating metastatic renal cell carcinoma patients with pazopanib.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1471-2407-12-489) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

CL: conception and design of the manuscript, manuscript drafting. SV: acquisition, analysis and interpretation of data. AK: data acquisition and critical revision of the manuscript. XN: data acquisition and critical revision of the manuscript. CE: coordination and helped to draft the manuscript. DP: data acquisition and analysis, review of the literature. MP: data acquisition and analysis, review of the literature. CE: data acquisition and analysis, review of the literature. PP: critical revision and final approval of the manuscript. KS: critical revision and final approval of the manuscript. All authors read and approved the final manuscript.
Abkürzungen
RPLS
Reversible posterior leukoencephalopathy syndrome
FLAIR
Fluid-attenuated inversion recovery
G-CSF
Granulocyte colony-stimulating factor
TKI
Tyrosine kinase inhibitor
VEGFR
Vascular endothelial growth factor receptor
PDGFR
Platelet-derived growth factor receptor
RCC
Renal cell carcinoma
eNOS
Endothelial nitric oxide synthase.

Background

The reversible posterior leukoencephalopathy syndrome (RPLS) has been reported as a distinct clinical entity by several investigators [1, 2]. It is a clinical/radiological syndrome characterized by headache, seizures, impaired vision, acute hypertension, and typical magnetic resonance imaging findings such as hyperintensity on T2-weighted and fluid-attenuated inversion recovery (FLAIR) images involving the posterior circulation areas, especially the parietal and occipital lobes which are usually symmetric. The hallmark of RPLS is the almost complete recovery in the majority of the cases of clinical symptoms and brain imaging findings, which usually occurs within days to weeks [3].
The correlation of the syndrome with several conditions like hypertensive encephalopathy, eclampsia, collagen vascular disorders, renal dysfunction, thrombotic thrombocytopenic purpura, acute porphyria, Guillain-Barré syndrome and the usage of immunosuppressive agents (especially calcineurin inhibitors like cyclosporine) is well defined [3]. There are numerous case reports in the literature that depict its occurrence in cancer patients. The list of common anticancer and supportive care drugs that predispose to RPLS is expanding and includes a large number of chemotherapeutic agents such as cisplatin, cyclophosphamide, high-dose corticosteroids, L-asparaginase, and growth supportive factors such as granulocyte colony-stimulating factor (G-CSF), and erythropoietin [4]. In the last few years an increased number of case reports involving new targeted drugs, particularly angiogenesis inhibitors have been reported. Agents such as bevacizumab, sunitinib and sorafenib and other targeted drugs have been implicated in new cases of RPLS [510].
Pazopanib is an oral tyrosine kinase inhibitor (TKI) targeting vascular endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR), and c-Kit [11]. After a positive phase III randomized clinical trial in patients with advanced renal cell cancer [12] pazopanib was approved by the US FDA in October 2009 for the treatment of advanced renal cell carcinoma (RCC). The toxicity profile of the drug mimics that of other anti-angiogenesis TKIs consisting mainly of diarrhoea, hypertension, nausea and fatigue but until now no cases of RPLS induced by pazopanib have been reported [13, 14].

Case report

We present the case of a 40 years old female patient who at the age of 30 underwent right nephrectomy for a clear cell renal cell carcinoma. Five years later she developed lung and osseous metastases and the biopsy of the lung lesion revealed metastatic RCC. Bevacizumab plus interferon-A was administered as 1st line treatment and the disease evaluation after three months revealed disease progression. She was treated with sunitinib malate as 2nd line therapy for one year achieving stable disease as best response. At relapse, sorafenib was given as 3rd line treatment and the patient achieved a remarkable partial response lasting almost for 36 months. Due to disease progression everolimus was initiated as 4th line treatment and the disease evaluation after 6 months revealed progression at her bone metastases, stable disease at lung lesions and no evidence of brain metastases. The ECOG performance status of the patient was 1 due to mild pain at her right hip, she had no history of hypertension and since pazopanib has shown effectiveness also in cytokine-pretreated patients with metastatic RCC [12], we decided to administer pazopanib as 5th line treatment. Her medical history was insignificant for other diseases than metastatic renal carcinoma. The concomitant medication during pazopanib treatment consisted of fentanyl transdermal at 25mg and tramadol hydrochloride.
After 21 days of pazopanib therapy the patient referred to the emergency department with epileptic seizure, impaired vision at both eyes and bilateral, temporal and pulsutive headache. The physical examination revealed hypertension 165/105 mmHg (grade III toxicity), suspension of both direct and indirect papillary reflexes for both eyes and bilateral blurred vision and diplopia. On neurological examination there was no evidence of lateralizing or focal features. Blood tests, including CBC, blood chemistry, coagulation study and gasometry, were unremarkable. The performed urine analysis showed no evidence of significant proteinuria (dipstick staining: 1+) . Retinoscopy was also insignificant. MRI of the brain revealed subcortical oedema at the occipital and parietal lobes bilaterally (hyperintense signals on FLAIR and T2 sequences, absence of lesions on T1 sequence). These findings are given in Figure. 1: 1.A, 1.B (FLAIR), 1.C, 1.D (T2), 1.E, 1.F (T1), respectively.
Pazopanib administration was withheld and the patient was treated with anticonvulsants (phenytoin), i.v. administration of mannitol and antihypertensives : furosemide 40 mg given i.v on the first date and perindopril 4 mg given orally the following days. One day later the seizures were stopped, her visual ability was restored and the blood pressure was normalized after few hours with furosemide and remained within normal levels the next days. The headache was more intense the first day but after the normalization of the blood pressure it was gradually improved and completely remitted after 5 days. A lumbar puncture was performed and the cerebrospinal fluid analysis revealed no cells, normal physical characteristics, normal chemical tests and negative microscopic examination. In addition the viruses tests for HSV1, HSV2, CMV, EBV were negative. She completely recovered from her symptoms and was discharged on the tenth hospital day.
The patient underwent a brain CT scan, two weeks after the onset of the symptoms, which was negative for abnormal findings. A brain MRI performed 3 weeks after confirmed the CT scan findings showing that the subcortical oedema had been subsided from both FLAIR and T2 sequences. (Figure. 1: 2.A, 2.B, 2.C, 2.D). Due to the serious nature of the adverse drug reaction re-administration of pazopanib was not carried out and the patient was re-challenged with sorafenib because of the excellent past response. Unfortunately, the patient died 2 months later because of disease progression in the lungs with no signs of central nervous disease.
Causality assessment carried out using the World Health Organization-Uppsala Monitoring Centre criteria revealed that the reaction had ‘probable/likely’ relationship with pazopanib usage [15]. The association was also evaluated using the Naranjo algorithm for estimating the probability of adverse drug reactions and a score of 6 indicated a ‘probable’ relationship [16].

Discussion

The case described above matches both clinical and radiological criteria of RPLS and to the best of our knowledge this is the first case of pazopanib induced RPLS. There are several other neurological complications such as brain metastasis, stroke or, drug-induced delirium which can be clinically confused with RPLS, and therefore, the differential diagnosis of the syndrome is very important; brain MRI is mandatory for the correct diagnosis.
The treatment for RPLS is symptomatic, similar to malignant hypertension, with the goal of lowering diastolic blood pressures to around100 mm Hg within few hours. Even if hypertension is mild, it is still recommended to reduce blood pressure [4]. Whereas treatment with anticonvulsants is the standard of care for seizures associated with the acute phase of RPLS, this does not necessitate longterm antiepileptic treatment [3]. In cases of RPLS induced by anticancer drugs, it is recommended that the offending agent be withdrawn, if possible, and that blood pressure be controlled [4]. In selected cases where there is no alternative treatment, anti-VEGF agents can be re-administered at lower dose with close monitoring of blood pressure [17].
Although the pathogenesis of RPLS is not fully understood there are several mechanisms that could be proposed to explain how the syndrome was triggered by pazopanib in our patient. The administration of pazopanib for mRCC patients has been frequently correlated with hypertension ranging between 40-93% and a significant proportion of them (9-25%) developed severe (grade III) hypertension [12, 18]. Even a modest increase in blood pressure, if it is acute, especially in the presence of an underlying endothelial dysfunction, may exceed protective autoregulatory mechanisms resulting in breakdown of the blood–brain-barrier, pathological vasodilation, capillary leakage which result to extravasation of fluids into the brain parenchyma [19]. The posterior circulation is more vulnerable to those sudden changes of blood pressure due to the relative lack of adrenergic nerves around pial and intracerebral vessels in comparison with the anterior circulation of the brain [20]. Moreover, pazopanib has strong antiangiogenic properties via inhibition of the VEGF and PDGF pathways in vessels cells which suggests that the vascular endothelium may be an important site of toxicity [11].Disrupted or immature vascular endothelium may result in vascular leak and white matter oedema characteristic of RPLS especially in the setting of a sudden increase of the blood pressure like that occurring in our patient.
It is worth mentioning that in a study about the association of RPLS with anticancer drugs [21], a predominance of RPLS cases affecting women, especially those of premenopausal age was reported. There are several genes that are oestrogen-regulated and are actively involved in the vascular physiology like endothelin-1, prostacyclin cyclooxygenase, VEGF and endothelial nitric oxide synthase (eNOS). Our patient was a 40 years old premenopausal woman and oestrogen activation of those genes may also contributed to endothelial toxicity and played a role in the pathogenesis of RPLS [22, 23]. This hypothesis is also fueled by the well established correlation of RPLS and eclampsia.

Conclusion

In conclusion this is the first case of pazopanib induced RPLS. Although usually reversible, RPLS is a serious and potentially life threatening adverse effect, if untreated, that should be considered by physicians treating mRCC patients with pazopanib. As we have entered the era of multiple antiangiogenic targeted agents for the treatment of mRCC more cases of RLPS are anticipated.
Written informed consent was obtained from the patient’s husband for publication of this Case report and any accompanying images. A copy of the written consent is available for review by the Series Editor of this journal.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

CL: conception and design of the manuscript, manuscript drafting. SV: acquisition, analysis and interpretation of data. AK: data acquisition and critical revision of the manuscript. XN: data acquisition and critical revision of the manuscript. CE: coordination and helped to draft the manuscript. DP: data acquisition and analysis, review of the literature. MP: data acquisition and analysis, review of the literature. CE: data acquisition and analysis, review of the literature. PP: critical revision and final approval of the manuscript. KS: critical revision and final approval of the manuscript. All authors read and approved the final manuscript.
Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
1.
Zurück zum Zitat Hinchey J, Chaves C, Appignani B, Breen J, Pao L, Wang A, Pessin MS, Lamy C, Mas JL, Caplan LR: A reversible posterior leukoencephalopathy syndrome. N Engl J Med. 1996, 334: 494-500. 10.1056/NEJM199602223340803.CrossRefPubMed Hinchey J, Chaves C, Appignani B, Breen J, Pao L, Wang A, Pessin MS, Lamy C, Mas JL, Caplan LR: A reversible posterior leukoencephalopathy syndrome. N Engl J Med. 1996, 334: 494-500. 10.1056/NEJM199602223340803.CrossRefPubMed
2.
Zurück zum Zitat Schwartz RB, Jones KM, Kalina P, Bajakian RL, Mantello MT, Garada B, Holman BL: Hypertensive encephalopathy: findings on CT, MR imaging, and SPECT imaging in 14 cases. AJR Am J Roentgenol. 1992, 159 (2): 379-383.CrossRefPubMed Schwartz RB, Jones KM, Kalina P, Bajakian RL, Mantello MT, Garada B, Holman BL: Hypertensive encephalopathy: findings on CT, MR imaging, and SPECT imaging in 14 cases. AJR Am J Roentgenol. 1992, 159 (2): 379-383.CrossRefPubMed
3.
Zurück zum Zitat Lee VH, Wijdicks EF, Manno EM, Rabinstein AA: Clinical spectrum of reversible posterior leukoencephalopathy syndrome. Arch Neurol. 2008, 65: 205-210. 10.1001/archneurol.2007.46.PubMed Lee VH, Wijdicks EF, Manno EM, Rabinstein AA: Clinical spectrum of reversible posterior leukoencephalopathy syndrome. Arch Neurol. 2008, 65: 205-210. 10.1001/archneurol.2007.46.PubMed
4.
Zurück zum Zitat Vaughn C, Zhang L, Schiff D: Reversible Posterior Leukoencephalopathy Syndrome in Cancer. Curr Oncol Rep. 2008, 10 (1): 86-91. 10.1007/s11912-008-0013-z.CrossRefPubMed Vaughn C, Zhang L, Schiff D: Reversible Posterior Leukoencephalopathy Syndrome in Cancer. Curr Oncol Rep. 2008, 10 (1): 86-91. 10.1007/s11912-008-0013-z.CrossRefPubMed
5.
Zurück zum Zitat Glusker P, Recht L, Lane B: Reversible posterior leukoencephalopathy syndrome and bevacizumab. N Engl J Med. 2006, 354: 980-981.CrossRefPubMed Glusker P, Recht L, Lane B: Reversible posterior leukoencephalopathy syndrome and bevacizumab. N Engl J Med. 2006, 354: 980-981.CrossRefPubMed
6.
Zurück zum Zitat Ozcan C, Wong S, Hari P: Reversible posterior leukoencephalopathy and bevacizumab. N Engl J Med. 2006, 354: 981-982. Ozcan C, Wong S, Hari P: Reversible posterior leukoencephalopathy and bevacizumab. N Engl J Med. 2006, 354: 981-982.
7.
Zurück zum Zitat Martin G, Bellido L, Cruz JJ: Reversible posterior leukoencephalopathy syndrome induced by sunitinib. J Clin Oncol. 2007, 25: 3559-10.1200/JCO.2007.12.8710.CrossRefPubMed Martin G, Bellido L, Cruz JJ: Reversible posterior leukoencephalopathy syndrome induced by sunitinib. J Clin Oncol. 2007, 25: 3559-10.1200/JCO.2007.12.8710.CrossRefPubMed
8.
Zurück zum Zitat Govindarajan R, Adusumilli J, Baxter DL, El-Khoueiry A, Harik SI: Reversible posterior leukoencephalopathy syndrome induced by RAF kinase inhibitor BAY 43–9006. J Clin Oncol. 2006, 24: 48-10.1200/JCO.2006.08.4608.CrossRef Govindarajan R, Adusumilli J, Baxter DL, El-Khoueiry A, Harik SI: Reversible posterior leukoencephalopathy syndrome induced by RAF kinase inhibitor BAY 43–9006. J Clin Oncol. 2006, 24: 48-10.1200/JCO.2006.08.4608.CrossRef
9.
Zurück zum Zitat Tlemsani C, Mir O, Boudou-Rouquette P, Huillard O, Maley K, Ropert S, Coriat R, Goldwasser F: Posterior reversible encephalopathy syndrome induced by anti-VEGF agents. Target Oncol. 2011, 6 (4): 253-258. 10.1007/s11523-011-0201-x. Epub 2011 Nov 17.CrossRefPubMed Tlemsani C, Mir O, Boudou-Rouquette P, Huillard O, Maley K, Ropert S, Coriat R, Goldwasser F: Posterior reversible encephalopathy syndrome induced by anti-VEGF agents. Target Oncol. 2011, 6 (4): 253-258. 10.1007/s11523-011-0201-x. Epub 2011 Nov 17.CrossRefPubMed
10.
Zurück zum Zitat Cooksey T, Haji-Michael P: Posterior reversible encephalopathy syndrome associated with deoxycoformycin and alemtuzumab. J R Coll Physicians Edin. 2011, 41 (3): 215-217. 10.4997/JRCPE.2011.306.CrossRef Cooksey T, Haji-Michael P: Posterior reversible encephalopathy syndrome associated with deoxycoformycin and alemtuzumab. J R Coll Physicians Edin. 2011, 41 (3): 215-217. 10.4997/JRCPE.2011.306.CrossRef
11.
Zurück zum Zitat Harris PA, Boloor A, Cheung M, Kumar R, Crosby RM, Davis-Ward RG, Epperly AH, Hinkle KW, Hunter RN, Johnson JH, Knick VB, Laudeman CP, Luttrell DK, Mook RA, Nolte RT, Rudolph SK, Szewczyk JR, Truesdale AT, Veal JM, Wang L, Stafford JA: Discovery of 5-[[4-[(2,3-dimethyl-2Hindazol-6-yl)methylamino]-2-pyrimidinyl]amino]-2- methylbenzenesulfonamide (pazopanib), a novel and potent vascular endothelial growth factor receptor inhibitor. J Med Chem. 2008, 51: 4632-4640. 10.1021/jm800566m.CrossRefPubMed Harris PA, Boloor A, Cheung M, Kumar R, Crosby RM, Davis-Ward RG, Epperly AH, Hinkle KW, Hunter RN, Johnson JH, Knick VB, Laudeman CP, Luttrell DK, Mook RA, Nolte RT, Rudolph SK, Szewczyk JR, Truesdale AT, Veal JM, Wang L, Stafford JA: Discovery of 5-[[4-[(2,3-dimethyl-2Hindazol-6-yl)methylamino]-2-pyrimidinyl]amino]-2- methylbenzenesulfonamide (pazopanib), a novel and potent vascular endothelial growth factor receptor inhibitor. J Med Chem. 2008, 51: 4632-4640. 10.1021/jm800566m.CrossRefPubMed
12.
Zurück zum Zitat Sternberg CN, Davis ID, Mardiak J, Szczylik C, Lee E, Wagstaff J, Barrios CH, Salman P, Gladkov OA, Kavina A, Zarbá JJ, Chen M, McCann L, Pandite L, Roychowdhury DF, Hawkins RE: A randomized, double-blind phase lll study of pazopanib in treatment-naïve and cytokine-pretreated patients with advanced renal cell carcinoma (RCC). J Clin Oncol. 2009, 27 (15s): A5021- Sternberg CN, Davis ID, Mardiak J, Szczylik C, Lee E, Wagstaff J, Barrios CH, Salman P, Gladkov OA, Kavina A, Zarbá JJ, Chen M, McCann L, Pandite L, Roychowdhury DF, Hawkins RE: A randomized, double-blind phase lll study of pazopanib in treatment-naïve and cytokine-pretreated patients with advanced renal cell carcinoma (RCC). J Clin Oncol. 2009, 27 (15s): A5021-
13.
Zurück zum Zitat Di Lorenzo G, Porta C, Bellmunt J, Sternberg C, Kirkali Z, Staehler M, Joniau S, Montorsi F, Buonerba C: Toxicities of Targeted Therapy and Their Management in Kidney Cancer. EUROPEAN UROLOGY. 2011, 59: 526-540. 10.1016/j.eururo.2011.01.002.CrossRefPubMed Di Lorenzo G, Porta C, Bellmunt J, Sternberg C, Kirkali Z, Staehler M, Joniau S, Montorsi F, Buonerba C: Toxicities of Targeted Therapy and Their Management in Kidney Cancer. EUROPEAN UROLOGY. 2011, 59: 526-540. 10.1016/j.eururo.2011.01.002.CrossRefPubMed
16.
Zurück zum Zitat Naranjo CA, Busto U, Sellers EM, Sandor P, Ruiz I, Roberts EA, Janecek E, Domecq C, Greenblatt DJ: A method for estimating the probability of adverse drug reactions. Clin Pharmacol Ther. 1981, 30 (2): 239-245. 10.1038/clpt.1981.154. PMID 7249508.CrossRefPubMed Naranjo CA, Busto U, Sellers EM, Sandor P, Ruiz I, Roberts EA, Janecek E, Domecq C, Greenblatt DJ: A method for estimating the probability of adverse drug reactions. Clin Pharmacol Ther. 1981, 30 (2): 239-245. 10.1038/clpt.1981.154. PMID 7249508.CrossRefPubMed
17.
Zurück zum Zitat Lou E, Turner S, Sumrall A, Reardon DA, Desjardins A, Peters KB, et al: Bevacizumab-induced reversible posterior leukoencephalopathy syndrome and successful retreatment in a patient with glioblastoma. J Clin Oncol. 2011, 10.1200/JCO.2011.36.1865. Lou E, Turner S, Sumrall A, Reardon DA, Desjardins A, Peters KB, et al: Bevacizumab-induced reversible posterior leukoencephalopathy syndrome and successful retreatment in a patient with glioblastoma. J Clin Oncol. 2011, 10.1200/JCO.2011.36.1865.
18.
Zurück zum Zitat Hutson TE, Davis ID, Machiels JP, De Souza PL, Rottey S, Hong BF, Epstein RJ, Baker KL, McCann L, Crofts T, Pandite L, Figlin RA: Biomarker analysis and final efficacy and safety results of a phase II renal cell carcinoma trial with pazopanib (GW786034), a multi-kinase angiogenesis inhibitor. J Clin Oncol. 2008, 26: 261s-abstr 5046 Hutson TE, Davis ID, Machiels JP, De Souza PL, Rottey S, Hong BF, Epstein RJ, Baker KL, McCann L, Crofts T, Pandite L, Figlin RA: Biomarker analysis and final efficacy and safety results of a phase II renal cell carcinoma trial with pazopanib (GW786034), a multi-kinase angiogenesis inhibitor. J Clin Oncol. 2008, 26: 261s-abstr 5046
19.
Zurück zum Zitat Strandgaard S, Paulson O: Cerebral autoregulation. Stroke. 1994, 15: 413-417.CrossRef Strandgaard S, Paulson O: Cerebral autoregulation. Stroke. 1994, 15: 413-417.CrossRef
20.
Zurück zum Zitat Edvinsson L, Oman C, Sjoberg N: Autonomic nerves, mast cells, and amine receptors in human brain vessels. Brain Res. 1976, 15: 377-393.CrossRef Edvinsson L, Oman C, Sjoberg N: Autonomic nerves, mast cells, and amine receptors in human brain vessels. Brain Res. 1976, 15: 377-393.CrossRef
21.
Zurück zum Zitat Marinella MA, Markert RJ: Reversible posterior leucoencephalopathy syndrome associated with anticancer drugs. Intern Med J. 2009, 39: 826-834. 10.1111/j.1445-5994.2008.01829.x.CrossRefPubMed Marinella MA, Markert RJ: Reversible posterior leucoencephalopathy syndrome associated with anticancer drugs. Intern Med J. 2009, 39: 826-834. 10.1111/j.1445-5994.2008.01829.x.CrossRefPubMed
22.
Zurück zum Zitat Mendelsohn ME: Genomic and nongenomic effects of estrogen in the vasculature. Am J Cardiol. 2002, 90 (Suppl): 3F-6F.CrossRefPubMed Mendelsohn ME: Genomic and nongenomic effects of estrogen in the vasculature. Am J Cardiol. 2002, 90 (Suppl): 3F-6F.CrossRefPubMed
23.
Zurück zum Zitat Mendelsohn ME, Karas RH: The protective effects of estrogen on the cardiovascular system. N Engl J Med. 1999, 340: 1801-1811. 10.1056/NEJM199906103402306.CrossRefPubMed Mendelsohn ME, Karas RH: The protective effects of estrogen on the cardiovascular system. N Engl J Med. 1999, 340: 1801-1811. 10.1056/NEJM199906103402306.CrossRefPubMed
Metadaten
Titel
Reversible Posterior Leukoencephalopathy Syndrome Induced by Pazopanib
verfasst von
Leonidas Chelis
Vasilios Souftas
Kiriakos Amarantidis
Nikolaos Xenidis
Eleni Chamalidou
Prokopios Dimopoulos
Prodromos Michailidis
Evagelos Christakidis
Panagiotis Prassopoulos
Stylianos Kakolyris
Publikationsdatum
01.12.2012
Verlag
BioMed Central
Erschienen in
BMC Cancer / Ausgabe 1/2012
Elektronische ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-12-489

Weitere Artikel der Ausgabe 1/2012

BMC Cancer 1/2012 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.