Skip to main content
Erschienen in: BMC Cancer 1/2012

Open Access 01.12.2012 | Review

Patient-tailored modulation of the immune system may revolutionize future lung cancer treatment

verfasst von: Marlies E Heuvers, Joachim G Aerts, Robin Cornelissen, Harry Groen, Henk C Hoogsteden, Joost P Hegmans

Erschienen in: BMC Cancer | Ausgabe 1/2012

Abstract

Cancer research has devoted most of its energy over the past decades on unraveling the control mechanisms within tumor cells that govern its behavior. From this we know that the onset of cancer is the result of cumulative genetic mutations and epigenetic alterations in tumor cells leading to an unregulated cell cycle, unlimited replicative potential and the possibility for tissue invasion and metastasis. Until recently it was often thought that tumors are more or less undetected or tolerated by the patient’s immune system causing the neoplastic cells to divide and spread without resistance. However, it is without any doubt that the tumor environment contains a wide variety of recruited host immune cells. These tumor infiltrating immune cells influence anti-tumor responses in opposing ways and emerges as a critical regulator of tumor growth. Here we provide a summary of the relevant immunological cell types and their complex and dynamic roles within an established tumor microenvironment. For this, we focus on both the systemic compartment as well as the local presence within the tumor microenvironment of late-stage non-small cell lung cancer (NSCLC), admitting that this multifaceted cellular composition will be different from earlier stages of the disease, between NSCLC patients. Understanding the paradoxical role that the immune system plays in cancer and increasing options for their modulation may alter the odds in favor of a more effective anti-tumor immune response. We predict that the future standard of care of lung cancer will involve patient-tailor-made combination therapies that associate (traditional) chemotherapeutic drugs and biologicals with immune modulating agents and in this way complement the therapeutic armamentarium for this disease.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1471-2407-12-580) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

MH contributed to literature research, data-analysis, interpretation of findings and drafting of the manuscript. JA contributed to study design, literature research, data-analysis, interpretation of findings and critical editing of the manuscript. RC contributed to literature research, data-analysis, interpretarion of findings and drafting of the manuscript. HG contributed to drafting of the manuscript. HH contributed to drafting of the manuscript. JH contributed to study design, literature research, data-analysis, interpretation of findings and critical editing of the manuscript. All authors read and approved of the final manuscript.
Abkürzungen
APC
Antigen presenting cell(s)
CTL
Cytotoxic T lymphocyte(s)
CTLA-4
Cytotoxic T lymphocyte-associated antigen 4
DC
Dendritic cell(s)
MDSC
Myeloid-derived suppressor cell(s)
NK(T)
Natural killer (T) cell(s)
TAM
Tumor-associated macrophage(s)
TIL
Tumor infiltration lymphocyte(s)
Treg
Regulatory T cell(s).

Review

Current NSCLC treatment

Treatment of lung cancer is currently based on the patient’s clinical signs and symptoms, tumor stage and subtype, medical and family history, and data from imaging and laboratory evaluation. Most conventional cancer therapies, such as radiotherapy and chemotherapy are restricted by adverse effects on normal tissue. Currently NSCLC therapy is moving towards personalized medicine where the genetic profile of each patient’s tumor is identified and specific therapies that inhibit the key targets of the oncogenic activation are targeted. In approximately 60% of all NSCLC cases, specific mutations can be identified, of which ± 20% can be targeted with specific drugs at this moment (e.g. erlotinib, gefitinib, crizotinib). However, most patients receiving conventional cancer treatments or targeted drugs will experience a relapse of tumor growth at a certain time. This sobering outcome demonstrates the necessity of innovative approaches in NSCLC treatment.
Recently, experimental findings and clinical observations have led to cancer-related immune inflammation being acknowledged as an additional hallmark of cancer [1, 2]. There is currently overwhelming evidence that several immunological cell types of the host influence cancer incidence, cancer growth, response to therapy and thereby the prognosis of the disease. However, the immune system plays a paradoxical role by either preventing cancer growth or in sculpting tumor escape and stimulates its development. A better understanding of the interaction between cancer cells and host immune cells within the tumor environment is of importance for further progress in cancer treatment. This is an extremely difficult task because of the complicated cancer-host immune interactions. The field that studies these interactions, termed cancer immunology, is rapidly progressing. It provides insights into the contribution of the immune system in processes such as tumor invasiveness, metastasis, and angiogenesis and may predict the response to treatment. Most importantly, it also provides opportunities for improved anti-cancer therapies. Modulation of the patient’s immune system combined with anti-tumor treatments offers the prospect of tailoring treatments much more precisely and better efficacy for patients with advanced lung cancer.

Immune cells involved in tumorogenesis

The individual immune related tumor infiltrating cell types are discussed below (Figure 1).

Natural killer (T) cells

Natural killer (NK) cells (expressing the surface markers CD16 and CD56, but not CD3) are lymphocytes that play an important role in the rejection of tumors without previous sensitization and without restriction by the major histocompatibility complex (MHC) [8, 9]. NK cells eradicate tumors through multiple killing pathways, including direct tumor cell killing. They also secrete cytokines and chemokines like Interleukin (IL) IL-10, Tumor Necrosis Factor (TNF)-α, and the principal NK-derived cytokine Interferon (IFN)-γ, which can coordinate the innate and adaptive immune responses to tumor cells and may lead to apoptosis of the attacked cells.
A large cohort study showed that an increase in NK cells in tumor tissue is a strong independent prognostic factor for the survival of lung cancer patients [10]. This is confirmed in mouse models, showing that stimulation of NK cell function protected against NSCLC metastasis [11, 12], while depletion enhanced lung cancer metastasis [13]. However, it was recently shown that although the frequencies of NK cells in blood do not differ from healthy controls, stimulated blood NK cells from NSCLC patients with advanced disease had a reduced granzyme B and perforin A expression, lower production of IFN-γ, and decreased cytotoxic function indicating that these cells are functionally impaired in comparison with healthy controls [14, 15]. Adoptive transfer of allogeneic, in vitro activated and expanded NK cells from haploidentical donors was proven potentially clinically effective in NSCLC [16].
Natural killer T (NKT) cells (CD16+, CD56+, CD3+) are a subset of NK cells that have been found in the peripheral blood, tumor tissue and pleural effusions of lung cancer patients in decreased numbers and with reduced functions [17, 18]. It has been shown that NKT cells in cancer patients produce a decreased amount of IFN-γ and are therefore less effective than NKT cells in healthy controls [19, 20]. They are currently exploited for cancer treatment by harnessing these cells with CD1d agonist ligands [21, 22], or by adoptive transfer of NKT cells activated in vitro[23].

Mast cells

Accumulation of mast cells is common in angiogenesis-dependent conditions, like cancer, as mast cells are a major provider of proangiogenic molecules vascular endothelial growth factor (VEGF), IL-8, transforming growth factor (TGF)-β [24]. The density of mast cells in NSCLC tumors is correlated with microvessel density [25] and mast cells / histamine has a direct growth promoting effect on NSCLC cell lines in vitro[26]. However, the role of mast cells in the prognosis in NSCLC remains controversial [25, 2729]. Tumor-infiltrating mast cells can directly influence proliferation and invasion of tumors, by histamine, IL-8 and VEGF while the production of TNF-α and heparin can suppress tumor growth [26, 30]. It has been shown that in NSCLC mast cell counts were noted to increase as tumor stage increased while another study did not show this correlation [24, 29]. Mast cells also play a central role in the control of innate and adaptive immunity by interacting with B and T cells (in particular Treg) and dendritic cells. The controversy of mast cells in cancer seems to be related to the type, microenvironment and stage of cancer and their role may depend on the tumor environment [29, 31, 32]. Therapeutic intervention by targeting mast cells, although technically possible [33], is too early without more knowledge on the paradoxical role of these cells in individual cases.

Neutrophils

Neutrophils play a major role in cancer biology. They make up a significant portion of the infiltrating immune cells in the tumor and the absolute neutrophils count and the neutrophils to lymphocyte ratio in blood are independent prognostic factors for survival of NSCLC [3436]. Neutrophils are attracted to the tumor under the influence of specific chemokines, cytokines and cell adhesion molecules. Tumor-associated neutrophils (TAN) have polarized functions and can be divided into the N1 and N2 phenotype in a context-dependent manner [37, 38]. The N1 phenotype inhibits tumor growth by potentiating T cell responses while the N2 phenotype promotes tumor growth [3]. The antitumor activities of N1 neutrophils include expression of immune activating cytokines (TNF-α, IL-12, GM-CSF, and VEGF), T cell attracting chemokines (CCL3, CXCL9, CXCL10), lower expression of arginase, and a better capacity of killing tumor cells in vitro. N2 neutrophils support tumor growth by producing angiogenic factors and matrix-degrading enzymes, support the acquisition of a metastatic phenotype, and suppress the anti-tumor immune response by inducible nitric oxide synthase and arginase expression. Neutrophils also influence adaptive immunity by interacting with T cells [39], B-cells [40], and DC [41]. In resectable NSCLC patients, intratumoral neutrophils were elevated in 50% of the patients and this was associated with a high cumulative incidence of relapse [42]. Recently, Fridlender et al. showed that TGF-β acquired the polarized N2 tumor promoting phenotype of neutrophils in a murine lung cancer model, and blocking of TGF-β shifted towards N1 tumor rejecting neutrophils with acquisition of anti-tumor activity in vitro and in vivo[43]. Blockade of TGF-β in humans might be a potential utility to prevent polarization towards the protumorigenic N2 phenotype and thereby may result in retarding tumor growth.

B lymphocytes

B-cells may affect the prognosis of patients with lung cancer, as patients with stage I NSCLC contain more intratumoral germinal centers with B-lymphocytes than patients with stages II to IV [44]. These tertiary (T-BALT) structures provide some evidence of an adaptive immune response that could limit tumor progression in some patients. For instance, the production of antibodies by B-cells can activate tumor cell killing by NK cells and other inflammatory cells [45]. Auto-antibodies against tumor antigens are commonly found in patients with lung cancer [4648] and can inhibit micrometastasis [49]. Recently, it has been shown in mice that antibodies produced by B cells interact with and activate Fcγ receptors on macrophages and in this way orchestrate antitumor activity [50] or tumor-associated macrophages (TAM)-mediated enhancement of carcinogenesis [51]. Thus, the role of B cells seems depending on the context.

CD4+ and CD8+ lymphocytes

CD4+ cells and CD8+ cells represent the strong effectors of the adaptive immune response against cancer [52]. There is controversy on the impact of T cells and their localization on the prognosis of lung cancer [5359]. This may be caused by the presence of a special subset of T cells, the regulatory T cells, and myeloid-derived suppressor cells which are discussed below. Also tumor-derived factors can exhaust T lymphocytes or induce their apoptosis [60]. Recently it has been shown that cytotoxic T lymphocytes (CTL) within the tumor (the tumor-infiltrating lymphocytes [TIL]) are of beneficial prognostic influence in resected NSCLC patients in both adenocarcinoma [61] and squamous cell carcinoma [62]. Tumor-specific CD8+ effector T-cells are normally present at a low frequency in cancer patients, but can be expanded up to 50% of the total circulating CD8+ T-cells by dendritic cell vaccination or adoptive T-cell transfer therapy [6365]. To enhance existing anti-tumor responses, recombinant CD40 ligand or CD40 activating antibodies are investigated as substitute for CD4+ T cell help [66]. Blocking T cell inhibitory molecules such as cytotoxic T lymphocyte antigen-4 (CTLA-4), lymphocyte activation gene-3 (LAG-3), T cell immunoglobulin mucin-3 (TIM-3), and programmed death-1 (PD-1) are currently investigated in NSCLC to improve T cell homing and effector functions [67, 68]. Successes of these experimental therapies in small subsets of patients demonstrate that CTL can be directed against the tumor but mechanisms to induce CTL or overcome the inactivation of T cell function seems necessary to enable more patients from these treatments.

Regulatory T cells

Regulatory T cells (Treg), characterized by CD4+, CD25+, Foxp3+, and CD127-, are T lymphocytes that are generated in the thymus (natural Treg) or induced in the periphery (induced Treg) when triggered by suboptimal antigen stimulation and stimulation with TGF-β and IL-10 [69]. Treg are further characterized by the expression of glucocorticoid-induced TNF-receptor-related-protein (GITR), lymphocyte activation gene-3 (LAG-3), and cytotoxic T-lymphocyte-associated antigen 4 (CTLA4).
In cancer patients, Treg confer growth and metastatic advantages by inhibiting anti-tumor immunity. They have this pro-tumoral effect by promoting tolerance via direct suppressive functions on activated T-cells or via the secretion of immunosuppressive cytokines such as IL-10 and TGF-β [70, 71]. Treg are present in tumor tissue [72, 73] and increased in peripheral blood of NSCLC patients compared to healthy controls [74, 75]. This increase in Treg was found to promote tumor growth and was correlated with lymph node metastasis [56, 73, 76, 77] and poor prognosis [73, 78]. Many factors can increase Treg in NSCLC tumors, among them are thymic stromal lymphopoietin (TSLP) [79] and intratumoral cyclooxygenase-2 (COX-2) expression [80]. Treg are considered the most powerful inhibitors of antitumor immunity [81]. As a result, there is substantial interest for overcoming this barrier to enhance the efficacy of cancer immunotherapy. Strategies include I). Treg depletion by chemical or radiation lymphoablation or using monoclonal antibodies or ligand-directed toxins (daclizumab, basiliximab, denileukin diftitox [OntakTM, RFT5-SMPT-dgA, and LMB-2) or with metronomic cyclophosphamide. II). Suppression of their function (ipilimumab, tremelimumad [anti-CTLA4], DTA-1 [anti-GITR], denosumab [anti-RankL], modulation of Toll-like receptor, OX40 stimulation or inhibiting ATP hydrolysis using ectonucleotidase inhibitors). III). Inhibition of tumoral homing by blocking the selective recruitment and retention of Treg at tumor sites, e.g. CCL22, CXCR4, CD103, and CCR2. IV). Exploitation of T-cell plasticity by modulating IL-6, TGF-β, and PGE2 expression, e.g. the COX-2 inhibitor celecoxib [82]. Till now, a strategy that specifically target only Treg and no effector T cells is lacking and procedures that depletes or modulates all Treg should be avoided to minimize the risk of autoimmune manifestations. However, studies modulating Treg in patients are providing some early encouraging results supporting the concept that Treg inhibitory strategies have clinical potential, particularly in those therapies that simultaneously stimulate antitumor immune effector cells.

Gamma delta T cells

Human γδ-T cells constitute 2-10% of T cells in blood and exhibit natural cytolytic activity in an MHC-unrestricted manner for microbial pathogens and tumor cells. A special TCR on γδ-T cells recognizes small nonpeptide antigens with a phosphate residue and isopentenylpyrophosphate (IPP) that accumulate in tumor cells [83]. Because γδ-T cells recognize target cells in a unrestricted manner, they may exert antitumor effects even on tumor cells with reduced or absent expression of HLA and/or tumor antigens or by provision of an early source of IFN-γ [83, 84]. Phase I clinical trials of in vivo activation of γδ-T cells with zoledronic acid plus IL-2 or adoptive transfer of in vitro expanded γδ-T cells are being conducted at present for lung cancer [8587].

Th17 cells

Th17 cells are a subpopulation of CD4+ T helper cells that are characterized by the production of interleukin-17 (IL-17, also known as IL-17A). IL17 plays an important role in the host defenses against bacterial and fungal infections by the activation, recruitment, and migration of neutrophils [88, 89]. In vitro experiments have shown that IL-1β, IL-6, and IL23 promote Th17 generation and differentiation from naïve CD4+ T cells [90]. Among the other cytokines secreted by Th17 cells are IL-17F, IL-21, IL-22, and TNF-α. The role of Th17 cells in cancer is poorly understood. Th17 cells accumulate in malignant pleural effusion from patients with lung cancer [90]. Also higher levels of IL-17A were detected in serum and in tumor lesions of lung adenocarcinoma patients, indicating a potential role of these cells in cancer [91]. It has been shown that Th17 cells encouraged tumor growth by inducing tumor vascularization or enhancing inflammation, but other studies revealed also opposite roles for Th17 cells. Recent data indicate that IL-17 may play a role in the metastasis of lung cancer by promoting lymphangiogenesis and is therefore an independent prognostic factor in both overall and disease-free survival in NSCLC [92]. However, there is a distinct role for Th17 and Th17-stimulated cytotoxic T-cells in the induction of preventive and therapeutic antitumor immunity in mice by the promoted recruitment of several inflammatory leukocytes, like DC, CD4+ and CD8+ cells [93]. So, it is controversial whether Th17 cells in cancer are beneficial or antagonistic; this may be dependent on the tumor immunogenicity, the stage of disease, and the impact of inflammation and angiogenesis on tumor pathogenesis [94].

Myeloid-derived suppressor cells

Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of immature myeloid cells and myeloid progenitor cells. MDSC inhibit T cells activation [95, 96] in a nonspecific or antigen-specific manner, alter the peptide presenting ability of MHC class I molecules on tumor cells [97], influence B-cells [98], block NK cell cytotoxicity [99101], inhibit dendritic cell differentiation [102], and expand Treg [103, 104] signifying their crucial contribution in constituting a tumor suppressive environment. Furthermore, there is compelling evidence that MDSC, by secreting MMP9 and TGF-β1, are also involved in angiogenesis, vasculogenesis, and metastatic spread [105].
MDSC suppress the immune system by the production of reactive oxygen species (ROS), nitric oxide (NO), peroxynitrite and secretion of the cytokines IL-10 and TGF-β [106]. Upregulated arginase-I activity by MDSC depletes the essential amino acid L-arginine, contributing to the induction of T cell tolerance by the down regulation of the CD3ζ chain expression of the T cell receptor [107110]. However, the mechanisms that are used to suppress the immune responses are highly dependent on the context of the microenvironment [111].
An increased subpopulation of MDSC in the peripheral blood of NSCLC patients was detected that decreased in those patients that responded to chemotherapy and patient undergoing surgery [112]. Because MDSC play an important role in mediating immunosuppression, they represent a significant hurdle to successful immune therapy in NSCLC. Therefore, targeting MDSC in vivo with drugs like 5-fluorouracil (5FU), gemcitabine or VEGF / c-kit blockers (e.g. sunitinib, imatinib, dasatinib) to elicit more potent anticancer effects is an exciting development [113115]. Treatment of mice with all-trans retinoic acid (ATRA), along with NKT help, convert the poorly immunogenic MDSC into fully efficient APC and in this way reinforced anti-tumor immune responses [116]. Other MDSC suppressing or differentiation-inducing agents recently reported are 5-aza-2′-deoxycytidine, curcumin, IL-10, anti-IL4R aptamer, and vitamin D3 [117120]. Agents that decrease arginase activity, ROS and/or iNOS expression by MDSC include Nor-NOHA, 1-NMMA, cyclooxygenase 2 inhibitors (celecoxib [121]), phosphodiesterase 5 inhibitors (sildenafil, tadalafil [122]) or reactive oxygen species inhibitors (nitroaspirin [123]). These agents promise to be a fruitful avenue of investigation in the coming years to overcome immune suppression associated by MDSC in advanced tumors [113, 114].

Tumor–associated macrophages

Macrophages are part of the innate immune system and play important roles in the first line of defense against foreign pathogens. They can be divided into M1 macrophages (classical activation) and M2 macrophages (alternative activation). M1 macrophages attract and activate cells of the adaptive immune system and have anti-tumor and tissue destructive activity, while the M2 phenotype has been linked to tumor-promoting activities by subversion of adaptive immunity, promoting tumor angiogenesis and supporting cancer cell survival, proliferation, invasion and tumor dissemination. Macrophages in tumors are usually referred to as tumor-associated macrophages (TAM) and their presence can be substantial (10–65% of the tumor stroma). In the beginning, the TAM mainly consist of M1-like macrophages however, when the tumor starts to invade and vascularize, there is a skewing towards the M2 phenotype [124, 125]. This takes place especially at those regions in the tumor that are hypoxic [126].
It has been reported by several groups that there is an association between the number of tumor islet macrophages and NSCLC survival [58, 127132]. Moreover, when looking at the different phenotypes of TAM (M1 and M2), it is shown that high numbers of M1 macrophages infiltrating the tumor are correlated with improved survival [130, 133]. On the other hand, the presence of M2-like macrophages is associated with poor clinical outcome [130, 133].
Several strategies are currently investigated that influence M2 macrophages at multiple levels. For example, blockade of factors and cytokines secreted by tumor or immune cells to limit the induction of M2 macrophages are investigated [134136], however this results in loss of typical M2 markers but not their function [137]. It has been shown that inhibiting IκB kinase (IKK) reprograms the M2 phenotype to the M1 subset [138, 139]. Also CD40 therapy seems to skew tumor-infiltrating macrophages towards the M1 phenotype [140]. Influencing the attraction, the polarization or the activation of M2 macrophages may improve survival when combined with standard or other immunotherapeutic regimens.

Dendritic cells

Dendritic cells (DC) are widely acknowledged as the central surveillance cell type and play an important role in the activation of lymphocyte subsets to control or eliminate human tumors. Upon encountering tumor cells or tumor-associated antigens, DC engulf this material and begin migrating via lymphatic vessels to regional lymphoid organs. The density immature DC (Langerhans cell and interstitial DC) and mature DC, present in the tumor microenvironment is highly predictive of disease-specific survival in early-stage NSCLC patients [141] and the presence of DC in resected NSCLC material is a good prognostic factor [10, 142]. Interaction between the DC and tumor cells results in the release of antitumour cytokines [143, 144]. This suggests that DC within the tumor microenvironment of early-stage NSCLC are capable in initiating adaptive immune responses in situ [145147].
In the peripheral blood and regional lymph nodes of lung cancer patients, the number and function of mature DC is dramatically reduced [148, 149], partly due to abnormal differentiation of myeloid cells (e.g. MDSC) [150]. Tumor cells, stromal cells like fibroblasts, and tumor-infiltrating immune cells and/or their secreted products, like VEGF, M-CSF, IL-6, IL-10, and TGF-β are also responsible for systemic and local DC defects [151154]. Affected DC are impaired in their ability to phagocytose antigen and to stimulate T cells, leading to a defective induction of anti-tumor responses.
NSCLC-derived DC produce high amounts of the immunosuppressive cytokines IL-10 and TGF-β [155]. It has been shown that the T cell co-inhibitory molecule B7-H3 and programmed death receptor-ligand-1 (PD-L1) are upregulated on tumor residing DC and these molecules conveys mainly suppressive signals by inhibiting cytokine production and T cell proliferation [156, 157].
Tumor-induced modulation is one of the main factors responsible for tumor immune escape and correction of DC function might be a requirement to develop more effective immunotherapeutic strategies against cancer. This might include targeting of those factors with neutralizing antibodies (e.g. anti-VEGF, anti-IL-6) to revert some of the inhibitory effects on DC. Another interesting finding is that culturing monocytes from cancer patients ex vivo, to circumvent the suppressive activity of the tumor milieu, generates DC with a capacity to stimulate allogeneic T cells [158, 159]. [160] This finding is important for active DC-based immunotherapeutic approaches, where DC are generated ex vivo from monocytes and after arming with tumor-associated antigens, reinjected into the patient with the intension to restore proper presentation of tumor associated antigens (TAA) and T cell activation [161163]. This concept is currently tested for NSCLC in therapeutic reality with encouraging results on the immune response, safety and tolerability, despite the small sample sizes of the trials [161163].

Immunogenic cell death biomarkers

Lung cancer is a complex disease with limited treatment options, mainly caused by the close relationship between neoplastic cells and healthy cells. To develop a more effective treatment for lung cancer, we have to focus on the complex interactions that tumor cells have with the local stromal compartment and the involved immune cells, and all of their secreted factors. There is growing evidence that the efficacy of many traditional therapeutic treatments depends on their ability to induce proper immunogenic tumor cell death. This specific release of signals upon tumor cell death may lead to immune activation, and in particular anti-tumor immunity, that contribute to the therapeutic outcome for patients [164, 165].
There are different candidate immune biomarkers that can predict the efficacy of specific NSCLC anticancer therapies [166, 167]. In NSCLC, nucleosomes have already been proven useful for the early estimation of response to chemotherapy [168170]. Presence of mature dendritic cells and CD4+ or CD8+ lymphocytes in NSCLC tumors are independent prognostic factors for overall survival, as described above [55, 59, 171, 172]. In addition, other potentially pivotal markers for lung cancer are p53-specific autoantibodies and pyridoxal kinase (PDXK), the enzyme that generates the bioactive form of vitamin B6 [173]. Also a group of immunogenic cell death biomarkers called damage-associated molecular pattern (DAMP) molecules, can serve as prognostic markers for response to therapy and prognosis in cancer patients [174]. DAMPs, such as surface-exposed calreticulin (ecto-CRT) and the high-mobility group box 1 protein (HMGB1); are released in the blood circulation by late apoptotic and necrotic cells upon oxidative and endoplasmic reticulum (ER) stress. In peripheral blood, they bind to specific immune cells and trigger protective T cell responses and promote phagocytosis. One of the main functions of HMGB1 is the binding to specific receptors on dendritic cells and other antigen presenting cells, such as receptors for advanced glycation endproducts (RAGE) and toll-like receptors 4 (TLR4). It has been described that the release of DAMP during cell death is essential for the sustained therapy response after chemotherapy and the efficiency of HMGB1 was found to be increased when bacterial lipopolysaccharide (LPS), DNA or nucleosomes were bound to it. Knockdown of HMGB1 was observed to be associated with reduced anticancer immune response and poor therapy outcome. In contrary, overexpression of HMGB1 and its receptor RAGE is pivotal for the metastasizing of the tumor cells as it promotes neoangiogenesis [175]. Markers of immunogenic cell death are becoming a valuable tool in clinical practice for diagnosis and prediction of response to NSCLC therapy and prognosis [167].
Next to DAMP, there are other approaches using RNA- and DNA-based immune modifiers to augment cancer therapy efficacy by stimulating the immune system. Bacterial DNA is immunostimulatory and can be replaced using synthetic oligodeoxynucleotides (ODN), for instance CpG oligodeoxynucleotides. CpG ODN are synthetic DNA sequences containing unmethylated cytosine-guanine motifs with potent immune modulatory effects via TLR 9 on DC and B cells [176]. They can induce cytokines, activate NK cells, and elicit T cell responses that lead to strong antitumor effects. It has been shown that CpG ODN downregulates regulatory T cells and TGF-β in peripheral blood of NSCLC patients [177].
Overall, analysis of new and conventional therapeutic strategies should not only be focused on the direct cytotoxic effects of tumor cells but also on the initiation of proper immune responses. Simultaneous modulation of the immune system by immune therapeutic approaches can then induce synergistic anticancer efficacy [178]. Overall, the composition of the immunological cells and cell death markers in the host is, next to the mutation analysis and histological features of the tumor, likely to determine the response to specific chemotherapeutic agents and the prognosis of the patients.

Conclusion

In this review, we have shown that the immune system plays a dual role in cancer development and progression and determines the response to treatment in NSCLC. These complex interactions between diverse immune cell types and tumor cells that can actively favor tumor rejection as well as tumor progression, depends on the tumor type, stage and the types of immune cells that are involved. The data presented here reinforce the importance of full understanding of the intricacy of the cellular interactions within the tumor microenvironment. There is a rapid progress in the field of the cancer immunology and the development of novel cancer immunotherapy approaches. Therefore, tumor immunology will probably be used more commonly in clinical practice in the future, as increasing evidence indicates that the effectiveness of several chemotherapies depends on the active contribution of the different immune effectors. Selecting conventional chemotherapeutic agents that induce proper immunogenic tumor death can synergize with immune response modifiers to revolutionize cancer treatment [179]. Understanding the local and systemic immune mechanisms will lead to new potential therapeutic targets.
We predict that the future standard of care of lung cancer will involve patient tailored combination therapies that associate molecules that target specific genetic mutations or chemotherapeutic drugs with immune modulating agents, driven by the increasing understanding of the immune system in the cancer cell’s environment. The future for cancer treatment is bright if we are able to: I). Find a chemotherapeutic drug that induces immunogenic cell death in tumor cells while leaving the normal cells and stimulating immune cells intact. II). Explore ways to efficiently activate the good-natured immune system, for instance, the adoptive transfer of in vitro expanded activated T-cells or NK-cells, and III). Modulate the tumor environment to reduce local and systemic immune suppressive components while limiting potential side-effects for the patient; e.g. by the depletion of Treg by denileukin diftitox or polarizing the M2 macrophage towards the M1 subtype. The treatment has to be tuned to the cellular make-up of each patient individually, based on their own both tumoral and immunological characteristics, rather than by the anatomic location of the tumor in the body or by the tumor histology or genetic make-up. This individualized, multi-targeted approach will be able to redress the balance towards efficacious antitumor responses that can improve the overall survival for more patients.
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

MH contributed to literature research, data-analysis, interpretation of findings and drafting of the manuscript. JA contributed to study design, literature research, data-analysis, interpretation of findings and critical editing of the manuscript. RC contributed to literature research, data-analysis, interpretarion of findings and drafting of the manuscript. HG contributed to drafting of the manuscript. HH contributed to drafting of the manuscript. JH contributed to study design, literature research, data-analysis, interpretation of findings and critical editing of the manuscript. All authors read and approved of the final manuscript.
Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
1.
Zurück zum Zitat Cavallo F, De Giovanni C, Nanni P, Forni G, Lollini PL: 2011: the immune hallmarks of cancer. Cancer Immunol Immunother. 2011, 60: 319-326. 10.1007/s00262-010-0968-0.PubMedPubMedCentral Cavallo F, De Giovanni C, Nanni P, Forni G, Lollini PL: 2011: the immune hallmarks of cancer. Cancer Immunol Immunother. 2011, 60: 319-326. 10.1007/s00262-010-0968-0.PubMedPubMedCentral
2.
Zurück zum Zitat Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell. 2011, 144: 646-674. 10.1016/j.cell.2011.02.013.PubMed Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell. 2011, 144: 646-674. 10.1016/j.cell.2011.02.013.PubMed
3.
Zurück zum Zitat Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A: Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis. 2009, 30: 1073-1081. 10.1093/carcin/bgp127.PubMed Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A: Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis. 2009, 30: 1073-1081. 10.1093/carcin/bgp127.PubMed
4.
Zurück zum Zitat Zitvogel L, Kepp O, Aymeric L, Ma Y, Locher C, Delahaye NF, et al: Integration of host-related signatures with cancer cell-derived predictors for the optimal management of anticancer chemotherapy. Cancer Res. 2010, 70: 9538-9543. 10.1158/0008-5472.CAN-10-1003.PubMed Zitvogel L, Kepp O, Aymeric L, Ma Y, Locher C, Delahaye NF, et al: Integration of host-related signatures with cancer cell-derived predictors for the optimal management of anticancer chemotherapy. Cancer Res. 2010, 70: 9538-9543. 10.1158/0008-5472.CAN-10-1003.PubMed
5.
Zurück zum Zitat Rody A, Holtrich U, Pusztai L, Liedtke C, Gaetje R, Ruckhaeberle E, et al: T-cell metagene predicts a favorable prognosis in estrogen receptor-negative and HER2-positive breast cancers. Breast Cancer Res. 2009, 11: R15-10.1186/bcr2234.PubMedPubMedCentral Rody A, Holtrich U, Pusztai L, Liedtke C, Gaetje R, Ruckhaeberle E, et al: T-cell metagene predicts a favorable prognosis in estrogen receptor-negative and HER2-positive breast cancers. Breast Cancer Res. 2009, 11: R15-10.1186/bcr2234.PubMedPubMedCentral
6.
Zurück zum Zitat Schmidt M, Bohm D, von Torne C, Steiner E, Puhl A, Pilch H, et al: The humoral immune system has a key prognostic impact in node-negative breast cancer. Cancer Res. 2008, 68: 5405-5413. 10.1158/0008-5472.CAN-07-5206.PubMed Schmidt M, Bohm D, von Torne C, Steiner E, Puhl A, Pilch H, et al: The humoral immune system has a key prognostic impact in node-negative breast cancer. Cancer Res. 2008, 68: 5405-5413. 10.1158/0008-5472.CAN-07-5206.PubMed
7.
Zurück zum Zitat Alexe G, Dalgin GS, Scanfeld D, Tamayo P, Mesirov JP, DeLisi C, et al: High expression of lymphocyte-associated genes in node-negative HER2+ breast cancers correlates with lower recurrence rates. Cancer Res. 2007, 67: 10669-10676. 10.1158/0008-5472.CAN-07-0539.PubMed Alexe G, Dalgin GS, Scanfeld D, Tamayo P, Mesirov JP, DeLisi C, et al: High expression of lymphocyte-associated genes in node-negative HER2+ breast cancers correlates with lower recurrence rates. Cancer Res. 2007, 67: 10669-10676. 10.1158/0008-5472.CAN-07-0539.PubMed
8.
Zurück zum Zitat Becknell B, Caligiuri MA: Natural killer cells in innate immunity and cancer. J Immunother. 2008, 31: 685-692. 10.1097/CJI.0b013e318182de23.PubMed Becknell B, Caligiuri MA: Natural killer cells in innate immunity and cancer. J Immunother. 2008, 31: 685-692. 10.1097/CJI.0b013e318182de23.PubMed
10.
Zurück zum Zitat Al-Shibli K, Al-Saad S, Donnem T, Persson M, Bremnes RM, Busund LT: The prognostic value of intraepithelial and stromal innate immune system cells in non-small cell lung carcinoma. Histopathology. 2009, 55: 301-312. 10.1111/j.1365-2559.2009.03379.x.PubMed Al-Shibli K, Al-Saad S, Donnem T, Persson M, Bremnes RM, Busund LT: The prognostic value of intraepithelial and stromal innate immune system cells in non-small cell lung carcinoma. Histopathology. 2009, 55: 301-312. 10.1111/j.1365-2559.2009.03379.x.PubMed
11.
Zurück zum Zitat Yang Q, Goding SR, Hokland ME, Basse PH: Antitumor activity of NK cells. Immunol Res. 2006, 36: 13-25. 10.1385/IR:36:1:13.PubMed Yang Q, Goding SR, Hokland ME, Basse PH: Antitumor activity of NK cells. Immunol Res. 2006, 36: 13-25. 10.1385/IR:36:1:13.PubMed
12.
Zurück zum Zitat Logan RW, Zhang C, Murugan S, O’Connell S, Levitt D, Rosenwasser AM, et al: Chronic shift-lag alters the circadian clock of NK cells and promotes lung cancer growth in rats. J Immunol. 2012, 188: 2583-2591. 10.4049/jimmunol.1102715.PubMedPubMedCentral Logan RW, Zhang C, Murugan S, O’Connell S, Levitt D, Rosenwasser AM, et al: Chronic shift-lag alters the circadian clock of NK cells and promotes lung cancer growth in rats. J Immunol. 2012, 188: 2583-2591. 10.4049/jimmunol.1102715.PubMedPubMedCentral
13.
Zurück zum Zitat Sodeur S, Ullrich S, Gustke H, Zangemeister-Wittke U, Schumacher U: Increased numbers of spontaneous SCLC metastasis in absence of NK cells after subcutaneous inoculation of different SCLC cell lines into pfp/rag2 double knock out mice. Cancer Lett. 2009, 282: 146-151. 10.1016/j.canlet.2009.03.005.PubMed Sodeur S, Ullrich S, Gustke H, Zangemeister-Wittke U, Schumacher U: Increased numbers of spontaneous SCLC metastasis in absence of NK cells after subcutaneous inoculation of different SCLC cell lines into pfp/rag2 double knock out mice. Cancer Lett. 2009, 282: 146-151. 10.1016/j.canlet.2009.03.005.PubMed
14.
Zurück zum Zitat Al Omar SY, Marshall E, Middleton D, Christmas SE: Increased killer immunoglobulin-like receptor expression and functional defects in natural killer cells in lung cancer. Immunology. 2011, 133: 94-104. 10.1111/j.1365-2567.2011.03415.x.PubMedPubMedCentral Al Omar SY, Marshall E, Middleton D, Christmas SE: Increased killer immunoglobulin-like receptor expression and functional defects in natural killer cells in lung cancer. Immunology. 2011, 133: 94-104. 10.1111/j.1365-2567.2011.03415.x.PubMedPubMedCentral
15.
Zurück zum Zitat Cremer I, Fridman WH, Sautes-Fridman C: Tumor microenvironment in NSCLC suppresses NK cells function. Oncoimmunology. 2012, 1: 244-246. 10.4161/onci.1.2.18309.PubMedPubMedCentral Cremer I, Fridman WH, Sautes-Fridman C: Tumor microenvironment in NSCLC suppresses NK cells function. Oncoimmunology. 2012, 1: 244-246. 10.4161/onci.1.2.18309.PubMedPubMedCentral
16.
Zurück zum Zitat Iliopoulou EG, Kountourakis P, Karamouzis MV, Doufexis D, Ardavanis A, Baxevanis CN, et al: A phase I trial of adoptive transfer of allogeneic natural killer cells in patients with advanced non-small cell lung cancer. Cancer Immunol Immunother. 2010, 59: 1781-1789. 10.1007/s00262-010-0904-3.PubMed Iliopoulou EG, Kountourakis P, Karamouzis MV, Doufexis D, Ardavanis A, Baxevanis CN, et al: A phase I trial of adoptive transfer of allogeneic natural killer cells in patients with advanced non-small cell lung cancer. Cancer Immunol Immunother. 2010, 59: 1781-1789. 10.1007/s00262-010-0904-3.PubMed
17.
Zurück zum Zitat Shimizu T, Takahashi N, Terakado M, Tsujino I, Hashimoto S: Activation of Valpha24NKT cells in malignant pleural effusion in patients with lung cancer. Oncol Rep. 2009, 22: 581-586.PubMed Shimizu T, Takahashi N, Terakado M, Tsujino I, Hashimoto S: Activation of Valpha24NKT cells in malignant pleural effusion in patients with lung cancer. Oncol Rep. 2009, 22: 581-586.PubMed
18.
Zurück zum Zitat Rijavec M, Volarevic S, Osolnik K, Kosnik M, Korosec P: Natural killer T cells in pulmonary disorders. Respir Med. 2011, 105 (Suppl 1): S20-S25.PubMed Rijavec M, Volarevic S, Osolnik K, Kosnik M, Korosec P: Natural killer T cells in pulmonary disorders. Respir Med. 2011, 105 (Suppl 1): S20-S25.PubMed
19.
Zurück zum Zitat Molling JW, Kolgen W, van der Vliet HJ, Boomsma MF, Kruizenga H, Smorenburg CH, et al: Peripheral blood IFN-gamma-secreting Valpha24+Vbeta11+ NKT cell numbers are decreased in cancer patients independent of tumor type or tumor load. Int J Cancer. 2005, 116: 87-93. 10.1002/ijc.20998.PubMed Molling JW, Kolgen W, van der Vliet HJ, Boomsma MF, Kruizenga H, Smorenburg CH, et al: Peripheral blood IFN-gamma-secreting Valpha24+Vbeta11+ NKT cell numbers are decreased in cancer patients independent of tumor type or tumor load. Int J Cancer. 2005, 116: 87-93. 10.1002/ijc.20998.PubMed
20.
Zurück zum Zitat Tahir SM, Cheng O, Shaulov A, Koezuka Y, Bubley GJ, Wilson SB, et al: Loss of IFN-gamma production by invariant NK T cells in advanced cancer. J Immunol. 2001, 167: 4046-4050.PubMed Tahir SM, Cheng O, Shaulov A, Koezuka Y, Bubley GJ, Wilson SB, et al: Loss of IFN-gamma production by invariant NK T cells in advanced cancer. J Immunol. 2001, 167: 4046-4050.PubMed
21.
Zurück zum Zitat Dhodapkar MV, Richter J: Harnessing natural killer T (NKT) cells in human myeloma: progress and challenges. Clin Immunol. 2011, 140: 160-166. 10.1016/j.clim.2010.12.010.PubMedPubMedCentral Dhodapkar MV, Richter J: Harnessing natural killer T (NKT) cells in human myeloma: progress and challenges. Clin Immunol. 2011, 140: 160-166. 10.1016/j.clim.2010.12.010.PubMedPubMedCentral
22.
Zurück zum Zitat Wu L, Van Kaer L: Natural killer T cells in health and disease. Front Biosci (Schol Ed). 2011, 3: 236-251. 10.2741/s148. Wu L, Van Kaer L: Natural killer T cells in health and disease. Front Biosci (Schol Ed). 2011, 3: 236-251. 10.2741/s148.
23.
Zurück zum Zitat Motohashi S, Nakayama T: Natural killer T cell-mediated immunotherapy for malignant diseases. Front Biosci (Schol Ed). 2009, 1: 108-116. Motohashi S, Nakayama T: Natural killer T cell-mediated immunotherapy for malignant diseases. Front Biosci (Schol Ed). 2009, 1: 108-116.
24.
Zurück zum Zitat O’Callaghan DS, O'Donnell D, O’Connell F, O’Byrne KJ: The role of inflammation in the pathogenesis of non-small cell lung cancer. J Thorac Oncol. 2010, 5: 2024-2036. 10.1097/JTO.0b013e3181f387e4.PubMed O’Callaghan DS, O'Donnell D, O’Connell F, O’Byrne KJ: The role of inflammation in the pathogenesis of non-small cell lung cancer. J Thorac Oncol. 2010, 5: 2024-2036. 10.1097/JTO.0b013e3181f387e4.PubMed
25.
Zurück zum Zitat Dundar E, Oner U, Peker BC, Metintas M, Isiksoy S, Ak G: The significance and relationship between mast cells and tumour angiogenesis in non-small cell lung carcinoma. J Int Med Res. 2008, 36: 88-95.PubMed Dundar E, Oner U, Peker BC, Metintas M, Isiksoy S, Ak G: The significance and relationship between mast cells and tumour angiogenesis in non-small cell lung carcinoma. J Int Med Res. 2008, 36: 88-95.PubMed
26.
Zurück zum Zitat Stoyanov E, Uddin M, Mankuta D, Dubinett SM, Levi-Schaffer F: Mast cells and histamine enhance the proliferation of non-small cell lung cancer cells. Lung Cancer. 2012, 75: 38-44. 10.1016/j.lungcan.2011.05.029.PubMed Stoyanov E, Uddin M, Mankuta D, Dubinett SM, Levi-Schaffer F: Mast cells and histamine enhance the proliferation of non-small cell lung cancer cells. Lung Cancer. 2012, 75: 38-44. 10.1016/j.lungcan.2011.05.029.PubMed
27.
Zurück zum Zitat Al-Shibli K, Al-Saad S, Andersen S, Donnem T, Bremnes RM, Busund LT: The prognostic value of intraepithelial and stromal CD3-, CD117- and CD138-positive cells in non-small cell lung carcinoma. APMIS. 2010, 118: 371-382. 10.1111/j.1600-0463.2010.02609.x.PubMed Al-Shibli K, Al-Saad S, Andersen S, Donnem T, Bremnes RM, Busund LT: The prognostic value of intraepithelial and stromal CD3-, CD117- and CD138-positive cells in non-small cell lung carcinoma. APMIS. 2010, 118: 371-382. 10.1111/j.1600-0463.2010.02609.x.PubMed
28.
Zurück zum Zitat Imada A, Shijubo N, Kojima H, Abe S: Mast cells correlate with angiogenesis and poor outcome in stage I lung adenocarcinoma. Eur Respir J. 2000, 15: 1087-1093. 10.1034/j.1399-3003.2000.01517.x.PubMed Imada A, Shijubo N, Kojima H, Abe S: Mast cells correlate with angiogenesis and poor outcome in stage I lung adenocarcinoma. Eur Respir J. 2000, 15: 1087-1093. 10.1034/j.1399-3003.2000.01517.x.PubMed
29.
Zurück zum Zitat Niczyporuk M, Hermanowicz A, Matuszczak E, Dziadziuszko R, Knas M, Zalewska A, et al: A lack of correlation between mast cells, angiogenesis, and outcome in non-small cell lung cancer. Exp Lung Res. 2012, 38: 281-285. 10.3109/01902148.2012.686559.PubMed Niczyporuk M, Hermanowicz A, Matuszczak E, Dziadziuszko R, Knas M, Zalewska A, et al: A lack of correlation between mast cells, angiogenesis, and outcome in non-small cell lung cancer. Exp Lung Res. 2012, 38: 281-285. 10.3109/01902148.2012.686559.PubMed
30.
Zurück zum Zitat Khazaie K, Blatner NR, Khan MW, Gounari F, Gounaris E, Dennis K, et al: The significant role of mast cells in cancer. Cancer Metastasis Rev. 2011, 30: 45-60. 10.1007/s10555-011-9286-z.PubMed Khazaie K, Blatner NR, Khan MW, Gounari F, Gounaris E, Dennis K, et al: The significant role of mast cells in cancer. Cancer Metastasis Rev. 2011, 30: 45-60. 10.1007/s10555-011-9286-z.PubMed
31.
Zurück zum Zitat Heijmans J, Buller NV, Muncan V, van den Brink GR: Role of mast cells in colorectal cancer development, the jury is still out. Biochim Biophys Acta. 2012, 1822: 9-13. 10.1016/j.bbadis.2010.12.001.PubMed Heijmans J, Buller NV, Muncan V, van den Brink GR: Role of mast cells in colorectal cancer development, the jury is still out. Biochim Biophys Acta. 2012, 1822: 9-13. 10.1016/j.bbadis.2010.12.001.PubMed
32.
Zurück zum Zitat Nechushtan H: The complexity of the complicity of mast cells in cancer. Int J Biochem Cell Biol. 2010, 42: 551-554. 10.1016/j.biocel.2009.12.015.PubMed Nechushtan H: The complexity of the complicity of mast cells in cancer. Int J Biochem Cell Biol. 2010, 42: 551-554. 10.1016/j.biocel.2009.12.015.PubMed
33.
Zurück zum Zitat Groot Kormelink T, Abudukelimu A, Redegeld FA: Mast cells as target in cancer therapy. Curr Pharm Des. 2009, 15: 1868-1878. 10.2174/138161209788453284.PubMed Groot Kormelink T, Abudukelimu A, Redegeld FA: Mast cells as target in cancer therapy. Curr Pharm Des. 2009, 15: 1868-1878. 10.2174/138161209788453284.PubMed
34.
Zurück zum Zitat Sarraf KM, Belcher E, Raevsky E, Nicholson AG, Goldstraw P, Lim E: Neutrophil/lymphocyte ratio and its association with survival after complete resection in non-small cell lung cancer. J Thorac Cardiovasc Surg. 2009, 137: 425-428. 10.1016/j.jtcvs.2008.05.046.PubMed Sarraf KM, Belcher E, Raevsky E, Nicholson AG, Goldstraw P, Lim E: Neutrophil/lymphocyte ratio and its association with survival after complete resection in non-small cell lung cancer. J Thorac Cardiovasc Surg. 2009, 137: 425-428. 10.1016/j.jtcvs.2008.05.046.PubMed
35.
Zurück zum Zitat Teramukai S, Kitano T, Kishida Y, Kawahara M, Kubota K, Komuta K, et al: Pretreatment neutrophil count as an independent prognostic factor in advanced non-small-cell lung cancer: an analysis of Japan Multinational Trial Organisation LC00-03. Eur J Cancer. 2009, 45: 1950-1958. 10.1016/j.ejca.2009.01.023.PubMed Teramukai S, Kitano T, Kishida Y, Kawahara M, Kubota K, Komuta K, et al: Pretreatment neutrophil count as an independent prognostic factor in advanced non-small-cell lung cancer: an analysis of Japan Multinational Trial Organisation LC00-03. Eur J Cancer. 2009, 45: 1950-1958. 10.1016/j.ejca.2009.01.023.PubMed
36.
Zurück zum Zitat Tomita M, Shimizu T, Ayabe T, Yonei A, Onitsuka T: Preoperative neutrophil to lymphocyte ratio as a prognostic predictor after curative resection for non-small cell lung cancer. Anticancer Res. 2011, 31: 2995-2998.PubMed Tomita M, Shimizu T, Ayabe T, Yonei A, Onitsuka T: Preoperative neutrophil to lymphocyte ratio as a prognostic predictor after curative resection for non-small cell lung cancer. Anticancer Res. 2011, 31: 2995-2998.PubMed
37.
Zurück zum Zitat Mantovani A: The yin-yang of tumor-associated neutrophils. Cancer Cell. 2009, 16: 173-174. 10.1016/j.ccr.2009.08.014.PubMed Mantovani A: The yin-yang of tumor-associated neutrophils. Cancer Cell. 2009, 16: 173-174. 10.1016/j.ccr.2009.08.014.PubMed
38.
Zurück zum Zitat Cortez-Retamozo V, Etzrodt M, Newton A, Rauch PJ, Chudnovskiy A, Berger C, et al: Origins of tumor-associated macrophages and neutrophils. Proc Natl Acad Sci U S A. 2012, 109: 2491-2496. 10.1073/pnas.1113744109.PubMedPubMedCentral Cortez-Retamozo V, Etzrodt M, Newton A, Rauch PJ, Chudnovskiy A, Berger C, et al: Origins of tumor-associated macrophages and neutrophils. Proc Natl Acad Sci U S A. 2012, 109: 2491-2496. 10.1073/pnas.1113744109.PubMedPubMedCentral
39.
Zurück zum Zitat Soehnlein O: An elegant defense: how neutrophils shape the immune response. Trends Immunol. 2009, 30: 511-512. 10.1016/j.it.2009.07.002.PubMed Soehnlein O: An elegant defense: how neutrophils shape the immune response. Trends Immunol. 2009, 30: 511-512. 10.1016/j.it.2009.07.002.PubMed
40.
Zurück zum Zitat Puga I, Cols M, Barra CM, He B, Cassis L, Gentile M, et al: B cell-helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen. Nat Immunol. 2012, 13: 170-180. Puga I, Cols M, Barra CM, He B, Cassis L, Gentile M, et al: B cell-helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen. Nat Immunol. 2012, 13: 170-180.
41.
Zurück zum Zitat Yang D, de la Rosa G, Tewary P, Oppenheim JJ: Alarmins link neutrophils and dendritic cells. Trends Immunol. 2009, 30: 531-537. 10.1016/j.it.2009.07.004.PubMedPubMedCentral Yang D, de la Rosa G, Tewary P, Oppenheim JJ: Alarmins link neutrophils and dendritic cells. Trends Immunol. 2009, 30: 531-537. 10.1016/j.it.2009.07.004.PubMedPubMedCentral
42.
Zurück zum Zitat Ilie M, Hofman V, Ortholan C, Bonnetaud C, Coelle C, Mouroux J, et al: Predictive clinical outcome of the intratumoral CD66b-positive neutrophil-to-CD8-positive T-cell ratio in patients with resectable nonsmall cell lung cancer. Cancer. 2012, 118: 1726-1737. 10.1002/cncr.26456.PubMed Ilie M, Hofman V, Ortholan C, Bonnetaud C, Coelle C, Mouroux J, et al: Predictive clinical outcome of the intratumoral CD66b-positive neutrophil-to-CD8-positive T-cell ratio in patients with resectable nonsmall cell lung cancer. Cancer. 2012, 118: 1726-1737. 10.1002/cncr.26456.PubMed
43.
Zurück zum Zitat Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, et al: Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell. 2009, 16: 183-194. 10.1016/j.ccr.2009.06.017.PubMedPubMedCentral Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, et al: Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell. 2009, 16: 183-194. 10.1016/j.ccr.2009.06.017.PubMedPubMedCentral
44.
Zurück zum Zitat Gottlin EB, Bentley RC, Campa MJ, Pisetsky DS, Herndon JE, Patz EF: The Association of Intratumoral Germinal Centers with early-stage non-small cell lung cancer. J Thorac Oncol. 2011, 6: 1687-1690. 10.1097/JTO.0b013e3182217bec.PubMed Gottlin EB, Bentley RC, Campa MJ, Pisetsky DS, Herndon JE, Patz EF: The Association of Intratumoral Germinal Centers with early-stage non-small cell lung cancer. J Thorac Oncol. 2011, 6: 1687-1690. 10.1097/JTO.0b013e3182217bec.PubMed
45.
Zurück zum Zitat Pelletier MP, Edwardes MD, Michel RP, Halwani F, Morin JE: Prognostic markers in resectable non-small cell lung cancer: a multivariate analysis. Can J Surg. 2001, 44: 180-188.PubMedPubMedCentral Pelletier MP, Edwardes MD, Michel RP, Halwani F, Morin JE: Prognostic markers in resectable non-small cell lung cancer: a multivariate analysis. Can J Surg. 2001, 44: 180-188.PubMedPubMedCentral
46.
Zurück zum Zitat Kazarian M, Laird-Offringa IA: Small-cell lung cancer-associated autoantibodies: potential applications to cancer diagnosis, early detection, and therapy. Mol Cancer. 2011, 10: 33-10.1186/1476-4598-10-33.PubMedPubMedCentral Kazarian M, Laird-Offringa IA: Small-cell lung cancer-associated autoantibodies: potential applications to cancer diagnosis, early detection, and therapy. Mol Cancer. 2011, 10: 33-10.1186/1476-4598-10-33.PubMedPubMedCentral
47.
Zurück zum Zitat Mihn DC, Kim TY: Various autoantibodies are found in small-cell lung cancer. Lung Cancer. 2009, 64: 250-10.1016/j.lungcan.2009.02.010.PubMed Mihn DC, Kim TY: Various autoantibodies are found in small-cell lung cancer. Lung Cancer. 2009, 64: 250-10.1016/j.lungcan.2009.02.010.PubMed
48.
Zurück zum Zitat Nagashio R, Sato Y, Jiang SX, Ryuge S, Kodera Y, Maeda T, et al: Detection of tumor-specific autoantibodies in sera of patients with lung cancer. Lung Cancer. 2008, 62: 364-373. 10.1016/j.lungcan.2008.03.026.PubMed Nagashio R, Sato Y, Jiang SX, Ryuge S, Kodera Y, Maeda T, et al: Detection of tumor-specific autoantibodies in sera of patients with lung cancer. Lung Cancer. 2008, 62: 364-373. 10.1016/j.lungcan.2008.03.026.PubMed
49.
Zurück zum Zitat Amornsiripanitch N, Hong S, Campa MJ, Frank MM, Gottlin EB, Patz EF: Complement factor H autoantibodies are associated with early stage NSCLC. Clin Cancer Res. 2010, 16: 3226-3231. 10.1158/1078-0432.CCR-10-0321.PubMedPubMedCentral Amornsiripanitch N, Hong S, Campa MJ, Frank MM, Gottlin EB, Patz EF: Complement factor H autoantibodies are associated with early stage NSCLC. Clin Cancer Res. 2010, 16: 3226-3231. 10.1158/1078-0432.CCR-10-0321.PubMedPubMedCentral
50.
Zurück zum Zitat Cittera E, Leidi M, Buracchi C, Pasqualini F, Sozzani S, Vecchi A, et al: The CCL3 family of chemokines and innate immunity cooperate in vivo in the eradication of an established lymphoma xenograft by rituximab. J Immunol. 2007, 178: 6616-6623.PubMed Cittera E, Leidi M, Buracchi C, Pasqualini F, Sozzani S, Vecchi A, et al: The CCL3 family of chemokines and innate immunity cooperate in vivo in the eradication of an established lymphoma xenograft by rituximab. J Immunol. 2007, 178: 6616-6623.PubMed
51.
Zurück zum Zitat Andreu P, Johansson M, Affara NI, Pucci F, Tan T, Junankar S, et al: FcRgamma activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell. 2010, 17: 121-134. 10.1016/j.ccr.2009.12.019.PubMedPubMedCentral Andreu P, Johansson M, Affara NI, Pucci F, Tan T, Junankar S, et al: FcRgamma activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell. 2010, 17: 121-134. 10.1016/j.ccr.2009.12.019.PubMedPubMedCentral
52.
Zurück zum Zitat Andersen MH, Schrama D, Thor Straten P, Becker JC: Cytotoxic T cells. J Invest Dermatol. 2006, 126: 32-41. 10.1038/sj.jid.5700001.PubMed Andersen MH, Schrama D, Thor Straten P, Becker JC: Cytotoxic T cells. J Invest Dermatol. 2006, 126: 32-41. 10.1038/sj.jid.5700001.PubMed
53.
Zurück zum Zitat Mori M, Ohtani H, Naito Y, Sagawa M, Sato M, Fujimura S, et al: Infiltration of CD8+ T cells in non-small cell lung cancer is associated with dedifferentiation of cancer cells, but not with prognosis. Tohoku J Exp Med. 2000, 191: 113-118. 10.1620/tjem.191.113.PubMed Mori M, Ohtani H, Naito Y, Sagawa M, Sato M, Fujimura S, et al: Infiltration of CD8+ T cells in non-small cell lung cancer is associated with dedifferentiation of cancer cells, but not with prognosis. Tohoku J Exp Med. 2000, 191: 113-118. 10.1620/tjem.191.113.PubMed
54.
Zurück zum Zitat Trojan A, Urosevic M, Dummer R, Giger R, Weder W, Stahel RA: Immune activation status of CD8+ T cells infiltrating non-small cell lung cancer. Lung Cancer. 2004, 44: 143-147. 10.1016/j.lungcan.2003.11.004.PubMed Trojan A, Urosevic M, Dummer R, Giger R, Weder W, Stahel RA: Immune activation status of CD8+ T cells infiltrating non-small cell lung cancer. Lung Cancer. 2004, 44: 143-147. 10.1016/j.lungcan.2003.11.004.PubMed
55.
Zurück zum Zitat Hiraoka K, Miyamoto M, Cho Y, Suzuoki M, Oshikiri T, Nakakubo Y, et al: Concurrent infiltration by CD8+ T cells and CD4+ T cells is a favourable prognostic factor in non-small-cell lung carcinoma. Br J Cancer. 2006, 94: 275-280. 10.1038/sj.bjc.6602934.PubMedPubMedCentral Hiraoka K, Miyamoto M, Cho Y, Suzuoki M, Oshikiri T, Nakakubo Y, et al: Concurrent infiltration by CD8+ T cells and CD4+ T cells is a favourable prognostic factor in non-small-cell lung carcinoma. Br J Cancer. 2006, 94: 275-280. 10.1038/sj.bjc.6602934.PubMedPubMedCentral
56.
Zurück zum Zitat Suzuki K, Kachala SS, Kadota K, Shen R, Mo Q, Beer DG, et al: Prognostic Immune Markers in Non-Small Cell Lung Cancer. Clin Cancer Res. 2011, 17: 5247-5256. 10.1158/1078-0432.CCR-10-2805.PubMed Suzuki K, Kachala SS, Kadota K, Shen R, Mo Q, Beer DG, et al: Prognostic Immune Markers in Non-Small Cell Lung Cancer. Clin Cancer Res. 2011, 17: 5247-5256. 10.1158/1078-0432.CCR-10-2805.PubMed
57.
Zurück zum Zitat Wakabayashi O, Yamazaki K, Oizumi S, Hommura F, Kinoshita I, Ogura S, et al: CD4+ T cells in cancer stroma, not CD8+ T cells in cancer cell nests, are associated with favorable prognosis in human non-small cell lung cancers. Cancer Sci. 2003, 94: 1003-1009. 10.1111/j.1349-7006.2003.tb01392.x.PubMed Wakabayashi O, Yamazaki K, Oizumi S, Hommura F, Kinoshita I, Ogura S, et al: CD4+ T cells in cancer stroma, not CD8+ T cells in cancer cell nests, are associated with favorable prognosis in human non-small cell lung cancers. Cancer Sci. 2003, 94: 1003-1009. 10.1111/j.1349-7006.2003.tb01392.x.PubMed
58.
Zurück zum Zitat da Costa Souza P, Parra ER, Atanazio MJ, da Silva OB, Noleto GS, Ab’saber AM, et al: Different morphology, stage and treatment affect immune cell infiltration and long-term outcome in patients with non-small-cell lung carcinoma. Histopathology. 2012, 61: 587-596.PubMed da Costa Souza P, Parra ER, Atanazio MJ, da Silva OB, Noleto GS, Ab’saber AM, et al: Different morphology, stage and treatment affect immune cell infiltration and long-term outcome in patients with non-small-cell lung carcinoma. Histopathology. 2012, 61: 587-596.PubMed
59.
Zurück zum Zitat McCoy MJ, Nowak AK, van der Most RG, Dick IM, Lake RA: Peripheral CD8(+) T cell proliferation is prognostic for patients with advanced thoracic malignancies. Cancer Immunol Immunother. 2012, [Epub ahead of print] McCoy MJ, Nowak AK, van der Most RG, Dick IM, Lake RA: Peripheral CD8(+) T cell proliferation is prognostic for patients with advanced thoracic malignancies. Cancer Immunol Immunother. 2012, [Epub ahead of print]
60.
Zurück zum Zitat Wherry EJ: T cell exhaustion. Nat Immunol. 2011, 12: 492-499.PubMed Wherry EJ: T cell exhaustion. Nat Immunol. 2011, 12: 492-499.PubMed
61.
Zurück zum Zitat Kayser G, Schulte-Uentrop L, Sienel W, Werner M, Fisch P, Passlick B, et al: Stromal CD4/CD25 positive T-cells are a strong and independent prognostic factor in non-small cell lung cancer patients, especially with adenocarcinomas. Lung Cancer. 2012, 76: 445-451. 10.1016/j.lungcan.2012.01.004.PubMed Kayser G, Schulte-Uentrop L, Sienel W, Werner M, Fisch P, Passlick B, et al: Stromal CD4/CD25 positive T-cells are a strong and independent prognostic factor in non-small cell lung cancer patients, especially with adenocarcinomas. Lung Cancer. 2012, 76: 445-451. 10.1016/j.lungcan.2012.01.004.PubMed
62.
Zurück zum Zitat Ruffini E, Asioli S, Filosso PL, Lyberis P, Bruna MC, Macri L, et al: Clinical significance of tumor-infiltrating lymphocytes in lung neoplasms. Ann Thorac Surg. 2009, 87: 365-371. 10.1016/j.athoracsur.2008.10.067. discussion 71–72PubMed Ruffini E, Asioli S, Filosso PL, Lyberis P, Bruna MC, Macri L, et al: Clinical significance of tumor-infiltrating lymphocytes in lung neoplasms. Ann Thorac Surg. 2009, 87: 365-371. 10.1016/j.athoracsur.2008.10.067. discussion 71–72PubMed
63.
Zurück zum Zitat Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME: Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer. 2008, 8: 299-308. 10.1038/nrc2355.PubMedPubMedCentral Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME: Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer. 2008, 8: 299-308. 10.1038/nrc2355.PubMedPubMedCentral
64.
Zurück zum Zitat Boon T, Coulie PG, Van den Eynde BJ, van der Bruggen P: Human T cell responses against melanoma. Annu Rev Immunol. 2006, 24: 175-208. 10.1146/annurev.immunol.24.021605.090733.PubMed Boon T, Coulie PG, Van den Eynde BJ, van der Bruggen P: Human T cell responses against melanoma. Annu Rev Immunol. 2006, 24: 175-208. 10.1146/annurev.immunol.24.021605.090733.PubMed
65.
Zurück zum Zitat Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, et al: Cancer regression in patients after transfer of genetically engineered lymphocytes. Science. 2006, 314: 126-129. 10.1126/science.1129003.PubMedPubMedCentral Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, et al: Cancer regression in patients after transfer of genetically engineered lymphocytes. Science. 2006, 314: 126-129. 10.1126/science.1129003.PubMedPubMedCentral
66.
Zurück zum Zitat Fonsatti E, Maio M, Altomonte M, Hersey P: Biology and clinical applications of CD40 in cancer treatment. Semin Oncol. 2010, 37: 517-523. 10.1053/j.seminoncol.2010.09.002.PubMed Fonsatti E, Maio M, Altomonte M, Hersey P: Biology and clinical applications of CD40 in cancer treatment. Semin Oncol. 2010, 37: 517-523. 10.1053/j.seminoncol.2010.09.002.PubMed
67.
Zurück zum Zitat Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, et al: Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012, 366: 2455-2465. 10.1056/NEJMoa1200694.PubMedPubMedCentral Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, et al: Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012, 366: 2455-2465. 10.1056/NEJMoa1200694.PubMedPubMedCentral
68.
Zurück zum Zitat Lynch TJ, Bondarenko I, Luft A, Serwatowski P, Barlesi F, Chacko R, et al: Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. J Clin Oncol. 2012, 30: 2046-2054. 10.1200/JCO.2011.38.4032.PubMed Lynch TJ, Bondarenko I, Luft A, Serwatowski P, Barlesi F, Chacko R, et al: Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. J Clin Oncol. 2012, 30: 2046-2054. 10.1200/JCO.2011.38.4032.PubMed
69.
Zurück zum Zitat Ni XY, Sui HX, Liu Y, Ke SZ, Wang YN, Gao FG: TGF-beta of lung cancer microenvironment upregulates B7H1 and GITRL expression in dendritic cells and is associated with regulatory T cell generation. Oncol Rep. 2012, 28: 615-621.PubMed Ni XY, Sui HX, Liu Y, Ke SZ, Wang YN, Gao FG: TGF-beta of lung cancer microenvironment upregulates B7H1 and GITRL expression in dendritic cells and is associated with regulatory T cell generation. Oncol Rep. 2012, 28: 615-621.PubMed
70.
Zurück zum Zitat Thornton AM, Shevach EM: CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med. 1998, 188: 287-296. 10.1084/jem.188.2.287.PubMedPubMedCentral Thornton AM, Shevach EM: CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med. 1998, 188: 287-296. 10.1084/jem.188.2.287.PubMedPubMedCentral
71.
Zurück zum Zitat Hawrylowicz CM, O’Garra A: Potential role of interleukin-10-secreting regulatory T cells in allergy and asthma. Nat Rev Immunol. 2005, 5: 271-283. 10.1038/nri1589.PubMed Hawrylowicz CM, O’Garra A: Potential role of interleukin-10-secreting regulatory T cells in allergy and asthma. Nat Rev Immunol. 2005, 5: 271-283. 10.1038/nri1589.PubMed
72.
Zurück zum Zitat Woo EY, Chu CS, Goletz TJ, Schlienger K, Yeh H, Coukos G, et al: Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res. 2001, 61: 4766-4772.PubMed Woo EY, Chu CS, Goletz TJ, Schlienger K, Yeh H, Coukos G, et al: Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res. 2001, 61: 4766-4772.PubMed
73.
Zurück zum Zitat Fu HY, Li C, Yang W, Gai XD, Jia T, Lei YM, et al: FOXP3 and TLR4 protein expression are correlated in non-small cell lung cancer: Implications for tumor progression and escape. Acta Histochem. 2012, [Epub ahead of print] Fu HY, Li C, Yang W, Gai XD, Jia T, Lei YM, et al: FOXP3 and TLR4 protein expression are correlated in non-small cell lung cancer: Implications for tumor progression and escape. Acta Histochem. 2012, [Epub ahead of print]
74.
Zurück zum Zitat Okita R, Saeki T, Takashima S, Yamaguchi Y, Toge T: CD4+CD25+ regulatory T cells in the peripheral blood of patients with breast cancer and non-small cell lung cancer. Oncol Rep. 2005, 14: 1269-1273.PubMed Okita R, Saeki T, Takashima S, Yamaguchi Y, Toge T: CD4+CD25+ regulatory T cells in the peripheral blood of patients with breast cancer and non-small cell lung cancer. Oncol Rep. 2005, 14: 1269-1273.PubMed
75.
Zurück zum Zitat Erfani N, Mehrabadi SM, Ghayumi MA, Haghshenas MR, Mojtahedi Z, Ghaderi A, et al: Increase of regulatory T cells in metastatic stage and CTLA-4 over expression in lymphocytes of patients with non-small cell lung cancer (NSCLC). Lung Cancer. 2012, 77: 306-311. 10.1016/j.lungcan.2012.04.011.PubMed Erfani N, Mehrabadi SM, Ghayumi MA, Haghshenas MR, Mojtahedi Z, Ghaderi A, et al: Increase of regulatory T cells in metastatic stage and CTLA-4 over expression in lymphocytes of patients with non-small cell lung cancer (NSCLC). Lung Cancer. 2012, 77: 306-311. 10.1016/j.lungcan.2012.04.011.PubMed
76.
Zurück zum Zitat Dimitrakopoulos FI, Papadaki H, Antonacopoulou AG, Kottorou A, Gotsis AD, Scopa C, et al: Association of FOXP3 expression with non-small cell lung cancer. Anticancer Res. 2011, 31: 1677-1683.PubMed Dimitrakopoulos FI, Papadaki H, Antonacopoulou AG, Kottorou A, Gotsis AD, Scopa C, et al: Association of FOXP3 expression with non-small cell lung cancer. Anticancer Res. 2011, 31: 1677-1683.PubMed
77.
Zurück zum Zitat Zaynagetdinov R, Stathopoulos GT, Sherrill TP, Cheng DS, McLoed AG, Ausborn JA, et al: Epithelial nuclear factor-kappaB signaling promotes lung carcinogenesis via recruitment of regulatory T lymphocytes. Oncogene. 2011, 31: 3164-3176.PubMedPubMedCentral Zaynagetdinov R, Stathopoulos GT, Sherrill TP, Cheng DS, McLoed AG, Ausborn JA, et al: Epithelial nuclear factor-kappaB signaling promotes lung carcinogenesis via recruitment of regulatory T lymphocytes. Oncogene. 2011, 31: 3164-3176.PubMedPubMedCentral
78.
Zurück zum Zitat Tao H, Mimura Y, Aoe K, Kobayashi S, Yamamoto H, Matsuda E, et al: Prognostic potential of FOXP3 expression in non-small cell lung cancer cells combined with tumor-infiltrating regulatory T cells. Lung Cancer. 2012, 75: 95-101. 10.1016/j.lungcan.2011.06.002.PubMed Tao H, Mimura Y, Aoe K, Kobayashi S, Yamamoto H, Matsuda E, et al: Prognostic potential of FOXP3 expression in non-small cell lung cancer cells combined with tumor-infiltrating regulatory T cells. Lung Cancer. 2012, 75: 95-101. 10.1016/j.lungcan.2011.06.002.PubMed
79.
Zurück zum Zitat Li H, Zhao H, Yu J, Su Y, Cao S, An X, et al: Increased prevalence of regulatory T cells in the lung cancer microenvironment: a role of thymic stromal lymphopoietin. Cancer Immunol Immunother. 2011, 60: 1587-1596. 10.1007/s00262-011-1059-6.PubMed Li H, Zhao H, Yu J, Su Y, Cao S, An X, et al: Increased prevalence of regulatory T cells in the lung cancer microenvironment: a role of thymic stromal lymphopoietin. Cancer Immunol Immunother. 2011, 60: 1587-1596. 10.1007/s00262-011-1059-6.PubMed
80.
Zurück zum Zitat Sharma S, Yang SC, Zhu L, Reckamp K, Gardner B, Baratelli F, et al: Tumor cyclooxygenase-2/prostaglandin E2-dependent promotion of FOXP3 expression and CD4+ CD25+ T regulatory cell activities in lung cancer. Cancer Res. 2005, 65: 5211-5220. 10.1158/0008-5472.CAN-05-0141.PubMed Sharma S, Yang SC, Zhu L, Reckamp K, Gardner B, Baratelli F, et al: Tumor cyclooxygenase-2/prostaglandin E2-dependent promotion of FOXP3 expression and CD4+ CD25+ T regulatory cell activities in lung cancer. Cancer Res. 2005, 65: 5211-5220. 10.1158/0008-5472.CAN-05-0141.PubMed
81.
Zurück zum Zitat Zou W: Regulatory T, cells, tumour immunity and immunotherapy. Nat Rev Immunol. 2006, 6: 295-307. 10.1038/nri1806.PubMed Zou W: Regulatory T, cells, tumour immunity and immunotherapy. Nat Rev Immunol. 2006, 6: 295-307. 10.1038/nri1806.PubMed
82.
Zurück zum Zitat Byrne WL, Mills KH, Lederer JA, O’Sullivan GC: Targeting regulatory T cells in cancer. Cancer Res. 2011, 71: 6915-6920. 10.1158/0008-5472.CAN-11-1156.PubMedPubMedCentral Byrne WL, Mills KH, Lederer JA, O’Sullivan GC: Targeting regulatory T cells in cancer. Cancer Res. 2011, 71: 6915-6920. 10.1158/0008-5472.CAN-11-1156.PubMedPubMedCentral
83.
Zurück zum Zitat Gober HJ, Kistowska M, Angman L, Jeno P, Mori L, De Libero G: Human T cell receptor gammadelta cells recognize endogenous mevalonate metabolites in tumor cells. J Exp Med. 2003, 197: 163-168. 10.1084/jem.20021500.PubMedPubMedCentral Gober HJ, Kistowska M, Angman L, Jeno P, Mori L, De Libero G: Human T cell receptor gammadelta cells recognize endogenous mevalonate metabolites in tumor cells. J Exp Med. 2003, 197: 163-168. 10.1084/jem.20021500.PubMedPubMedCentral
84.
Zurück zum Zitat Gao Y, Yang W, Pan M, Scully E, Girardi M, Augenlicht LH, et al: Gamma delta T cells provide an early source of interferon gamma in tumor immunity. J Exp Med. 2003, 198: 433-442. 10.1084/jem.20030584.PubMedPubMedCentral Gao Y, Yang W, Pan M, Scully E, Girardi M, Augenlicht LH, et al: Gamma delta T cells provide an early source of interferon gamma in tumor immunity. J Exp Med. 2003, 198: 433-442. 10.1084/jem.20030584.PubMedPubMedCentral
85.
Zurück zum Zitat Kobayashi H, Tanaka Y, Yagi J, Minato N, Tanabe K: Phase I/II study of adoptive transfer of gammadelta T cells in combination with zoledronic acid and IL-2 to patients with advanced renal cell carcinoma. Cancer Immunol Immunother. 2011, 60: 1075-1084. 10.1007/s00262-011-1021-7.PubMed Kobayashi H, Tanaka Y, Yagi J, Minato N, Tanabe K: Phase I/II study of adoptive transfer of gammadelta T cells in combination with zoledronic acid and IL-2 to patients with advanced renal cell carcinoma. Cancer Immunol Immunother. 2011, 60: 1075-1084. 10.1007/s00262-011-1021-7.PubMed
86.
Zurück zum Zitat Nakajima J, Murakawa T, Fukami T, Goto S, Kaneko T, Yoshida Y, et al: A phase I study of adoptive immunotherapy for recurrent non-small-cell lung cancer patients with autologous gammadelta T cells. Eur J Cardiothorac Surg. 2010, 37: 1191-1197. 10.1016/j.ejcts.2009.11.051.PubMed Nakajima J, Murakawa T, Fukami T, Goto S, Kaneko T, Yoshida Y, et al: A phase I study of adoptive immunotherapy for recurrent non-small-cell lung cancer patients with autologous gammadelta T cells. Eur J Cardiothorac Surg. 2010, 37: 1191-1197. 10.1016/j.ejcts.2009.11.051.PubMed
87.
Zurück zum Zitat Yoshida Y, Nakajima J, Wada H, Kakimi K: Gammadelta T-cell immunotherapy for lung cancer. Surg Today. 2011, 41: 606-611. 10.1007/s00595-010-4478-7.PubMed Yoshida Y, Nakajima J, Wada H, Kakimi K: Gammadelta T-cell immunotherapy for lung cancer. Surg Today. 2011, 41: 606-611. 10.1007/s00595-010-4478-7.PubMed
88.
Zurück zum Zitat Iwakura Y, Ishigame H, Saijo S, Nakae S: Functional specialization of interleukin-17 family members. Immunity. 2011, 34: 149-162. 10.1016/j.immuni.2011.02.012.PubMed Iwakura Y, Ishigame H, Saijo S, Nakae S: Functional specialization of interleukin-17 family members. Immunity. 2011, 34: 149-162. 10.1016/j.immuni.2011.02.012.PubMed
89.
Zurück zum Zitat Zou W, Restifo NP: T(H)17 cells in tumour immunity and immunotherapy. Nat Rev Immunol. 2010, 10: 248-256. 10.1038/nri2742.PubMedPubMedCentral Zou W, Restifo NP: T(H)17 cells in tumour immunity and immunotherapy. Nat Rev Immunol. 2010, 10: 248-256. 10.1038/nri2742.PubMedPubMedCentral
90.
Zurück zum Zitat Ye ZJ, Zhou Q, Gu YY, Qin SM, Ma WL, Xin JB, et al: Generation and differentiation of IL-17-producing CD4+ T cells in malignant pleural effusion. J Immunol. 2010, 185: 6348-6354. 10.4049/jimmunol.1001728.PubMed Ye ZJ, Zhou Q, Gu YY, Qin SM, Ma WL, Xin JB, et al: Generation and differentiation of IL-17-producing CD4+ T cells in malignant pleural effusion. J Immunol. 2010, 185: 6348-6354. 10.4049/jimmunol.1001728.PubMed
91.
Zurück zum Zitat Li Y, Cao ZY, Sun B, Wang GY, Fu Z, Liu YM, et al: Effects of IL-17A on the occurrence of lung adenocarcinoma. Cancer Biol Ther. 2011, 12: 610-616. 10.4161/cbt.12.7.16302.PubMed Li Y, Cao ZY, Sun B, Wang GY, Fu Z, Liu YM, et al: Effects of IL-17A on the occurrence of lung adenocarcinoma. Cancer Biol Ther. 2011, 12: 610-616. 10.4161/cbt.12.7.16302.PubMed
92.
Zurück zum Zitat Chen X, Wan J, Liu J, Xie W, Diao X, Xu J, et al: Increased IL-17-producing cells correlate with poor survival and lymphangiogenesis in NSCLC patients. Lung Cancer. 2010, 69: 348-354. 10.1016/j.lungcan.2009.11.013.PubMed Chen X, Wan J, Liu J, Xie W, Diao X, Xu J, et al: Increased IL-17-producing cells correlate with poor survival and lymphangiogenesis in NSCLC patients. Lung Cancer. 2010, 69: 348-354. 10.1016/j.lungcan.2009.11.013.PubMed
93.
Zurück zum Zitat Ankathatti Munegowda M, Deng Y, Mulligan SJ, Xiang J: Th17 and Th17-stimulated CD8(+) T cells play a distinct role in Th17-induced preventive and therapeutic antitumor immunity. Cancer Immunol Immunother. 2011, 60: 1473-1484. 10.1007/s00262-011-1054-y.PubMed Ankathatti Munegowda M, Deng Y, Mulligan SJ, Xiang J: Th17 and Th17-stimulated CD8(+) T cells play a distinct role in Th17-induced preventive and therapeutic antitumor immunity. Cancer Immunol Immunother. 2011, 60: 1473-1484. 10.1007/s00262-011-1054-y.PubMed
94.
Zurück zum Zitat Wilke CM, Kryczek I, Wei S, Zhao E, Wu K, Wang G, et al: Th17 cells in cancer: help or hindrance?. Carcinogenesis. 2011, 32: 643-649. 10.1093/carcin/bgr019.PubMedPubMedCentral Wilke CM, Kryczek I, Wei S, Zhao E, Wu K, Wang G, et al: Th17 cells in cancer: help or hindrance?. Carcinogenesis. 2011, 32: 643-649. 10.1093/carcin/bgr019.PubMedPubMedCentral
95.
Zurück zum Zitat Gallina G, Dolcetti L, Serafini P, De Santo C, Marigo I, Colombo MP, et al: Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J Clin Invest. 2006, 116: 2777-2790. 10.1172/JCI28828.PubMedPubMedCentral Gallina G, Dolcetti L, Serafini P, De Santo C, Marigo I, Colombo MP, et al: Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J Clin Invest. 2006, 116: 2777-2790. 10.1172/JCI28828.PubMedPubMedCentral
96.
Zurück zum Zitat Watanabe S, Deguchi K, Zheng R, Tamai H, Wang LX, Cohen PA, et al: Tumor-induced CD11b+Gr-1+ myeloid cells suppress T cell sensitization in tumor-draining lymph nodes. J Immunol. 2008, 181: 3291-3300.PubMed Watanabe S, Deguchi K, Zheng R, Tamai H, Wang LX, Cohen PA, et al: Tumor-induced CD11b+Gr-1+ myeloid cells suppress T cell sensitization in tumor-draining lymph nodes. J Immunol. 2008, 181: 3291-3300.PubMed
97.
Zurück zum Zitat Lu T, Ramakrishnan R, Altiok S, Youn JI, Cheng P, Celis E, et al: Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. J Clin Invest. 2011, 121: 4015-4029. 10.1172/JCI45862.PubMedPubMedCentral Lu T, Ramakrishnan R, Altiok S, Youn JI, Cheng P, Celis E, et al: Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. J Clin Invest. 2011, 121: 4015-4029. 10.1172/JCI45862.PubMedPubMedCentral
98.
Zurück zum Zitat Serafini P, Mgebroff S, Noonan K, Borrello I: Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res. 2008, 68: 5439-5449. 10.1158/0008-5472.CAN-07-6621.PubMedPubMedCentral Serafini P, Mgebroff S, Noonan K, Borrello I: Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res. 2008, 68: 5439-5449. 10.1158/0008-5472.CAN-07-6621.PubMedPubMedCentral
99.
Zurück zum Zitat Hoechst B, Voigtlaender T, Ormandy L, Gamrekelashvili J, Zhao F, Wedemeyer H, et al: Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology. 2009, 50: 799-807. 10.1002/hep.23054.PubMed Hoechst B, Voigtlaender T, Ormandy L, Gamrekelashvili J, Zhao F, Wedemeyer H, et al: Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology. 2009, 50: 799-807. 10.1002/hep.23054.PubMed
100.
Zurück zum Zitat Li H, Han Y, Guo Q, Zhang M, Cao X: Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. J Immunol. 2009, 182: 240-249.PubMed Li H, Han Y, Guo Q, Zhang M, Cao X: Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. J Immunol. 2009, 182: 240-249.PubMed
101.
Zurück zum Zitat Nausch N, Galani IE, Schlecker E, Cerwenka A: Mononuclear myeloid-derived “suppressor” cells express RAE-1 and activate natural killer cells. Blood. 2008, 112: 4080-4089. 10.1182/blood-2008-03-143776.PubMedPubMedCentral Nausch N, Galani IE, Schlecker E, Cerwenka A: Mononuclear myeloid-derived “suppressor” cells express RAE-1 and activate natural killer cells. Blood. 2008, 112: 4080-4089. 10.1182/blood-2008-03-143776.PubMedPubMedCentral
102.
Zurück zum Zitat Cheng P, Corzo CA, Luetteke N, Yu B, Nagaraj S, Bui MM, et al: Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J Exp Med. 2008, 205: 2235-2249. 10.1084/jem.20080132.PubMedPubMedCentral Cheng P, Corzo CA, Luetteke N, Yu B, Nagaraj S, Bui MM, et al: Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J Exp Med. 2008, 205: 2235-2249. 10.1084/jem.20080132.PubMedPubMedCentral
103.
Zurück zum Zitat Hoechst B, Ormandy LA, Ballmaier M, Lehner F, Kruger C, Manns MP, et al: A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology. 2008, 135: 234-243. 10.1053/j.gastro.2008.03.020.PubMed Hoechst B, Ormandy LA, Ballmaier M, Lehner F, Kruger C, Manns MP, et al: A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology. 2008, 135: 234-243. 10.1053/j.gastro.2008.03.020.PubMed
104.
Zurück zum Zitat Pan PY, Ma G, Weber KJ, Ozao-Choy J, Wang G, Yin B, et al: Immune stimulatory receptor CD40 is required for T-cell suppression and T regulatory cell activation mediated by myeloid-derived suppressor cells in cancer. Cancer Res. 2010, 70: 99-108. 10.1158/0008-5472.CAN-09-1882.PubMed Pan PY, Ma G, Weber KJ, Ozao-Choy J, Wang G, Yin B, et al: Immune stimulatory receptor CD40 is required for T-cell suppression and T regulatory cell activation mediated by myeloid-derived suppressor cells in cancer. Cancer Res. 2010, 70: 99-108. 10.1158/0008-5472.CAN-09-1882.PubMed
105.
Zurück zum Zitat Finke J, Ko J, Rini B, Rayman P, Ireland J, Cohen P: MDSC as a mechanism of tumor escape from sunitinib mediated anti-angiogenic therapy. Int Immunopharmacol. 2011, 11: 856-861. 10.1016/j.intimp.2011.01.030.PubMed Finke J, Ko J, Rini B, Rayman P, Ireland J, Cohen P: MDSC as a mechanism of tumor escape from sunitinib mediated anti-angiogenic therapy. Int Immunopharmacol. 2011, 11: 856-861. 10.1016/j.intimp.2011.01.030.PubMed
106.
Zurück zum Zitat Ostrand-Rosenberg S: Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity. Cancer Immunol Immunother. 2010, 59: 1593-1600. 10.1007/s00262-010-0855-8.PubMedPubMedCentral Ostrand-Rosenberg S: Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity. Cancer Immunol Immunother. 2010, 59: 1593-1600. 10.1007/s00262-010-0855-8.PubMedPubMedCentral
107.
Zurück zum Zitat Youn JI, Gabrilovich DI: The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity. Eur J Immunol. 2010, 40: 2969-2975. 10.1002/eji.201040895.PubMedPubMedCentral Youn JI, Gabrilovich DI: The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity. Eur J Immunol. 2010, 40: 2969-2975. 10.1002/eji.201040895.PubMedPubMedCentral
108.
Zurück zum Zitat Gabrilovich DI, Nagaraj S: Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009, 9: 162-174. 10.1038/nri2506.PubMedPubMedCentral Gabrilovich DI, Nagaraj S: Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009, 9: 162-174. 10.1038/nri2506.PubMedPubMedCentral
109.
Zurück zum Zitat Rodriguez PC, Ochoa AC: Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives. Immunol Rev. 2008, 222: 180-191. 10.1111/j.1600-065X.2008.00608.x.PubMedPubMedCentral Rodriguez PC, Ochoa AC: Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives. Immunol Rev. 2008, 222: 180-191. 10.1111/j.1600-065X.2008.00608.x.PubMedPubMedCentral
110.
Zurück zum Zitat Bronte V, Zanovello P: Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol. 2005, 5: 641-654. 10.1038/nri1668.PubMed Bronte V, Zanovello P: Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol. 2005, 5: 641-654. 10.1038/nri1668.PubMed
111.
Zurück zum Zitat Ostrand-Rosenberg S, Sinha P, Beury DW, Clements VK: Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression. Semin Cancer Biol. 2012, 22: 275-281. 10.1016/j.semcancer.2012.01.011.PubMedPubMedCentral Ostrand-Rosenberg S, Sinha P, Beury DW, Clements VK: Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression. Semin Cancer Biol. 2012, 22: 275-281. 10.1016/j.semcancer.2012.01.011.PubMedPubMedCentral
112.
Zurück zum Zitat Liu CY, Wang YM, Wang CL, Feng PH, Ko HW, Liu YH, et al: Population alterations of L-arginase- and inducible nitric oxide synthase-expressed CD11b+/CD14/CD15+/CD33+ myeloid-derived suppressor cells and CD8+ T lymphocytes in patients with advanced-stage non-small cell lung cancer. J Cancer Res Clin Oncol. 2010, 136: 35-45. 10.1007/s00432-009-0634-0.PubMed Liu CY, Wang YM, Wang CL, Feng PH, Ko HW, Liu YH, et al: Population alterations of L-arginase- and inducible nitric oxide synthase-expressed CD11b+/CD14/CD15+/CD33+ myeloid-derived suppressor cells and CD8+ T lymphocytes in patients with advanced-stage non-small cell lung cancer. J Cancer Res Clin Oncol. 2010, 136: 35-45. 10.1007/s00432-009-0634-0.PubMed
113.
Zurück zum Zitat Apetoh L, Vegran F, Ladoire S, Ghiringhelli F: Restoration of antitumor immunity through selective inhibition of myeloid derived suppressor cells by anticancer therapies. Curr Mol Med. 2011, 11: 365-372. 10.2174/156652411795976574.PubMed Apetoh L, Vegran F, Ladoire S, Ghiringhelli F: Restoration of antitumor immunity through selective inhibition of myeloid derived suppressor cells by anticancer therapies. Curr Mol Med. 2011, 11: 365-372. 10.2174/156652411795976574.PubMed
114.
Zurück zum Zitat Kao J, Ko EC, Eisenstein S, Sikora AG, Fu S, Chen SH: Targeting immune suppressing myeloid-derived suppressor cells in oncology. Crit Rev Oncol Hematol. 2011, 77: 12-19. 10.1016/j.critrevonc.2010.02.004.PubMed Kao J, Ko EC, Eisenstein S, Sikora AG, Fu S, Chen SH: Targeting immune suppressing myeloid-derived suppressor cells in oncology. Crit Rev Oncol Hematol. 2011, 77: 12-19. 10.1016/j.critrevonc.2010.02.004.PubMed
115.
Zurück zum Zitat Ugel S, Delpozzo F, Desantis G, Papalini F, Simonato F, Sonda N, et al: Therapeutic targeting of myeloid-derived suppressor cells. Curr Opin Pharmacol. 2009, 9: 470-481. 10.1016/j.coph.2009.06.014.PubMed Ugel S, Delpozzo F, Desantis G, Papalini F, Simonato F, Sonda N, et al: Therapeutic targeting of myeloid-derived suppressor cells. Curr Opin Pharmacol. 2009, 9: 470-481. 10.1016/j.coph.2009.06.014.PubMed
116.
Zurück zum Zitat Lee JM, Seo JH, Kim YJ, Kim YS, Ko HJ, Kang CY: The restoration of myeloid-derived suppressor cells as functional antigen-presenting cells by NKT cell help and all-trans-retinoic acid treatment. Int J Cancer. 2011, 131: 741-751.PubMed Lee JM, Seo JH, Kim YJ, Kim YS, Ko HJ, Kang CY: The restoration of myeloid-derived suppressor cells as functional antigen-presenting cells by NKT cell help and all-trans-retinoic acid treatment. Int J Cancer. 2011, 131: 741-751.PubMed
117.
Zurück zum Zitat Tu SP, Jin H, Shi JD, Zhu LM, Suo Y, Lu G, et al: Curcumin induces the differentiation of myeloid-derived suppressor cells and inhibits their interaction with cancer cells and related tumor growth. Cancer Prev Res (Phila). 2012, 5: 205-215. 10.1158/1940-6207.CAPR-11-0247. Tu SP, Jin H, Shi JD, Zhu LM, Suo Y, Lu G, et al: Curcumin induces the differentiation of myeloid-derived suppressor cells and inhibits their interaction with cancer cells and related tumor growth. Cancer Prev Res (Phila). 2012, 5: 205-215. 10.1158/1940-6207.CAPR-11-0247.
118.
Zurück zum Zitat Roth F, De La Fuente AC, Vella JL, Zoso A, Inverardi L, Serafini P: Aptamer-mediated blockade of IL4Ralpha triggers apoptosis of MDSCs and limits tumor progression. Cancer Res. 2012, 72: 1373-1383. 10.1158/0008-5472.CAN-11-2772.PubMed Roth F, De La Fuente AC, Vella JL, Zoso A, Inverardi L, Serafini P: Aptamer-mediated blockade of IL4Ralpha triggers apoptosis of MDSCs and limits tumor progression. Cancer Res. 2012, 72: 1373-1383. 10.1158/0008-5472.CAN-11-2772.PubMed
119.
Zurück zum Zitat Vincent J, Mignot G, Chalmin F, Ladoire S, Bruchard M, Chevriaux A, et al: 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res. 2010, 70: 3052-3061. 10.1158/0008-5472.CAN-09-3690.PubMed Vincent J, Mignot G, Chalmin F, Ladoire S, Bruchard M, Chevriaux A, et al: 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res. 2010, 70: 3052-3061. 10.1158/0008-5472.CAN-09-3690.PubMed
120.
Zurück zum Zitat Poschke I, Kiessling R: On the armament and appearances of human myeloid-derived suppressor cells. Clin Immunol. 2012, 144: 250-268. 10.1016/j.clim.2012.06.003.PubMed Poschke I, Kiessling R: On the armament and appearances of human myeloid-derived suppressor cells. Clin Immunol. 2012, 144: 250-268. 10.1016/j.clim.2012.06.003.PubMed
121.
Zurück zum Zitat Veltman JD, Lambers ME, van Nimwegen M, Hendriks RW, Hoogsteden HC, Aerts JG, et al: COX-2 inhibition improves immunotherapy and is associated with decreased numbers of myeloid-derived suppressor cells in mesothelioma. Celecoxib influences MDSC function. BMC Cancer. 2010, 10: 464-10.1186/1471-2407-10-464.PubMedPubMedCentral Veltman JD, Lambers ME, van Nimwegen M, Hendriks RW, Hoogsteden HC, Aerts JG, et al: COX-2 inhibition improves immunotherapy and is associated with decreased numbers of myeloid-derived suppressor cells in mesothelioma. Celecoxib influences MDSC function. BMC Cancer. 2010, 10: 464-10.1186/1471-2407-10-464.PubMedPubMedCentral
122.
Zurück zum Zitat Serafini P, Meckel K, Kelso M, Noonan K, Califano J, Koch W, et al: Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J Exp Med. 2006, 203: 2691-2702. 10.1084/jem.20061104.PubMedPubMedCentral Serafini P, Meckel K, Kelso M, Noonan K, Califano J, Koch W, et al: Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J Exp Med. 2006, 203: 2691-2702. 10.1084/jem.20061104.PubMedPubMedCentral
123.
Zurück zum Zitat De Santo C, Serafini P, Marigo I, Dolcetti L, Bolla M, Del Soldato P, et al: Nitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccination. Proc Natl Acad Sci U S A. 2005, 102: 4185-4190. 10.1073/pnas.0409783102.PubMedPubMedCentral De Santo C, Serafini P, Marigo I, Dolcetti L, Bolla M, Del Soldato P, et al: Nitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccination. Proc Natl Acad Sci U S A. 2005, 102: 4185-4190. 10.1073/pnas.0409783102.PubMedPubMedCentral
124.
Zurück zum Zitat Schmid MC, Varner JA: Myeloid cells in the tumor microenvironment: modulation of tumor angiogenesis and tumor inflammation. J Oncol. 2010, 2010: 201026-PubMedPubMedCentral Schmid MC, Varner JA: Myeloid cells in the tumor microenvironment: modulation of tumor angiogenesis and tumor inflammation. J Oncol. 2010, 2010: 201026-PubMedPubMedCentral
125.
Zurück zum Zitat Bremnes RM, Al-Shibli K, Donnem T, Sirera R, Al-Saad S, Andersen S, et al: The role of tumor-infiltrating immune cells and chronic inflammation at the tumor site on cancer development, progression, and prognosis: emphasis on non-small cell lung cancer. J Thorac Oncol. 2011, 6: 824-833. 10.1097/JTO.0b013e3182037b76.PubMed Bremnes RM, Al-Shibli K, Donnem T, Sirera R, Al-Saad S, Andersen S, et al: The role of tumor-infiltrating immune cells and chronic inflammation at the tumor site on cancer development, progression, and prognosis: emphasis on non-small cell lung cancer. J Thorac Oncol. 2011, 6: 824-833. 10.1097/JTO.0b013e3182037b76.PubMed
126.
Zurück zum Zitat Lewis C, Murdoch C: Macrophage responses to hypoxia: implications for tumor progression and anti-cancer therapies. Am J Pathol. 2005, 167: 627-635. 10.1016/S0002-9440(10)62038-X.PubMedPubMedCentral Lewis C, Murdoch C: Macrophage responses to hypoxia: implications for tumor progression and anti-cancer therapies. Am J Pathol. 2005, 167: 627-635. 10.1016/S0002-9440(10)62038-X.PubMedPubMedCentral
127.
Zurück zum Zitat Dai F, Liu L, Che G, Yu N, Pu Q, Zhang S, et al: The number and microlocalization of tumor-associated immune cells are associated with patient’s survival time in non-small cell lung cancer. BMC Cancer. 2010, 10: 220-10.1186/1471-2407-10-220.PubMedPubMedCentral Dai F, Liu L, Che G, Yu N, Pu Q, Zhang S, et al: The number and microlocalization of tumor-associated immune cells are associated with patient’s survival time in non-small cell lung cancer. BMC Cancer. 2010, 10: 220-10.1186/1471-2407-10-220.PubMedPubMedCentral
128.
Zurück zum Zitat Kawai O, Ishii G, Kubota K, Murata Y, Naito Y, Mizuno T, et al: Predominant infiltration of macrophages and CD8(+) T Cells in cancer nests is a significant predictor of survival in stage IV nonsmall cell lung cancer. Cancer. 2008, 113: 1387-1395. 10.1002/cncr.23712.PubMed Kawai O, Ishii G, Kubota K, Murata Y, Naito Y, Mizuno T, et al: Predominant infiltration of macrophages and CD8(+) T Cells in cancer nests is a significant predictor of survival in stage IV nonsmall cell lung cancer. Cancer. 2008, 113: 1387-1395. 10.1002/cncr.23712.PubMed
129.
Zurück zum Zitat Ma J, Liu L, Che G, Yu N, Dai F, You Z: The M1 form of tumor-associated macrophages in non-small cell lung cancer is positively associated with survival time. BMC Cancer. 2010, 10: 112-10.1186/1471-2407-10-112.PubMedPubMedCentral Ma J, Liu L, Che G, Yu N, Dai F, You Z: The M1 form of tumor-associated macrophages in non-small cell lung cancer is positively associated with survival time. BMC Cancer. 2010, 10: 112-10.1186/1471-2407-10-112.PubMedPubMedCentral
130.
Zurück zum Zitat Ohri CM, Shikotra A, Green RH, Waller DA, Bradding P: Macrophages within NSCLC tumour islets are predominantly of a cytotoxic M1 phenotype associated with extended survival. Eur Respir J. 2009, 33: 118-126. 10.1183/09031936.00065708.PubMed Ohri CM, Shikotra A, Green RH, Waller DA, Bradding P: Macrophages within NSCLC tumour islets are predominantly of a cytotoxic M1 phenotype associated with extended survival. Eur Respir J. 2009, 33: 118-126. 10.1183/09031936.00065708.PubMed
131.
Zurück zum Zitat Welsh TJ, Green RH, Richardson D, Waller DA, O’Byrne KJ, Bradding P: Macrophage and mast-cell invasion of tumor cell islets confers a marked survival advantage in non-small-cell lung cancer. J Clin Oncol. 2005, 23: 8959-8967. 10.1200/JCO.2005.01.4910.PubMed Welsh TJ, Green RH, Richardson D, Waller DA, O’Byrne KJ, Bradding P: Macrophage and mast-cell invasion of tumor cell islets confers a marked survival advantage in non-small-cell lung cancer. J Clin Oncol. 2005, 23: 8959-8967. 10.1200/JCO.2005.01.4910.PubMed
132.
Zurück zum Zitat Chung FT, Lee KY, Wang CW, Heh CC, Chan YF, Chen HW, et al: Tumor-associated macrophages correlate with response to epidermal growth factor receptor-tyrosine kinase inhibitors in advanced non-small cell lung cancer. Int J Cancer. 2012, 131: E227-E235. 10.1002/ijc.27403.PubMed Chung FT, Lee KY, Wang CW, Heh CC, Chan YF, Chen HW, et al: Tumor-associated macrophages correlate with response to epidermal growth factor receptor-tyrosine kinase inhibitors in advanced non-small cell lung cancer. Int J Cancer. 2012, 131: E227-E235. 10.1002/ijc.27403.PubMed
133.
Zurück zum Zitat Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM: Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010, 127: 2893-2917. 10.1002/ijc.25516.PubMed Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM: Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010, 127: 2893-2917. 10.1002/ijc.25516.PubMed
134.
Zurück zum Zitat Nakanishi Y, Nakatsuji M, Seno H, Ishizu S, Akitake-Kawano R, Kanda K, et al: COX-2 inhibition alters the phenotype of tumor-associated macrophages from M2 to M1 in ApcMin/+ mouse polyps. Carcinogenesis. 2011, 32: 1333-1339. 10.1093/carcin/bgr128.PubMed Nakanishi Y, Nakatsuji M, Seno H, Ishizu S, Akitake-Kawano R, Kanda K, et al: COX-2 inhibition alters the phenotype of tumor-associated macrophages from M2 to M1 in ApcMin/+ mouse polyps. Carcinogenesis. 2011, 32: 1333-1339. 10.1093/carcin/bgr128.PubMed
135.
Zurück zum Zitat Coward J, Kulbe H, Chakravarty P, Leader D, Vassileva V, Leinster DA, et al: Interleukin-6 as a therapeutic target in human ovarian cancer. Clin Cancer Res. 2011, 17: 6083-6096. 10.1158/1078-0432.CCR-11-0945.PubMedPubMedCentral Coward J, Kulbe H, Chakravarty P, Leader D, Vassileva V, Leinster DA, et al: Interleukin-6 as a therapeutic target in human ovarian cancer. Clin Cancer Res. 2011, 17: 6083-6096. 10.1158/1078-0432.CCR-11-0945.PubMedPubMedCentral
136.
Zurück zum Zitat Terlou A, van Seters M, Kleinjan A, Heijmans-Antonissen C, Santegoets LA, Beckmann I, et al: Imiquimod-induced clearance of HPV is associated with normalization of immune cell counts in usual type vulvar intraepithelial neoplasia. Int J Cancer. 2010, 127: 2831-2840. 10.1002/ijc.25302.PubMed Terlou A, van Seters M, Kleinjan A, Heijmans-Antonissen C, Santegoets LA, Beckmann I, et al: Imiquimod-induced clearance of HPV is associated with normalization of immune cell counts in usual type vulvar intraepithelial neoplasia. Int J Cancer. 2010, 127: 2831-2840. 10.1002/ijc.25302.PubMed
137.
Zurück zum Zitat Heusinkveld M, van der Burg SH: Identification and manipulation of tumor associated macrophages in human cancers. J Transl Med. 2011, 9: 216-10.1186/1479-5876-9-216.PubMedPubMedCentral Heusinkveld M, van der Burg SH: Identification and manipulation of tumor associated macrophages in human cancers. J Transl Med. 2011, 9: 216-10.1186/1479-5876-9-216.PubMedPubMedCentral
138.
Zurück zum Zitat Fong CH, Bebien M, Didierlaurent A, Nebauer R, Hussell T, Broide D, et al: An antiinflammatory role for IKKbeta through the inhibition of “classical” macrophage activation. J Exp Med. 2008, 205: 1269-1276. 10.1084/jem.20080124.PubMedPubMedCentral Fong CH, Bebien M, Didierlaurent A, Nebauer R, Hussell T, Broide D, et al: An antiinflammatory role for IKKbeta through the inhibition of “classical” macrophage activation. J Exp Med. 2008, 205: 1269-1276. 10.1084/jem.20080124.PubMedPubMedCentral
139.
Zurück zum Zitat Hagemann T, Lawrence T, McNeish I, Charles KA, Kulbe H, Thompson RG, et al: “Re-educating” tumor-associated macrophages by targeting NF-kappaB. J Exp Med. 2008, 205: 1261-1268. 10.1084/jem.20080108.PubMedPubMedCentral Hagemann T, Lawrence T, McNeish I, Charles KA, Kulbe H, Thompson RG, et al: “Re-educating” tumor-associated macrophages by targeting NF-kappaB. J Exp Med. 2008, 205: 1261-1268. 10.1084/jem.20080108.PubMedPubMedCentral
140.
Zurück zum Zitat Buhtoiarov IN, Sondel PM, Wigginton JM, Buhtoiarova TN, Yanke EM, Mahvi DA, et al: Anti-tumour synergy of cytotoxic chemotherapy and anti-CD40 plus CpG-ODN immunotherapy through repolarization of tumour-associated macrophages. Immunology. 2011, 132: 226-239. 10.1111/j.1365-2567.2010.03357.x.PubMedPubMedCentral Buhtoiarov IN, Sondel PM, Wigginton JM, Buhtoiarova TN, Yanke EM, Mahvi DA, et al: Anti-tumour synergy of cytotoxic chemotherapy and anti-CD40 plus CpG-ODN immunotherapy through repolarization of tumour-associated macrophages. Immunology. 2011, 132: 226-239. 10.1111/j.1365-2567.2010.03357.x.PubMedPubMedCentral
141.
Zurück zum Zitat Sautes-Fridman C, Cherfils-Vicini J, Damotte D, Fisson S, Fridman WH, Cremer I, et al: Tumor microenvironment is multifaceted. Cancer Metastasis Rev. 2011, 30: 13-25. 10.1007/s10555-011-9279-y.PubMed Sautes-Fridman C, Cherfils-Vicini J, Damotte D, Fisson S, Fridman WH, Cremer I, et al: Tumor microenvironment is multifaceted. Cancer Metastasis Rev. 2011, 30: 13-25. 10.1007/s10555-011-9279-y.PubMed
142.
Zurück zum Zitat Bremnes RM, Donnem T, Al-Saad S, Al-Shibli K, Andersen S, Sirera R, et al: The role of tumor stroma in cancer progression and prognosis: emphasis on carcinoma-associated fibroblasts and non-small cell lung cancer. J Thorac Oncol. 2011, 6: 209-217. 10.1097/JTO.0b013e3181f8a1bd.PubMed Bremnes RM, Donnem T, Al-Saad S, Al-Shibli K, Andersen S, Sirera R, et al: The role of tumor stroma in cancer progression and prognosis: emphasis on carcinoma-associated fibroblasts and non-small cell lung cancer. J Thorac Oncol. 2011, 6: 209-217. 10.1097/JTO.0b013e3181f8a1bd.PubMed
143.
Zurück zum Zitat Becker Y: Dendritic cell activity against primary tumors: an overview. In Vivo. 1993, 7: 187-191.PubMed Becker Y: Dendritic cell activity against primary tumors: an overview. In Vivo. 1993, 7: 187-191.PubMed
144.
Zurück zum Zitat Mitra R, Singh S, Khar A: Antitumour immune responses. Expert Rev Mol Med. 2003, 5: 1-19.PubMed Mitra R, Singh S, Khar A: Antitumour immune responses. Expert Rev Mol Med. 2003, 5: 1-19.PubMed
145.
Zurück zum Zitat Kusmartsev S, Gabrilovich DI: Effect of tumor-derived cytokines and growth factors on differentiation and immune suppressive features of myeloid cells in cancer. Cancer Metastasis Rev. 2006, 25: 323-331. 10.1007/s10555-006-9002-6.PubMedPubMedCentral Kusmartsev S, Gabrilovich DI: Effect of tumor-derived cytokines and growth factors on differentiation and immune suppressive features of myeloid cells in cancer. Cancer Metastasis Rev. 2006, 25: 323-331. 10.1007/s10555-006-9002-6.PubMedPubMedCentral
146.
Zurück zum Zitat Pinzon-Charry A, Maxwell T, Lopez JA: Dendritic cell dysfunction in cancer: a mechanism for immunosuppression. Immunol Cell Biol. 2005, 83: 451-461. 10.1111/j.1440-1711.2005.01371.x.PubMed Pinzon-Charry A, Maxwell T, Lopez JA: Dendritic cell dysfunction in cancer: a mechanism for immunosuppression. Immunol Cell Biol. 2005, 83: 451-461. 10.1111/j.1440-1711.2005.01371.x.PubMed
147.
Zurück zum Zitat Shurin MR, Shurin GV, Lokshin A, Yurkovetsky ZR, Gutkin DW, Chatta G, et al: Intratumoral cytokines/chemokines/growth factors and tumor infiltrating dendritic cells: friends or enemies?. Cancer Metastasis Rev. 2006, 25: 333-356. 10.1007/s10555-006-9010-6.PubMed Shurin MR, Shurin GV, Lokshin A, Yurkovetsky ZR, Gutkin DW, Chatta G, et al: Intratumoral cytokines/chemokines/growth factors and tumor infiltrating dendritic cells: friends or enemies?. Cancer Metastasis Rev. 2006, 25: 333-356. 10.1007/s10555-006-9010-6.PubMed
148.
Zurück zum Zitat Almand B, Resser JR, Lindman B, Nadaf S, Clark JI, Kwon ED, et al: Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res. 2000, 6: 1755-1766.PubMed Almand B, Resser JR, Lindman B, Nadaf S, Clark JI, Kwon ED, et al: Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res. 2000, 6: 1755-1766.PubMed
149.
Zurück zum Zitat Bergeron A, El-Hage F, Kambouchner M, Lecossier D, Tazi A: Characterisation of dendritic cell subsets in lung cancer micro-environments. Eur Respir J. 2006, 28: 1170-1177. 10.1183/09031936.06.00114205.PubMed Bergeron A, El-Hage F, Kambouchner M, Lecossier D, Tazi A: Characterisation of dendritic cell subsets in lung cancer micro-environments. Eur Respir J. 2006, 28: 1170-1177. 10.1183/09031936.06.00114205.PubMed
150.
Zurück zum Zitat Gabrilovich D: Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol. 2004, 4: 941-952. 10.1038/nri1498.PubMed Gabrilovich D: Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol. 2004, 4: 941-952. 10.1038/nri1498.PubMed
151.
Zurück zum Zitat Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, et al: Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med. 1996, 2: 1096-1103. 10.1038/nm1096-1096.PubMed Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, et al: Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med. 1996, 2: 1096-1103. 10.1038/nm1096-1096.PubMed
152.
Zurück zum Zitat Laxmanan S, Robertson SW, Wang E, Lau JS, Briscoe DM, Mukhopadhyay D: Vascular endothelial growth factor impairs the functional ability of dendritic cells through Id pathways. Biochem Biophys Res Commun. 2005, 334: 193-198. 10.1016/j.bbrc.2005.06.065.PubMedPubMedCentral Laxmanan S, Robertson SW, Wang E, Lau JS, Briscoe DM, Mukhopadhyay D: Vascular endothelial growth factor impairs the functional ability of dendritic cells through Id pathways. Biochem Biophys Res Commun. 2005, 334: 193-198. 10.1016/j.bbrc.2005.06.065.PubMedPubMedCentral
153.
Zurück zum Zitat Menetrier-Caux C, Montmain G, Dieu MC, Bain C, Favrot MC, Caux C, et al: Inhibition of the differentiation of dendritic cells from CD34(+) progenitors by tumor cells: role of interleukin-6 and macrophage colony-stimulating factor. Blood. 1998, 92: 4778-4791.PubMed Menetrier-Caux C, Montmain G, Dieu MC, Bain C, Favrot MC, Caux C, et al: Inhibition of the differentiation of dendritic cells from CD34(+) progenitors by tumor cells: role of interleukin-6 and macrophage colony-stimulating factor. Blood. 1998, 92: 4778-4791.PubMed
154.
Zurück zum Zitat Steinbrink K, Wolfl M, Jonuleit H, Knop J, Enk AH: Induction of tolerance by IL-10-treated dendritic cells. J Immunol. 1997, 159: 4772-4780.PubMed Steinbrink K, Wolfl M, Jonuleit H, Knop J, Enk AH: Induction of tolerance by IL-10-treated dendritic cells. J Immunol. 1997, 159: 4772-4780.PubMed
155.
Zurück zum Zitat Dumitriu IE, Dunbar DR, Howie SE, Sethi T, Gregory CD: Human dendritic cells produce TGF-beta 1 under the influence of lung carcinoma cells and prime the differentiation of CD4+CD25+Foxp3+ regulatory T cells. J Immunol. 2009, 182: 2795-2807. 10.4049/jimmunol.0712671.PubMed Dumitriu IE, Dunbar DR, Howie SE, Sethi T, Gregory CD: Human dendritic cells produce TGF-beta 1 under the influence of lung carcinoma cells and prime the differentiation of CD4+CD25+Foxp3+ regulatory T cells. J Immunol. 2009, 182: 2795-2807. 10.4049/jimmunol.0712671.PubMed
156.
Zurück zum Zitat Schneider T, Hoffmann H, Dienemann H, Schnabel PA, Enk AH, Ring S, et al: Non-small cell lung cancer induces an immunosuppressive phenotype of dendritic cells in tumor microenvironment by upregulating B7-H3. J Thorac Oncol. 2011, 6: 1162-1168. 10.1097/JTO.0b013e31821c421d.PubMed Schneider T, Hoffmann H, Dienemann H, Schnabel PA, Enk AH, Ring S, et al: Non-small cell lung cancer induces an immunosuppressive phenotype of dendritic cells in tumor microenvironment by upregulating B7-H3. J Thorac Oncol. 2011, 6: 1162-1168. 10.1097/JTO.0b013e31821c421d.PubMed
157.
Zurück zum Zitat Mu CY, Huang JA, Chen Y, Chen C, Zhang XG: High expression of PD-L1 in lung cancer may contribute to poor prognosis and tumor cells immune escape through suppressing tumor infiltrating dendritic cells maturation. Med Oncol. 2011, 28: 682-688. 10.1007/s12032-010-9515-2.PubMed Mu CY, Huang JA, Chen Y, Chen C, Zhang XG: High expression of PD-L1 in lung cancer may contribute to poor prognosis and tumor cells immune escape through suppressing tumor infiltrating dendritic cells maturation. Med Oncol. 2011, 28: 682-688. 10.1007/s12032-010-9515-2.PubMed
158.
Zurück zum Zitat Gabrilovich DI, Corak J, Ciernik IF, Kavanaugh D, Carbone DP: Decreased antigen presentation by dendritic cells in patients with breast cancer. Clin Cancer Res. 1997, 3: 483-490.PubMed Gabrilovich DI, Corak J, Ciernik IF, Kavanaugh D, Carbone DP: Decreased antigen presentation by dendritic cells in patients with breast cancer. Clin Cancer Res. 1997, 3: 483-490.PubMed
159.
Zurück zum Zitat Ratta M, Fagnoni F, Curti A, Vescovini R, Sansoni P, Oliviero B, et al: Dendritic cells are functionally defective in multiple myeloma: the role of interleukin-6. Blood. 2002, 100: 230-237. 10.1182/blood.V100.1.230.PubMed Ratta M, Fagnoni F, Curti A, Vescovini R, Sansoni P, Oliviero B, et al: Dendritic cells are functionally defective in multiple myeloma: the role of interleukin-6. Blood. 2002, 100: 230-237. 10.1182/blood.V100.1.230.PubMed
160.
Zurück zum Zitat Kvistborg P, Bechmann CM, Pedersen AW, Toh HC, Claesson MH, Zocca MB: Comparison of monocyte-derived dendritic cells from colorectal cancer patients, non-small-cell-lung-cancer patients and healthy donors. Vaccine. 2009, 28: 542-547. 10.1016/j.vaccine.2009.09.129.PubMed Kvistborg P, Bechmann CM, Pedersen AW, Toh HC, Claesson MH, Zocca MB: Comparison of monocyte-derived dendritic cells from colorectal cancer patients, non-small-cell-lung-cancer patients and healthy donors. Vaccine. 2009, 28: 542-547. 10.1016/j.vaccine.2009.09.129.PubMed
161.
Zurück zum Zitat Perroud MW, Honma HN, Barbeiro AS, Gilli SC, Almeida MT, Vassallo J, et al: Mature autologous dendritic cell vaccines in advanced non-small cell lung cancer: a phase I pilot study. J Exp Clin Cancer Res. 2011, 30: 65-10.1186/1756-9966-30-65.PubMedPubMedCentral Perroud MW, Honma HN, Barbeiro AS, Gilli SC, Almeida MT, Vassallo J, et al: Mature autologous dendritic cell vaccines in advanced non-small cell lung cancer: a phase I pilot study. J Exp Clin Cancer Res. 2011, 30: 65-10.1186/1756-9966-30-65.PubMedPubMedCentral
162.
Zurück zum Zitat Wang K, Zhou Q, Guo AL, Xu CR, An SJ, Wu YL: An autologous therapeutic dendritic cell vaccine transfected with total lung carcinoma RNA stimulates cytotoxic T lymphocyte responses against non-small cell lung cancer. Immunol Invest. 2009, 38: 665-680. 10.1080/08820130903070528.PubMed Wang K, Zhou Q, Guo AL, Xu CR, An SJ, Wu YL: An autologous therapeutic dendritic cell vaccine transfected with total lung carcinoma RNA stimulates cytotoxic T lymphocyte responses against non-small cell lung cancer. Immunol Invest. 2009, 38: 665-680. 10.1080/08820130903070528.PubMed
163.
Zurück zum Zitat Zhou Q, Guo AL, Xu CR, An SJ, Wang Z, Yang SQ, et al: A dendritic cell-based tumour vaccine for lung cancer: full-length XAGE-1b protein-pulsed dendritic cells induce specific cytotoxic T lymphocytes in vitro. Clin Exp Immunol. 2008, 153: 392-400. 10.1111/j.1365-2249.2008.03724.x.PubMedPubMedCentral Zhou Q, Guo AL, Xu CR, An SJ, Wang Z, Yang SQ, et al: A dendritic cell-based tumour vaccine for lung cancer: full-length XAGE-1b protein-pulsed dendritic cells induce specific cytotoxic T lymphocytes in vitro. Clin Exp Immunol. 2008, 153: 392-400. 10.1111/j.1365-2249.2008.03724.x.PubMedPubMedCentral
164.
Zurück zum Zitat Galluzzi L, Senovilla L, Zitvogel L, Kroemer G: The secret ally: immunostimulation by anticancer drugs. Nat Rev Drug Discov. 2012, 11: 215-233. 10.1038/nrd3626.PubMed Galluzzi L, Senovilla L, Zitvogel L, Kroemer G: The secret ally: immunostimulation by anticancer drugs. Nat Rev Drug Discov. 2012, 11: 215-233. 10.1038/nrd3626.PubMed
165.
Zurück zum Zitat Hannani D, Sistigu A, Kepp O, Galluzzi L, Kroemer G, Zitvogel L: Prerequisites for the antitumor vaccine-like effect of chemotherapy and radiotherapy. Cancer J. 2011, 17: 351-358. 10.1097/PPO.0b013e3182325d4d.PubMed Hannani D, Sistigu A, Kepp O, Galluzzi L, Kroemer G, Zitvogel L: Prerequisites for the antitumor vaccine-like effect of chemotherapy and radiotherapy. Cancer J. 2011, 17: 351-358. 10.1097/PPO.0b013e3182325d4d.PubMed
166.
Zurück zum Zitat Zitvogel L, Kepp O, Kroemer G: Immune parameters affecting the efficacy of chemotherapeutic regimens. Nat Rev Clin Oncol. 2011, 8: 151-160. 10.1038/nrclinonc.2010.223.PubMed Zitvogel L, Kepp O, Kroemer G: Immune parameters affecting the efficacy of chemotherapeutic regimens. Nat Rev Clin Oncol. 2011, 8: 151-160. 10.1038/nrclinonc.2010.223.PubMed
167.
Zurück zum Zitat Holdenrieder S, Nagel D, Stieber P: Estimation of prognosis by circulating biomarkers in patients with non-small cell lung cancer. Cancer Biomark. 2010, 6: 179-190.PubMed Holdenrieder S, Nagel D, Stieber P: Estimation of prognosis by circulating biomarkers in patients with non-small cell lung cancer. Cancer Biomark. 2010, 6: 179-190.PubMed
168.
Zurück zum Zitat Alm El-Din MA, Farouk G, Nagy H, Abd Elzaher A, Abo El-Magd GH: Cytokeratin-19 fragments, nucleosomes and neuron-specific enolase as early measures of chemotherapy response in non-small cell lung cancer. Int J Biol Markers. 2012, 27: e139-e146. 10.5301/JBM.2012.9141.PubMed Alm El-Din MA, Farouk G, Nagy H, Abd Elzaher A, Abo El-Magd GH: Cytokeratin-19 fragments, nucleosomes and neuron-specific enolase as early measures of chemotherapy response in non-small cell lung cancer. Int J Biol Markers. 2012, 27: e139-e146. 10.5301/JBM.2012.9141.PubMed
169.
Zurück zum Zitat Holdenrieder S, Stieber P, von Pawel J, Raith H, Nagel D, Feldmann K, et al: Circulating nucleosomes predict the response to chemotherapy in patients with advanced non-small cell lung cancer. Clin Cancer Res. 2004, 10: 5981-5987. 10.1158/1078-0432.CCR-04-0625.PubMed Holdenrieder S, Stieber P, von Pawel J, Raith H, Nagel D, Feldmann K, et al: Circulating nucleosomes predict the response to chemotherapy in patients with advanced non-small cell lung cancer. Clin Cancer Res. 2004, 10: 5981-5987. 10.1158/1078-0432.CCR-04-0625.PubMed
170.
Zurück zum Zitat Holdenrieder S, von Pawel J, Dankelmann E, Duell T, Faderl B, Markus A, et al: Nucleosomes and CYFRA 21–1 indicate tumor response after one cycle of chemotherapy in recurrent non-small cell lung cancer. Lung Cancer. 2009, 63: 128-135. 10.1016/j.lungcan.2008.05.001.PubMed Holdenrieder S, von Pawel J, Dankelmann E, Duell T, Faderl B, Markus A, et al: Nucleosomes and CYFRA 21–1 indicate tumor response after one cycle of chemotherapy in recurrent non-small cell lung cancer. Lung Cancer. 2009, 63: 128-135. 10.1016/j.lungcan.2008.05.001.PubMed
171.
Zurück zum Zitat Dieu-Nosjean MC, Antoine M, Danel C, Heudes D, Wislez M, Poulot V, et al: Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J Clin Oncol. 2008, 26: 4410-4417. 10.1200/JCO.2007.15.0284.PubMed Dieu-Nosjean MC, Antoine M, Danel C, Heudes D, Wislez M, Poulot V, et al: Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J Clin Oncol. 2008, 26: 4410-4417. 10.1200/JCO.2007.15.0284.PubMed
172.
Zurück zum Zitat McCoy MJ, Lake RA, van der Most RG, Dick IM, Nowak AK: Post-chemotherapy T-cell recovery is a marker of improved survival in patients with advanced thoracic malignancies. Br J Cancer. 2012, 107: 1107-1115. 10.1038/bjc.2012.362.PubMedPubMedCentral McCoy MJ, Lake RA, van der Most RG, Dick IM, Nowak AK: Post-chemotherapy T-cell recovery is a marker of improved survival in patients with advanced thoracic malignancies. Br J Cancer. 2012, 107: 1107-1115. 10.1038/bjc.2012.362.PubMedPubMedCentral
173.
Zurück zum Zitat Galluzzi L, Vitale I, Senovilla L, Olaussen KA, Pinna G, Eisenberg T, et al: Prognostic impact of vitamin b6 metabolism in lung cancer. Cell Rep. 2012, 2: 257-269. 10.1016/j.celrep.2012.06.017.PubMed Galluzzi L, Vitale I, Senovilla L, Olaussen KA, Pinna G, Eisenberg T, et al: Prognostic impact of vitamin b6 metabolism in lung cancer. Cell Rep. 2012, 2: 257-269. 10.1016/j.celrep.2012.06.017.PubMed
174.
Zurück zum Zitat Stoetzer OJ, Fersching DM, Salat C, Steinkohl O, Gabka CJ, Hamann U, et al: Circulating immunogenic cell death biomarkers HMGB1 and RAGE in breast cancer patients during neoadjuvant chemotherapy. Tumour Biol. 2012, [Epub ahead of print] Stoetzer OJ, Fersching DM, Salat C, Steinkohl O, Gabka CJ, Hamann U, et al: Circulating immunogenic cell death biomarkers HMGB1 and RAGE in breast cancer patients during neoadjuvant chemotherapy. Tumour Biol. 2012, [Epub ahead of print]
175.
Zurück zum Zitat Fahmueller YN, Nagel D, Hoffmann RT, Tatsch K, Jakobs T, Stieber P, et al: Immunogenic cell death biomarkers HMGB1, RAGE and DNAse indicate response to radioembolisation therapy and prognosis in colorectal cancer patients. Int J Cancer. 2012, [Epub ahead of print] Fahmueller YN, Nagel D, Hoffmann RT, Tatsch K, Jakobs T, Stieber P, et al: Immunogenic cell death biomarkers HMGB1, RAGE and DNAse indicate response to radioembolisation therapy and prognosis in colorectal cancer patients. Int J Cancer. 2012, [Epub ahead of print]
176.
Zurück zum Zitat Murad YM, Clay TM: CpG oligodeoxynucleotides as TLR9 agonists: therapeutic applications in cancer. BioDrugs. 2009, 23: 361-375. 10.2165/11316930-000000000-00000.PubMed Murad YM, Clay TM: CpG oligodeoxynucleotides as TLR9 agonists: therapeutic applications in cancer. BioDrugs. 2009, 23: 361-375. 10.2165/11316930-000000000-00000.PubMed
177.
Zurück zum Zitat Wang YY, He XY, Cai YY, Wang ZJ, Lu SH: The variation of CD4+CD25+ regulatory T cells in the periphery blood and tumor microenvironment of non-small cell lung cancer patients and the downregulation effects induced by CpG ODN. Target Oncol. 2011, 6: 147-154. 10.1007/s11523-011-0182-9.PubMed Wang YY, He XY, Cai YY, Wang ZJ, Lu SH: The variation of CD4+CD25+ regulatory T cells in the periphery blood and tumor microenvironment of non-small cell lung cancer patients and the downregulation effects induced by CpG ODN. Target Oncol. 2011, 6: 147-154. 10.1007/s11523-011-0182-9.PubMed
178.
Zurück zum Zitat Ullrich E, Bonmort M, Mignot G, Kroemer G, Zitvogel L: Tumor stress, cell death and the ensuing immune response. Cell Death Differ. 2008, 15: 21-28. 10.1038/sj.cdd.4402266.PubMed Ullrich E, Bonmort M, Mignot G, Kroemer G, Zitvogel L: Tumor stress, cell death and the ensuing immune response. Cell Death Differ. 2008, 15: 21-28. 10.1038/sj.cdd.4402266.PubMed
179.
Zurück zum Zitat Demaria S: Defining the role of the immune system in cancer treatment: highlights from the Immunochemotherapy Conference. Expert Rev Anticancer Ther. 2011, 11: 841-843. 10.1586/era.11.57.PubMed Demaria S: Defining the role of the immune system in cancer treatment: highlights from the Immunochemotherapy Conference. Expert Rev Anticancer Ther. 2011, 11: 841-843. 10.1586/era.11.57.PubMed
Metadaten
Titel
Patient-tailored modulation of the immune system may revolutionize future lung cancer treatment
verfasst von
Marlies E Heuvers
Joachim G Aerts
Robin Cornelissen
Harry Groen
Henk C Hoogsteden
Joost P Hegmans
Publikationsdatum
01.12.2012
Verlag
BioMed Central
Erschienen in
BMC Cancer / Ausgabe 1/2012
Elektronische ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-12-580

Weitere Artikel der Ausgabe 1/2012

BMC Cancer 1/2012 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.