Skip to main content
Erschienen in: BMC Surgery 1/2006

Open Access 01.12.2006 | Research article

Clinicopathological findings in a case series of extrathoracic solitary fibrous tumors of soft tissues

verfasst von: Adrien Daigeler, Marcus Lehnhardt, Stefan Langer, Lars Steinstraesser, Hans-Ulrich Steinau, Thomas Mentzel, Cornelius Kuhnen

Erschienen in: BMC Surgery | Ausgabe 1/2006

Abstract

Background

Solitary fibrous tumors (SFT) represent a rare entity of soft tissue tumors. Previously considered being of serosal origin and solely limited to the pleural cavity the tumor has been described in other locations, most particularly the head and neck. Extrathoracic SFT in the soft tissues of the trunk and the extremities are very rare. Nine cases of this rare tumor entity are described in the course of this article with respect to clinicopathological data, follow-up and treatment results.

Methods

Data were obtained from patients' records, phone calls to the patients' general practitioners, and clinical follow-up examination, including chest X-ray, abdominal ultrasound, and MRI or computed tomography.

Results

There were 6 females and 3 males, whose age at time of diagnosis ranged from 32 to 92 years (mean: 62.2 years). The documented tumors' size was 4.5 to 10 cm (mean: 7 cm). All tumors were located in deep soft tissues, 3 of them epifascial, 2 subfascial, 4 intramuscular. Four tumors were found at the extremities, one each at the flank, in the neck, at the shoulder, in the gluteal region, and in the deep groin. Two out of 9 cases were diagnosed as atypical or malignant variant of ESFT. Complete resection was performed in all cases. Follow-up time ranged from 1 to 71 months. One of the above.mentioned patients with atypical ESFT suffered from local relapse and metastatic disease; the remaining 8 patients were free of disease.

Conclusion

ESFT usually behave as benign soft tissue tumors, although malignant variants with more aggressive local behaviour (local relapse) and metastasis may occur. The risk of local recurrence and metastasis correlates to tumor size and histological status of surgical resection margins and may reach up to 10% even in so-called "benign" tumors. Tumor specimens should be evaluated by experienced soft tissue pathologists. The treatment of choice is complete resection followed by extended follow-up surveillance.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1471-2482-6-10) contains supplementary material, which is available to authorized users.

Competing interests

The author(s) declare that they have no competing interests.

Authors' contributions

AD designed the study, obtained the patients' data and drafted the manuscript.
ML contributed to manuscript preparation and helped designing the study
SL contributed to evaluation of the data
LS contributed to obtaining the data
HS revised the manuscript, gave substantial intellectual input concerning evaluation of the data and gave final approval of the version to be published
TM contributed to manuscript preparation and histopathological evaluation
CK participated in the study design, histopathological evaluation, and manuscript preparation
All authors read and approved the final manuscript.

Background

Solitary fibrous tumors (SFT) – previously known as benign fibrous mesotheliomas – were considered being of serosal origin and being exclusively located in the thoracic cavity as pleural fibrous tumors. More recently, however, SFT have been reported in many extrapleural locations such as the head and neck region; in particular, the meninges, the orbita, the nasal and oral cavity, the salivary glands, and the visceral organs, the retroperitoneum, and the pelvic space. Extrapleural solitary fibrous tumors (ESFT), especially those at the extremities, still represent a rare entity of soft tissue tumors. In a previous study extrapleural solitary fibrous tumors (ESFT) counted for 0.6% of all soft tissue tumors, sent in for analysis [1]. In fact, by taking into account the bias caused by the fact that rare tumor specimens accumulate at specialised institutions, the general proportion might be much smaller. Usually the tumor is of benign behaviour (showing no local recurrence or metastasis), but malignant variants have also been described and local recurrence as well as metastasis may occur depending on the initial tumor size and the histological status of the surgical resection margins [118]. We report 9 cases of ESFT including 4 tumors localized at the extremities with clinicopathological, immunohistochemical and follow-up data.

Methods

From January 1999 to May 2005, nine patients were diagnosed with extrapleural SFT at our institutions. Data were obtained from patients records and phone calls to the patients and their general practitioners.

Pathological examination

Preoperative incisional biopsy specimens were obtained in 4 of 9 cases. The resection specimens were examined regarding tumor size, exact location, extension to adjacent soft tissues, and cut surface. A macroscopic photograph of cut surface was obtained in selected cases.
Histopathological evaluation was performed by experienced soft tissue pathologists.
The criteria for histopathological diagnosis included the widely accepted characteristic features of SFT (WHO 2003: patternless growth pattern, composed of round to spindle-shaped fibroblastic cells set in a collagenous matrix, hemangiopericytoma-like vasculature pattern with often hyalinized thickened vessel walls and characteristic immunohistochemical findings). Light microscopical analysis was based on H&E stained slides. Immunohistochemical analysis included the following antibodies (table 1): vimentin, CD 34, CD 99, BCL-2, keratin AE1/AE3, keratin MNF116, EMA, S-100-protein and Ki-67 (antibody MIB-1).
Table 1
Antibodies
Antibody
Source
Dilution
Clone
CD 99
DAKO
1:25
12E7
CD 34
Immunotech
1:2000
QBEND10
BCL-2
DAKO
1:6
124
Vimentin
DAKO
1:8000
V9
EMA
DAKO
1:50
E29
Keratin MNF 116
DAKO
1:1600
MNF 116
Keratin AE1/AE3
DAKO
1:800
AE1/AE3
Ki67
DAKO
1:800
MiB1
S100
DCS
1:200
15E2E2
Detailed data about the antibodies used
Follow-up data were available for all patients and consisted of clinical examination, chest X-ray, abdominal ultrasound and computed tomography or MRI of the tumor site. Follow-up time ranged from 1 to 71 months (mean: 26.5 months).

Results

The patients included 6 women and 3 men. Their age at time of diagnosis ranged from 32 to 92 years and averaged 62.2 years. Tumors were painless or became symptomatic by their mass effect, causing localized pain, or as in one patient, hypaesthesia. There were no other (especially no generalized) symptoms. The tumors existed 5 months to 5 years before being diagnosed. All tumors were located in deep soft tissues, 3 of them epifascial, 2 subfascial, 4 intramuscular. Four tumors were located at the extremities (thigh, fossa poplitea (Fig. 1), 2× lower arm (Fig. 2)) and one each in the flank, the neck, at the shoulder, in the deep groin, and in the gluteal region. The diameters of the tumors ranged from 4.5 to 10 cm (mean: 7 cm). In 7 patients, primary resection could be performed with free surgical margins; four of them were primarily incisional biopsied. In one patient, treated externally, the resection had to be considered a R1-resection due to an intraoperative tumor incision with possible contamination of the situs. Whether or not this will influence the long term outcome cannot yet be determined because of a follow-up time of 1 month. Another patient with unfavourable clinical course (Patient 5) presented at our institution after pre-treatment at another institution 2 years before consisting of incomplete primary resection and secondary resection then with free margins, followed by 60 Gy of radiation. This patient showed extensive local recurrence and an amputation at upper arm level had to be performed. Five months later, the patient presented again with two new metastases: one in the right axilla and another one epifascial at the right subscapular region which were resected with free surgical margins. At the time of this study all other patients had no evidence (NED) of disease. The detailed clinical findings are summarized in table 2.
Table 2
Clinical findings
patient
gender
age at time of diagnosis (years)
localisation/depth of tumor
size of primary tumor (cm)
presentation status of tumor
symptoms on first presentation
pre-operative incisional biopsy
surgical margins in final procedure
local recurrence
metastasis
secondary procedures
status at last follow-up (months)
1
male
40
neck/epifascial
10 × 8 × 10
primary
neck pain
no
negative
no
no
none
alive, NED, 21
2
male
56
shoulder/epifascial
4.5 × 4 × 2.5
primary
painless mass
no
negative
no
no
none
alive, NED, 56
3
female
85
m. vastus lateralis
4.8 × 3 × 2
primary
painless mass
yes
negative
no
no
none
alive, NED, 71
4
female
32
m. iliopsoas
4.5 × 3.3 × 2.1
primary
groin pain
no
negative
no
no
none
alive, NED, 38
5
male
57
lower arm/flexor muscles
no data
local recurrence
painless mass
no
negative
yes, after 2 years
yes, after 3 years
axillary dissection, amputation at upper arm level resection of two metastases
alive, NED, 6
6
female
59
lower arm/flexor muscles
6.2 × 3.5 × 4.2
primary
painless mass
yes
negative
no
no
none
alive, NED 12
7
female
92
flank/epifascial
10 × 10 × 9
primary
painless mass
yes
negative
no
no
none
alive, NED 28
8
female
52
fossa poplitea/subfascial
9.5 × 5.4 × 6.5
primary
pain in fossa poplitea, paraesthesia lateral lower leg
yes
negative
no
no
none
alive, NED 6
9
female
87
gluteal/subfascial
6.6 × 5.6 × 3.7
primary
Painless swelling
no
R1
no
no
none
Alive, NED 1
Summary of the patients' data (no evidence of disease: NED)

Pathological findings

The tumors appeared as solid, mostly well-circumscribed and smooth to firm soft tissue masses. The cut surface appeared white to brown-yellow. Considerable tumor necrosis was evident in case 5 and 8 (Fig. 3).
The tumors were composed of fibroblastic appearing cells, usually showing a characteristic "patternless" growth pattern with small fascicular areas (Fig. 4). The vessels adopted a hemangiopericytoma-like growth pattern consisting of elongated and dilated vessels with thickened, often hyalinized walls (Fig. 5). The tumor matrix included variable amounts of partly hyalinzed collagen bundles. Truly infiltrative growth patterns could not be detected, although vascular infiltration was evident in one case (Patient 5). The tumor cells were characterized by "ovally" to spindle-shaped nuclei, sometimes resembling neural cytologic features (i.e., wavy nuclei). The mitotic rate in morphologically benign SFTs was less than 4/10 HPF (high power field: objective × 40). Two lesions were diagnosed as atypical variant of ESFT due to a markedly increased cellularity, cellular atypia (nuclear pleomorphism, nuclear hyperchromasia), increased mitotic index and tumor necrosis (Patient 5+8).
All neoplasms stained variably positive for CD 34, CD 99, BCL-2 and vimentin. An additional expression of smooth muscle actin was seen in 3 of 5, muscle specific actin in 1 of 3 and expression of desmin could be detected in 2 of 4 examined cases. No positive keratin and S100 immunoreaction was noted, whereas EMA could be detected focally in 2 cases. The proliferation rate ranged from 1 to 10%. A detailed summary of the histopathological findings is given in table 3.
Table 3
Histological results
patient
CD34 reactivity
CD99 reactivity
BCL2 reactivity
Vimentin (V9) reactivity
actin HHF35
smooth muscle actin
desmin
S100
keratin
MNF116
EMA
MiB1
necrosis
average mitoses/10 HPF
malignant component
additional tests
1
focal positive
focal positive
positive
positive
-
-
-
-
-
-
-
-
absent
<4
absent
 
2
focal positive
-
-
positive
-
focal positive
-
negative
negative
-
-
1%
absent
<4
absent
 
3
positive
positive
-
positive
focal positive
focal positive
focal positive
negative
negative
-
-
5%
absent
<4
 
loss on chromosome 13q
4
focal positive
focal positive
focal positive
focal positive
-
focal positive
focal positive
-
negative
negative
-
1–2%
absent
<1
absent
 
5
positive
positive
-
positive
-
-
-
negative
negative
-
negative
5–10%
present
10
present
HMB 45 negative
6
focal positive
positive
positive
positive
negative
negative
negative
negative
negative
negative
focal positive
<5%
absent
<4
absent
Keratin AE1/AE3 negative
7
positive
positive
positive
positive
-
-
-
-
-
-
focal positive
<1%
absent
<4
absent
 
8
positive
positive
positive
positive
-
-
negative
negative
negative
negative
negative
5%
present
3
present
HMB 45 negative Keratin AE1/AE3 focal
9
positive
positive
positive
focal positive
negative
negative
-
-
-
-
-
5–10%
absent
<4
absent
 
Summary of the histological results (-: not tested)

Discussion

SFT represents a distinct entity within the wide range of soft tissue tumors. Its cellular origin is believed to be fibroblastic in type. Most cases of formerly diagnosed "hemangiopericytomas" seemingly share essential features with SFT and may indeed represent true SFT. According to overlapping histological criteria between SFT and hemangiopericytoma, SFT represents a wider range of neoplasias (probably in fact including the former "favourite" diagnosis of hemangiopericytoma) which should best be regarded as a "waste basket" and be considered a mere diagnosis of exclusion. The lipomatous variant of SFT ("lipomatous hemangiopericytoma") includes a mature fat component intermingling with typical areas of SFT. Rare myxoid SFT may cause considerable problems in differential diagnosis to more aggressive soft tissue neoplasms or soft tissue tumors of another differentiation. Branching and ectatic blood vessels typical for SFT known as hemangiopericytoma-like vessels may be a feature of several other predominantly malignant soft tissue tumors (e.g. synovial sarcomas or malignant peripheral nerve sheath tumors), implicating that a wider range of other soft tissue neoplasias has to be considered in the histopathological differential diagnosis of SFT. The so-called "patternless pattern" or the combination of different histological patterns such as storiform, fascicular, neuraltype, diffuse sclerosing, and heringbone growth pattern may lead to a wrong diagnosis [19]. Therefore, it is evident that an experienced soft tissue pathologist should evaluate the specimens. For differential diagnosis, so-called hemangiopericytoma, synovial sarcoma, dermatofibrosarcoma protuberans, leiomyosarcoma, malignant peripheral nerve sheath tumor, and liposarcoma, should be taken into consideration. Positron emission tomography (PET) may be helpful to distinguish between a malignant and a benign variant of the tumor [2022], but the gold standard for diagnosis remains incisional biopsy.
Extrathoracic solitary fibrous tumors (ESFT) by now have been reported at almost every anatomic location, but reports of tumors at the extremities or intramuscular tumors as well as tumors with malignant clinical behaviour or atypical histologic features are rare [118].
Other series of ESFT's showed almost equal distribution of the incidence for male and female, with patients' ages ranging from the third to the eighth or ninth decade with a maximum in the sixth decade concurring with our data [3, 7, 8].
Some studies suggested a very low rate of recurrence and metastasis [8, 11, 23], whereas other authors indicated a possibly increased relapse rate with extended follow-up periods. In their studies Vallat-Decouveleare et al. and Gold et al. [3] in their studies found local recurrence in 4.3% and 6.7% and metastasis in 5.4% and 5.3%, respectively. Tumor relapse occurred after up to 168 months, but most of the metastasis or local recurrences were diagnosed within the first two years after initial treatment. Sites of distant metastasis were lung, liver, bones, mesentery, omentum, mediastinum and retroperitoneum with preference for lung and liver [1, 3].
Vallat-Decouveleare suggested atypical histologic features, such as nuclear atypia, areas of increased cellularity, necrosis and 4 or more mitoses per 10 HPF as being predictive for clinical malignant behaviour of the tumor and found local or distant relapse in those cases in 80%, but also reported a case of clinically malignant behaviour of a histological benign appearing case. Recurrent tumor specimens showed a higher grade of atypia than the primary tumor but usually retained their immunohistochemical profile. Gold's data proposed to add the size of the primary tumor as well as the resection status to the predictive factors of clinical behaviour. Positive surgical resection margins and primary tumor sizes of more than 10 cm were positively correlated with unfavourable clinical outcome.
In our series, the only patient with recurrent disease and metastasis was primarily resected incompletely, underlining this suggestion. In the recurrent tumor specimen increased atypia was seen, but if this atypia had already been present in the primary tumor and therefore could be considered as of predictive value cannot be determined. The recurrence occurred 2 years and the metastasis 2 ½ years after primary resection and following radiation. Detailed histopathological information about the primary tumor could not be obtained.
Complete surgical resection is commonly accepted as treatment of choice for ESFT. Due to improved techniques in reconstructive surgery, even large lesions can usually be completely resected, preserving the limbs. Amputations should be limited to extended or recurrent tumors. Befitting the rareness of this entity reports of radiation therapy and chemotherapy of ESFT are anecdotal and so far, no significant benefit of adjuvant treatment has been reported. In some cases, especially malignant variants or incomplete resections with no further surgical option, it may although be used [1, 3]. This concurs with the findings for intrathoracic SFT [24, 25].
According to the late recurrence or metastasis, long follow-up periods (at least 15 years) should be maintained with closer follow-up during the first two years. In cooperative patients a life long follow-up may be recommended. Follow-up should include clinical examination as well as abdominal ultrasound and chest x-ray.

Conclusion

Soft Tissue sarcoma specimens should be evaluated by experienced soft tissue pathologists for correct diagnosis of SFT and detection of atypia. SFT with atypical histologic features, such as nuclear atypia, areas of increased cellularity, necrosis and 4 or more mitoses per 10 HPF, tumor sizes of more than 10 cm and incomplete resection are positively correlated with local recurrence and metastatic disease. Therefore complete resection at an early stage should be the main purpose of surgical treatment. Follow-up should be maintained for 10 years.

Acknowledgements

The authors are greatly indebted to Professor C.D.M. Fletcher, Boston, who confirmed the diagnosis in one case.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The author(s) declare that they have no competing interests.

Authors' contributions

AD designed the study, obtained the patients' data and drafted the manuscript.
ML contributed to manuscript preparation and helped designing the study
SL contributed to evaluation of the data
LS contributed to obtaining the data
HS revised the manuscript, gave substantial intellectual input concerning evaluation of the data and gave final approval of the version to be published
TM contributed to manuscript preparation and histopathological evaluation
CK participated in the study design, histopathological evaluation, and manuscript preparation
All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Gold JS, Antonescu CR, Hajdu C, Ferrone CR, Hussain M, Lewis JJ, Brennan MF, Coit DG: Clinicopathologic correlates of solitary fibrous tumors. Cancer. 2002, 94 (4): 1057-1068. 10.1002/cncr.10328.CrossRefPubMed Gold JS, Antonescu CR, Hajdu C, Ferrone CR, Hussain M, Lewis JJ, Brennan MF, Coit DG: Clinicopathologic correlates of solitary fibrous tumors. Cancer. 2002, 94 (4): 1057-1068. 10.1002/cncr.10328.CrossRefPubMed
2.
Zurück zum Zitat Tihan T, Viglione M, Rosenblum MK, Olivi A, Burger PC: Solitary fibrous tumors in the central nervous system. A clinicopathologic review of 18 cases and comparison to meningeal hemangiopericytomas. Arch Pathol Lab Med. 2003, 127 (4): 432-439.PubMed Tihan T, Viglione M, Rosenblum MK, Olivi A, Burger PC: Solitary fibrous tumors in the central nervous system. A clinicopathologic review of 18 cases and comparison to meningeal hemangiopericytomas. Arch Pathol Lab Med. 2003, 127 (4): 432-439.PubMed
3.
Zurück zum Zitat Vallat-Decouvelaere AV, Dry SM, Fletcher CD: Atypical and malignant solitary fibrous tumors in extrathoracic locations: evidence of their comparability to intra-thoracic tumors. Am J Surg Pathol . 1998, 22 (12): 1501-1511. 10.1097/00000478-199812000-00007.CrossRefPubMed Vallat-Decouvelaere AV, Dry SM, Fletcher CD: Atypical and malignant solitary fibrous tumors in extrathoracic locations: evidence of their comparability to intra-thoracic tumors. Am J Surg Pathol . 1998, 22 (12): 1501-1511. 10.1097/00000478-199812000-00007.CrossRefPubMed
4.
Zurück zum Zitat Westra WH, Grenko RT, Epstein J: Solitary fibrous tumor of the lower urogenital tract: a report of five cases involving the seminal vesicles, urinary bladder, and prostate. Hum Pathol. 2000, 31 (1): 63-68. 10.1016/S0046-8177(00)80200-2.CrossRefPubMed Westra WH, Grenko RT, Epstein J: Solitary fibrous tumor of the lower urogenital tract: a report of five cases involving the seminal vesicles, urinary bladder, and prostate. Hum Pathol. 2000, 31 (1): 63-68. 10.1016/S0046-8177(00)80200-2.CrossRefPubMed
5.
Zurück zum Zitat Alawi F, Stratton D, Freedman PD: Solitary fibrous tumor of the oral soft tissues: a clinicopathologic and immunohistochemical study of 16 cases. Am J Surg Pathol. 2001, 25 (7): 900-910.CrossRefPubMed Alawi F, Stratton D, Freedman PD: Solitary fibrous tumor of the oral soft tissues: a clinicopathologic and immunohistochemical study of 16 cases. Am J Surg Pathol. 2001, 25 (7): 900-910.CrossRefPubMed
6.
Zurück zum Zitat Rodriguez I, Ayala E, Caballero C, De Miguel C, Matias-Guiu X, Cubilla AL, Rosai J: Solitary fibrous tumor of the thyroid gland: report of seven cases. Am J Surg Pathol. 2001, 25 (11): 1424-1428. 10.1097/00000478-200111000-00011.CrossRefPubMed Rodriguez I, Ayala E, Caballero C, De Miguel C, Matias-Guiu X, Cubilla AL, Rosai J: Solitary fibrous tumor of the thyroid gland: report of seven cases. Am J Surg Pathol. 2001, 25 (11): 1424-1428. 10.1097/00000478-200111000-00011.CrossRefPubMed
7.
Zurück zum Zitat Mentzel T, Bainbridge TC, Katenkamp D: Solitary fibrous tumour: clinicopathological, immunohistochemical, and ultrastructural analysis of 12 cases arising in soft tissues, nasal cavity and nasopharynx, urinary bladder and prostate. Virchows Arch. 1997, 430 (6): 445-453. 10.1007/s004280050054.CrossRefPubMed Mentzel T, Bainbridge TC, Katenkamp D: Solitary fibrous tumour: clinicopathological, immunohistochemical, and ultrastructural analysis of 12 cases arising in soft tissues, nasal cavity and nasopharynx, urinary bladder and prostate. Virchows Arch. 1997, 430 (6): 445-453. 10.1007/s004280050054.CrossRefPubMed
8.
Zurück zum Zitat Nielsen GP, O'Connell JX, Dickersin GR, Rosenberg AE: Solitary fibrous tumor of soft tissue: a report of 15 cases, including 5 malignant examples with light microscopic, immunohistochemical, and ultrastructural data. Mod Pathol. 1997, 10 (10): 1028-1037.PubMed Nielsen GP, O'Connell JX, Dickersin GR, Rosenberg AE: Solitary fibrous tumor of soft tissue: a report of 15 cases, including 5 malignant examples with light microscopic, immunohistochemical, and ultrastructural data. Mod Pathol. 1997, 10 (10): 1028-1037.PubMed
9.
Zurück zum Zitat Goodlad JR, Fletcher CD: Solitary fibrous tumour arising at unusual sites: analysis of a series. Histopathology. 1991, 19 (6): 515-522.CrossRefPubMed Goodlad JR, Fletcher CD: Solitary fibrous tumour arising at unusual sites: analysis of a series. Histopathology. 1991, 19 (6): 515-522.CrossRefPubMed
10.
Zurück zum Zitat Bernardini FP, de Conciliis C, Schneider S, Kersten RC, Kulwin DR: Solitary fibrous tumor of the orbit: is it rare? Report of a case series and review of the literature. Ophthalmology. 2003, 110 (7): 1442-1448. 10.1016/S0161-6420(03)00459-7.CrossRefPubMed Bernardini FP, de Conciliis C, Schneider S, Kersten RC, Kulwin DR: Solitary fibrous tumor of the orbit: is it rare? Report of a case series and review of the literature. Ophthalmology. 2003, 110 (7): 1442-1448. 10.1016/S0161-6420(03)00459-7.CrossRefPubMed
11.
Zurück zum Zitat Brunnemann RB, Ro JY, Ordonez NG, Mooney J, El-Naggar AK, Ayala AG: Extrapleural solitary fibrous tumor: a clinicopathologic study of 24 cases. Mod Pathol. 1999, 12 (11): 1034-1042.PubMed Brunnemann RB, Ro JY, Ordonez NG, Mooney J, El-Naggar AK, Ayala AG: Extrapleural solitary fibrous tumor: a clinicopathologic study of 24 cases. Mod Pathol. 1999, 12 (11): 1034-1042.PubMed
12.
Zurück zum Zitat Morimitsu Y, Nakajima M, Hisaoka M, Hashimoto H: Extrapleural solitary fibrous tumor: clinicopathologic study of 17 cases and molecular analysis of the p53 pathway. Apmis. 2000, 108 (9): 617-625. 10.1034/j.1600-0463.2000.d01-105.x.CrossRefPubMed Morimitsu Y, Nakajima M, Hisaoka M, Hashimoto H: Extrapleural solitary fibrous tumor: clinicopathologic study of 17 cases and molecular analysis of the p53 pathway. Apmis. 2000, 108 (9): 617-625. 10.1034/j.1600-0463.2000.d01-105.x.CrossRefPubMed
13.
Zurück zum Zitat Krismann M, Adams H, Jaworska M, Muller KM, Johnen G: Benign solitary fibrous tumour of the thigh: morphological, chromosomal and differential diagnostic aspects. Langenbecks Arch Surg. 2000, 385 (8): 521-525. 10.1007/s004230000167.CrossRefPubMed Krismann M, Adams H, Jaworska M, Muller KM, Johnen G: Benign solitary fibrous tumour of the thigh: morphological, chromosomal and differential diagnostic aspects. Langenbecks Arch Surg. 2000, 385 (8): 521-525. 10.1007/s004230000167.CrossRefPubMed
14.
Zurück zum Zitat Hardisson D, Cuevas-Santos J, Contreras F: Solitary fibrous tumor of the skin. J Am Acad Dermatol. 2002, 46 (2 Suppl Case Reports): S37-40.CrossRefPubMed Hardisson D, Cuevas-Santos J, Contreras F: Solitary fibrous tumor of the skin. J Am Acad Dermatol. 2002, 46 (2 Suppl Case Reports): S37-40.CrossRefPubMed
15.
Zurück zum Zitat Harrington P, Merchant WJ, Walsh ME: Solitary fibrous tumour of the forearm. A rare tumour in an atypical site. J Hand Surg [Br] . 1999, 24 (3): 370-372. 10.1054/jhsb.1998.0010.CrossRef Harrington P, Merchant WJ, Walsh ME: Solitary fibrous tumour of the forearm. A rare tumour in an atypical site. J Hand Surg [Br] . 1999, 24 (3): 370-372. 10.1054/jhsb.1998.0010.CrossRef
16.
Zurück zum Zitat Cowper SE, Kilpatrick T, Proper S, Morgan MB: Solitary fibrous tumor of the skin. Am J Dermatopathol. 1999, 21 (3): 213-219. 10.1097/00000372-199906000-00001.CrossRefPubMed Cowper SE, Kilpatrick T, Proper S, Morgan MB: Solitary fibrous tumor of the skin. Am J Dermatopathol. 1999, 21 (3): 213-219. 10.1097/00000372-199906000-00001.CrossRefPubMed
17.
Zurück zum Zitat Suster S, Nascimento AG, Miettinen M, Sickel JZ, Moran CA: Solitary fibrous tumors of soft tissue. A clinicopathologic and immunohistochemical study of 12 cases. Am J Surg Pathol. 1995, 19 (11): 1257-1266.CrossRefPubMed Suster S, Nascimento AG, Miettinen M, Sickel JZ, Moran CA: Solitary fibrous tumors of soft tissue. A clinicopathologic and immunohistochemical study of 12 cases. Am J Surg Pathol. 1995, 19 (11): 1257-1266.CrossRefPubMed
18.
Zurück zum Zitat Hasegawa T, Hirose T, Seki K, Yang P, Sano T: Solitary fibrous tumor of the soft tissue. An immunohistochemical and ultrastructural study. Am J Clin Pathol. 1996, 106 (3): 325-331.CrossRefPubMed Hasegawa T, Hirose T, Seki K, Yang P, Sano T: Solitary fibrous tumor of the soft tissue. An immunohistochemical and ultrastructural study. Am J Clin Pathol. 1996, 106 (3): 325-331.CrossRefPubMed
19.
Zurück zum Zitat Westra WH, Gerald WL, Rosai J: Solitary fibrous tumor. Consistent CD34 immunoreactivity and occurrence in the orbit. Am J Surg Pathol. 1994, 18 (10): 992-998.CrossRefPubMed Westra WH, Gerald WL, Rosai J: Solitary fibrous tumor. Consistent CD34 immunoreactivity and occurrence in the orbit. Am J Surg Pathol. 1994, 18 (10): 992-998.CrossRefPubMed
20.
Zurück zum Zitat Alexander M, Yang S, Yung R, Brasic JR, Pannu H: Diagnosis of benign solitary fibrous tumors by positron emission tomography. South Med J. 2004, 97 (12): 1264-1267. 10.1097/01.SMJ.0000146494.63540.33.CrossRefPubMed Alexander M, Yang S, Yung R, Brasic JR, Pannu H: Diagnosis of benign solitary fibrous tumors by positron emission tomography. South Med J. 2004, 97 (12): 1264-1267. 10.1097/01.SMJ.0000146494.63540.33.CrossRefPubMed
21.
Zurück zum Zitat Hayashi S, Kurihara H, Hirato J, Sasaki T: Solitary fibrous tumor of the orbit with extraorbital extension: case report. Neurosurgery. 2001, 49 (5): 1241-1245. 10.1097/00006123-200111000-00042.PubMed Hayashi S, Kurihara H, Hirato J, Sasaki T: Solitary fibrous tumor of the orbit with extraorbital extension: case report. Neurosurgery. 2001, 49 (5): 1241-1245. 10.1097/00006123-200111000-00042.PubMed
22.
Zurück zum Zitat Kramer H, Pieterman RM, Slebos DJ, Timens W, Vaalburg W, Koeter GH, Groen HJ: PET for the evaluation of pleural thickening observed on CT. J Nucl Med. 2004, 45 (6): 995-998.PubMed Kramer H, Pieterman RM, Slebos DJ, Timens W, Vaalburg W, Koeter GH, Groen HJ: PET for the evaluation of pleural thickening observed on CT. J Nucl Med. 2004, 45 (6): 995-998.PubMed
23.
Zurück zum Zitat Fukunaga M, Naganuma H, Nikaido T, Harada T, Ushigome S: Extrapleural solitary fibrous tumor: a report of seven cases. Mod Pathol. 1997, 10 (5): 443-450.PubMed Fukunaga M, Naganuma H, Nikaido T, Harada T, Ushigome S: Extrapleural solitary fibrous tumor: a report of seven cases. Mod Pathol. 1997, 10 (5): 443-450.PubMed
24.
Zurück zum Zitat Magdeleinat P, Alifano M, Petino A, Le Rochais JP, Dulmet E, Galateau F, Icard P, Regnard JF: Solitary fibrous tumors of the pleura: clinical characteristics, surgical treatment and outcome. Eur J Cardiothorac Surg. 2002, 21 (6): 1087-1093. 10.1016/S1010-7940(02)00099-4.CrossRefPubMed Magdeleinat P, Alifano M, Petino A, Le Rochais JP, Dulmet E, Galateau F, Icard P, Regnard JF: Solitary fibrous tumors of the pleura: clinical characteristics, surgical treatment and outcome. Eur J Cardiothorac Surg. 2002, 21 (6): 1087-1093. 10.1016/S1010-7940(02)00099-4.CrossRefPubMed
25.
Zurück zum Zitat Cardillo G, Facciolo F, Cavazzana AO, Capece G, Gasparri R, Martelli M: Localized (solitary) fibrous tumors of the pleura: an analysis of 55 patients. Ann Thorac Surg. 2000, 70 (6): 1808-1812. 10.1016/S0003-4975(00)01908-1.CrossRefPubMed Cardillo G, Facciolo F, Cavazzana AO, Capece G, Gasparri R, Martelli M: Localized (solitary) fibrous tumors of the pleura: an analysis of 55 patients. Ann Thorac Surg. 2000, 70 (6): 1808-1812. 10.1016/S0003-4975(00)01908-1.CrossRefPubMed
Metadaten
Titel
Clinicopathological findings in a case series of extrathoracic solitary fibrous tumors of soft tissues
verfasst von
Adrien Daigeler
Marcus Lehnhardt
Stefan Langer
Lars Steinstraesser
Hans-Ulrich Steinau
Thomas Mentzel
Cornelius Kuhnen
Publikationsdatum
01.12.2006
Verlag
BioMed Central
Erschienen in
BMC Surgery / Ausgabe 1/2006
Elektronische ISSN: 1471-2482
DOI
https://doi.org/10.1186/1471-2482-6-10

Weitere Artikel der Ausgabe 1/2006

BMC Surgery 1/2006 Zur Ausgabe

Wie erfolgreich ist eine Re-Ablation nach Rezidiv?

23.04.2024 Ablationstherapie Nachrichten

Nach der Katheterablation von Vorhofflimmern kommt es bei etwa einem Drittel der Patienten zu Rezidiven, meist binnen eines Jahres. Wie sich spätere Rückfälle auf die Erfolgschancen einer erneuten Ablation auswirken, haben Schweizer Kardiologen erforscht.

Hinter dieser Appendizitis steckte ein Erreger

23.04.2024 Appendizitis Nachrichten

Schmerzen im Unterbauch, aber sonst nicht viel, was auf eine Appendizitis hindeutete: Ein junger Mann hatte Glück, dass trotzdem eine Laparoskopie mit Appendektomie durchgeführt und der Wurmfortsatz histologisch untersucht wurde.

Mehr Schaden als Nutzen durch präoperatives Aussetzen von GLP-1-Agonisten?

23.04.2024 Operationsvorbereitung Nachrichten

Derzeit wird empfohlen, eine Therapie mit GLP-1-Rezeptoragonisten präoperativ zu unterbrechen. Eine neue Studie nährt jedoch Zweifel an der Notwendigkeit der Maßnahme.

Ureterstriktur: Innovative OP-Technik bewährt sich

19.04.2024 EAU 2024 Kongressbericht

Die Ureterstriktur ist eine relativ seltene Komplikation, trotzdem bedarf sie einer differenzierten Versorgung. In komplexen Fällen wird dies durch die roboterassistierte OP-Technik gewährleistet. Erste Resultate ermutigen.

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.