Skip to main content
Erschienen in: Malaria Journal 1/2011

Open Access 01.12.2011 | Research

Use of the atmospheric generators for capnophilic bacteria Genbag-CO2 for the evaluation of in vitro Plasmodium falciparum susceptibility to standard anti-malarial drugs

verfasst von: Aurélie Pascual, Leonardo K Basco, Eric Baret, Rémy Amalvict, Dominique Travers, Christophe Rogier, Bruno Pradines

Erschienen in: Malaria Journal | Ausgabe 1/2011

Abstract

Background

The aim of this study was to evaluate the cultivation system in which the proper atmospheric conditions for growing Plasmodium falciparum parasites were maintained in a sealed bag. The Genbag® system associated with the atmospheric generators for capnophilic bacteria Genbag CO2® was used for in vitro susceptibility test of nine standard anti-malarial drugs and compared to standard incubator conditions.

Methods

The susceptibility of 36 pre-identified parasite strains from a wide panel of countries was assessed for nine standard anti-malarial drugs (chloroquine, quinine, mefloquine, monodesethylamodiaquine, lumefantrine, dihydroartemisinin, atovaquone and pyrimethamine) by the standard 42-hour 3H-hypoxanthine uptake inhibition method using the Genbag CO2® system and compared to controlled incubator conditions (5% CO2 and 10% O2).

Results

The counts per minute values in the control wells in incubator atmospheric conditions (5% CO2 and 10% O2) were significantly higher than those of Genbag® conditions (2738 cpm vs 2282 cpm, p < 0.0001). The geometric mean IC50 estimated under the incubator atmospheric conditions was significantly lower for atovaquone (1.2 vs 2.1 nM, p = 0.0011) and higher for the quinolines: chloroquine (127 vs 94 nM, p < 0.0001), quinine (580 vs 439 nM, p < 0.0001), monodesethylamodiaquine (41.4 vs 31.8 nM, p < 0.0001), mefloquine (57.5 vs 49.7 nM, p = 0.0011) and lumefantrine (23.8 vs 21.2 nM, p = 0.0044). There was no significant difference of IC50 between the 2 conditions for dihydroartemisinin, doxycycline and pyrimethamine.
To reduce this difference in term of anti-malarial susceptibility, a specific cut-off was estimated for each drug under Genbag® conditions by regression. The cut-off was estimated at 77 nM for chloroquine (vs 100 nM in 10% O2), 611 nM for quinine (vs 800 nM), 30 nM for mefloquine (vs 30 nM), 61 nM for monodesethylamodiaquine (vs 80 nM) and 1729 nM for pyrimethamine (vs 2000 nM).

Conclusions

The atmospheric generators for capnophilic bacteria Genbag CO2® is an appropriate technology that can be transferred to the field for epidemiological surveys of drug-resistant malaria. The present data suggest the importance of the gas mixture on in vitro microtest results for anti-malarial drugs and the importance of determining the microtest conditions before comparing and analysing the data from different laboratories and concluding on malaria resistance.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1475-2875-10-8) contains supplementary material, which is available to authorized users.

Authors' contributions

LKB and BP conceived and designed the experiments. AP, EB, RA and DT performed the in vitro experiments. CR and BP analysed the data. AP, LKB, CR and BP wrote the paper. All authors read and approved the final manuscript.

Background

Over the past 20 years, many strains of Plasmodium falciparum have become resistant to chloroquine and other anti-malarial drugs [1]. Since 2001, more than 60 countries have officially adopted artemisinin-based combination therapies (ACTs) for the treatment of falciparum malaria [2, 3]. However, clinical failures or at least longer parasite clearance times with ACT have been described in Cambodia [47]. The emergence and spread of resistance to most of the anti-malarial drugs require intensive research into identifying molecular markers of resistance, as well as implementing in vitro and in vivo surveillance programmes, such as those supported by the Worldwide Antimalarial Resistance Network [8, 9].
There are basically three approaches to assess anti-malarial drug susceptibility of P. falciparum: assessment of therapeutic efficacy standardized by the World Health Organization (WHO) [10], in vitro assays and molecular markers of resistance.
In a number of laboratories surveying anti-malarial drug resistance, in vitro tests are performed using the uptake of a radiolabelled nucleic acid precursor [3H]-hypoxanthine as a marker of parasite growth [11]. Other non-radioactive methods can be used: the WHO schizont maturation test by optical microscopy (Mark III) with pre-dosed plates [12], which was based on the methods of Rieckmann et al [13] and Wernsdorfer [14], a flow cytometric analysis of propidium iodide incorporation into parasite, which permits a stage-specific evaluation of anti-malarial compounds [15], a fluorescent-based technique that uses SYBR green I which binds to DNA [16, 17], and colorimetric or enzyme-linked immunosorbent assays (ELISA) to measure histidine-rich protein II (HRP2) [18, 19] or plasmodial lactate dehydrogenase enzyme (pLDH) [20, 21].
Many factors induce high variations in P. falciparum growth and 50% inhibitory concentration (IC50) values and influence the results of the chemosusceptibility tests [22], such as culture medium, initial parasitaemia, haematocrit, incubation time, time point when [3H]-hypoxanthine is added, use of serum substitutes, storage conditions of sample, delay before cultivation of samples and atmosphere (gas mixtures).
Laboratories using isotopic microtest to monitor drug resistance work at different oxygen tensions: 3% O2 [15], 5% O2 [18, 19], 10% O2 [23, 24], in candle jars [20, 25] (which corresponds to approximately 17-18% O2) and >20% O2 [21, 22] (in CO2 incubators). WHO recommends the use of a candle jar in their in vitro microtests (Mark III). Despite the varying culture conditions, many laboratories have adopted the same threshold for the resistance to anti-malarial compounds under different oxygen tensions. For example, our previous study has shown that the chloroquine IC50 values at 10% O2 were significantly higher than those at 21% O2 [26]. Nevertheless, it seems that O2 concentrations between 1% and 17.5% do not affect the IC50 values of quinoline-containing anti-malarial drugs [2729]. In contrast, the in vitro anti-malarial activity of some antibiotics was dependent on the O2 concentration [27].
The aim of this study was to evaluate a cultivation system in which the proper conditions of atmosphere for growing P. falciparum parasites were maintained in an air-tight sealed bag. The Genbag® system was initially designed as atmospheric generators for capnophilic bacteria. Genbag CO2® (BioMérieux;Marcy l'Etoile, France) was used for in vitro susceptibility test of nine standard anti-malarial drugs, and the IC50s were compared to those obtained with controlled incubator conditions (5% CO2, 10% O2 and 85% N2).

Methods

Strains of P. falciparum

A total of 36 pre-identified parasite strains (well-characterized laboratory strains or strains obtained from isolates after growth in culture for an extended period of time) from a wide panel of countries were maintained in culture in RPMI 1640 (Invitrogen, Paisley, United Kingdom), supplemented with 10% human serum (Abcys S.A., Paris, France) and buffered with 25 mM HEPES and 25 mM NaHCO3. Parasites were grown in type A+ human red blood cells under controlled atmospheric conditions that consisted of 10% O2, 5% CO2 and 85% N2 at 37°C with a relative humidity of 95%. All strains were synchronized twice with sorbitol before use [30]. Clonality was verified using PCR genotyping of polymorphic genetic markers msp1, msp2, and microsatellite loci [31, 32]. Chloroquine-susceptible 3D7 clone and chloroquine-resistant W2 clone (MR4 Resource Center) were cultivated in the same conditions and assessed for drug susceptibility in 4 independent experiments.

Drugs

Chloroquine, quinine, dihydroartemisinin, pyrimethamine and doxycycline were purchased from Sigma (Saint Louis, MO). Monodesethylamodiaquine was obtained from the WHO (Geneva, Switzerland). Mefloquine was obtained from Roche (Paris, France). Lumefantrine was provided by Novartis Pharma (Basel, Switzerland), and atovaquone was from GlaxoSmithKline (Evreux, France). Chloroquine and pyrimethamine were dissolved and diluted in water to obtain final concentrations ranging from 5 to 3,200 nM for chloroquine and 5 to 40,000 nM for pyrimethamine. Quinine, monodesethylamodiaquine, mefloquine, dihydroartemisinin, atovaquone and doxycycline were first dissolved in methanol and then diluted in water to obtain final concentrations ranging from 5 to 3,200 nM for quinine, 1.56 to 1000 nM for monodesethylamodiaquine, 3.2 to 400 nM for mefloquine, 0.1 to 100 nM for dihydroartemisinin, 0.3 to 100 nM for atovaquone and 0.1 to 502 μM for doxycycline. Lumefantrine was dissolved and diluted in ethanol to obtain final concentrations ranging from 0.5 to 310 nM.

In vitro assay

For in vitro isotopic microtests, 200 μL/well of a suspension of synchronous parasitized red blood cells (final parasitaemia, 0.5%; final haematocrit, 1.5%) was distributed in 96-well plates predosed with anti-malarial drugs. Parasite growth was assessed by adding 1 μCi of tritiated hypoxanthine with a specific activity of 14.1 Ci/mmol (Perkin-Elmer, Courtaboeuf, France) to each well at time zero. The plates were incubated for 42 h at 37°C in controlled atmospheric conditions in incubator (5% CO2, 10% O2 and 85% N2) and Genbag® with the atmospheric generators for capnophilic bacteria Genbag CO2® (two plates per sealed bag) (Figure 1). Immediately after incubation, plates were frozen and then thawed to lyse the erythrocytes. The contents of each well were collected on standard filter microplates (Unifilter GF/B; Perkin-Elmer) and washed using a cell harvester (Filter-Mate Cell Harvester; Perkin-Elmer). The filter microplates were dried, and 25 μL of scintillation cocktail (Microscint O; Perkin-Elmer) were placed in each well. The radioactivity incorporated into the nucleotides of the parasites was measured with a scintillation counter (Top Count; Perkin-Elmer).
The drug concentration that inhibits 50% of parasite growth (IC50) was designated as the concentration at which the tritiated hypoxanthine incorporation reached 50% of the total incorporation by the parasites in the drug-free control wells. The IC50 value was determined by non-linear regression analysis of log-based dose-response curves (Riasmart, Packard, Meriden, USA).

Statistical analysis

Count per minute (cpm) and IC50 were expressed as geometric means and 95% confidence intervals. The differences between the data observed in the incubator and Genbag® were analysed by a paired t-test. The correlation between the responses under two incubation conditions for each anti-malarial drug was estimated by the Pearson correlation coefficient R. The same analyses were performed on IC50 strains/IC50 3D7 or IC50 strains/IC50 W2 ratios calculated for each anti-malarial drug under the two conditions.

Results

A total of 1,098 drug-free control wells were analysed for each experimental condition. A significant difference was observed in the tritiated hypoxanthine uptake between the two conditions with 36 strains of P. falciparum (Table 1). The mean cpm values in the control wells under the controlled incubator conditions (5% CO2 and 10% O2) were significantly higher than those under Genbag® conditions (2738 vs 2282 cpm, p value < 0.0001).
Table 1
In vitro activity of chloroquine, quinine, mefloquine, monodesethylamodiaquine, lumefantrine, pyrimethamine, atovaquone, dihydroartemisinin and doxycycline against 36 strains of Plasmodium falciparum under controlled incubator conditions (10% O2) and Genbag® conditions (15% O2)
Compound
O2%
IC50
t-test p-value
  
Geometric mean
95%CI
Min
Max
 
Chloroquine
10
127 nM
77-211
8
1032
<0.0001
 
15
94 nM
61-146
12
751
 
Quinine
10
580 nM
451-745
153
1752
<0.0001
 
15
439 nM
336-573
96
1288
 
Mefloquine
10
57.5 nM
50.7-65.3
30.8
131.0
0.0011
 
15
49.7 nM
44.0-46.3
26.4
113.0
 
Monodesethylamodiaquine
10
41.4 nM
28.8-59.6
4.7
379
<0.0001
 
15
31.8 nM
21.8646.2
4.0
357
 
Lumefantrine
10
23.8 nM
19.6628.8
7.1
65.0
0.0044
 
15
21.2 nM
17.5-25.7
7.2
72
 
Pyrimethamine
10
273 nM
88-852
10
17025
0.0902
 
15
222 nM
67-735
10
14938
 
Atovaquone
10
1.2 nM
0.8-1.8
0.1
7.3
0.0011
 
15
2.1 nM
1.6-2.8
0.2
11.7
 
Dihydroartemisinin
10
2.4 nM
2.0-2.9
1.2
10.8
0.4088
 
15
2.4 nM
1.9-2.9
1.0
14.3
 
Doxycycline
10
10.9 μM
9.8-12.1
7.6
26.0
0.6771
 
15
10.8 μM
9.5-12.2
6.3
24.5
 
cpm
10
2738
2628-2852
671
17845
<0.0001
 
15
2282
2189-2379
623
12726
 
Compared to Genbag® conditions (5% CO2 and 15% O2), the geometric mean IC50 estimated under the incubator atmospheric conditions (5% CO2 and 10% O2) was significantly lower for atovaquone (1.2 vs 2.1 nM, p = 0.0011) and higher for the quinolines: chloroquine (127 vs 94 nM, p < 0.0001), quinine (580 vs 439 nM, p < 0.0001), monodesethylamodiaquine (41.4 vs 31.8 nM, p < 0.0001), mefloquine (57.5 vs 49.7 nM, p = 0.0011) and lumefantrine (23.8 vs 21.2 nM, p = 0.0044) (Table 1). There was no significant difference of IC50 between the two conditions for dihydroartemisinin, doxycycline and pyrimethamine.
The cpm and IC50 values for each anti-malarial drug were highly and significantly correlated between the two conditions (Figure 2, 3 and 4).
Based on the thresholds of decreased susceptibility defined for the incubator atmospheric conditions (5% CO2 and 10% O2), the following discrepancies were observed: one of 21 strains (5%) with IC50 >100 nM for chloroquine [33] was <100 nM under Genbag® conditions; seven of 20 strains (35%) with IC50 >800 nM for quinine [34] was <800 nM under Genbag® conditions; two of 20 strains (10%) with IC50 >30 nM for mefloquine [35] was <30 nM under Genbag® conditions; four of 10 strains (40%) with IC50 >80 nM for monodesethylamodiaquine [36] was <80 nM under Genbag® conditions; and none of the 13 strains with IC50 >2,000 nM for pyrimethamine [37] was < 2,000 nM under Genbag® conditions.
To reduce this difference in terms of anti-malarial susceptibility, a specific cut-off was estimated for each drug under Genbag® conditions by regression. The cut-off was estimated at 77 nM for chloroquine (vs 100 nM in 10% O2), 611 nM for quinine (vs 800 nM), 30 nM for mefloquine (vs 30 nM), 61 nM for monodesethylamodiaquine (vs 80 nM) and 1729 nM for pyrimethamine (vs 2,000 nM). The cut-off was not re-estimated for drugs for which all the CI50 values were below the cut-off under controlled incubation conditions. For these drugs, median values were estimated: 2.9 nM for atovaquone (vs 2.5 nM in 10% O2), 26 nM for lumefantrine (vs 30 nM), 3 nM for dihydroartemisinin (vs 3.0 nM) and 15 μM for doxycycline (vs 15 μM).
The geometric mean ratio based on the chloroquine-susceptible reference clone 3D7 (strain IC50/3D7 IC50) obtained under the incubator atmospheric conditions (5% CO2 and 10% O2) was significantly higher for chloroquine (p < 0.0001), lumefantrine (p = 0.0119), and dihydroartemisinin (p = 0.0006), but the ratio was significantly lower for mefloquine (p < 0.0001) and doxycycline (p = 0.0002) (Table 2). The geometric mean ratio based on the chloroquine-resistant reference clone W2 (strain IC50/W2 IC50) obtained under the incubator atmospheric conditions (5% CO2 and 10% O2) was significantly higher for chloroquine (p = 0.0014), quinine (p = 0.0006), monodesethylamodiaquine (p < 0.0001), lumefantrine (p < 0.0001), pyrimethamine (p = 0.0026) and was significantly lower for dihydroartemisinin (p < 0.0001) and doxycycline (p = 0.0159) (Table 3).
Table 2
Ratio based on the chloroquine-susceptible reference clone 3D7 (strain IC50/3D7 IC50) of chloroquine, quinine, mefloquine, monodesethylamodiaquine, lumefantrine, pyrimethamine, atovaquone, dihydroartemisinin and doxycycline against 36 strains of Plasmodium falciparum under controlled incubator conditions (10% O2) and Genbag® conditions (15% O2)
Compound
O2%
IC50/3D7 IC50
t-test p-value
  
Geometric mean
95%CI
Min
Max
 
Chloroquine
10
6.88
4.15-11.41
0.40
55.80
<0.0001
 
15
4.80
3.09-7.45
0.60
38.30
 
Quinine
10
2.44
1.90-3.13
0.65
7.39
0.2418
 
15
2.63
2.04-3.40
0.66
7.24
 
Mefloquine
10
0.72
0.63-0.82
0.39
1.64
<0.0001
 
15
0.91
0.81-1.03
0.49
2.089
 
Monodesethylamodiaquine
10
2.59
1.80-3.72
0.29
23.69
0.5948
 
15
2.52
1.73-3.67
0.32
28.33
 
Lumefantrine
10
0.90
0.74-1.09
0.27
2.45
0.0119
 
15
0.81
0.67-0.98
0.28
2.76
 
Pyrimethamine
10
27.31
8.75-85.21
1.00
1703
0.0835
 
15
18.01
5.51-58.82
1.00
1494
 
Atovaquone
10
0.88
0.59-1.31
0.07
5.20
0.9187
 
15
0.89
0.67-1.19
0.08
4.96
 
Dihydroartemisinin
10
1.53
1.27-1.85
0.74
6.79
0.0006
 
15
1.31
1.04-1.64
0.54
7.94
 
Doxycycline
10
1.21
1.09-1.35
0.85
2.90
0.0002
 
15
1.37
1.21-1.55
0.80
3.11
 
Table 3
Ratio based on the chloroquine-resistant reference clone W2 (strain IC50/W2 IC50) of chloroquine, quinine, mefloquine, monodesethylamodiaquine, lumefantrine, pyrimethamine, atovaquone, dihydroartemisinin and doxycycline against 36 strains of Plasmodium falciparum under controlled incubator conditions (10% O2) and Genbag® conditions (15% O2)
Compound
O2%
IC50/W2 IC50
t-test p-value
  
Geometric mean
95%CI
Min
Max
 
Chloroquine
10
0.26
0.16-0.43
0.02
2.12
0.0014
 
15
0.21
0.14-0.33
0.03
1.71
 
Quinine
10
0.71
0.56-0.90
0.19
2.04
0.0006
 
15
0.56
0.43-0.74
0.12
1.65
 
Mefloquine
10
0.97
0.66-1.42
0.43
1.82
0.6262
 
15
0.82
0.72-0.92
0.43
1.85
 
Monodesethylamodiaquine
10
0.49
0.34-0.70
0.06
4.47
<0.0001
 
15
0.37
0.25-0.54
0.05
4.14
 
Lumefantrine
10
1.25
1.03-1.52
0.37
3.42
<0.0001
 
15
0.94
0.78-1.15
0.32
3.21
 
Pyrimethamine
10
0.03
0.01-0.10
0.001
1.96
0.0026
 
15
0.02
0.01-0.07
0.0008
1.26
 
Atovaquone
10
0.65
0.44-0.97
0.05
3.85
0.8646
 
15
0.67
0.50-0.89
0.06
3.71
 
Dihydroartemisinin
10
1.06
0.88-1.28
0.51
4.70
<0.0001
 
15
1.55
1.24-1.94
0.65
9.41
 
Doxycycline
10
1.16
1.05-1.29
0.81
2.78
0.0159
 
15
1.25
11.10-1.42
0.73
2.85
 

Discussion

The first works that assessed oxygen effects on P. falciparum asynchronous cultures had shown that microaerophilic environment allowed an optimal development of parasites [38]. Parasite growth failed under strict anaerobic conditions. Plasmodium falciparum possesses a functional mitochondrial respiratory chain with oxygen consumption [39]. It has been shown that there is some protector effect of CO2 at high oxygen concentration [38] through the medium pH, the stability (between 7.2 and 7.45) of which is required for parasite growth [40]. The standard medium RPMI 1640, buffered with 25 mM HEPES and 25 mM NaHCO3, was optimized to maintain the pH within the physiological range in an atmosphere containing 5% CO2. Any modification of the CO2 concentration alters the pH of the medium, which in turn can influence the IC50 values of pH-dependent drugs, such as quinolines, but not of those that are pH-independent, such as pyrimethamine. Despite similar growth and tritium-labelled hypoxanthine incorporation rates in drug-free control wells, Shenyi He et al showed that increasing the CO2 concentration from 2.7% to 7% (with a constant 5% O2) resulted in significantly higher chloroquine IC50 values [29]. The chloroquine-resistant K1 strain showed nine-fold greater chloroquine IC50 when the CO2 concentration was increased from 2.7 to 7% [29].
The atmospheric generators for capnophilic bacteria Genbag CO2® evaluated in this study release about 5% CO2 and reduce to 15% O2 in 30 min, according to the manufacturer's specifications (http://​www.​biomerieux-diagnostics.​com/​servlet/​srt/​bio/​clinical-diagnostics/​dynPage?​doc=​CNL_​PRD_​CPL_​G_​PRD_​CLN_​62). The stated conditions are maintained at least for 48 h. In this context, it seems that the significant differences in drug IC50 values and growth level (cpm) between the two conditions, the incubator atmospheric conditions (5% CO2 and 10% O2) and the Genbag® conditions (5% CO2 and 15% O2), are due to the difference in O2 concentration.
The IC50 values of quinoline drugs, such as chloroquine, quinine, monodesethylamodiaquine, mefloquine and lumefantrine were significantly lower at 15% O2 (Genbag CO2® ) than those at 10% O2 (the incubator atmospheric conditions). This is in agreement with the previous results that showed in 136 P. falciparum fresh isolates from Comoros that the chloroquine IC50 values at 10% O2 were significantly higher than those at 21% O2, with the means of 173.5 nM and 121.5 nM, respectively [26]. Of particular interest among the 63 isolates that were resistant in vitro to chloroquine (IC50 >100 nM) at 5% CO2 and 10% O2, was the observation that 17 were susceptible to chloroquine (IC50 < 100 nM) at 21% O2 [26]. In the present study, only one of 21 strains with chloroquine IC50 >100 nM at 10% O2 had IC50 < 100 nM at a concentration of 15%. Some studies failed to show oxygen-dependent effects of chloroquine on P. falciparum in culture [2729], but in these experiments less than four strains were tested. Shenyi He et al reported that the chloroquine IC50 values determined in a candle jar (2.7% CO2 and 17.5% O2) were similar to those determined in an incubator set at 2.7% CO2 and 5% O2 [27]. Lin et al observed similar chloroquine IC50 values with parasites incubated in 5% CO2 and 5% or 15% O2 generated by an AnaeroPack system [29].
In contrast, there was no significant difference of IC50 values between 10% and 15% O2 conditions for doxycycline, dihydroartemisinin and pyrimethamine. Divo et al. reported that the anti-malarial activity of different cyclines was O2-dependent and higher at high O2 concentrations [27]. Nevertheless, this influence of O2 was not evident at 48 h but was profound at 96 h. In the present study, IC50 values were only determined at 42 h. The class of artemisinins contains an intramolecular peroxide bridge that is situated in the sesquiterperne lactone backbone structure. The anti-malarial potency of artemisinin was enhanced by oxygen and inhibited by oxygen radical scavengers [41, 42]. The contrast between 10 and 15% O2 is probably not high enough to observe any difference in dihydroartemisinin IC50 values.
Using the threshold values for in vitro resistance established under the controlled incubator conditions (5% CO2 and 10% O2), 0 - 40% of discordant results, depending on the test compounds, was obtained using the Genbag® incubation system. The effect of gas mixture on the results of chemosusceptibility assay should lead different laboratories involved in anti-malarial resistance survey to adapt a resistance threshold for each gas mixture or to use the same conditions to perform chemosusceptibility microtests. The cut-off value was re-estimated for each drug in Genbag® conditions. The cut-off was estimated at 77 nM for chloroquine (vs 100 nM in 10% O2), 611 nM for quinine (vs 800 nM), 30 nM for mefloquine (vs 30 nM), 61 nM for monodesethylamodiaquine (vs 80 nM) and 1729 nM for pyrimethamine (vs 2000 nM).
To reduce the effects of O2 on IC50 values between 10 and 15% O2, the ratios of strain IC50/3D7 IC50 and strain IC50/W2 IC50 were calculated for each condition. Nevertheless, the mean ratios were not similar at 10% and 15% O2 for most anti-malarial drugs, and the results depended on the reference clone.

Conclusions

The atmospheric generators for capnophilic bacteria Genbag CO2® is an appropriate technology that can be transferred to the field for epidemiological surveys of drug-resistant malaria. The present data suggest the importance of the gas mixture on in vitro microtest results for anti-malarial drugs and the importance of determining the microtest conditions before comparing and analysing the data from different laboratories and concluding on malaria resistance.

Conflict of interest

The authors declare that they have no competing interests.

Acknowledgements

This work was supported by the French Ministry of Defense. The views and opinions are those of the authors and do not purport to represent those of the French Ministry of Defense.
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors' contributions

LKB and BP conceived and designed the experiments. AP, EB, RA and DT performed the in vitro experiments. CR and BP analysed the data. AP, LKB, CR and BP wrote the paper. All authors read and approved the final manuscript.
Anhänge

Authors’ original submitted files for images

Literatur
1.
Zurück zum Zitat Le Bras J, Musset L, Clain J: Les résistances aux médicaments antipaludiques. Med Maladies Infect. 2006, 36: 401-405. 10.1016/j.medmal.2006.05.005.CrossRef Le Bras J, Musset L, Clain J: Les résistances aux médicaments antipaludiques. Med Maladies Infect. 2006, 36: 401-405. 10.1016/j.medmal.2006.05.005.CrossRef
2.
Zurück zum Zitat Nosten F, White NJ: Artemisinin-based combination treatment of falciparum malaria. Am J Trop Med Hyg. 2007, 77: 181-192.PubMed Nosten F, White NJ: Artemisinin-based combination treatment of falciparum malaria. Am J Trop Med Hyg. 2007, 77: 181-192.PubMed
3.
Zurück zum Zitat Eastman RT, Fidock DA: Artemisinin-based combination therapies: a vital tool in efforts to eliminate malaria. Nat Rev Microbiol. 2009, 7: 864-874.PubMedCentralPubMed Eastman RT, Fidock DA: Artemisinin-based combination therapies: a vital tool in efforts to eliminate malaria. Nat Rev Microbiol. 2009, 7: 864-874.PubMedCentralPubMed
4.
Zurück zum Zitat Noedl H, Se Y, Schaecher K, Smith BL, Socheat D, Fukuda MM: Evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med. 2008, 359: 2619-2620. 10.1056/NEJMc0805011.CrossRefPubMed Noedl H, Se Y, Schaecher K, Smith BL, Socheat D, Fukuda MM: Evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med. 2008, 359: 2619-2620. 10.1056/NEJMc0805011.CrossRefPubMed
5.
Zurück zum Zitat Carrara VI, Zwang J, Ashley EA, Price RN, Stepniewska K, Barends M, Brockman A, Anderson T, McGready R, Phaiphun L, Proux S, van Vugt M, Hutagalung R, Lwin KM, Phyo AP, Preechapornkul P, Imwong M, Pukrittayakamee S, Singhasivanon P, White NJ, Nosten K: Changes in the treatment responses to artesunate-mefloquine on the Northwestern border of Thailand during 13 years of continuous deployment. PlosOne. 2009, 4: 4451-CrossRef Carrara VI, Zwang J, Ashley EA, Price RN, Stepniewska K, Barends M, Brockman A, Anderson T, McGready R, Phaiphun L, Proux S, van Vugt M, Hutagalung R, Lwin KM, Phyo AP, Preechapornkul P, Imwong M, Pukrittayakamee S, Singhasivanon P, White NJ, Nosten K: Changes in the treatment responses to artesunate-mefloquine on the Northwestern border of Thailand during 13 years of continuous deployment. PlosOne. 2009, 4: 4451-CrossRef
6.
Zurück zum Zitat Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, Lwin KM, Ariey F, Hanpithakpong W, Lee SJ, Ringwald P, Silamut K, Imwrong M, Chotivanish K, Lim P, Herdman T, An SS, Yeung S, Singhasivanon P, Day NPJ, Lindegardh N, Socheat D, White NJ: Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2009, 361: 455-467. 10.1056/NEJMoa0808859.PubMedCentralCrossRefPubMed Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, Lwin KM, Ariey F, Hanpithakpong W, Lee SJ, Ringwald P, Silamut K, Imwrong M, Chotivanish K, Lim P, Herdman T, An SS, Yeung S, Singhasivanon P, Day NPJ, Lindegardh N, Socheat D, White NJ: Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2009, 361: 455-467. 10.1056/NEJMoa0808859.PubMedCentralCrossRefPubMed
7.
Zurück zum Zitat Rogers WO, Sem R, Tero T, Chim P, Lim P, Muth S, Socheat D, Ariey F, Wongsrichanalai C: Failure of artesunate-mefloquine combination therapy for uncomplicated Plasmodium falciparum malaria in southern Cambodia. Malar J. 2009, 8: 10-10.1186/1475-2875-8-10.PubMedCentralCrossRefPubMed Rogers WO, Sem R, Tero T, Chim P, Lim P, Muth S, Socheat D, Ariey F, Wongsrichanalai C: Failure of artesunate-mefloquine combination therapy for uncomplicated Plasmodium falciparum malaria in southern Cambodia. Malar J. 2009, 8: 10-10.1186/1475-2875-8-10.PubMedCentralCrossRefPubMed
8.
Zurück zum Zitat Sibley CH, Barnes KI, Plowe CV: The rationale and plan for creating a World Antimalarial Resistance Network (WARN). Malar J. 2007, 6: 118-10.1186/1475-2875-6-118.PubMedCentralCrossRefPubMed Sibley CH, Barnes KI, Plowe CV: The rationale and plan for creating a World Antimalarial Resistance Network (WARN). Malar J. 2007, 6: 118-10.1186/1475-2875-6-118.PubMedCentralCrossRefPubMed
9.
Zurück zum Zitat Sibley CH, Barnes KI, Watkins WM, Plowe CV: A network to monitor antimalarial drug resistance: a plan for moving forward. Trends Parasitol. 2008, 24: 43-48. 10.1016/j.pt.2007.09.008. 2008CrossRefPubMed Sibley CH, Barnes KI, Watkins WM, Plowe CV: A network to monitor antimalarial drug resistance: a plan for moving forward. Trends Parasitol. 2008, 24: 43-48. 10.1016/j.pt.2007.09.008. 2008CrossRefPubMed
10.
Zurück zum Zitat WHO: Susceptibility of Plasmodium falciparum to antimalarial drugs. Reports on global monitoring 1996-2004. WHO/HTM/MAL/2005.110. 2005, Geneva: WHO WHO: Susceptibility of Plasmodium falciparum to antimalarial drugs. Reports on global monitoring 1996-2004. WHO/HTM/MAL/2005.110. 2005, Geneva: WHO
11.
Zurück zum Zitat Desjardins RE, Canfield CJ, Haynes JD, Chulay JD: Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob Agents Chemother. 1979, 16: 710-718.PubMedCentralCrossRefPubMed Desjardins RE, Canfield CJ, Haynes JD, Chulay JD: Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob Agents Chemother. 1979, 16: 710-718.PubMedCentralCrossRefPubMed
12.
Zurück zum Zitat World Health Organisation: In vitro micro-test (Mark III) for the assessment of the response of Plasmodium falciparum to chloroquine, mefloquine, quinine, amodiaquine, sulfadoxine/pyrimethamine and artemisinin. WHO/CTD/MAL/97.20 Rev 2 2001. 2001, Geneva: WHO World Health Organisation: In vitro micro-test (Mark III) for the assessment of the response of Plasmodium falciparum to chloroquine, mefloquine, quinine, amodiaquine, sulfadoxine/pyrimethamine and artemisinin. WHO/CTD/MAL/97.20 Rev 2 2001. 2001, Geneva: WHO
13.
Zurück zum Zitat Rieckmann KH, Campbell GH, Sax LJ, Mrema JE: Drug sensitivity of Plasmodium falciparum. An in-vitro microtechnique. Lancet. 1978, 1: 22-23. 10.1016/S0140-6736(78)90365-3.CrossRefPubMed Rieckmann KH, Campbell GH, Sax LJ, Mrema JE: Drug sensitivity of Plasmodium falciparum. An in-vitro microtechnique. Lancet. 1978, 1: 22-23. 10.1016/S0140-6736(78)90365-3.CrossRefPubMed
14.
Zurück zum Zitat Wernsdorfer WH: Field evaluation of drug resistance in malaria. In vitro micro-test. Acta Trop. 1980, 37: 222-227.PubMed Wernsdorfer WH: Field evaluation of drug resistance in malaria. In vitro micro-test. Acta Trop. 1980, 37: 222-227.PubMed
15.
Zurück zum Zitat Contreras CE, Rivas MA, Dominguez J, Charris J, Palacios M, Bianco NE, Blanca I: Stage-specific activity of potential antimalarial compounds measured in vitro by flow cytometry in comparison to optical microscopy and hypoxanthine uptake. Mem Inst Oswaldo Cruz. 2004, 99: 179-184. 10.1590/S0074-02762004000200011.CrossRefPubMed Contreras CE, Rivas MA, Dominguez J, Charris J, Palacios M, Bianco NE, Blanca I: Stage-specific activity of potential antimalarial compounds measured in vitro by flow cytometry in comparison to optical microscopy and hypoxanthine uptake. Mem Inst Oswaldo Cruz. 2004, 99: 179-184. 10.1590/S0074-02762004000200011.CrossRefPubMed
16.
Zurück zum Zitat Bacon JB, Latour C, Lucas C, Colina O, Ringwald P, Picot S: Comparison of a SYBR green I-based assay with a histidine-rich protein II enzyme-linked immunosorbent assay for in vitro antimalarial drug efficacy testing and application to clinical isolates. Antimicrob Agents Chemother. 2007, 51: 1172-1178. 10.1128/AAC.01313-06.PubMedCentralCrossRefPubMed Bacon JB, Latour C, Lucas C, Colina O, Ringwald P, Picot S: Comparison of a SYBR green I-based assay with a histidine-rich protein II enzyme-linked immunosorbent assay for in vitro antimalarial drug efficacy testing and application to clinical isolates. Antimicrob Agents Chemother. 2007, 51: 1172-1178. 10.1128/AAC.01313-06.PubMedCentralCrossRefPubMed
17.
Zurück zum Zitat Rason MA, Randriantsoa TA, drianantenaina H, Ratsimbasoa A, Menard D: Performance and reliability of the SYBR green I based assay for the routine monitoring of susceptibility of Plasmodium falciparum clinical isolates. Trans R Soc Trop Med Hyg. 2008, 102: 346-351. 10.1016/j.trstmh.2008.01.021.CrossRefPubMed Rason MA, Randriantsoa TA, drianantenaina H, Ratsimbasoa A, Menard D: Performance and reliability of the SYBR green I based assay for the routine monitoring of susceptibility of Plasmodium falciparum clinical isolates. Trans R Soc Trop Med Hyg. 2008, 102: 346-351. 10.1016/j.trstmh.2008.01.021.CrossRefPubMed
18.
Zurück zum Zitat Noedl H, Wernsdorfer WH, Miller RS, Wongsrichanalai C: Histidine-rich protein II: a novel approach to malaria drug sensitivity testing. Antimicrob Agents Chemother. 2002, 46: 1658-1664. 10.1128/AAC.46.6.1658-1664.2002.PubMedCentralCrossRefPubMed Noedl H, Wernsdorfer WH, Miller RS, Wongsrichanalai C: Histidine-rich protein II: a novel approach to malaria drug sensitivity testing. Antimicrob Agents Chemother. 2002, 46: 1658-1664. 10.1128/AAC.46.6.1658-1664.2002.PubMedCentralCrossRefPubMed
19.
Zurück zum Zitat Noedl H, Bronnert J, Yingyuen K, Attlmayr B, Kollaritsch H, Fukuda M: Simple histidine-rich protein 2 double-site sandwich enzyme-linked immunosorbent assay for use in malaria drug sensitivity testing. Antimicrob Agents Chemother. 2005, 49: 3575-3577. 10.1128/AAC.49.8.3575-3577.2005.PubMedCentralCrossRefPubMed Noedl H, Bronnert J, Yingyuen K, Attlmayr B, Kollaritsch H, Fukuda M: Simple histidine-rich protein 2 double-site sandwich enzyme-linked immunosorbent assay for use in malaria drug sensitivity testing. Antimicrob Agents Chemother. 2005, 49: 3575-3577. 10.1128/AAC.49.8.3575-3577.2005.PubMedCentralCrossRefPubMed
20.
Zurück zum Zitat Druilhe P, Moreno A, Blanc C, Brasseur PH, Jacquier P: A colorimetric in vitro drug sensitivity assay for Plasmodium falciparum based on a highly sensitive double-site lactate dehydrogenase antigen-capture enzyme-linked immunosorbent assay. Am J Trop Med Hyg. 2001, 64: 233-241.PubMed Druilhe P, Moreno A, Blanc C, Brasseur PH, Jacquier P: A colorimetric in vitro drug sensitivity assay for Plasmodium falciparum based on a highly sensitive double-site lactate dehydrogenase antigen-capture enzyme-linked immunosorbent assay. Am J Trop Med Hyg. 2001, 64: 233-241.PubMed
21.
Zurück zum Zitat Kaddouri H, Djimdé A, Dama S, Kodio A, Tekete M, Hubert V, Koné A, Maiga H, Yattara O, Fofana B, Sidibe B, Sangaré CPO, Doumbo O, Le Bras J: Baseline in vitro efficacy of ACT component drugs on Plasmodium falciparum clinical isolates from Mali. Int J Parasitol. 2008, 38: 791-798. 10.1016/j.ijpara.2007.12.002.CrossRefPubMed Kaddouri H, Djimdé A, Dama S, Kodio A, Tekete M, Hubert V, Koné A, Maiga H, Yattara O, Fofana B, Sidibe B, Sangaré CPO, Doumbo O, Le Bras J: Baseline in vitro efficacy of ACT component drugs on Plasmodium falciparum clinical isolates from Mali. Int J Parasitol. 2008, 38: 791-798. 10.1016/j.ijpara.2007.12.002.CrossRefPubMed
22.
Zurück zum Zitat Basco LK: Molecular epidemiology of malaria in cameroon. XX. Experimental studies on various factors of in vitro drug sensitivity assays using fresh isolates of Plasmodium falciparum. Am J Trop Med Hyg. 2004, 70: 474-480.PubMed Basco LK: Molecular epidemiology of malaria in cameroon. XX. Experimental studies on various factors of in vitro drug sensitivity assays using fresh isolates of Plasmodium falciparum. Am J Trop Med Hyg. 2004, 70: 474-480.PubMed
23.
Zurück zum Zitat Pradines B, Spiegel A, Rogier C, Tall A, Mosnier J, Fusai T, Trape JF, Parzy D: Antibiotics for prophylaxis of Plasmodium falciparum infections: in vitro activity of doxycycline against Senegalese isolates. Am J Trop Med Hyg. 2000, 62: 82-85.PubMed Pradines B, Spiegel A, Rogier C, Tall A, Mosnier J, Fusai T, Trape JF, Parzy D: Antibiotics for prophylaxis of Plasmodium falciparum infections: in vitro activity of doxycycline against Senegalese isolates. Am J Trop Med Hyg. 2000, 62: 82-85.PubMed
24.
Zurück zum Zitat Pradines B, Hovette P, Fusai T, Atanda HL, Baret E, Cheval P, Mosnier J, Callec A, Cren J, Amalvict R, Gardair JP, Rogier C: Prevalence of in vitro resistance to eleven standard or new antimalarial drugs among Plasmodium falciparum isolates from Pointe-Noire, Republic of the Congo. J Clin Microbiol. 2006, 44: 2404-2408. 10.1128/JCM.00623-06.PubMedCentralCrossRefPubMed Pradines B, Hovette P, Fusai T, Atanda HL, Baret E, Cheval P, Mosnier J, Callec A, Cren J, Amalvict R, Gardair JP, Rogier C: Prevalence of in vitro resistance to eleven standard or new antimalarial drugs among Plasmodium falciparum isolates from Pointe-Noire, Republic of the Congo. J Clin Microbiol. 2006, 44: 2404-2408. 10.1128/JCM.00623-06.PubMedCentralCrossRefPubMed
25.
Zurück zum Zitat Dieng T, Bah IB, Ndiaye PM, Diallo I, Diop BM, Brasseur P, Mboup S, Wirth D, Ndir O: In vitro evaluation of the sensitivity of Plasmodium falciparum to chloroquine using the deli-microtest in region of Dakar, Senegal. Med Trop. 2005, 65: 580-583. Dieng T, Bah IB, Ndiaye PM, Diallo I, Diop BM, Brasseur P, Mboup S, Wirth D, Ndir O: In vitro evaluation of the sensitivity of Plasmodium falciparum to chloroquine using the deli-microtest in region of Dakar, Senegal. Med Trop. 2005, 65: 580-583.
26.
Zurück zum Zitat Briolant S, Parola P, Madamet-Torrentino M, Baret E, Mosnier J, Delmont J, Parzy D, Minodier P, Rogier C, Pradines B: Influence of oxygen on asexual blood cycle and susceptibility of Plasmodium falciparum to chloroquine: requirement of a standardized in vitro assay. Malar J. 2007, 6: 44-10.1186/1475-2875-6-44.PubMedCentralCrossRefPubMed Briolant S, Parola P, Madamet-Torrentino M, Baret E, Mosnier J, Delmont J, Parzy D, Minodier P, Rogier C, Pradines B: Influence of oxygen on asexual blood cycle and susceptibility of Plasmodium falciparum to chloroquine: requirement of a standardized in vitro assay. Malar J. 2007, 6: 44-10.1186/1475-2875-6-44.PubMedCentralCrossRefPubMed
27.
Zurück zum Zitat Divo AA, Geary TG, Jensen JB: Oxygen- and time-dependent effects of antibiotics and selected mitochondrial inhibitors on Plasmodium falciparum in culture. Antimicrob Agents Chemother. 1985, 27: 21-27.PubMedCentralCrossRefPubMed Divo AA, Geary TG, Jensen JB: Oxygen- and time-dependent effects of antibiotics and selected mitochondrial inhibitors on Plasmodium falciparum in culture. Antimicrob Agents Chemother. 1985, 27: 21-27.PubMedCentralCrossRefPubMed
28.
Zurück zum Zitat Lin Q, Onda T, Kano S, Masuda G, Suzuki M: In vitro susceptibility test of Plasmodium falciparum using a portable thermostat and CO2 gas generator. J Jpn Assoc Inf Dis. 1999, 73: 1099-1103. Lin Q, Onda T, Kano S, Masuda G, Suzuki M: In vitro susceptibility test of Plasmodium falciparum using a portable thermostat and CO2 gas generator. J Jpn Assoc Inf Dis. 1999, 73: 1099-1103.
29.
Zurück zum Zitat He S, Saito-Ito A, Tanabe K, Matsumura T: Plasmodium falciparum: Effective use of the CO2-NaHCO3 buffer system for evaluating chloroquine resistance. Exp Parasitol. 2000, 94: 121-124. 10.1006/expr.1999.4471.CrossRefPubMed He S, Saito-Ito A, Tanabe K, Matsumura T: Plasmodium falciparum: Effective use of the CO2-NaHCO3 buffer system for evaluating chloroquine resistance. Exp Parasitol. 2000, 94: 121-124. 10.1006/expr.1999.4471.CrossRefPubMed
30.
Zurück zum Zitat Lambros C, Vanderberg JP: Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol. 1979, 65: 418-420. 10.2307/3280287.CrossRefPubMed Lambros C, Vanderberg JP: Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol. 1979, 65: 418-420. 10.2307/3280287.CrossRefPubMed
31.
Zurück zum Zitat Bogreau H, Renaud F, Bouchiba H, Durand P, Assi SB, Henry MC, Garnotel E, Pradines B, Fusai T, Wade B, Adehossi E, Parola P, Kamil MA, Puijalon O, Rogier C: Genetic diversity and structure of African Plasmodium falciparum populations in urban and rural areas. Am J Trop Med Hyg. 2006, 74: 953-959.PubMed Bogreau H, Renaud F, Bouchiba H, Durand P, Assi SB, Henry MC, Garnotel E, Pradines B, Fusai T, Wade B, Adehossi E, Parola P, Kamil MA, Puijalon O, Rogier C: Genetic diversity and structure of African Plasmodium falciparum populations in urban and rural areas. Am J Trop Med Hyg. 2006, 74: 953-959.PubMed
32.
Zurück zum Zitat Henry M, Diallo I, Bordes J, Ka S, Pradines B, Diatta B, M'Baye PS, Sane M, Thiam M, Gueye PM, Wade B, Touze JE, Debonne JM, Rogier C, Fusai T: Urban malaria in Dakar, Senegal: chemosusceptibility and genetic diversity of Plasmodium falciparum isolates. Am J Trop Med Hyg. 2006, 75: 146-151.PubMed Henry M, Diallo I, Bordes J, Ka S, Pradines B, Diatta B, M'Baye PS, Sane M, Thiam M, Gueye PM, Wade B, Touze JE, Debonne JM, Rogier C, Fusai T: Urban malaria in Dakar, Senegal: chemosusceptibility and genetic diversity of Plasmodium falciparum isolates. Am J Trop Med Hyg. 2006, 75: 146-151.PubMed
33.
Zurück zum Zitat Le Bras J, Ringwald P: Plasmodium falciparum chemoresistance. The situation in Africa in 1989. Med Trop. 1990, 50: 161-162. Le Bras J, Ringwald P: Plasmodium falciparum chemoresistance. The situation in Africa in 1989. Med Trop. 1990, 50: 161-162.
34.
Zurück zum Zitat Basco LK, Le Bras J: In vitro susceptibility of Cambodian isolates of Plasmodium falciparum to halofantrine, pyronaridine and artemisinin derivatives. Ann Trop Med Parasitol. 1994, 88: 137-144.PubMed Basco LK, Le Bras J: In vitro susceptibility of Cambodian isolates of Plasmodium falciparum to halofantrine, pyronaridine and artemisinin derivatives. Ann Trop Med Parasitol. 1994, 88: 137-144.PubMed
35.
Zurück zum Zitat Hatin I, Trape JF, Legros F, Bauchet J, Le Bras J: Susceptibility of Plasmodium falciparum strains to mefloquine in an urban area of Senegal. Bull WHO. 1992, 70: 363-367.PubMedCentralPubMed Hatin I, Trape JF, Legros F, Bauchet J, Le Bras J: Susceptibility of Plasmodium falciparum strains to mefloquine in an urban area of Senegal. Bull WHO. 1992, 70: 363-367.PubMedCentralPubMed
36.
Zurück zum Zitat Basco LK, Bras Le: In vitro activity of monodesethylamodiaquine and amopyroquine against African isolates and clones of Plasmodium falciparum. Am J Trop Med Hyg. 1993, 48: 120-125.PubMed Basco LK, Bras Le: In vitro activity of monodesethylamodiaquine and amopyroquine against African isolates and clones of Plasmodium falciparum. Am J Trop Med Hyg. 1993, 48: 120-125.PubMed
37.
Zurück zum Zitat Basco LK, Ramiliarisoa O, Le Bras J: In vitro activity of pyrimethamine, cycloguanil and other antimalarial drugs against African isolates and clones of Plasmodium falciparum. Am J Trop Med Hyg. 1994, 50: 193-199.PubMed Basco LK, Ramiliarisoa O, Le Bras J: In vitro activity of pyrimethamine, cycloguanil and other antimalarial drugs against African isolates and clones of Plasmodium falciparum. Am J Trop Med Hyg. 1994, 50: 193-199.PubMed
38.
Zurück zum Zitat Scheibel LW, Ashton SH, Trager W: Plasmodium falciparum: microaerophilic requirements in human red blood cells. Exp Parasitol. 1979, 47: 410-418. 10.1016/0014-4894(79)90094-8.CrossRefPubMed Scheibel LW, Ashton SH, Trager W: Plasmodium falciparum: microaerophilic requirements in human red blood cells. Exp Parasitol. 1979, 47: 410-418. 10.1016/0014-4894(79)90094-8.CrossRefPubMed
39.
Zurück zum Zitat Krungkrai J, Burat D, Kudan S, Krungkrai S, Prapunwattana P: Mitochondrial oxygen consumption in asexual and sexual blood stages of the human malarial parasite, Plasmodium falciparum. Southeast Asian J Trop Med Public Health. 1999, 30: 636-642.PubMed Krungkrai J, Burat D, Kudan S, Krungkrai S, Prapunwattana P: Mitochondrial oxygen consumption in asexual and sexual blood stages of the human malarial parasite, Plasmodium falciparum. Southeast Asian J Trop Med Public Health. 1999, 30: 636-642.PubMed
40.
Zurück zum Zitat Jensen MD, Conley M, Helstowski LD: Culture of Plasmodium falciparum: the role of pH, glucose, and lactate. J Parasitol. 1983, 69: 1060-1067. 10.2307/3280864.CrossRefPubMed Jensen MD, Conley M, Helstowski LD: Culture of Plasmodium falciparum: the role of pH, glucose, and lactate. J Parasitol. 1983, 69: 1060-1067. 10.2307/3280864.CrossRefPubMed
41.
Zurück zum Zitat Krungkrai J, Yuthavong Y: The antimalarial action on Plasmodium falciparum of qinghaosu and artesunate in combination with agents which modulates oxidant stress. Trans R Soc Trop Med Hyg. 1987, 81: 710-714. 10.1016/0035-9203(87)90003-4.CrossRefPubMed Krungkrai J, Yuthavong Y: The antimalarial action on Plasmodium falciparum of qinghaosu and artesunate in combination with agents which modulates oxidant stress. Trans R Soc Trop Med Hyg. 1987, 81: 710-714. 10.1016/0035-9203(87)90003-4.CrossRefPubMed
42.
Zurück zum Zitat Pradines B, Ramiandrasoa F, Fusai T, Hammadi A, Henry M, Briolant S, Orlandi-Pradines E, Bogreau H, Mosnier J, Baret E, Kunesch G, Le Bras J, Rogier C: Generation of free radicals and enhancement of hemin-induced membrane damage by a catechol iron chelator in Plasmodium falciparum. J Biol Sc. 2005, 5: 463-471. 10.3923/jbs.2005.463.471.CrossRef Pradines B, Ramiandrasoa F, Fusai T, Hammadi A, Henry M, Briolant S, Orlandi-Pradines E, Bogreau H, Mosnier J, Baret E, Kunesch G, Le Bras J, Rogier C: Generation of free radicals and enhancement of hemin-induced membrane damage by a catechol iron chelator in Plasmodium falciparum. J Biol Sc. 2005, 5: 463-471. 10.3923/jbs.2005.463.471.CrossRef
Metadaten
Titel
Use of the atmospheric generators for capnophilic bacteria Genbag-CO2 for the evaluation of in vitro Plasmodium falciparum susceptibility to standard anti-malarial drugs
verfasst von
Aurélie Pascual
Leonardo K Basco
Eric Baret
Rémy Amalvict
Dominique Travers
Christophe Rogier
Bruno Pradines
Publikationsdatum
01.12.2011
Verlag
BioMed Central
Erschienen in
Malaria Journal / Ausgabe 1/2011
Elektronische ISSN: 1475-2875
DOI
https://doi.org/10.1186/1475-2875-10-8

Weitere Artikel der Ausgabe 1/2011

Malaria Journal 1/2011 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.