Skip to main content
Erschienen in: Journal of Translational Medicine 1/2012

Open Access 01.12.2012 | Research

A new mechanism of action of sulodexide in diabetic nephropathy: inhibits heparanase-1 and prevents FGF-2-induced renal epithelial-mesenchymal transition

verfasst von: Valentina Masola, Maurizio Onisto, Gianluigi Zaza, Antonio Lupo, Giovanni Gambaro

Erschienen in: Journal of Translational Medicine | Ausgabe 1/2012

Abstract

Background

Epithelial-mesenchymal transition of tubular cells is a widely recognized mechanism that sustains interstitial fibrosis in diabetic nephropathy (DN). The signaling of FGF-2, a growth factor involved in this mechanism, is regulated by glycosaminoglycans. Heparanase-1, an endoglycosidase that cleaves heparan sulfate, is implicated in the pathogenesis of diabetic nephropathy and is necessary to FGF-2 for the induction of tubular cells transition. Well known Heparanase-1 inhibitors are heparin(s) and sulodexide, a low-molecular weight heparin – dermatan sulphate blend, which is effective in the treatment of DN.

Methods

We have investigated the inhibition by sulodexide and its components of Heparanase-1 by an ELISA assay. We have analyzed its effect on the epithelial-mesenchymal transition of tubular cells by real time gene expression analysis, zymography and migration assay.

Results

Results show that sulodexide is an effective heparanase-1 inhibitor, exclusively in virtue to the heparin component, with an IC50 of 5 μg/ml. In FGF-2 treated tubular cells, sulodexide also prevents the over-expression of the mesenchymal markers αSMA, vimentin and fibronectin and the motility increase, i.e. the epithelial-mesenchymal transition of tubular cells. Moreover, sulodexide prevents FGF-2 induced heparanase-1 and MMP9 increase switching off the autocrine loop that FGF-2 activates to support its signal.

Conclusions

The findings highlight the capacity of sulodexide to inhibit heparanase-1 and to control tubular fibrosis triggered by epithelial-mesenchymal transition. In conclusion, these sulodexide activities support the value of this agent in controlling the progression of nephropathy to renal failure.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1479-5876-10-213) contains supplementary material, which is available to authorized users.

Competing interests

G. Gambaro has received from Alfa Wasserman SpA, Bologna, Italy, grant for research.

Authors’ contributions

VM, MO, GZ, AL and GG designed research; VM, MO and GZ conducted research; VM, MO, GZ, AL and GG analyzed data and wrote the paper; GG had primary responsibility for final content. All authors read and approved the final manuscript.
Abkürzungen
αSMA
alpha smooth muscle actin
DS
dermatan sulfate
DN
diabetic nephropathy
EMT
epithelial-mesenchymal transition
ECM
extracellular matrix
FN
fibronectin
GAPDH
glyceraldehyde-3-phosphate dehydrogenase
GAG
glycosaminoglycan
HPSE
Heparanase-1
HS
heparan sulfate
LMWH
low-molecular-weight heparin
MMP9
matrix-metalloprotease 9
SDC1
syndecan-1
VIM
vimentin.

Background

Diabetic nephropathy (DN) and several other chronic kidney diseases are characterized by tubular and interstitial fibrosis, which are primarily responsible for accelerating the progression to end-stage renal disease (ESRD)[13]. The epithelial-mesenchymal transition (EMT) of tubular epithelial cells is a process that sustains these events [4, 5], and it is triggered by many factors [69]. A recent work of ours highlighted the central role of FGF-2 in EMT. Heparanase-1 (HPSE) is needed for EMT and by regulating syndecan-1 (SDC1) and MMP9 it sustains the FGF-2 autocrine loop [10]. HPSE is an endo-β-D-glucuronidase that cleaves heparan sulfate (HS). It takes part in extracellular matrix (ECM) remodeling and degradation, regulating the release of many HS-bonded molecules, such as growth factors, chemokines, cytokines, and enzymes, that are involved in inflammation, wound healing and tumor invasion [11, 12]. A body of literature supports the involvement of HPSE in the pathogenesis of proteinuric disorders, including DN [1315] and that is why there is great interest in identifying effective HPSE inhibitors capable of controlling mechanisms of renal damage such as EMT. The best-characterized HPSE inhibitors are low-molecular-weight heparin (LMWH) and its derivatives [11]. Previous studies have shown that sulodexide (a highly purified glycosaminoglycan [GAG] isolated from porcine intestinal mucosa, used since 1974 as an antithrombotic drug) can control proteinuria and podocyte damage by inhibiting heparanase [1618]. Sulodexide consists for 80% of LMWH and for 20% of dermatan sulfate (DS). The heparin fraction has a molecular weight of 7000 D and a low degree of sulfation. DS is a polydisperse polysaccharide with an anticoagulant and antithrombotic activity. The treatment of DN demands additional therapeutic strategies because strict glycemic control may prove difficult to achieve in diabetic patients and, even if patients respond to conventional therapy with ACE inhibitors, kidney fibrosis slowly continues to progress and eventually leads to renal failure. It has been demonstrated that sulodexide and heparin-derived drugs are effective in the treatment of DN [19, 20] and it has recently been suggested that in a rat model of peritoneal dialysis sulodexide prevents EMT in the peritoneal membrane [21]. The aim of this work was to investigate whether sulodexide inhibits HPSE, and whether this mechanism can prevent FGF-2-induced EMT in renal tubular cells. If so, sulodexide would be an interesting agent for controlling renal fibrosis and the progression of nephropathy to ESRD.

Methods

Heparanase assay

Twenty-five μl of matrigel (Matrigel™ Basement Membrane Matrix) at a concentration of 200 μg/ml were placed in the wells of a 96-well plate for ELISA and left to dry under an extractor hood at room temperature for 90 minutes. Test samples were prepared by mixing different concentrations of the GAGs being tested with heparanase (stabilized and lyophilized HepaOne TM Recombinant Human Haparanase-1 [rhHPA1]- InSight Biopharmaceuticals). The following GAGs were tested: sulodexide (Alfa Wassermann), the LMWH parnaparin (Alfa Wassermann), a commercial dermatan sulfate (DS) from Sigma (Sigma Aldrich C-3788), and the LMWH H2046 and dermatan sulfate D2047 (Opocrin). H2046 and D2047 are the two ingredients in sulodexide, from which they were obtained by affinity chromatography. The wells containing the matrigel were washed once with PBT (PBS+ 0.05% Tween 20) before adding the samples of enzyme/inhibitor, 25 μl per well, in working buffer (50mM Tris-HCl pH 5; 150 mMNaCl; 0.01% Triton X; protease inhibitor [complete, Roche Diagnostics]) and incubating overnight at 37°C. The heparanase enzyme was used at a concentration of 0.5 ng/μl. Each GAG was tested at four concentrations (5, 10, 20, 50μg/ml). Different GAG mixtures were tested, consisting of parnaparin with DS, and H2046 with D2047, in proportions of 20:80, 50:50 and 80:20; all GAG mixtures were tested at the same concentrations. As positive control wells were incubated overnight in working buffer.
After aspirating the treatment medium and washing with PBT 200 μl per well, the wells were saturated with blocking buffer (PBT; 0.5% BSA; 1mM EDTA) and left for 2 hours under agitation at room temperature. The blocking buffer was aspirated and the wells were washed twice with PBT. Then the samples were incubated with the primary anti-HS antibody (mouse IgM) Clone HepSS-1 (Seikagaku), 25 μl per well, diluted 1:500 in blocking buffer, for 1 hour under agitation at room temperature. Three washing cycles lasting 5 minutes each with 200 μl of PBT per well were followed by incubation for 1 hour with the secondary antibody, goat anti-mouse IgM-HRP (sc-2973, Santa Cruz Biotechnology) 25 μl per well, diluted 1:1000 in blocking buffer, under agitation at room temperature. After a further 3 washes lasting 5 minutes each with 200 μl per well of PBT, 50 μl of the ABTS (2.2’-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) liquid substrate system for ELISA (Sigma) was added to each well and the plate was kept in the dark for 15 minutes, then the reaction was blocked with 50 μl per well of 1% SDS (sodium dodecyl sulfate). The absorbance was read at 405 nm. The percentage of residual HPSE activity was calculated as follows: (max degradation – OD405 sample)/ max degradation *100.
Where max degradation = OD positive control - OD 0.5 ng/μl of heparanase in working buffer. (the addiction of GAGs at working buffer do not modify the maximal HS signal).

Cell cultures

The human renal proximal tubular cell line, HK2 (human kidney 2), was grown in DMEM-F12 (EuroClone) (17.5 mM glucose) supplemented with 10% fetal bovine serum (Sigma Aldrich), 2 mM L-glutamine, penicillin (100 U/ml) and streptomycin (100 μg/ml), and maintained at 37°C in a 5% CO2 water-saturated atmosphere.

mRNA expression analysis

HK2 cells were grown to subconfluence, starved in serum-free medium for 24 hours and then cultured in serum-free medium with 10 ng/ml of FGF-2 (BD Bioscience) for a further 6 hours, with or without sulodexide (50 μg/ml). Total RNA was extracted from the cells using the “GenElute Mammalian Total RNA Miniprep” kit (Sigma Aldrich). The samples were further treated with DNase (DNASE70, Sigma) to prevent any DNA contamination. The total amount of RNA and its purity were checked using the Nanodrop (EuroClone) and 1 μg of each sample was reverse transcribed into cDNA using SuperScript II Reverse Transcriptase (Invitrogen) according to the manufacturer’s instructions. Real-time PCR was performed on an ABI-Prism 7500 using Power SYBR Green Master Mix 2X (Applied Biosystems). A quantitative analysis was performed to assess the expression of fibronectin fibronectin (FN), vimentin (VIM), matrix-metalloprotease 9 (MMP9), alpha smooth muscle actin (αSMA), HPSE, SDC1. Results were normalized to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression. The forward and reverse primer sequences have been reported elsewhere [10]. Gene expression was quantified by means of the comparative Ct method (ΔΔCt) and the relative quantification (RQ) was calculated as 2-ΔΔCt. Melting curve analysis was performed to check for any presence of non-specific amplification products.

Zymography

Gelatin substrate zymography was carried out to assess the MMP-9 activity in HK2 cell conditioned media using standard procedures [22]. To obtain the conditioned media, subconfluent cells were cultured in serum-free medium for 24 h, then incubated with or without FGF-2 (10 ng/ml) and sulodexide (50 μg/ml) for a further 24 h. Equal amounts of conditioned media, obtained from the same number of cells, in sample buffer (4% SDS, 125 mM Tris-HCl pH 6.8, 20% glycerol and 0.05% bromophenol blue) were resolved in non-reducing on 10% SDS-PAGE gels copolymerized with 0.1% gelatin. After electrophoresis, the gels were washed twice for 30 min in 2.5% Triton X-100 at room temperature to remove SDS, then equilibrated for 30 min in collagenase buffer (50 mM Tris, 200 mM NaCl, 5 mM CaCl2 and 0.02% Triton X-100, pH 7.4), and finally incubated overnight with fresh collagenase buffer at 37°C. Gels were stained with 0.1% Coumassie Brilliant Blue R-250, 30% MetOH/10% acetic acid, for 1 hour and destained with 30% MetOH/10% acetic acid. Digestion bands were analyzed using the ImageJ software (http://​rsb.​info.​nih.​gov/​ij/​).

Migration assay

We evaluated the migratory ability of cells in the presence of FGF-2 (10 ng/ml), and with or without sulodexide, parnaparin or DS (50 μg/ml). Briefly, a denuded area was generated on a quiescent cell monolayer of HK-2 cells by scratching with a sterile pipette tip. The monolayer was washed twice with phosphate-buffered saline (PBS) and then incubated with medium (2% FBS) containing the treatments. The cells were photographed at different time points. The scratch was measured at three points in each photo to obtain a mean value. Migration was reported as the difference (in mm-1) between the dimensions of the scratch at the baseline and after 24 hours [23].

Results

Sulodexide inhibits HPSE activity

Our data show that sulodexide 5 μg/ml is capable of producing a 50% heparanase inhibition; HPSE is inhibited completely with 20 μg/ml of sulodexide (Figure 1A). Since sulodexide is a mixture of LMWH and dermatan sulfate, we also analyzed the heparanase inhibiting effects of two different formulations of LMWH (parnaparin and H2046) and dermatan sulfates (DS and D2047). Parnaparin and H2046 completely inhibited heparanase at a concentration of 5 μg/ml, whereas both dermatan sulfates proved unable to reduce the enzyme activity by more than 30% at any concentration up to 50 μg/ml (Figure 1B).
To see how the relative proportions of heparin and dermatan sulfate in sulodexide could contribute to its HPSE inhibitory property, we tested H2046 + D2047, and parnaparin + DS, both in proportions of 20:80, 50:50 and 80:20. The results showed that both the 80:20 formulations completely abolished HPSE activity at a concentration of 10 μg/ml (Figure 2 compares the results for parnaparin + DS versus sulodexide).

Sulodexide prevents any increase in mesenchymal marker expression induced by FGF-2

HK2 renal tubular cells were starved in serum-free media for 24 hours, then treated for 6 hours with FGF-2 (10 ng/ml) with or without sulodexide (50 μg/ml). Mesenchymal marker expression was subsequently measured by real-time PCR. FGF-2 increased the expression of alpha αSMA, VIM and FN (all markers of EMT). Sulodexide did not affect the basal levels of αSMA, VIM and FN, but it completely prevented their FGF-2-induced overexpression (Figure 3).

MMP-9 gene expression and activity

Gene expression analysis showed that sulodexide prevents any increase in FGF-2-induced MMP9 gene expression without changing its basal expression level (Figure 4A). Gelatin zymography likewise confirmed that sulodexide abolished the increase in MMP9 induced by FGF-2 (Figure 4B).

HPSE and SDC1 regulation

Since we recently demonstrated that FGF-2 increases HPSE and reduces SDC1 expression, we looked into whether sulodexide could control these events. We showed that sulodexide does not affect the basal expression of HPSE and SDC1 in HK2 cells, but it does prevent the HPSE overexpression and SDC1 down-regulation induced by FGF-2 (Figure 5A and 5B ).

Cell motility

During EMT, renal tubular epithelial cells acquire a greater motility, making them better able to migrate through the basal membrane to the interstitium. FGF-2 is one of the factors triggering this event. We showed that sulodexide significantly reduced the migratory capacity of FGF-2 stimulated cells without influencing basal cell migration. We also found that parnaparin and H2046 exhibited the same behavior as sulodexide, whereas DS and D2047 were unable to inhibit HK2 cell migration (Figure 6).

Discussion

DN occurs in up to 40% of diabetic patients and is one of the leading causes of ESRD. The approach to treating DN includes the pursuit of normoglycemia and normotension, but the search for new therapeutic strategies to prevent and treat this complication of diabetes is warranted because strict metabolic control can be difficult to achieve in many cases.
The search for new strategies includes seeking molecular targets and, in this perspective, several studies have demonstrated the involvement of HPSE in the pathogenesis of DN [14], at both tubular and glomerular levels [24] HPSE could therefore be a pharmacological target for treating DN. To date, several HPSE inhibitors have been identified, some of which are now being tested in clinical trails. Most of them are modified heparins or LMWHs [25].
GAGs like sulodexide have a favorable effect in DN. A number of mechanisms have been suggested to explain the nephroprotective effect of GAGs and sulodexide [19], including a direct inhibitory effect on HPSE [17], which reportedly increases in the glomeruli of DN patients [24]. The chemical composition of sulodexide gives the product an HPSE inhibiting action [17].
Almost all the above hypothesized mechanisms have been demonstrated at glomerular level, but one of the pathological hallmarks of the progression of kidney disease is tubulo-interstitial fibrosis. The severity of this condition has proved to be much more closely related to the risk of ESRD than glomerular lesions . The accumulation of extracellular matrix in the interstitium is sustained by the transformation of tubular epithelial cells into myofibroblasts (EMT) and this event is triggered by several growth factors and different signaling pathways [5].
We recently showed that HPSE is involved in the regulation of EMT of tubular cells induced by FGF-2. HPSE is necessary for FGF-2 to activate the PI3K/AKT pathway leading to EMT, and for FGF-2 to produce an autocrine loop by down-regulating SDC1 and up-regulating MMP9 and the same HPSE [10].
Here we demonstrate that sulodexide – a combination of GAGs composed of heparin-like (80%) and dermatan fractions (20%) that is currently used to treat thrombotic disorders and DN - is an effective HPSE inhibitor capable of preventing FGF-2-induced EMT in renal tubular cells.
Sulodexide can inhibit HPSE at therapeutic concentrations [26]: its IC50 is 5 μg/ml, and 20 μg/ml of sulodexide suffice to completely inhibit HPSE activity. Investigating the different power of the two ingredients in sulodexide, we found H2046 (and parnaparin) a very effective inhibitor of HPSE, whereas D2047 (and DS) had only a weak inhibitory action. The results of tests on combinations containing different proportions of LMWHs and dermatan sulfates confirmed that sulodexide’s HPSE-inhibiting effect is due exclusively to the heparin component, with no synergistic effect between the two ingredients.
These data are consistent with the results obtained by Naggi et al [27] using a different experimental approach. Notably, the Vlodavsky group has shown that sulodexide had a mild inhibitory effect on heparanase enzymatic activity at a concentration of 1 μg/ml, achieving a 50% inhibition with 5 μg/ml, and complete inhibition with 50 μg/ml (personal communication).
As expected, sulodexide - being an HPSE inhibitor - also prevented the overexpression of the mesenchymal markers αSMA, VIM and FN, i.e. it prevented the human renal tubular cell EMT induced by FGF-2.
Sulodexide prevented the increase in HPSE and MMP9 expression and activity and the associated SDC1 reduction that are triggered by FGF-2 in tubular cells, which means that sulodexide switched off the autocrine loop that FGF-2 activates to fuel its signal.
The fact that FGF-2 induced cell migration was inhibited by sulodexide and H2046 (and parnaparin), but not by D2047 (and DS), further confirms that sulodexide prevents FGF-2-induced EMT through its HPSE inhibiting activity.

Conclusions

In conclusion, the present findings - together with the recent demonstration that sulodexide prevented any increase in αSMA and decrease in cytokeratin in the peritoneal membrane of a rat model of peritoneal dialysis [21] - support the conviction that sulodexide could protect against renal fibrosis sustained by EMT, thereby preventing the progression of chronic kidney disease (and DN in particular) to ESRD.

Acknowledgments

We thank Dr Giuseppe Viscomi (Alfa Wassermann, Bologna, Italy) for kindly providing the sulodexide, its separate ingredients, and Parnaparin.
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

G. Gambaro has received from Alfa Wasserman SpA, Bologna, Italy, grant for research.

Authors’ contributions

VM, MO, GZ, AL and GG designed research; VM, MO and GZ conducted research; VM, MO, GZ, AL and GG analyzed data and wrote the paper; GG had primary responsibility for final content. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Hewitson TD: Renal tubulointerstitial fibrosis: common but never simple. Am J Physiol Renal Physiol. 2009, 296 (6): F1239-F1244. 10.1152/ajprenal.90521.2008.CrossRefPubMed Hewitson TD: Renal tubulointerstitial fibrosis: common but never simple. Am J Physiol Renal Physiol. 2009, 296 (6): F1239-F1244. 10.1152/ajprenal.90521.2008.CrossRefPubMed
2.
Zurück zum Zitat Atkins RC, Zimmet P, 2010 International Society of Nephrology/International Federation of Kidney Foundations World Kidney Day Steering Committee (RA), International Diabetes Federation (PZ): Diabetic kidney disease: act now or pay later. J Bras Nefrol. 2010, 32 (1): 7-10.PubMed Atkins RC, Zimmet P, 2010 International Society of Nephrology/International Federation of Kidney Foundations World Kidney Day Steering Committee (RA), International Diabetes Federation (PZ): Diabetic kidney disease: act now or pay later. J Bras Nefrol. 2010, 32 (1): 7-10.PubMed
3.
Zurück zum Zitat Nath KA: The tubulointerstitium in progressive renal disease. Kidney Int. 1998, 54 (3): 992-994. 10.1046/j.1523-1755.1998.00079.x.CrossRefPubMed Nath KA: The tubulointerstitium in progressive renal disease. Kidney Int. 1998, 54 (3): 992-994. 10.1046/j.1523-1755.1998.00079.x.CrossRefPubMed
4.
5.
Zurück zum Zitat Strutz FM: EMT and proteinuria as progression factors. Kidney Int. 2009, 75 (5): 475-481. 10.1038/ki.2008.425.CrossRefPubMed Strutz FM: EMT and proteinuria as progression factors. Kidney Int. 2009, 75 (5): 475-481. 10.1038/ki.2008.425.CrossRefPubMed
6.
Zurück zum Zitat Lan HY: Tubular epithelial-myofibroblast transdifferentiation mechanisms in proximal tubule cells. Curr Opin Nephrol Hypertens. 2003, 12 (1): 25-29. 10.1097/00041552-200301000-00005.CrossRefPubMed Lan HY: Tubular epithelial-myofibroblast transdifferentiation mechanisms in proximal tubule cells. Curr Opin Nephrol Hypertens. 2003, 12 (1): 25-29. 10.1097/00041552-200301000-00005.CrossRefPubMed
7.
Zurück zum Zitat Burns WC, Twigg SM, Forbes JM, Pete J, Tikellis C, Thallas-Bonke V, Thomas MC, Cooper ME, Kantharidis P: Connective tissue growth factor plays an important role in advanced glycation end product-induced tubular epithelial-to-mesenchymal transition: implications for diabetic renal disease. J Am Soc Nephrol. 2006, 17 (9): 2484-2494. 10.1681/ASN.2006050525.CrossRefPubMed Burns WC, Twigg SM, Forbes JM, Pete J, Tikellis C, Thallas-Bonke V, Thomas MC, Cooper ME, Kantharidis P: Connective tissue growth factor plays an important role in advanced glycation end product-induced tubular epithelial-to-mesenchymal transition: implications for diabetic renal disease. J Am Soc Nephrol. 2006, 17 (9): 2484-2494. 10.1681/ASN.2006050525.CrossRefPubMed
8.
Zurück zum Zitat Ha H, Lee HB: Reactive oxygen species and matrix remodeling in diabetic kidney. J Am Soc Nephrol. 2003, 14 (8 Suppl 3): S246-S249.CrossRefPubMed Ha H, Lee HB: Reactive oxygen species and matrix remodeling in diabetic kidney. J Am Soc Nephrol. 2003, 14 (8 Suppl 3): S246-S249.CrossRefPubMed
9.
Zurück zum Zitat Strutz F, Zeisberg M, Ziyadeh FN, Yang CQ, Kalluri R, Muller GA, Neilson EG: Role of basic fibroblast growth factor-2 in epithelial-mesenchymal transformation. Kidney Int. 2002, 61 (5): 1714-1728. 10.1046/j.1523-1755.2002.00333.x.CrossRefPubMed Strutz F, Zeisberg M, Ziyadeh FN, Yang CQ, Kalluri R, Muller GA, Neilson EG: Role of basic fibroblast growth factor-2 in epithelial-mesenchymal transformation. Kidney Int. 2002, 61 (5): 1714-1728. 10.1046/j.1523-1755.2002.00333.x.CrossRefPubMed
10.
Zurück zum Zitat Masola V, Gambaro G, Tibaldi E, Brunati AM, Gastaldello A, D'Angelo A, Onisto M, Lupo A: Heparanase and syndecan-1 interplay orchestrates fibroblast growth factor-2-induced epithelial-mesenchymal transition in renal tubular cells. J Biol Chem. 2012, 287 (2): 1478-1488. 10.1074/jbc.M111.279836.CrossRefPubMedPubMedCentral Masola V, Gambaro G, Tibaldi E, Brunati AM, Gastaldello A, D'Angelo A, Onisto M, Lupo A: Heparanase and syndecan-1 interplay orchestrates fibroblast growth factor-2-induced epithelial-mesenchymal transition in renal tubular cells. J Biol Chem. 2012, 287 (2): 1478-1488. 10.1074/jbc.M111.279836.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Ilan N, Elkin M, Vlodavsky I: Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis. Int J Biochem Cell Biol. 2006, 38 (12): 2018-2039. 10.1016/j.biocel.2006.06.004.CrossRefPubMed Ilan N, Elkin M, Vlodavsky I: Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis. Int J Biochem Cell Biol. 2006, 38 (12): 2018-2039. 10.1016/j.biocel.2006.06.004.CrossRefPubMed
12.
Zurück zum Zitat Masola V, Maran C, Tassone E, Zin A, Rosolen A, Onisto M: Heparanase activity in alveolar and embryonal rhabdomyosarcoma: implications for tumor invasion. BMC Cancer. 2009, 9: 304-10.1186/1471-2407-9-304.CrossRefPubMedPubMedCentral Masola V, Maran C, Tassone E, Zin A, Rosolen A, Onisto M: Heparanase activity in alveolar and embryonal rhabdomyosarcoma: implications for tumor invasion. BMC Cancer. 2009, 9: 304-10.1186/1471-2407-9-304.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Masola V, Gambaro G, Tibaldi E, Onisto M, Abaterusso C, Lupo A: Regulation of heparanase by albumin and advanced glycation end products in proximal tubular cells. Biochim Biophys Acta. 2011, 1813 (8): 1475-1482. 10.1016/j.bbamcr.2011.05.004.CrossRefPubMed Masola V, Gambaro G, Tibaldi E, Onisto M, Abaterusso C, Lupo A: Regulation of heparanase by albumin and advanced glycation end products in proximal tubular cells. Biochim Biophys Acta. 2011, 1813 (8): 1475-1482. 10.1016/j.bbamcr.2011.05.004.CrossRefPubMed
14.
Zurück zum Zitat Gil N, Goldberg R, Neuman T, Garsen M, Zcharia E, Rubinstein AM, van Kuppevelt T, Meirovitz A, Pisano C, Li JP, van der Vlag J, Vlodavsky I, Elkin M: Heparanase is essential for the development of diabetic nephropathy in mice. Diabetes. 2012, 61 (1): 208-216. 10.2337/db11-1024.CrossRefPubMedPubMedCentral Gil N, Goldberg R, Neuman T, Garsen M, Zcharia E, Rubinstein AM, van Kuppevelt T, Meirovitz A, Pisano C, Li JP, van der Vlag J, Vlodavsky I, Elkin M: Heparanase is essential for the development of diabetic nephropathy in mice. Diabetes. 2012, 61 (1): 208-216. 10.2337/db11-1024.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Rops AL, van den Hoven MJ, Veldman BA, Salemink S, Vervoort G, Elving LD, Aten J, Wetzels JF, van der Vlag J, Berden JH: Urinary heparanase activity in patients with Type 1 and Type 2 diabetes. Nephrol Dial Transplant. 2012, 27 (7): 2853-2861. 10.1093/ndt/gfr732.CrossRefPubMed Rops AL, van den Hoven MJ, Veldman BA, Salemink S, Vervoort G, Elving LD, Aten J, Wetzels JF, van der Vlag J, Berden JH: Urinary heparanase activity in patients with Type 1 and Type 2 diabetes. Nephrol Dial Transplant. 2012, 27 (7): 2853-2861. 10.1093/ndt/gfr732.CrossRefPubMed
16.
Zurück zum Zitat Chen S, Fang Z, Zhu Z, Deng A, Liu J, Zhang C: Protective effect of sulodexide on podocyte injury in adriamycin nephropathy rats. J Huazhong Univ Sci Technol Med Sci. 2009, 29 (6): 715-719. 10.1007/s11596-009-0608-0.CrossRefPubMed Chen S, Fang Z, Zhu Z, Deng A, Liu J, Zhang C: Protective effect of sulodexide on podocyte injury in adriamycin nephropathy rats. J Huazhong Univ Sci Technol Med Sci. 2009, 29 (6): 715-719. 10.1007/s11596-009-0608-0.CrossRefPubMed
17.
Zurück zum Zitat Lewis EJ, Xu X: Abnormal glomerular permeability characteristics in diabetic nephropathy: implications for the therapeutic use of low-molecular weight heparin. Diabetes Care. 2008, 31 (Suppl 2): S202-S207.CrossRefPubMed Lewis EJ, Xu X: Abnormal glomerular permeability characteristics in diabetic nephropathy: implications for the therapeutic use of low-molecular weight heparin. Diabetes Care. 2008, 31 (Suppl 2): S202-S207.CrossRefPubMed
18.
Zurück zum Zitat Wijnhoven TJ, Lensen JF, Rops AL, McCarthy KJ, van der Vlag J, Berden JH, van den Heuvel LP, van Kuppevelt TH: Anti-proteinuric effects of glycosaminoglycan-based drugs. Curr Opin Mol Ther. 2007, 9 (4): 364-377.PubMed Wijnhoven TJ, Lensen JF, Rops AL, McCarthy KJ, van der Vlag J, Berden JH, van den Heuvel LP, van Kuppevelt TH: Anti-proteinuric effects of glycosaminoglycan-based drugs. Curr Opin Mol Ther. 2007, 9 (4): 364-377.PubMed
19.
Zurück zum Zitat Weiss R, Niecestro R, Raz I: The role of sulodexide in the treatment of diabetic nephropathy. Drugs. 2007, 67 (18): 2681-2696. 10.2165/00003495-200767180-00004.CrossRefPubMed Weiss R, Niecestro R, Raz I: The role of sulodexide in the treatment of diabetic nephropathy. Drugs. 2007, 67 (18): 2681-2696. 10.2165/00003495-200767180-00004.CrossRefPubMed
20.
Zurück zum Zitat Abaterusso C, Gambaro G: The role of glycosaminoglycans and sulodexide in the treatment of diabetic nephropathy. Treat Endocrinol. 2006, 5 (4): 211-222. 10.2165/00024677-200605040-00002.CrossRefPubMed Abaterusso C, Gambaro G: The role of glycosaminoglycans and sulodexide in the treatment of diabetic nephropathy. Treat Endocrinol. 2006, 5 (4): 211-222. 10.2165/00024677-200605040-00002.CrossRefPubMed
21.
Zurück zum Zitat Pletinck A, Van Landschoot M, Steppan S, Laukens D, Passlick-Deetjen J, Vanholder R, Van Biesen W: Oral supplementation with sulodexide inhibits neo-angiogenesis in a rat model of peritoneal perfusion. Nephrol Dial Transplant. 2012, 27 (2): 548-556. 10.1093/ndt/gfr370.CrossRefPubMed Pletinck A, Van Landschoot M, Steppan S, Laukens D, Passlick-Deetjen J, Vanholder R, Van Biesen W: Oral supplementation with sulodexide inhibits neo-angiogenesis in a rat model of peritoneal perfusion. Nephrol Dial Transplant. 2012, 27 (2): 548-556. 10.1093/ndt/gfr370.CrossRefPubMed
22.
Zurück zum Zitat Onisto M, Slongo ML, Gregnanin L, Gastaldi T, Carli M, Rosolen A: Expression and activity of vascular endothelial growth factor and metalloproteinases in alveolar and embryonal rhabdomyosarcoma cell lines. Int J Oncol. 2005, 27 (3): 791-798.PubMed Onisto M, Slongo ML, Gregnanin L, Gastaldi T, Carli M, Rosolen A: Expression and activity of vascular endothelial growth factor and metalloproteinases in alveolar and embryonal rhabdomyosarcoma cell lines. Int J Oncol. 2005, 27 (3): 791-798.PubMed
23.
Zurück zum Zitat Liang CC, Park AY, Guan JL: In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc. 2007, 2 (2): 329-333. 10.1038/nprot.2007.30.CrossRefPubMed Liang CC, Park AY, Guan JL: In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc. 2007, 2 (2): 329-333. 10.1038/nprot.2007.30.CrossRefPubMed
24.
Zurück zum Zitat van den Hoven MJ, Rops AL, Bakker MA, Aten J, Rutjes N, Roestenberg P, Goldschmeding R, Zcharia E, Vlodavsky I, van der Vlag J, Berden JH: Increased expression of heparanase in overt diabetic nephropathy. Kidney Int. 2006, 70 (12): 2100-2108.CrossRefPubMed van den Hoven MJ, Rops AL, Bakker MA, Aten J, Rutjes N, Roestenberg P, Goldschmeding R, Zcharia E, Vlodavsky I, van der Vlag J, Berden JH: Increased expression of heparanase in overt diabetic nephropathy. Kidney Int. 2006, 70 (12): 2100-2108.CrossRefPubMed
25.
Zurück zum Zitat Nasser NJ: Heparanase involvement in physiology and disease. Cell Mol Life Sci. 2008, 65 (11): 1706-1715. 10.1007/s00018-008-7584-6.CrossRefPubMed Nasser NJ: Heparanase involvement in physiology and disease. Cell Mol Life Sci. 2008, 65 (11): 1706-1715. 10.1007/s00018-008-7584-6.CrossRefPubMed
26.
Zurück zum Zitat Lauver DA, Lucchesi BR: Sulodexide: a renewed interest in this glycosaminoglycan. Cardiovasc Drug Rev. 2006, 24 (3–4): 214-226.CrossRefPubMed Lauver DA, Lucchesi BR: Sulodexide: a renewed interest in this glycosaminoglycan. Cardiovasc Drug Rev. 2006, 24 (3–4): 214-226.CrossRefPubMed
27.
Zurück zum Zitat Naggi A, Casu B, Perez M, Torri G, Cassinelli G, Penco S, Pisano C, Giannini G, Ishai-Michaeli R, Vlodavsky I: Modulation of the heparanase-inhibiting activity of heparin through selective desulfation, graded N-acetylation, and glycol splitting. J Biol Chem. 2005, 280 (13): 12103-12113.CrossRefPubMed Naggi A, Casu B, Perez M, Torri G, Cassinelli G, Penco S, Pisano C, Giannini G, Ishai-Michaeli R, Vlodavsky I: Modulation of the heparanase-inhibiting activity of heparin through selective desulfation, graded N-acetylation, and glycol splitting. J Biol Chem. 2005, 280 (13): 12103-12113.CrossRefPubMed
Metadaten
Titel
A new mechanism of action of sulodexide in diabetic nephropathy: inhibits heparanase-1 and prevents FGF-2-induced renal epithelial-mesenchymal transition
verfasst von
Valentina Masola
Maurizio Onisto
Gianluigi Zaza
Antonio Lupo
Giovanni Gambaro
Publikationsdatum
01.12.2012
Verlag
BioMed Central
Erschienen in
Journal of Translational Medicine / Ausgabe 1/2012
Elektronische ISSN: 1479-5876
DOI
https://doi.org/10.1186/1479-5876-10-213

Weitere Artikel der Ausgabe 1/2012

Journal of Translational Medicine 1/2012 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Reizdarmsyndrom: Diäten wirksamer als Medikamente

29.04.2024 Reizdarmsyndrom Nachrichten

Bei Reizdarmsyndrom scheinen Diäten, wie etwa die FODMAP-arme oder die kohlenhydratreduzierte Ernährung, effektiver als eine medikamentöse Therapie zu sein. Das hat eine Studie aus Schweden ergeben, die die drei Therapieoptionen im direkten Vergleich analysierte.

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.