Skip to main content
Erschienen in: Virology Journal 1/2011

Open Access 01.12.2011 | Short report

Detection of HIV-1 dual infections in highly exposed treated patients

verfasst von: Guadalupe Andreani, Constanza Espada, Ana Ceballos, Juan Ambrosioni, Alejandro Petroni, Dora Pugliese, María Belén Bouzas, Silvia Fernandez Giuliano, Mercedes C Weissenbacher, Marcelo Losso, Jorge Benetucci, Jean K Carr, Liliana Martínez Peralta

Erschienen in: Virology Journal | Ausgabe 1/2011

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Background

Genetic characterization of HIV-1 in Argentina has shown that BF recombinants predominate among heterosexuals and injecting drug users, while in men who have sex with men the most prevalent form is subtype B.

Objectives

The aim of this work was to investigate the presence of HIV dual infections in HIV-infected individuals with high probability of reinfection

Study design

Blood samples were collected from 23 HIV positive patients with the risk of reinfection from Buenos Aires. A fragment of the HIV gene pol was amplified and phylogenetic analyses were performed. Antiretroviral drug resistance patterns of all the sequences were analyzed.

Results

Five dual infections were detected with four patients coinfected with subtype B and BF recombinants and one patient was coinfected with two BF recombinants presenting different recombination patterns. Prolonged infection with a stable clinical condition was observed in the five individuals. Resistance mutation patterns were different between the predominant and the minority strains.

Conclusions

Our results show that HIV dual infection can occur with closely related subtypes, and even with different variants of the same recombinant form in certain populations. Clinical observations showed neither aggressive disease progression nor impact on the resistance patterns in the dually-infected patients.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1743-422X-8-392) contains supplementary material, which is available to authorized users.
Guadalupe Andreani, Constanza Espada, Ana Ceballos contributed equally to this work.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

GA, CE and AC were equally responsible for the design, cloning, viral characterization, and writing of the manuscript. JA, AP, and JKC were responsible for viral characterization and resistance studies. DP, MBB, SG, MW, ML and JB were responsible for the clinical data from patients. LMP was responsible for the design and writing of the manuscript. All authors read and approved the final manuscript.

Findings

The occurrence of infection with more than one strain of HIV-1 has important implications for understanding HIV transmission and for the development of an AIDS vaccine, as well as the fact that it is leading to many recombinant strains of global epidemiological relevance [13].
Resistance concerns also emerged as a key issue for dually infected patients, since they can acquire a resistant strain or generate a multidrug-resistant virus [4]. Nevertheless, the influence of superinfection on resistance evolution is still unclear [5].
The genetic characterization of HIV-1 in Argentina showed that BF recombinant forms are the most prevalent genetic forms among heterosexuals, and among intravenous drug users (IDUs); while subtype B is the most prevalent in men who have sex with men (MSM) [68]. Thus, patients with multiple epidemiological risks (e.g. bisexual men and/or IDUs) may be exposed to both subtype B and BF recombinants.
To evaluate the presence of HIV-1 dual infections we selected HIV-1 positive individuals whom presented multiple epidemiological risks for HIV-1 infection, based on confidential interviews regarding sexual behavior, intravenous drug use and medical history, in Buenos Aires, Argentina. Informed consent was obtained from all individuals. Blood samples were collected and serological studies were performed. Total RNA and genomic DNA isolation from plasma and PBMC respectively were performed, (QIAgen, Valencia, CA, USA). A pol gene fragment was amplified as described [9], and cloned into the pCR2.1-Topo vector (Invitrogen) or evaluate by single genome amplification (SGA) [9]. The amplicons were then sequenced with Big Dye terminators using an ABI 3100 automated sequencer (Applied Biosystems Inc, Foster City CA). Drug resistance phenotype was determined using the Stanford University HIV Drug Resistance. Sequence alignment was performed using the CLUSTAL × software, followed by a Neighbor-joining method with Kimura's two-parameter model of distance calculation using MEGA 4.1. Recombinant analysis was performed using SimPlot v2.5
For case 1 (C1), a dual infection was found in the first sample (C1S1), where 1 out of 21 clones clustered with BF recombinants and the rest with subtype B. The recombinant BF clone exhibited a different pol gene recombination pattern than CRF12_BF. However, in C1S2 (2 years later) all of the 12 clones clustered with subtype B references (Figure 1a). The mean of the genetic distances of the B sequences from C1S1 compared to those from C1S2 was 2%, while their distance to other Argentine subtype B sequences was close to 5%, suggesting that C1S2 sequences did not occur due to a new superinfection. This patient was diagnosed in September 1991 and until the sampling period has been asymptomatic. He reported having had heterosexual contacts but for the last 10 years he has only had homosexual intercourse. He had been receiving antiretroviral (ARV) treatment since 1995 (Table 1). The analysis of resistance pattern showed that there were relevant resistance mutations in the RT (Table 2).
Table 1
Clinical data from 5 HIV-1 dual infected individuals
Case
Institution
Risk category
Time points
CD4 (cells/μl)
VL (RNA copies/ml plasma)
HAART*
1
R. Mejia Hospital
Bisexual male
S1
NA
2,5 x104
d4T 3TC EFV (failure)
   
S2
 
3,3 x105
ddI ZDV SQV/r (failure)
2
R. Mejia Hospital
Bisexual male
Unique sample
NA
446
No
3
FUNDAI
Bisexual male
Unique sample
> 400
< 50
ZDV 3TC EFV (effective)
4
FUNDAI
Bisexual male- IDU
S1
447
5,7 x104
No
   
S2
905
8,2 x104
 
5
FUNDAI
IDU
S1
453
NA
ddI D4T NVP**
   
S2
497
1,2 x104
 
* At the moment of dual infection detection.
** This treatment was two years before sampling.
NA: not available.
Table 2
Evolution of antiretroviral resistance mutations in HIV-1 individuals with dual infections
Case
Time points
Primary subtype
Secondary subtype
 
Prot
RT
Prot
RT
C1
 
B subtype
BF recombinant (not CRF12)
 
S1
NONE
M41L/M184V/Y188L/L210W/T215Y21
V106I, H221Y and D67N (A)
NONE
NONE
 
S2
L10I/I15V/M46I/L63P/I84V/I85V/L90M12
M36I and F53L/A71T (A)
M41L/D67N/L210W/T215Y12
NON DETECTED
C2
 
CRF12_BF
B subtype
  
NONE
NONE
I84V/L90M
M41L/K70E/L210W/T215Y
C3
 
B subtype
CRF12_BF
  
NONE
K103N1
NONE
NONE
C4
 
CRF12_BF
B subtype
 
S1
I47V1
NONE
NONE
NONE
 
S2
NONE
K70R1
NON DETECTED
C5
 
CRF12_BF
BF recombinant (not CRF12)
 
S1
NONE
Y181C/H221Y2
NON DETECTED
 
S2
NONE
Y181C1
NONE
NONE
A mean of sixteen sequences and/or clones per sample were analyzed with Stanford software. Resistance mutations separeted by bars indicate combination of mutations in the sequences. The number indicated by superscript shows the number of sequences or clones with the corresponding mutation or combination of mutations.
(A) Each mutation in different sequences and carrying the combination of mutations indicated.
In the only sample available from C2, 1 out of 25 sequenced clones clustered with subtype B while the others clustered with BF recombinants (Figure 1b). The BF clones exhibited a similar pol gene recombination pattern to CRF12_BF (Figure 1b). This patient was diagnosed in January 2000 and reported having had only homosexual encounters, with some male partners being foreigners and/or HIV-infected. He had no resistance mutations in the BF clones, but subtype B sequence showed major PI resistance mutations (Table 2).
In C3, two sequences clustered with the CRF12_ BF, while 13 grouped with B references (Figure 2a). HIV infection was diagnosed in 2000 and the patient declared having had sexual intercourse with members of both sexes. This patient discontinued his treatment without medical indication. But during the sampling period (2004) he was again on HAART and clinically asymptomatic (Table 1).
In C4S1, 20 sequences were obtained from DNA and amplified by SGA and 11 clones from RNA. As shown, one sequence derived from DNA clustered with subtype B references while 19 clustered with CRF12_ BF references (Figure 2b). Recombination as well as similarity to the CRF12_BF was confirmed (Figure 2b). In C4S2, 22 clones clustered with CRF12_BF references. The HIV infection was diagnosed in 1993. Fifteen years prior to the sample collection, he conceded to having had sexual intercourse with men, with only heterosexual relations thereafter. His female partner was an IDU HIV+ and she was also coinfected with HCV and HBV. The patient was clinically asymptomatic during sampling and had never been on HAART (Table 1).
In C5S1, all the sequences clustered with the CRF12_BF with a high bootstrap value (Figure B.e). In C5S2, besides proviral DNA, RNA was also analyzed by cloning. One sequence from S2 amplified by SGA clustered with a BF recombinant showing a different recombination pattern confirmed by bootscanning analysis (Figure 2c). The NJ tree showed that sequences from both samples formed one cluster. HIV infection in this patient was diagnosed in 1998. He reported being an IDU as his only risk factor and was coinfected with HCV. He had always had high CD4 T-cell counts and was clinically asymptomatic at the time of the study (Table 1). He had received HAART therapy but he interrupted it two years before the first sample was taken (Table 2).
It has been observed that several drug resistance-associated mutations in the pol region of BF recombinant variants include mutations which are in fact natural polymorphisms of the BF strains [10, 11]. Therefore, we only considered major PI-resistance associated mutations to categorize viral variants as resistant. Among the B sequences in C1, there were multiple resistance mutations to NRTI and NNRTI, but the unique BF sequence was susceptible. Hence, the selective pressure of the treatment could be responsible for the predominance of subtype B [12]. Moreover, the changes in the resistance patterns from C1S1 to C1S2 completely mirrored the treatment change (Tables 1 and 2). The fitness costs on the persistence of M184V in the absence of selective pressure has been extensively studied [13] and it has been observed that viruses carrying the TAMs M41L, L210W and T215Y have higher fitness than those with M184V [14]. Therefore, between C1S1 and C1S2, M184V did not persist in the viral population, while the TAMs did. A similar rationale can support the loss of NNRTI resistance-associated mutations. Finally, since the presence of at least three TAMs is associated with cross-resistance to ddI [14], the new HAART scheme actually worked as monotherapy leading to the selection of multiple PI resistance-associated mutations.
In C2, although he had never received ARV therapy, subtype B strain clone was drug-resistant. This virus could have been acquired from a person with a resistant strain, and thus become the minority one because of its lower fitness [15]. Also, in C4 only one sequence from C4S1 carried a mutation to PR while one sequence from C4S2 had one mutation to RT. Since C4 had never received ART, these minority viral quasispecies might have disappeared. The evolution of his HIV disease had not been aggressive over time, but the RNA and proviral DNA sequences from C4S1 intermingled among the proviral sequences from S2, indicating active replication [16].
HIV-1 superinfections have been described after treatment interruption, as in C3, the minority CRF12_BF virus did not show any resistance mutations, it could be hypothesized that it might have been acquired after treatment interruption [17] (Table 2).
C5 had been under HAART, but treatment had been suspended due to medical advice. As with C4, active replication was observed [16]. The putative superinfection was likely coincidental with the relapse of intravenous drug use; which may explain the fact that the secondary virus was a BF recombinant, since these are common among IDUs [7]. Previous HAART probably explains the resistance mutations found in sequences of the predominant virus. Since the secondary viral sequence did not show any resistance mutations, as in C3, treatment interruption might have been a major predisposing factor leading to superinfection [17]. This individual could have acquired the second infection at least 8 years after the first one. In this regard, recent studies have found lack of protection against superinfection in chronic HIV-infected individuals as well as no significant deficits in neutralizing antibodies response [18]. In C5, the evaluation of the recombination patterns of each sequence and the analysis of partial trees performed taking into account the breakpoint of the superinfecting strain, suggest that, to the best of our knowledge, this is the first case of HIV dual-infection with different BF recombinants (Figure 2c and data not shown).
The link between dual infection and recombinant forms has been already shown [19, 20], and since a high viral load level is important in transmission, it could be that recombinants are generated in individuals who also develop higher viral loads and readily transmit them. Eventually, superinfection and double infection would be expected to increase the complexity of viral genotypes circulating in the population [21, 22].
In this report, we described five cases of dual infections from 23 individuals with multiple epidemiological risks. This study underlines the frequency of dual infection in high risk populations, but additional research will be needed to interpret superinfection in the context of anti-HIV-1 immunity and vaccine development.

Acknowledgements

This research has been partially funded by a Fogarty International Center/NIH grant through the AIDS International Training and Research Program at Mount Sinai School of Medicine-Argentina Program (Grant # 5D43 TW0010137) and grants from the University of Buenos Aires (M043) and the National Agency for Promotion of Science and Technology (PICT 2007-01021) to Liliana Martínez Peralta. Ana Ceballos was the recipient of a Rotary Scholarship. We would like to thank Lindsay Eyzaguirre for her help and all individuals for their participation.
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

GA, CE and AC were equally responsible for the design, cloning, viral characterization, and writing of the manuscript. JA, AP, and JKC were responsible for viral characterization and resistance studies. DP, MBB, SG, MW, ML and JB were responsible for the clinical data from patients. LMP was responsible for the design and writing of the manuscript. All authors read and approved the final manuscript.
Anhänge

Authors’ original submitted files for images

Literatur
2.
Zurück zum Zitat Blick G, Kagan RM, Coakley E, Petropoulos C, Maroldo L, Greiger-Zanlungo P, Gretz S, Garton T: The probable source of both the primary multidrug-resistant (MDR) HIV-1 strain found in a patient with rapid progression to AIDS and a second recombinant MDR strain found in a chronically HIV-1-infected patient. J Infect Dis 2007, 195: 1250-1259. 10.1086/512240CrossRefPubMed Blick G, Kagan RM, Coakley E, Petropoulos C, Maroldo L, Greiger-Zanlungo P, Gretz S, Garton T: The probable source of both the primary multidrug-resistant (MDR) HIV-1 strain found in a patient with rapid progression to AIDS and a second recombinant MDR strain found in a chronically HIV-1-infected patient. J Infect Dis 2007, 195: 1250-1259. 10.1086/512240CrossRefPubMed
3.
Zurück zum Zitat Pernas M, Casado C, Fuentes R, Perez-Elias MJ, Lopez-Galindez C: A dual superinfection and recombination within HIV-1 subtype B 12 years after primoinfection. J Acquir Immune Defic Syndr 2006, 42: 12-18. 10.1097/01.qai.0000214810.65292.73CrossRefPubMed Pernas M, Casado C, Fuentes R, Perez-Elias MJ, Lopez-Galindez C: A dual superinfection and recombination within HIV-1 subtype B 12 years after primoinfection. J Acquir Immune Defic Syndr 2006, 42: 12-18. 10.1097/01.qai.0000214810.65292.73CrossRefPubMed
4.
Zurück zum Zitat Smith DM, Wong JK, Hightower GK, Ignacio CC, Koelsch KK, Petropoulos CJ, Richman DD, Little SJ: HIV drug resistance acquired through superinfection. Aids 2005, 19: 1251-1256. 10.1097/01.aids.0000180095.12276.acCrossRefPubMed Smith DM, Wong JK, Hightower GK, Ignacio CC, Koelsch KK, Petropoulos CJ, Richman DD, Little SJ: HIV drug resistance acquired through superinfection. Aids 2005, 19: 1251-1256. 10.1097/01.aids.0000180095.12276.acCrossRefPubMed
5.
Zurück zum Zitat Leontiev VV, Maury WJ, Hadany L: Drug induced superinfection in HIV and the evolution of drug resistance. Infect Genet Evol 2008, 8: 40-50. 10.1016/j.meegid.2007.09.008CrossRefPubMed Leontiev VV, Maury WJ, Hadany L: Drug induced superinfection in HIV and the evolution of drug resistance. Infect Genet Evol 2008, 8: 40-50. 10.1016/j.meegid.2007.09.008CrossRefPubMed
6.
Zurück zum Zitat Avila MM, Pando MA, Carrion G, Peralta LM, Salomon H, Carrillo MG, Sanchez J, Maulen S, Hierholzer J, Marinello M, et al.: Two HIV-1 epidemics in Argentina: different genetic subtypes associated with different risk groups. J Acquir Immune Defic Syndr 2002, 29: 422-426.CrossRefPubMed Avila MM, Pando MA, Carrion G, Peralta LM, Salomon H, Carrillo MG, Sanchez J, Maulen S, Hierholzer J, Marinello M, et al.: Two HIV-1 epidemics in Argentina: different genetic subtypes associated with different risk groups. J Acquir Immune Defic Syndr 2002, 29: 422-426.CrossRefPubMed
7.
Zurück zum Zitat Espinosa A, Vignoles M, Carrillo MG, Sheppard H, Donovan R, Peralta LM, Rossi D, Radulich G, Salomon H, Weissenbacher M: Intersubtype BF recombinants of HIV-1 in a population of injecting drug users in Argentina. J Acquir Immune Defic Syndr 2004, 36: 630-636. 10.1097/00126334-200405010-00012CrossRefPubMed Espinosa A, Vignoles M, Carrillo MG, Sheppard H, Donovan R, Peralta LM, Rossi D, Radulich G, Salomon H, Weissenbacher M: Intersubtype BF recombinants of HIV-1 in a population of injecting drug users in Argentina. J Acquir Immune Defic Syndr 2004, 36: 630-636. 10.1097/00126334-200405010-00012CrossRefPubMed
8.
Zurück zum Zitat Segura M, Sosa Estani S, Marone R, Bautista CT, Pando MA, Eyzaguirre L, Sanchez JL, Carr JK, Montano SM, Weissenbacher M, Avila MM: Buenos Aires cohort of men who have sex with men: prevalence, incidence, risk factors, and molecular genotyping of HIV type 1. AIDS Res Hum Retroviruses 2007, 23: 1322-1329. 10.1089/aid.2007.0063CrossRefPubMed Segura M, Sosa Estani S, Marone R, Bautista CT, Pando MA, Eyzaguirre L, Sanchez JL, Carr JK, Montano SM, Weissenbacher M, Avila MM: Buenos Aires cohort of men who have sex with men: prevalence, incidence, risk factors, and molecular genotyping of HIV type 1. AIDS Res Hum Retroviruses 2007, 23: 1322-1329. 10.1089/aid.2007.0063CrossRefPubMed
9.
Zurück zum Zitat Carr JK, Nadai Y, Eyzaguirre L, Saad MD, Khakimov MM, Yakubov SK, Birx DL, Graham RR, Wolfe ND, Earhart KC, Sanchez JL: Outbreak of a West African recombinant of HIV-1 in Tashkent, Uzbekistan. J Acquir Immune Defic Syndr 2005, 39: 570-575.PubMed Carr JK, Nadai Y, Eyzaguirre L, Saad MD, Khakimov MM, Yakubov SK, Birx DL, Graham RR, Wolfe ND, Earhart KC, Sanchez JL: Outbreak of a West African recombinant of HIV-1 in Tashkent, Uzbekistan. J Acquir Immune Defic Syndr 2005, 39: 570-575.PubMed
10.
Zurück zum Zitat Petroni AD, Gabriel , Pryluka D, Rotryng F, Bortolozzi R, Lopardo G, Bouzas MB, Zapiola I, Garone D, Rodríguez C, Chiocconi E, Lázaro ME, Murano F, Maranzana A, Oliva SM, Aparicio M, Beltrán M, Benetucci J: Update on Primary HIV-1 Resistance in Argentina: Emergence of Mutations Conferring High-Level Resistance to Nonnucleoside Reverse Transcriptase Inhibitors in Drug-Naive Patients. JAIDS 2006, 42: 506-510. 10.1097/01.qai.0000222285.44460.e2PubMed Petroni AD, Gabriel , Pryluka D, Rotryng F, Bortolozzi R, Lopardo G, Bouzas MB, Zapiola I, Garone D, Rodríguez C, Chiocconi E, Lázaro ME, Murano F, Maranzana A, Oliva SM, Aparicio M, Beltrán M, Benetucci J: Update on Primary HIV-1 Resistance in Argentina: Emergence of Mutations Conferring High-Level Resistance to Nonnucleoside Reverse Transcriptase Inhibitors in Drug-Naive Patients. JAIDS 2006, 42: 506-510. 10.1097/01.qai.0000222285.44460.e2PubMed
11.
Zurück zum Zitat Carobene MG, Rubio AE, Carrillo MG, Maligne GE, Kijak GH, Quarleri JF, Salomon H: Differences in frequencies of drug resistance-associated mutations in the HIV-1 pol gene of B subtype and BF intersubtype recombinant samples. J Acquir Immune Defic Syndr 2004, 35: 207-209. 10.1097/00126334-200402010-00018CrossRefPubMed Carobene MG, Rubio AE, Carrillo MG, Maligne GE, Kijak GH, Quarleri JF, Salomon H: Differences in frequencies of drug resistance-associated mutations in the HIV-1 pol gene of B subtype and BF intersubtype recombinant samples. J Acquir Immune Defic Syndr 2004, 35: 207-209. 10.1097/00126334-200402010-00018CrossRefPubMed
12.
Zurück zum Zitat Prado JG, Parkin NT, Clotet B, Ruiz L, Martinez-Picado J: HIV type 1 fitness evolution in antiretroviral-experienced patients with sustained CD4+ T cell counts but persistent virologic failure. Clin Infect Dis 2005, 41: 729-737. 10.1086/432619CrossRefPubMed Prado JG, Parkin NT, Clotet B, Ruiz L, Martinez-Picado J: HIV type 1 fitness evolution in antiretroviral-experienced patients with sustained CD4+ T cell counts but persistent virologic failure. Clin Infect Dis 2005, 41: 729-737. 10.1086/432619CrossRefPubMed
13.
Zurück zum Zitat Gallant JE: The M184V mutation: what it does, how to prevent it, and what to do with it when it's there. AIDS Read 2006, 16: 556-559.PubMed Gallant JE: The M184V mutation: what it does, how to prevent it, and what to do with it when it's there. AIDS Read 2006, 16: 556-559.PubMed
14.
Zurück zum Zitat Johnson VA, Brun-Vezinet F, Clotet B, Gunthard HF, Kuritzkes DR, Pillay D, Schapiro JM, Richman DD: Update of the drug resistance mutations in HIV-1: December 2009. Top HIV Med 2009, 17: 138-145.PubMed Johnson VA, Brun-Vezinet F, Clotet B, Gunthard HF, Kuritzkes DR, Pillay D, Schapiro JM, Richman DD: Update of the drug resistance mutations in HIV-1: December 2009. Top HIV Med 2009, 17: 138-145.PubMed
15.
Zurück zum Zitat Paredes R, Sagar M, Marconi VC, Hoh R, Martin JN, Parkin NT, Petropoulos CJ, Deeks SG, Kuritzkes DR: In vivo fitness cost of the M184V mutation in multidrug-resistant human immunodeficiency virus type 1 in the absence of lamivudine. J Virol 2009, 83: 2038-2043. 10.1128/JVI.02154-08PubMedCentralCrossRefPubMed Paredes R, Sagar M, Marconi VC, Hoh R, Martin JN, Parkin NT, Petropoulos CJ, Deeks SG, Kuritzkes DR: In vivo fitness cost of the M184V mutation in multidrug-resistant human immunodeficiency virus type 1 in the absence of lamivudine. J Virol 2009, 83: 2038-2043. 10.1128/JVI.02154-08PubMedCentralCrossRefPubMed
16.
Zurück zum Zitat Casado C, Garcia S, Rodriguez C, del Romero J, Bello G, Lopez-Galindez C: Different evolutionary patterns are found within human immunodeficiency virus type 1-infected patients. J Gen Virol 2001, 82: 2495-2508.CrossRefPubMed Casado C, Garcia S, Rodriguez C, del Romero J, Bello G, Lopez-Galindez C: Different evolutionary patterns are found within human immunodeficiency virus type 1-infected patients. J Gen Virol 2001, 82: 2495-2508.CrossRefPubMed
17.
Zurück zum Zitat Ramos A, Hu DJ, Nguyen L, Phan KO, Vanichseni S, Promadej N, Choopanya K, Callahan M, Young NL, McNicholl J, et al.: Intersubtype human immunodeficiency virus type 1 superinfection following seroconversion to primary infection in two injection drug users. J Virol 2002, 76: 7444-7452. 10.1128/JVI.76.15.7444-7452.2002PubMedCentralCrossRefPubMed Ramos A, Hu DJ, Nguyen L, Phan KO, Vanichseni S, Promadej N, Choopanya K, Callahan M, Young NL, McNicholl J, et al.: Intersubtype human immunodeficiency virus type 1 superinfection following seroconversion to primary infection in two injection drug users. J Virol 2002, 76: 7444-7452. 10.1128/JVI.76.15.7444-7452.2002PubMedCentralCrossRefPubMed
18.
Zurück zum Zitat Piantadosi A, Chohan B, Chohan V, McClelland RS, Overbaugh J: Chronic HIV-1 infection frequently fails to protect against superinfection. PLoS Pathog 2007, 3: e177. 10.1371/journal.ppat.0030177PubMedCentralCrossRefPubMed Piantadosi A, Chohan B, Chohan V, McClelland RS, Overbaugh J: Chronic HIV-1 infection frequently fails to protect against superinfection. PLoS Pathog 2007, 3: e177. 10.1371/journal.ppat.0030177PubMedCentralCrossRefPubMed
19.
Zurück zum Zitat Fang G, Weiser B, Kuiken C, Philpott SM, Rowland-Jones S, Plummer F, Kimani J, Shi B, Kaul R, Bwayo J, et al.: Recombination following superinfection by HIV-1. Aids 2004, 18: 153-159. 10.1097/00002030-200401230-00003CrossRefPubMed Fang G, Weiser B, Kuiken C, Philpott SM, Rowland-Jones S, Plummer F, Kimani J, Shi B, Kaul R, Bwayo J, et al.: Recombination following superinfection by HIV-1. Aids 2004, 18: 153-159. 10.1097/00002030-200401230-00003CrossRefPubMed
20.
Zurück zum Zitat Jurriaans S, Kozaczynska K, Zorgdrager F, Steingrover R, Prins JM, van der Kuyl AC, Cornelissen M: A sudden rise in viral load is infrequently associated with HIV-1 superinfection. J Acquir Immune Defic Syndr 2008, 47: 69-73. 10.1097/QAI.0b013e3181582d6fCrossRefPubMed Jurriaans S, Kozaczynska K, Zorgdrager F, Steingrover R, Prins JM, van der Kuyl AC, Cornelissen M: A sudden rise in viral load is infrequently associated with HIV-1 superinfection. J Acquir Immune Defic Syndr 2008, 47: 69-73. 10.1097/QAI.0b013e3181582d6fCrossRefPubMed
21.
Zurück zum Zitat Blackard JT, Mayer KH: HIV superinfection in the era of increased sexual risk-taking. Sex Transm Dis 2004, 31: 201-204. 10.1097/01.OLQ.0000118082.45312.1FCrossRefPubMed Blackard JT, Mayer KH: HIV superinfection in the era of increased sexual risk-taking. Sex Transm Dis 2004, 31: 201-204. 10.1097/01.OLQ.0000118082.45312.1FCrossRefPubMed
22.
Zurück zum Zitat Kijak GH, McCutchan FE: HIV diversity, molecular epidemiology, and the role of recombination. Curr Infect Dis Rep 2005, 7: 480-488. 10.1007/s11908-005-0051-8CrossRefPubMed Kijak GH, McCutchan FE: HIV diversity, molecular epidemiology, and the role of recombination. Curr Infect Dis Rep 2005, 7: 480-488. 10.1007/s11908-005-0051-8CrossRefPubMed
Metadaten
Titel
Detection of HIV-1 dual infections in highly exposed treated patients
verfasst von
Guadalupe Andreani
Constanza Espada
Ana Ceballos
Juan Ambrosioni
Alejandro Petroni
Dora Pugliese
María Belén Bouzas
Silvia Fernandez Giuliano
Mercedes C Weissenbacher
Marcelo Losso
Jorge Benetucci
Jean K Carr
Liliana Martínez Peralta
Publikationsdatum
01.12.2011
Verlag
BioMed Central
Erschienen in
Virology Journal / Ausgabe 1/2011
Elektronische ISSN: 1743-422X
DOI
https://doi.org/10.1186/1743-422X-8-392

Weitere Artikel der Ausgabe 1/2011

Virology Journal 1/2011 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Reizdarmsyndrom: Diäten wirksamer als Medikamente

29.04.2024 Reizdarmsyndrom Nachrichten

Bei Reizdarmsyndrom scheinen Diäten, wie etwa die FODMAP-arme oder die kohlenhydratreduzierte Ernährung, effektiver als eine medikamentöse Therapie zu sein. Das hat eine Studie aus Schweden ergeben, die die drei Therapieoptionen im direkten Vergleich analysierte.

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.