Skip to main content
Erschienen in: Virology Journal 1/2012

Open Access 01.12.2012 | Review

The role of infections and coinfections with newly identified and emerging respiratory viruses in children

verfasst von: Maurizia Debiaggi, Filippo Canducci, Elisa Rita Ceresola, Massimo Clementi

Erschienen in: Virology Journal | Ausgabe 1/2012

Abstract

Acute respiratory infections are a major cause of morbidity in children both in developed and developing countries. A wide range of respiratory viruses, including respiratory syncytial virus (RSV), influenza A and B viruses, parainfluenza viruses (PIVs), adenovirus, rhinovirus (HRV), have repeatedly been detected in acute lower respiratory tract infections (LRTI) in children in the past decades. However, in the last ten years thanks to progress in molecular technologies, newly discovered viruses have been identified including human Metapneumovirus (hMPV), coronaviruses NL63 (HcoV-NL63) and HKU1 (HcoV-HKU1), human Bocavirus (HBoV), new enterovirus (HEV), parechovirus (HpeV) and rhinovirus (HRV) strains, polyomaviruses WU (WUPyV) and KI (KIPyV) and the pandemic H1N1v influenza A virus. These discoveries have heavily modified previous knowledge on respiratory infections mainly highlighting that pediatric population is exposed to a variety of viruses with similar seasonal patterns. In this context establishing a causal link between a newly identified virus and the disease as well as an association between mixed infections and an increase in disease severity can be challenging. This review will present an overview of newly recognized as well as the main emerging respiratory viruses and seek to focus on the their contribution to infection and co-infection in LRTIs in childhood.
Hinweise
Maurizia Debiaggi, Filippo Canducci contributed equally to this work.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

MD, FC, MC wrote the manuscript. ERC organized the table. All authors read and approved the final manuscript.

Introduction

In the last decade thanks to progress in molecular technologies, newly discovered viruses have been identified. In 2001 human Metapneumovirus (hMPV) was identified, followed by discoveries or emergence of other respiratory viruses or virus strains: coronaviruses NL63 (HcoV-NL63) and HKU1 (HcoV-HKU1), human Bocavirus (HBoV), new enterovirus (HEV), parechovirus (HpeV) and rhinovirus (HRV) strains, polyomaviruses WU (WUPyV) and KI (KIPyV) and the pandemic H1N1v influenza A virus [18].
These discoveries have heavily modified previous knowledge on respiratory infections and have now highlighted that although until recently most viral lower respiratory infections in infants and young children were attributed to respiratory syncytial virus (RSV), PIVs, adenovirus, HRV and influenza viruses, pediatric population is indeed exposed to a variety of other viruses with a similar seasonal pattern [911]. In this context, establishing a causal link between a newly identified virus and the disease as well as an association between mixed infections and an increase in disease severity can be challenging. This review will present a brief overview of newly recognized as well as the main emerging respiratory viruses and seek to focus on the their contribution to infection and co-infection in LRTIs in childhood.

Metapneumovirus

Metapneumovirus was first recognized in 2001 in the Netherlands from nasopharyngeal aspirates collected during a 20-year period in 28 hospitalized children and infants with acute respiratory tract infection (RTI) having signs and symptoms similar to that of RSV infection [4]. The virus genomic sequence was identified by using a randomly primed PCR protocol and revealed to be closely related to the avian pneumovirus, a member of the Metapneumovirus genus, in the Paramixoviridae family, Initial studies following the first hMPV identification indicate that it causes upper and lower RTIs in patients of all ages, but mostly in children aged below 5 years [1217]. A large epidemiological retrospective study examined nasal washes collected over a 20-year period during acute respiratory illnesses in an outpatient cohort of children [18]. Over the entire study period, hMPV was detected in 1%-5% of pediatric upper RTIs (UTRIs), with variation from year to year. Several reports indicate that hMPV is a commonly identified cause of pediatric lower RTIs, and is second only to RSV as cause of bronchiolitis in early childhood [16, 1925]. While bronchiolitis, is the most common presentation of hMPV illness, other reported syndromes have included asthma exacerbation, otitis media, flulike illness, and community-acquired pneumonia [12, 15, 2629]. Several studies have found hMPV –RSV co-infection rates of approximately 5-14% [3034]. Nevertheless, in a study conducted in the Netherlands in children admitted to hospital for lower RTIs (LRTIs), no virus co-infection between RSV and hMPV was detected [35]. Different controversial reports suggest an association between RSV-hMPV coinfection and an increase in the disease severity or the absence of an association between dual infection and disease severity. Greensill and colleagues [36] reported a 70% rate of co-infection with hMPV in a cohort of infants with critical RSV bronchiolitis who required intensive care in the United Kingdom, suggesting that dual infection with RSV and hMPV may predispose for a more severe disease. In another study from the United Kingdom, hMPV and RSV co-infection was associated with increased disease severity and higher risk of admission to the pediatric intensive care unit [37]. Similar findings are supported by other studies suggesting that in young children, coinfections with RSV and hMPV are more severe than infections with either RSV or hMPV alone, requiring a longer hospitalization and supplemental oxygenation [38, 39]. However, such synergistic association has not been found in other population-based and case–control studies of hospitalized children [16, 3335, 4042]. In particular, two studies evaluated the epidemiology of hMPV coinfection in children with LRTI caused by RSV and demonstrated no hMPV and RSV co-infection in mechanically ventilated children suggesting that co-infection with hMPV is not associated with a more severe course of RSV-LRTI [35, 42]. In addition, in a prospective 2-year study in hospitalized infants with acute respiratory diseases, the role of RSV as a major respiratory pathogen was not influenced by the co-circulation of other emerging viral agents with similar seasonal distribution. In particular, RSV-hMPVs co-infections were significantly observed in less severe respiratory disease when compared to unique RSV infections [34]. The possible synergistic interaction between hMPV and the severe acute respiratory syndrome (SARS) coronavirus was also suggested during the 2003 SARS outbreak in Hong Kong and Canada [43, 44]. In one case report, in an infant with SARS CoV infection, fatal encephalitis was correlated with hMPV infection as hMPV RNA was detected post-mortem in brain and lung tissue [26]. Nevertheless, in experimental studies performed in macaques, a synergy between hMPV and SARS was not confirmed [45]. In addition, infections of hMPV with respiratory viruses different from RSV, have also been occasionally reported but no sufficient data are available to discuss epidemiology or association with clinical disease presentation [34, 46, 47] (Table 1).
Table 1
Recent epidemiological papers on respiratory infections and co-infections
PAPER
VIRUSES ANALYSED (detection methods)
POPULATION
CONCLUSIONS
Flu
HRV
HEV
HPeV
PIV
hMPV
ADV
RSV
Coronavirus
HBoV
Polyomavirus
  
H1N1
A
B
       
HCoV 229E
HCoV OC43
HCoV NL63
HCoV HKU1
 
WUPyV
KIPyV
  
Greensill, 2003
       
X(a)
 
X(a)
       
pediatric (30, ventilated and with bronchiolitis)
70% rates of co-infection RSV-hMPV in a cohort of infants with bronchiolitis, suggesting that dual infection may predispose for a more severe disease.
Viazov, 2003
       
X(a)
 
(d)
       
children <2 years (63) with RTD
17,5% hMPV positive, 23% RSV positive, 4.7% hMPV-RSV coinfections. Similar symptoms between hMPV+ and RSV+ children.
Esper, 2004
       
X(a)
         
children <5 years (688) negative for RSV, PIV, Flu A and B, ADV
8% hMPV positive samples
Xepapadaki, 2004
 
X(a)
X(a)
X(a)
  
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
   
pediatric (56) with acute bronchiolitis
16% bronchiolitis is hMPV positive, 67.9% RSV positive, without clinical d(d)ference.
Konig, 2004
       
X(a)
 
X(a)
       
children requiring intensive support (85)
coinfections with RSV and hMPV are more severe than infections with either RSV or hMPV alone in young children
Semple, 2005
       
X(a)
 
X(a)
       
<2-year-old infants with bronchiolitis(196)
hMPV and RSV co-infection is associated with increased disease severity
van Woensel, 2006
       
X(b)
 
X(b)
       
pediatric (30, mean age 10 weeks, ventilated and with bronchiolitis)
No virus co-infection between RSV and hMPV in a cohort of infants with bronchiolitis
Foulongne, 2006
 
(d)
(d)
   
(d)
X(a)
(d)
(d)
       
589 children hospitalized with respiratory disease<5 years
8.5% rates of hMPV infections, the second leading cause of RTD after RSV, 30% of the cases are hMPV-RSV coinfections. The duration of hospitalization and requirement for supplemental oxygen were increased in case of hMPV-RSV coinfections
Lazar, 2004
       
X(a)
 
X(a)
       
46 children with mild to severe RSV disease (PIV, fluA and B, ADVnegative)
hMPV did not contribute to the severity of RSV disease
Canducci, 2008
       
X(a)
 
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
  
322 infant patients with acute respiratory disease
RSV-hMPVs co-infections were observed in less severe respiratory disease when compared to RSV mono-infections
Chiu, 2005
 
(d)
(d)
   
(d)
X(a)
(d)
(d)
X(a)
X(a)
X(b)
    
hospitalized with fever and acute respiratory symptoms (587)
4.4% HCoV infections. HCoV-NL63 can present as croup, asthma exacerbation, febrile seizures, and high fever.
van der Hoek,2006
 
X(a)
X(a)
   
X(a)
  
X(a)
  
X(b)
    
children<3 years with LRTIs (940)
HCoV-NL63 RNA was detected in 5.2% of cases;43% of the HCoV-NL63-positive patients with high viral load and absence of co-infection suffered from croup. Most co-infections were with RSV-A HCoV-NL63 co-infection with RSV-A occurred mainly in hospitalised patients in contrast to HCoV-NL63 co-infections with PIV3 that were exclusively present in the outpatient group. Lower HCoV-NL63 viral load in patients coinfected with RSV or PIV3 than in patients infected with HCoV-NL63 alone
Dare, 2007
          
X(b)
X(b)
X(b)
X(b)
   
1156 patients with pneumonia, 513 outpatients, 281 controls
1.8% of patients with pneumonia, 2.3% of outpatients and 2.1% of controls had HCoV infections. In control patients, infection with any HCoV type or with all types combined was not associated with pneumonia
Kuypers, 2007
 
X(a)
    
X(a)
X(a)
X(a)
X(a)
X(b)
X(b)
X(b)
X(b)
   
1043 pediatric (0–19 years old) respiratory specimens
CoVs were detected in 6.3% of specimens. 45.5% CoV-positive specimens also had another respiratory virus detected, most commonly RSV (67%). CoV subtypes NL63 and HKU1 accounted for the majority of CoVs detected.
Minosse, 2008
   
X(a)
    
X(a)
   
X(a)
    
hospitalized adult patients (433, mean age 56 years)
2% Hcov NL63 positive, 33% coinfected NL63-HRV, 10% coinfected NL63-ADV
Wu, 2008
       
X
X
X
  
X(b)
    
539 children < 15 years with respiratory disease
1.3% HCoV NL63 positive, 43% of HCoV infection are coinfections (RSV, ADV, hMPV)
Gaunt, 2010
 
X(b)
X(b)
   
X(b)
 
X(b)
X(b)
X(b)
X(b)
X(b)
X(b)
   
11661 respiratory samples
high rate of coinfections observed for HKU1, NL63 and OC43, mostly with RSV. No d(d)ferences of HCoV viral load were observed between single infection and RSV coinfection. Detection of CoVs should not be interpreted as representing an incidental infection without contribute to disease.
Choi, 2006
 
X(a) and (d)
X(a) and (d)
X(a)
  
X(a) and (d)
X(a)
X(a) and (d)
X(a) and (d)
X(a)
X(a)
X(a)
 
X(a)
  
515 children< 5 years old with LRTIs
The prevalence of HboV was the second (11%), the first was RSV (23%). Among HBoV infections, a high rate (38%) was coinfection.
Allander, 2007
 
X(b), (c), (d), (e)
X(b), (c), (d), (e)
(c), (e), X(a)
(c), (e), X(a)
 
X(b), (c), (d), (e)
(c), X(a)
X(b), (d), (e)
(c), (d), (e), X(a)
X(a)
X(a)
X(b), (e)
X(b), (e)
X(b), (e)
  
259 children (median age, 1.6 years) who had been hospitalized for acute expiratory wheezing
Acute HBoV infections appears associated with presence of viral DNA in the blood as the HBoV DNA was reported more prevalent in the patients blood during the acute symptoms than after recovery. High load and viremic HBoV infection were associated with respiratory tract symptoms, while detection of a low viral load in the nasopharinx alone has uncertain relevance
Christensen, 2008
 
X(b)
X(b)
X(b)
X(b)
 
X(b)
X(b)
X(b)
X(b)
X(b)
X(b)
X(b)
 
X(b)
   
HBoV was detected in 12% of samples. It was the fourth most common virus in the material after RSV (25%), HRV (17%) and hMPV(14%). Multiple viral infections were common and were present in 78% of the samples, more commonly RSV
Dina, 2009
 
X(a)
X(a)
X(a)
  
X(a)
X(a)
(d), (c), X(b), x(a)
     
X(b), X(a)
  
842 patients hospitalized with respiratory symptoms (mean age 22 years)
The prevalence of HBoV infection was 3.8%. HBoV. Viral load appears to be linked to the severity of the disease.
Wang, 2010
 
X(a)
X(a)
X(a)
  
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
X(a),X(b), (e)
  
817 children with respiratory tract infection
HBoV was ident(d)ied in 12% of samples. Co-infection rate with other respiratory viruses was 51%. HBoV was found frequently in children with respiratory tract symptoms associated with other viruses, and persisted in the respiratory tract, in serum and urine. The presence of IgM was significantly more prevalent in viremic patients and those diagnosed with high load of HBoV DNAin nasal/throat swabs
Don, 2010
 
(e)
(e)
   
(e)
(e)
(e)
(e)
    
(e)
  
124 children with presumptive pneumonia<15 years
Mixed infections were found in 25% of cases. Serological evidence of acute HBoV infection was found in 12% of children with pneumonia and in more than half of cases with single HBoV infection.This suggests that HBoV may be a fairly common cause of pneumonia in children
Soderlund-Venermo, 2009
 
X(a)
X(a)
X(a)
X(a)
 
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
X(a), (e), X (b)
  
259 weezing children <15 years, 115 healthy adults
Serologically confirmed primary HBoV infections detected in symptomatic children with no signs of other respiratory virus infections demonstrate that HBoV is a cause of acute wheezing in young children. Accurate HBoV diagnosis requires serologic analysis or PCR of serum, PCR of NPAs alone is insufficient. HBoV is the most probable cause of respiratory tract disease (d) the patients has single infection, a high viral load in NPA nasopharyngeal aspirates and viremia
Martin, 2010
 
X(a)
X(a)
X(a)
  
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
X(b)
  
119 children attending daycare
28% tested positive for HBoV. HBoV was detected significantly more often than any of the 14 respiratory viruses but HRVs. HboV DNA can persist for several months in the respiratory tract
Jin, 2012
 
X(a)
X(a)
X(a)
  
X(a)
X(a)
X(a)
X(a)
  
X(a)
X(a)
X(a)
  
813 children<14 years with acute lower respiratory tract infections
The most frequently detected virus was RSV (40.%), followed by HRV (20%), HBoV (11.5%), PIV1-3 (8%), AdV (7.5%), FluA (7%), HMPV (6.%), NL63 (4%), HKU1 (2.%) and FluB (0.98%). Of the HCoV-HKU1 and HCoV-NL63-positive samples, 74% were co-infected with at least another virus, most commonly HRV and RSV.
Esposito, 2012
 
X(a)
X(a)
X(b)
X(b)
 
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
  
592 children with radiographically confirmed pneumonia
HBoV was the most frequently detected virus(10%) after RSV (31%) and HRV (24%)
Le, 2007
 
X(a)
X(a)
X(a)
  
X(a)
X(a)
X(a)
 
X(a)
X(a)
X(a)
X(a)
 
X(b)
 
2,263 samples from children <4 years of age and 374 from children >4 years of age for routine respiratory virus detection
2.7% samples positive for WU polyomavirus and 71% coinfected with other viruses. WU polyomavirus was the sole virus detected in 20 specimens from patients with respiratory illness, which suggests that it may be a respiratory pathogen. Repeated identification of WU polyomavirus in the same patients suggests that it may persistently infect humans
Han, 2007
 
X(a)
X(a)
X(a)
  
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
 
486 children with acute lower respiratory tract, 72 asymptomatic children<6 years
WUPyV was detected in 7% children with LARD, 4.2% of asymptomatic children and as coinfection with other respiratory viruses in 67.6%. Although WUPyV was frequently detected, its clinical role has not been distinguished from that of coinfecting viruses
Bialasiewicz, 2008
 
X(a)
X(a)
X(a)
  
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
X(b)
X(b)
X(b)
2866 respiratory sample from people with acute respiratory diseases (mean age 9.2 years)
KIV and WUV were found at a prevalence of 2.6% and 4.5%, respectively. Level of co-infection of KIV or WUV with other viruses was 74.7% and 79.7%, respectively. It is not possible to prove a causal relationship between the detection of KIV and WUV and respiratory disease from these findings
Neske, 2008
 
(d)
(d)
   
(d)
 
(d)
     
X(a)
X(a)
 
1,326 hospitalized children with acute respiratory diseases
4.9% positive WUPyV. 56% were co-infections with other viruses (ADV, fluA, hBoV and RSV).
Babakir-Mina, 2010
               
X(b)
X(b)
153 HIV-1-infected patients (mean age 42 years), 130 controls
2.6% KIPyV positive and 4.6% WUPyV positive among HIV-1–infected patients compared with 3.1% KIPyV positive and 0,8% WUPyV positive in blood donors. No association found between CD4+ cell counts in HIV-1 positive patients and infection with KIPyV or WUPyV
Debiaggi, 2010
 
X(a)
X(a)
X(a)
  
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
31 asymptomatic adulthematopoietic stem cell transplant recipients;486 children with acute respiratory disease< 2 years
0.79% KIPyV, 0.79% WuPyV positive among transplant recipients; 1.4% KIPyV and 0.2% WUPyV in children. WU/KIPyVs have a low pathogenic potential in young children. Brief and asymptomatic infection can occur in hematopoietic transplant recipients.
Zhuang, 2011
 
X(b)
X(b)
X(b)
  
X(b)
X(b)
X(b)
X(b)
    
X(b)
X(a)
 
771 children with acute respiratory tract infection and 82 samples from healthy subjects
In most of infected children single WUPyV infection was detected.It suggests that the newly described polyomavirus can cause acute respiratory tract infection
Rao, 2011
 
X(a)
X(a)
X(a)
  
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
 
X(b)
X(b)
pediatric hematology or oncology patients and immunocompetent controls with acute respiratory illnesses
Prevalence of WUPyV and KIPyV is similar in hematology/oncology patients (3% and 5.6%, respectively) compared with the general pediatric population (5%and 2.3, respectively). High co-detection rates with other viruses (RSV and HRV) in both groups. Higher viral loads for KIPyV (but not for WUPyV) in the immunocompromised group was detected and infection with either virus occurred in older children compared with controls, which may suggest viral-reactivation
Lau, 2007
 
(d)
(d)
X(a)
  
(d)
X(a)
(d)
(d)
X(a)
X(a)
X(a)
X(a)
   
203 nasopharyngeal aspirates (NPAs), negative for common respiratory viruses from hospitalized children
HRV-C is an important cause of febrile wheeze and asthmatic exacerbations in children requiring hospitalization. No clear clinical difference has been noted between single or mixed HRV-C infections
Harvala, 2008
 
X(a)
X(a)
  
X(a)
X(a)
X(a)
X(a)
X(a)
    
X(a)
  
4,173 respiratory samples for routine respiratory virus detection
High rate of coinfections, ow frequency of detection and lack of clear disease associations indicate that HPeV1 and −6 are not major pathogens in individuals presenting with respiratory disease
Jin, 2009
 
X(a)
X(a)
X(a)
  
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
  
406 children< 14 years with RTI
13% HRV positive (22% HRV-A, 12% HRV-B, 19% HRV-C). Monoinfection was observed in more than half of cases, HRV-C is an important cause of RTIs in children. Patients infected with HRV-C may exhibit different clinical features from patients infected with HRV-A/B
Miller, 2009
   
X(a)
             
1052 hospitalized children< 5 years with acute respiratory illness
HRVCs were detected in 7% of children hospitalized for fever or respiratory conditions and constituted almost half of all HRVs-associated hospitalizations, suggesting that this novel group causes a substantial burden of pediatric disease
Yozwiak, 2010
    
X(a)
            
3,800 children aged 2 to 13 years with respiratory illness
EV109 isolates were then detected in 1.6% of respiratory samples of children with influenza like illness (ILI) and recognized to have a pathogenetic role in the illness
Debiaggi, 2012
 
X(a)
X(a)
X(a)
X(a)
 
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
1149 nasopharingeal aspirates
HEV109 infection may be associated to ARDs both in infants and in hematopoietic stem cell transplantation recipients
Piralla, 2012
 
X(a)
X(a)
X(a)
X(a)
X(b)
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
3,525 patients with respiratory syndrome
The prevalence of HpeV is 0.4%. The most commonly identified HPeVs were HpeV1(58%) and HpeV3 (37%). Although not circulating at high frequency and unlikely to cause respiratory syndrome, HPeV was associated with severe clinical syndromes in a minority of newborns. The frequent association of HPeV with other respiratory viruses may indicate a less pathogenic role for HPeV compared to the other viruses
Renois, 2010
X(a)
X(a) and X(b)
X(a)
X(a)
X(a)
 
X(a)
X(a)
X(a)
X(a)
X(a)
   
X(a)
  
56 adults and 39 children visited for influenza-like illnesses
31% of H1N1 infections, 16% coinfected with HRV (60%) and RSV, CoV229E, HBoV (20%). No difference in disease severity between single and mixed infections
Casalegno, 2010
X(b)
  
X(b)
             
pediatric (2121, mean age 3.8 years)
The presence of HRV reduce the risk of H1N1 infection.
Schnepf, 2011
X(b)
X(a)
X(a)
X(a)
  
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
X(a)
    
in adult and paediatric patients with Influenza-like illness (413)
16% of H1N1 infections, 19% of them were co-infections (mainly HRV). Among 50% of non-H1N1 infections were HRV infections and increase of H1N1 cases was associated with rapid HRV infection decline
(a) qualitative molecular detection; (b) quantitative molecular detection; (c) cell culture; (d) Immune Fluorescence; (e) serology.
The pathogens analyzed and the methods used for detection as well as the population characteristics and the main conclusions are reported. The principal pathogen under evaluation is indicated in bold. Flu=influenza virus; HRV= human rhinovirus; HEV= human enterovirus; HpeV= human parechovirus; PIV= parainfluenza virus; hMPV=human metapneumovirus; ADV=adenovirus; RSV=respiratory syncytial virus.

Coronaviruses

Following the discovery of SARS-CoV, other human coronaviruses, HCoV-NL63 and HCoV-HKU1, were identified and recognized to be common causes of community-acquired respiratory infections.
HCoV-NL63, a member of the group I coronaviruses, was first detected in 2004 in the Netherlands from a child with bronchiolitis by using a new method for virus discovery based on the cDNA-amplified restriction fragment−length polymorphism technique (cDNA-AFLP) [3].
HCoV-HKU1, a group II coronavirus, was first detected in Hong Kong in 2005 from an adult patient with chronic pulmonary disease [1]. All attempts to grow a virus from his respiratory secretions failed until recently [48], but coronavirus RNA was initially detected by RT-PCR using pol gene consensus primers.
Like other coronaviruses, NL63 and HKU1 can also be detected in individuals of all ages, including elderly patients with fatal outcome [49] and those with underlying diseases of the respiratory tract [1]. However most frequently, the newly discovered coronaviruses are reported in 7 to 12-month old children with both upper and lower RTIs [34, 4953]. In studies conducted in children hospitalized with RTIs in China, from 2.6% to 3.8% of patients were positive for HCoV-NL63 and, in addition to causing upper respiratory disease, HCoV-NL63 was found in croup, asthma exacerbation, febrile seizures, wheezing and high fever cases [54, 55]. The occurrence of co-infection with NL63 and other respiratory viruses, including other human coronaviruses, RSV, PIV, influenza A and B viruses and hMPV has been reported [34, 5558]. In a large study from Germany evaluating children under 3 years of age with LRTIs, most co-infections were with RSV-A, probably because of the high percentage of RSV-A infections and an overlap in seasonality. In addition, double infection of NL63 with RSV-B, and with PIV3 occurred in a minority of cases. HCoV-NL63 co-infection with RSV-A occurred predominantly in the hospitalised patients in contrast to HCoV-NL63 co-infections with PIV3 that were exclusively present in the outpatient group [59].
Following the first identification, HKU1 was found in respiratory samples from elderly patients and children mainly with underlying diseases [1, 33, 52, 60]. The most common symptoms are rhinorrhea, fever, and abdominal breath sounds [33], but pneumonia, bronchopneumonia, bronchiolitis, and acute asthma exacerbations were also described in children in China [61, 62].
In a study aimed to evaluate the overall prevalence of 10 respiratory viruses in children with acute LRTIs in China from 2006 to 2009, 73.47% of the HCoV-HKU1 and HCoV-NL63-positive samples tested positive for at least one other virus, most commonly HRV and RSV [54]. Similar data describing a high rate of coinfection of coronaviruses with RSV has also been previously reported [63]. In a report from the UK both dual and single infections associated with respiratory outcomes were observed for HKU1 as well as for NL63 and OC43 coronaviruses [51]. In this study a high number of coinfections was observed for HKU1, NL63 as well as for OC43, mostly with RSV. Similar rates of lower and upper infections were observed in single HKU1 or OC43 infection compared with coinfection, whereas both URTI and LRTI were observed more frequently in single compared to mixed infection with NL63. No differences in clinical outcome were observed between single and dual infections with RSV and Coronaviruses NL63, HKU1 or OC43 indicating that RSV may presumably facilitate coronavirus infection without increasing disease severity. However, in the same study considering viral load data, a role of these coronaviruses in coinfections in respiratory disease was suggested. In fact no differences were observed when coronavirus load was evaluated in single infection and in RSV coinfection, indicating both that infection with another respiratory virus does not affect the ability of NL63, HKU1 or OC43 to establish infection and replicate, and that detection of coronaviruses in mixed infection should not be considered a secondary infection without contribution to disease pathogenesis [51]. This quantitative evaluation is in contrast with previous results obtained by van der Hoek and colleagues describing a significantly lower HCoV-NL63 viral load in patients coinfected with RSV or PIV3 than in patients infected with HCoV-NL63 alone [59]. However, the prolonged persistence of HCoV-NL63 at low levels, the different time of sampling relative to the time of disease onset, or the use of different diagnostic technologies could have affected these evaluations (Table 1).

Bocavirus

Human Bocavirus (HBoV) was discovered in 2005, in Sweden by Allander and colleagues by using a large-scale molecular viral screening technique including DNase sequence-independent single-primer amplification [6]. Since initial observations, several studies have reported the prevalence of human Bocavirus infection all over the world ranging from 2 to 21.5%, mainly in children younger than 3 years of age where it has been associated with upper and with lower RTIs [6469]. In a study from Norway, HBoV was detected in 12% of children with RTI and it was the fourth most common virus after RSV, HRV and hMPV [70]. Recently, in children with radiographically confirmed community acquired pneumonia in which 17 respiratory viruses were tested during the acute phase of the disease, HBoV was the most frequently detected virus after RSV and HRV [71]. Since the discovery of the first HBoV (HBoV1), three other related bocaviruses (HBoV2, 3 and 4) have been identified in stool samples and associated with gastrointestinal diseases [72, 73]. Serological studies on HBoV1 are in line with molecular data.
Serological studies have shown that the mere presence of HBoV DNA in the respiratory tract is not proof of an acute primary infection [65, 7476]. These data are also supported by studies on consecutive respiratory samples showing that HBoV DNA can persist for several months in the respiratory tract [7779]. Prolonged viral shedding could explain both data reported in some papers in which HBoV DNA was found more often in asymptomatic than symptomatic cases [79, 80] and the high percentage of co-infections. In fact, HBoV infections tend to be associated with high rates of coinfections with other viral pathogens such as HRV, adenoviruses, RSV, as well as with bacteria such as Streptococcus spp and Mycoplasma pneumoniae[46, 54, 6870, 77, 8183]. Characteristics of persistence and high frequency of coinfections have led to a debate over its role as a true pathogen [84]. Our current knowledge of HBoV infection suggests that the virus is sometimes a passenger and sometimes a pathogen in acute respiratory tract disease and that diagnosis should not be solely based on qualitative PCR in respiratory samples. Indeed, in many studies a positive correlation was seen between respiratory illness and high copy numbers of HBoV1 DNA or the presence of HBoV1 monoinfection [68, 75, 8587]. A study performed by Allander and colleagues suggests that acute HBoV infections are associated with the presence of viral DNA in the blood of patients. In fact, HBoV DNA was reported more frequently in patient blood during the acute symptoms than after recovery [68]. In addition, high load and viremic HBoV infection were associated with respiratory tract symptoms, while detection of a low viral load in the nasopharinx alone resulted to have no clinical relevance [68]. Other studies confirmed that HBoV is the most probable cause of respiratory tract disease if the patient has a single infection and high viral load in NPA and viremia [65, 70]. However, despite these diagnostic challenges it is becoming increasingly evident that HBoV1 is an important respiratory pathogen [88]. Severe and life-threatening disease has been recently well documented in a 8-month-old child with acute respiratory distress attending an emergency department in Germany [89]. Don et colleagues [76] found serological evidence of an acute HBoV infection in 12% of children with pneumonia and in more than half of these cases with single HBoV infection. In most cases a significant rise in IgG antibodies between paired sera was found in children admitted to hospital for radiologically confirmed pneumonia. IgM antibodies were also detected in all but one patient. This study suggests that HBoV may be a fairly common cause of pneumonia in children Table 1.

KI and WU Polyomaviruses

Two new polyomaviruses were identified in 2007 in respiratory tract samples following large scale molecular screening using high throughput DNA sequencing of random clones [5, 7] and have been named after the institutes where they were found: KI (Karolinska Institute) polyomavirus (KIPyV) and WU (Washington University) polyomavirus (WUPyV). Data on seroprevalence indicate that infection is widespread ranging from 54.1 and 67% for KI and from 66.4% and 89% for WU in North American and German blood donors [90, 91]. Since their first identification, KI and WU viral sequences have been confirmed worldwide in respiratory samples from children with respiratory tract disease ranging from 0.2% to 2.7% and from 1.1 to 7%, respectively [9197]. However WUPyV and KIPyV were found at similar frequencies in control groups without respiratory diseases so the link between these polyomaviruses and acute respiratory diseases remains speculative [94, 96, 98].
Careful analysis is complicated by high co-infection rates with other well-characterized viral respiratory pathogens. A co-detection rate of 74% has been observed for KIPyV and rates ranging from 68 to 79% for WUPyV [94, 95, 97]. Therefore, in a recent study in Southern China, hospitalized children with WUPyV infection displayed predominantly cough, moderate fever, and wheezing, but were also diagnosed with pneumonia, bronchiolitis, upper respiratory tract infections and bronchitis. As in most of infected children a single WUPyV infection was detected, it was suggested that the newly described polyomavirus can cause acute respiratory tract infection with atypical symptoms, including severe complications [99]. Nevertheless these data have to be confirmed in further studies.
The presence of WUPyV and KIPyV in samples from children but not from immunocompetent adults suffering from LRTIs suggests that these viruses primarily infect the young population [100]. A correlation between immunosuppression and reactivation of the two novel polyomaviruses has been suggested in immunocompromised patients [101] and in AIDS patients at the molecular level [102], but no evidence of a role of these viruses as opportunistic pathogens has been given.
Overall, these data support the hypothesis that, in analogy with BK and JC polyomaviruses, KIPyV and WUPyV can establish persistent infection, and that virus replication may increase in immunocompromised hosts. However, in a recent study on immunocompetent and immunocompromised adult patients, real-time PCR detected KIPyV and WUPyV in 2.6% and 4.6% of HIV-1–infected patients respectively and in 3.1% and 0.8% of blood donors respectively, while no association was found between CD4+ cell counts in HIV-1 positive patients and infection with KIPyV or WUPyV [103].
KIPyV and WUPyV are also incidentally detected in adults with community acquired pneumonia, in immunocompromised hosts, and in patients with lung cancer; they are more often found in patients suffering an underlying medical condition and coinfections with KIPyV and WUPyV with other respiratory viruses are common [92, 103, 104]. A recent study evaluating the prevalence and viral load of WUPyV and KIPyV in respiratory samples from immunocompromised and immunocompetent children showed that the prevalence of WUPyV and KIPyV is similar in hematology/oncology patients compared with that of the general pediatric population [105]. High co-detection rates with other respiratory viruses, mainly RSV and enterovirus or rhinovirus, were found for WUPyV and KIPyV in both groups, in analogy with previous reports. However, higher viral loads for KIPyV in the immunocompromised group were detected, suggesting that there may be an increased replication of this virus in this population.
A similar association was not observed for WUPyV. Furthermore, in the immunocompromised group, infection with either virus occurred in older children compared with controls, which may indicate viral-reactivation Table 1.

Rhinovirus, Enterovirus and Parechovirus

Rhinoviruses

HRVs are currently classified in the Picornaviridae family, genus Enterovirus, that includes 3 species: HRV-A, HRV-B, and HRV-C. Within each species there are multiple HRVs designated as “serotypes”, “types”, or “strains”. Several recent epidemiological studies suggest that HRV-A and HRV-C are the predominant species associated with acute respiratory illnesses in hospitalized children and adults, compared to HRV-B which are rarely detected [106].
The new HRV lineage designated HRV-C has been identified using molecular methods and associated with severe clinical presentations in infants and immunocompromised adults. Symptoms of patients infected with this new strain were mainly bronchiolitis, wheezing, and asthmatic exacerbation in cases from Australia and Hong Kong, which peaked in fall and winter whereas in New York the new rhinovirus genotype was detected in cases of influenza like illness (ILI) that were clustered within an 8-week period from October to December [62, 107, 108]. A recent study describes a clinical case of severe respiratory and pericardial disease in an infant infected by HRV-C suggesting tha viral tropism is not strictly restricted to the respiratory tract [109]. A study focusing on the global distribution of novel rhinovirus indicates its association with community outbreaks and pediatric respiratory disease also in Africa and in symptomatic subjects living in remote locations having limited contacts with other human populations. Moreover evidence for a role of HRV-C in lower respiratory tract disease and febrile wheeze in infants and asthma exacerbations in older children was reported [110114]. Recent studies making comparisons between HRVs species, found the HRV Cs more so than As or Bs as the major contributors to febrile wheeze and asthma exacerbation in infants and children, respectively . However, the severity of clinical manifestations for HRV-C is comparable to that for HRV-A in children with community-acquired pneumonia [115]. In HRV C studies so far, no clear clinical difference has been noted between patients with single or mixed HRV-C infection [111, 113, 116]. In a study, monoinfection was observed in more than half of cases and was more common than RSV monoinfection in patients with upper RTD, however the duration of hospitalizations was not significantly different between the HRV-C monoinfection group, HRV-A or HRV-B monoinfection group and RSV group suggesting that HRV-C is an important etiological factor in children with RTI [117]. Most HRV-C co-detections are with RSV [113, 117119], however in a large study HRVs were statistically the least likely virus of 17 examined to be associated with co-infections [120] Table 1.

Enteroviruses

A novel HEV (EV104) genotype was first identified in Switzerland in 2010 from respiratory samples collected during 2004–2007 in 8 children with respiratory signs and symptoms and acute otitis media [121]. In a following epidemiologic study conducted in Italy, five strains of the new EV104 genotype were detected in patients with respiratory diseases [122]. Patients were aged 2 to 62 years and most had underlying diseases; in immunocompetent patients EV104 was associated with chronic rhinopharyngytis, whereas in immunocompromised patients with symptoms of acute respiratory tract infection including wheezing, fever and rhinorrhea. Only in one out of 5 patients a coinfecting virus was detected.
EV109 was first discovered from a case of acute respiratory illness in a Nicaraguan child in September 2010; EV109 isolates were then detected in 1.6% of respiratory samples of children with influenza like illness (ILI) in Managua, and recognized to have a pathogenetic role in the illness [2]. After this characterization, a species C of HEV distantly related to EV109 was retrieved from a rectal swab of a deceased patient during an outbreak of flaccid paralysis in Congo; in this sample poliovirus and other neurologic, enteric and respiratory viral pathogens were not detected [123]. The global distribution of EV 109 is currently unknown and only a few studies have been performed yet to evaluate epidemiological features of this infection. [124, 125] To date the pathogenic role of these new enterovirus strains has still to be defined in larger clinical and epidemiological surveys Table 1.

Parechoviruses

There are fourteen known HPeV genotypes that were isolated mainly in young children [126134]
Two recent studies have investigated the involvement of HPeVs in respiratory diseases reporting a low frequency of detection and a lack of clear disease association [135, 136]. Both studies detected HPeV infections mostly in children below 5 years and the most commonly identified parechoviruses were HPeV1 and HPeV3, while HPeV4, HPeV 5 and HPeV 6 were detected in a minority of cases. However, in addition to a low HPeVs prevalence in respiratory samples, a high rate of co-infection with other respiratory viruses was observed in HPeV positive samples, making it difficult to define a pathogenic role of these new HPeV genotypes in child respiratory infections.

Pandemic A/H1N1v influenza 2009

In March 2009, a novel reassortant influenza strain (A/H1N1v) was discovered in Mexico as an infective agent in humans [137, 138]. From April 15 through May 5, 2009, a total of 642 confirmed cases of human infection with the outbreak strain of H1N1v were identified in 41 states in the USA [139, 140]. Of the patients with confirmed infection, 9% required hospitalization. The age of hospitalized patients ranged from 19 months to 51 years and among the hospitalized patients for whom data were available, 18% were children under the age of 5 years. Multiple reports have described the clinical features of infection with this novel virus, which are similar or milder to those of seasonal influenza, [141, 142]. The spectrum of clinical presentation varies from self limiting respiratory tract illness in most cases, to primary viral pneumonia resulting in respiratory failure, acute respiratory distress, multi-organ failure and death, most of them occurring in patients with underlying medical conditions [142].
During the A/H1N1v flu wave, due mainly to the lack of cross-neutralizing anti-influenza antibodies [143, 144] or the presence of co-morbidities, more children and younger adults were infected by the pandemic flu strain and had serious disease than in the seasonal epidemic. For this reason they were identified as a particular risk group, together with pregnant women [145, 146]. Young children presented a higher attack rate than older adults and a greater mortality rate than previously observed with classical seasonal flu [147, 148]. In a study conducted in England from June 2009 to March 2010, a childhood mortality rate of 6 per million population was reported. The rate was highest for children less than 1 year and with severe pre-existing disorders [149]. Similar data are reported in other studies highlighting that most severe cases occurred in children with known comorbidities [150153].
The occurrence of co-infection with influenza A H1N1v and other respiratory viruses has been reported in few studies. In a study conducted in France and aimed at investigating respiratory pathogens involved in ILI during the early weeks of the 2009–29010 H1N1v diffusion, 19% of samples positive for H1N1v were also positive for other respiratory pathogens. In mixed infections, HRV was the more frequent co-pathogen being detected in 13.2% of all samples positive for H1N1v [154]. However, HRV infections represented nearly half of non-H1N1v viral infections and the increase of H1N1v positive cases was associated with a rapid decline of HRV infections. In addition, the frequency of virus co-infection was slightly but not significantly higher in samples positive for H1N1v as compared with samples positive for other respiratory pathogens and viral mixed infection both with H1N1v and other viruses was not associated with a different clinical presentation. Similar co-infection data are reported in a prospective study evaluating a combination of two RT-PCR DNA microarray systems in virological routine diagnosis of ILI [155]. In both studies conducted in France, in the same H1N1v early pandemic period, few RSV infections were reported compared with epidemiological data in the same period of the last four years. The delayed and reduced circulation of RSV observed in 2009–10 compared with 2008–09 suggests that the early circulation of the 2009 pandemic influenza A(H1N1) viruses had an impact on the RSV epidemic [156]. A significant inverse relationship between HRV and A H1N1 pandemic virus was also reported, suggesting that the presence of HRV reduces the risk of infection by the H1N1 virus and thus, indirectly, the spread of the virus [156] Table 1.

Orphan viruses

Torque tenovirus (TTV), is classified in the new genus Anellovirus[157]. TTV produces long-lasting (possibly life-long) viremia in about 80% of apparently healthy individuals of all ages and living in different countries[158]. Although no evidence was obtained that TTV is a direct cause of acute respiratory diseases, it was observed that average viral loads are considerably higher in children with bronchopneumonia than in children with milder illnesses, regardless of the presence of common respiratory viruses [159]. Further studies could not confirm the association, but documented a link between TTV infection in children and asthma, suggesting that TTV might be a contributing factor in the lung impairment caused by this condition [160]. Finally, it was documented that TTV is able to infect respiratory ciliated cells and that these cells are potentially able to support viral replication [161]. Far from being conclusive, the data suggest that these viruses may replicate efficiently in the respiratory tract of children with and without acute respiratory infections by other respiratory viruses, and that although TTV does not have a clear pathogenic role in acute respiratory diseases, it may influence the clinical presentation of the disease.

Conclusions

Over the past 10 years, advances in scientific knowledge and the availability of new technologies have deeply changed our views in the field of respiratory viral infections. In particular, the identification of new viruses or viral strains has allowed to better define the viral etiology in many respiratory diseases where the viral pathogen was only hypothesized or suspected.
Molecular virological diagnosis has thus gained an increasing importance with the development of novel molecular assays, in some cases able to detect many respiratory viruses simultaneously.
Nevertheless, despite the availability of novel diagnostic assays, data are still controversial regarding the role of coinfection in a more severe clinical outcome in comparison to single infections.
In this context, even though specific antiviral compounds or vaccines are being developed, the level of accuracy and the associated higher costs of complex molecular assays to highlight the presence of one or more viruses in the same samples, are often considered not to be clinically necessary.
However, some important considerations emphasize the importance of implementing diagnostic approaches that allow the identification of the greatest number of newly identified or emerging viral respiratory pathogens. Firstly, the use of diagnostic assays able to simultaneously detect more respiratory viruses, including the newly identified ones, and in some cases their load, will help to clarify virus-host interactions which are still partially unknown, in particular in hospitalized patients. This will allow to develop appropriate control measures for nosocomial infection containment. Moreover, in many cases respiratory viruses pave the way to severe secondary bacterial infections. Thus the rapid identification of viral pathogens may help to limit disease progression and to plan appropriate monitoring and patient management in defined clinical settings. Furthermore, rapid and reliable screening with large panel of respiratory viruses responsible for upper and lower RTIs is of major epidemiological and clinical interest for monitoring influenza pandemic waves or unexpected respiratory outbreaks.
In addition, in the case of emerging viral strains as well as for enteroviruses, parechovirus or rhinoviruses the subsequent or simultaneous circulation of genetically distinct strains with distinct pathogenic potential, suggests a high risk for repeated pediatric respiratory infections as well as the possibility of genetic recombination within species. In these cases, the continuous development of quantitative assays associated with viral genotyping assays will allow the rapid and valuable etiological diagnosis of enterovirus, parechovirus or rhinovirus childhood infections, helping to prevent both nosocomial transmission and to control the emergence of new respiratory strains with unpredictable pathogenic potential.

Authors’ information

Maurizia Debiaggi graduated with a first-class degree in Biological Sciences at the University of Pavia in 1984. From 1984 to 1991, following the award of a Research Grant in the area of infectious diseases, she worked in the Department of Microbiology, University of Pavia. In these years she acquired skills in molecular virology and diagnostic microbiology. Since November 1992 she is Researcher at the Department of Clinical and Diagnostic Sciences, Unit of Microbiology, University of Pavia. Her scientific activity has been mainly intent on molecular virology studies; she focused on the molecular epidemiology of emerging viruses such as the novel Human Metapneumovirus, NL-63 and HKU1 coronaviruses and the human Bocavirus. Her teaching activity is currently held in the official courses of Medical Microbiology for medical students as well as for students obtaining their Degree in Medical Biothecnologies at the Medical School of the University of Pavia.
Filippo Canducci graduated in Medicine Cum Laude (Universtà Cattolica, Roma) in 2001. In 2005 he became PhD in Pharmacology, Chemotherapy and Microbiology (University of Trieste). In 2008 he specialized in Microbiology and Virology at the Università Vita-Salute San Raffaele where since 2009 he is Contract Professor in Microbiology. In 2003, he isolated and characterized the SARS Coronavirus strain HSR1 and in 2004 he was awarded by the Carlo Urbani Foundation. Dr Canducci has studied the prevalence and variability of emerging respiratory viruses such as the human Metapneumovirus, the Coronvaviruses NL-63 and HKU1, human Bocavirus and pandemic Influenza A virus. Since 2003 he has studied HIV-1 infection in vitro in vivo by original phenotypic assays. Dr Canducci is now also leading a research group to study the pathogenetic mechanisms of atherosclerosis. In 2010 Dr Canducci was granted the Young Investigators Grant from the Italian Ministry of Health.
Elisa Rita Ceresola graduated cum laude in Biological Sciences at the Università Vita-Salute San Raffaele in 2009. She is currently specializing in Microbiology and Virology in the same University. Elisa Rita Ceresola has focused her research on the epidemiology and molecular variability of emerging respiratory viruses and on optimization of molecular assays to characterize HIV-1 infection in vitro and ex-vivo.
Massimo Clementi is Dean of the Faculty of Medicine and Professor of Microbiology and Virology at the Università Vita-Salute San Raffaele. He is chief of the Laboratory of Microbiology and Virology, Diagnostica e Ricerca San Raffaele, Milan, Italy. He has research interests in the virus-host interplay in the course human immunodeficiency virus and of hepatitis C virus infections, in the microbiology of emerging respiratory infectious diseases, and in infections of immunocompromised patients.

Acknowledgements

This paper was partially funded by the Italian Ministry of University and Research. Tha Authors are grateful to Dr Shireen Merli for language revision.
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

MD, FC, MC wrote the manuscript. ERC organized the table. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Woo PC, Lau SK, Chu CM, Chan KH, Tsoi HW, Huang Y, Wong BH, Poon RW, Cai JJ, Luk WK, et al: Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol. 2005, 79: 884-895. 10.1128/JVI.79.2.884-895.2005.PubMedPubMedCentral Woo PC, Lau SK, Chu CM, Chan KH, Tsoi HW, Huang Y, Wong BH, Poon RW, Cai JJ, Luk WK, et al: Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol. 2005, 79: 884-895. 10.1128/JVI.79.2.884-895.2005.PubMedPubMedCentral
2.
Zurück zum Zitat Yozwiak NL, Skewes-Cox P, Gordon A, Saborio S, Kuan G, Balmaseda A, Ganem D, Harris E, DeRisi JL: Human enterovirus 109: a novel interspecies recombinant enterovirus isolated from a case of acute pediatric respiratory illness in Nicaragua. J Virol. 2010, 84: 9047-9058. 10.1128/JVI.00698-10.PubMedPubMedCentral Yozwiak NL, Skewes-Cox P, Gordon A, Saborio S, Kuan G, Balmaseda A, Ganem D, Harris E, DeRisi JL: Human enterovirus 109: a novel interspecies recombinant enterovirus isolated from a case of acute pediatric respiratory illness in Nicaragua. J Virol. 2010, 84: 9047-9058. 10.1128/JVI.00698-10.PubMedPubMedCentral
3.
Zurück zum Zitat van der Hoek L, Pyrc K, Jebbink MF, Vermeulen-Oost W, Berkhout RJ, Wolthers KC: Wertheim-van Dillen PM, Kaandorp J, Spaargaren J, Berkhout B: Identification of a new human coronavirus. Nat Med. 2004, 10: 368-373. 10.1038/nm1024.PubMed van der Hoek L, Pyrc K, Jebbink MF, Vermeulen-Oost W, Berkhout RJ, Wolthers KC: Wertheim-van Dillen PM, Kaandorp J, Spaargaren J, Berkhout B: Identification of a new human coronavirus. Nat Med. 2004, 10: 368-373. 10.1038/nm1024.PubMed
4.
Zurück zum Zitat van den Hoogen BG, de Jong JC, Groen J, Kuiken T, de Groot R, Fouchier RA, Osterhaus AD: A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat Med. 2001, 7: 719-724. 10.1038/89098.PubMed van den Hoogen BG, de Jong JC, Groen J, Kuiken T, de Groot R, Fouchier RA, Osterhaus AD: A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat Med. 2001, 7: 719-724. 10.1038/89098.PubMed
5.
Zurück zum Zitat Allander T, Andreasson K, Gupta S, Bjerkner A, Bogdanovic G, Persson MA, Dalianis T, Ramqvist T, Andersson B: Identification of a third human polyomavirus. J Virol. 2007, 81: 4130-4136. 10.1128/JVI.00028-07.PubMedPubMedCentral Allander T, Andreasson K, Gupta S, Bjerkner A, Bogdanovic G, Persson MA, Dalianis T, Ramqvist T, Andersson B: Identification of a third human polyomavirus. J Virol. 2007, 81: 4130-4136. 10.1128/JVI.00028-07.PubMedPubMedCentral
6.
Zurück zum Zitat Allander T, Tammi MT, Eriksson M, Bjerkner A, Tiveljung-Lindell A, Andersson B: Cloning of a human parvovirus by molecular screening of respiratory tract samples. Proc Natl Acad Sci U S A. 2005, 102: 12891-12896. 10.1073/pnas.0504666102.PubMedPubMedCentral Allander T, Tammi MT, Eriksson M, Bjerkner A, Tiveljung-Lindell A, Andersson B: Cloning of a human parvovirus by molecular screening of respiratory tract samples. Proc Natl Acad Sci U S A. 2005, 102: 12891-12896. 10.1073/pnas.0504666102.PubMedPubMedCentral
7.
Zurück zum Zitat Gaynor AM, Nissen MD, Whiley DM, Mackay IM, Lambert SB, Wu G, Brennan DC, Storch GA, Sloots TP, Wang D: Identification of a novel polyomavirus from patients with acute respiratory tract infections. PLoS Pathog. 2007, 3: e64-10.1371/journal.ppat.0030064.PubMedPubMedCentral Gaynor AM, Nissen MD, Whiley DM, Mackay IM, Lambert SB, Wu G, Brennan DC, Storch GA, Sloots TP, Wang D: Identification of a novel polyomavirus from patients with acute respiratory tract infections. PLoS Pathog. 2007, 3: e64-10.1371/journal.ppat.0030064.PubMedPubMedCentral
8.
Zurück zum Zitat Mahony JB: Detection of respiratory viruses by molecular methods. Clin Microbiol Rev. 2008, 21: 716-747. 10.1128/CMR.00037-07.PubMedPubMedCentral Mahony JB: Detection of respiratory viruses by molecular methods. Clin Microbiol Rev. 2008, 21: 716-747. 10.1128/CMR.00037-07.PubMedPubMedCentral
9.
Zurück zum Zitat Jartti L, Langen H, Soderlund-Venermo M, Vuorinen T, Ruuskanen O, Jartti T: New respiratory viruses and the elderly. Open Respir Med J. 2011, 5: 61-69. 10.2174/1874306401105010061.PubMedPubMedCentral Jartti L, Langen H, Soderlund-Venermo M, Vuorinen T, Ruuskanen O, Jartti T: New respiratory viruses and the elderly. Open Respir Med J. 2011, 5: 61-69. 10.2174/1874306401105010061.PubMedPubMedCentral
10.
Zurück zum Zitat Sloots TP, Whiley DM, Lambert SB, Nissen MD: Emerging respiratory agents: new viruses for old diseases?. J Clin Virol. 2008, 42: 233-243. 10.1016/j.jcv.2008.03.002.PubMed Sloots TP, Whiley DM, Lambert SB, Nissen MD: Emerging respiratory agents: new viruses for old diseases?. J Clin Virol. 2008, 42: 233-243. 10.1016/j.jcv.2008.03.002.PubMed
11.
Zurück zum Zitat Tregoning JS, Schwarze J: Respiratory viral infections in infants: causes, clinical symptoms, virology, and immunology. Clin Microbiol Rev. 2010, 23: 74-98. 10.1128/CMR.00032-09.PubMedPubMedCentral Tregoning JS, Schwarze J: Respiratory viral infections in infants: causes, clinical symptoms, virology, and immunology. Clin Microbiol Rev. 2010, 23: 74-98. 10.1128/CMR.00032-09.PubMedPubMedCentral
12.
Zurück zum Zitat Jartti T, van den Hoogen B, Garofalo RP, Osterhaus AD, Ruuskanen O: Metapneumovirus and acute wheezing in children. Lancet. 2002, 360: 1393-1394. 10.1016/S0140-6736(02)11391-2.PubMed Jartti T, van den Hoogen B, Garofalo RP, Osterhaus AD, Ruuskanen O: Metapneumovirus and acute wheezing in children. Lancet. 2002, 360: 1393-1394. 10.1016/S0140-6736(02)11391-2.PubMed
13.
Zurück zum Zitat Falsey AR, Erdman D, Anderson LJ, Walsh EE: Human metapneumovirus infections in young and elderly adults. J Infect Dis. 2003, 187: 785-790. 10.1086/367901.PubMed Falsey AR, Erdman D, Anderson LJ, Walsh EE: Human metapneumovirus infections in young and elderly adults. J Infect Dis. 2003, 187: 785-790. 10.1086/367901.PubMed
14.
Zurück zum Zitat Stockton J, Stephenson I, Fleming D, Zambon M: Human metapneumovirus as a cause of community-acquired respiratory illness. Emerg Infect Dis. 2002, 8: 897-901. 10.3201/eid0809.020084.PubMedPubMedCentral Stockton J, Stephenson I, Fleming D, Zambon M: Human metapneumovirus as a cause of community-acquired respiratory illness. Emerg Infect Dis. 2002, 8: 897-901. 10.3201/eid0809.020084.PubMedPubMedCentral
15.
Zurück zum Zitat Boivin G, Abed Y, Pelletier G, Ruel L, Moisan D, Cote S, Peret TC, Erdman DD, Anderson LJ: Virological features and clinical manifestations associated with human metapneumovirus: a new paramyxovirus responsible for acute respiratory-tract infections in all age groups. J Infect Dis. 2002, 186: 1330-1334. 10.1086/344319.PubMed Boivin G, Abed Y, Pelletier G, Ruel L, Moisan D, Cote S, Peret TC, Erdman DD, Anderson LJ: Virological features and clinical manifestations associated with human metapneumovirus: a new paramyxovirus responsible for acute respiratory-tract infections in all age groups. J Infect Dis. 2002, 186: 1330-1334. 10.1086/344319.PubMed
16.
Zurück zum Zitat Boivin G, De Serres G, Cote S, Gilca R, Abed Y, Rochette L, Bergeron MG, Dery P: Human metapneumovirus infections in hospitalized children. Emerg Infect Dis. 2003, 9: 634-640. 10.3201/eid0906.030017.PubMedPubMedCentral Boivin G, De Serres G, Cote S, Gilca R, Abed Y, Rochette L, Bergeron MG, Dery P: Human metapneumovirus infections in hospitalized children. Emerg Infect Dis. 2003, 9: 634-640. 10.3201/eid0906.030017.PubMedPubMedCentral
17.
Zurück zum Zitat Wilkesmann A, Schildgen O, Eis-Hubinger AM, Geikowski T, Glatzel T, Lentze MJ, Bode U, Simon A: Human metapneumovirus infections cause similar symptoms and clinical severity as respiratory syncytial virus infections. Eur J Pediatr. 2006, 165: 467-475. 10.1007/s00431-006-0105-4.PubMed Wilkesmann A, Schildgen O, Eis-Hubinger AM, Geikowski T, Glatzel T, Lentze MJ, Bode U, Simon A: Human metapneumovirus infections cause similar symptoms and clinical severity as respiratory syncytial virus infections. Eur J Pediatr. 2006, 165: 467-475. 10.1007/s00431-006-0105-4.PubMed
18.
Zurück zum Zitat Williams JV, Wang CK, Yang CF, Tollefson SJ, House FS, Heck JM, Chu M, Brown JB, Lintao LD, Quinto JD, et al: The role of human metapneumovirus in upper respiratory tract infections in children: a 20-year experience. J Infect Dis. 2006, 193: 387-395. 10.1086/499274.PubMedPubMedCentral Williams JV, Wang CK, Yang CF, Tollefson SJ, House FS, Heck JM, Chu M, Brown JB, Lintao LD, Quinto JD, et al: The role of human metapneumovirus in upper respiratory tract infections in children: a 20-year experience. J Infect Dis. 2006, 193: 387-395. 10.1086/499274.PubMedPubMedCentral
19.
Zurück zum Zitat van den Hoogen BG, van Doornum GJ, Fockens JC, Cornelissen JJ, Beyer WE, de Groot R, Osterhaus AD, Fouchier RA: Prevalence and clinical symptoms of human metapneumovirus infection in hospitalized patients. J Infect Dis. 2003, 188: 1571-1577. 10.1086/379200.PubMed van den Hoogen BG, van Doornum GJ, Fockens JC, Cornelissen JJ, Beyer WE, de Groot R, Osterhaus AD, Fouchier RA: Prevalence and clinical symptoms of human metapneumovirus infection in hospitalized patients. J Infect Dis. 2003, 188: 1571-1577. 10.1086/379200.PubMed
20.
Zurück zum Zitat Sasaki A, Suzuki H, Saito R, Sato M, Sato I, Sano Y, Uchiyama M: Prevalence of human metapneumovirus and influenza virus infections among Japanese children during two successive winters. Pediatr Infect Dis J. 2005, 24: 905-908. 10.1097/01.inf.0000180984.61778.1e.PubMed Sasaki A, Suzuki H, Saito R, Sato M, Sato I, Sano Y, Uchiyama M: Prevalence of human metapneumovirus and influenza virus infections among Japanese children during two successive winters. Pediatr Infect Dis J. 2005, 24: 905-908. 10.1097/01.inf.0000180984.61778.1e.PubMed
21.
Zurück zum Zitat Laham FR, Israele V, Casellas JM, Garcia AM, Lac Prugent CM, Hoffman SJ, Hauer D, Thumar B, Name MI, Pascual A, et al: Differential production of inflammatory cytokines in primary infection with human metapneumovirus and with other common respiratory viruses of infancy. J Infect Dis. 2004, 189: 2047-2056. 10.1086/383350.PubMed Laham FR, Israele V, Casellas JM, Garcia AM, Lac Prugent CM, Hoffman SJ, Hauer D, Thumar B, Name MI, Pascual A, et al: Differential production of inflammatory cytokines in primary infection with human metapneumovirus and with other common respiratory viruses of infancy. J Infect Dis. 2004, 189: 2047-2056. 10.1086/383350.PubMed
22.
Zurück zum Zitat Freymouth F, Vabret A, Legrand L, Eterradossi N, Lafay-Delaire F, Brouard J, Guillois B: Presence of the new human metapneumovirus in French children with bronchiolitis. Pediatr Infect Dis J. 2003, 22: 92-94. 10.1097/00006454-200301000-00024.PubMed Freymouth F, Vabret A, Legrand L, Eterradossi N, Lafay-Delaire F, Brouard J, Guillois B: Presence of the new human metapneumovirus in French children with bronchiolitis. Pediatr Infect Dis J. 2003, 22: 92-94. 10.1097/00006454-200301000-00024.PubMed
23.
Zurück zum Zitat Chano F, Rousseau C, Laferriere C, Couillard M, Charest H: Epidemiological survey of human metapneumovirus infection in a large pediatric tertiary care center. J Clin Microbiol. 2005, 43: 5520-5525. 10.1128/JCM.43.11.5520-5525.2005.PubMedPubMedCentral Chano F, Rousseau C, Laferriere C, Couillard M, Charest H: Epidemiological survey of human metapneumovirus infection in a large pediatric tertiary care center. J Clin Microbiol. 2005, 43: 5520-5525. 10.1128/JCM.43.11.5520-5525.2005.PubMedPubMedCentral
24.
25.
Zurück zum Zitat Apostoli P, Zicari S, Lo Presti A, Ciccozzi M, Ciotti M, Caruso A, Fiorentini S: Human metapneumovirus-associated hospital admissions over five consecutive epidemic seasons: evidence for alternating circulation of different genotypes. J Med Virol. 2011, 84: 511-516. Apostoli P, Zicari S, Lo Presti A, Ciccozzi M, Ciotti M, Caruso A, Fiorentini S: Human metapneumovirus-associated hospital admissions over five consecutive epidemic seasons: evidence for alternating circulation of different genotypes. J Med Virol. 2011, 84: 511-516.
26.
Zurück zum Zitat Schildgen O, Geikowski T, Glatzel T, Schuster J, Simon A: Frequency of human metapneumovirus in the upper respiratory tract of children with symptoms of an acute otitis media. Eur J Pediatr. 2005, 164: 400-401. 10.1007/s00431-005-1655-6.PubMed Schildgen O, Geikowski T, Glatzel T, Schuster J, Simon A: Frequency of human metapneumovirus in the upper respiratory tract of children with symptoms of an acute otitis media. Eur J Pediatr. 2005, 164: 400-401. 10.1007/s00431-005-1655-6.PubMed
27.
Zurück zum Zitat Suzuki A, Watanabe O, Okamoto M, Endo H, Yano H, Suetake M, Nishimura H: Detection of human metapneumovirus from children with acute otitis media. Pediatr Infect Dis J. 2005, 24: 655-657. 10.1097/01.inf.0000168755.01196.49.PubMed Suzuki A, Watanabe O, Okamoto M, Endo H, Yano H, Suetake M, Nishimura H: Detection of human metapneumovirus from children with acute otitis media. Pediatr Infect Dis J. 2005, 24: 655-657. 10.1097/01.inf.0000168755.01196.49.PubMed
28.
Zurück zum Zitat Heikkinen T, Osterback R, Peltola V, Jartti T, Vainionpaa R: Human metapneumovirus infections in children. Emerg Infect Dis. 2008, 14: 101-106. 10.3201/eid1401.070251.PubMedPubMedCentral Heikkinen T, Osterback R, Peltola V, Jartti T, Vainionpaa R: Human metapneumovirus infections in children. Emerg Infect Dis. 2008, 14: 101-106. 10.3201/eid1401.070251.PubMedPubMedCentral
29.
Zurück zum Zitat Esposito S: Management of community-acquired pneumonia in infants and children older than 3 months. Clin Infect Dis. 2011, 54: 884-885. Esposito S: Management of community-acquired pneumonia in infants and children older than 3 months. Clin Infect Dis. 2011, 54: 884-885.
30.
Zurück zum Zitat Xepapadaki P, Psarras S, Bossios A, Tsolia M, Gourgiotis D, Liapi-Adamidou G, Constantopoulos AG, Kafetzis D, Papadopoulos NG: Human Metapneumovirus as a causative agent of acute bronchiolitis in infants. J Clin Virol. 2004, 30: 267-270. 10.1016/j.jcv.2003.12.012.PubMed Xepapadaki P, Psarras S, Bossios A, Tsolia M, Gourgiotis D, Liapi-Adamidou G, Constantopoulos AG, Kafetzis D, Papadopoulos NG: Human Metapneumovirus as a causative agent of acute bronchiolitis in infants. J Clin Virol. 2004, 30: 267-270. 10.1016/j.jcv.2003.12.012.PubMed
31.
Zurück zum Zitat Viazov S, Ratjen F, Scheidhauer R, Fiedler M, Roggendorf M: High prevalence of human metapneumovirus infection in young children and genetic heterogeneity of the viral isolates. J Clin Microbiol. 2003, 41: 3043-3045. 10.1128/JCM.41.7.3043-3045.2003.PubMedPubMedCentral Viazov S, Ratjen F, Scheidhauer R, Fiedler M, Roggendorf M: High prevalence of human metapneumovirus infection in young children and genetic heterogeneity of the viral isolates. J Clin Microbiol. 2003, 41: 3043-3045. 10.1128/JCM.41.7.3043-3045.2003.PubMedPubMedCentral
32.
Zurück zum Zitat Williams JV, Harris PA, Tollefson SJ, Halburnt-Rush LL, Pingsterhaus JM, Edwards KM, Wright PF, Crowe JE: Human metapneumovirus and lower respiratory tract disease in otherwise healthy infants and children. N Engl J Med. 2004, 350: 443-450. 10.1056/NEJMoa025472.PubMedPubMedCentral Williams JV, Harris PA, Tollefson SJ, Halburnt-Rush LL, Pingsterhaus JM, Edwards KM, Wright PF, Crowe JE: Human metapneumovirus and lower respiratory tract disease in otherwise healthy infants and children. N Engl J Med. 2004, 350: 443-450. 10.1056/NEJMoa025472.PubMedPubMedCentral
33.
Zurück zum Zitat Esper F, Boucher D, Weibel C, Martinello RA, Kahn JS: Human metapneumovirus infection in the United States: clinical manifestations associated with a newly emerging respiratory infection in children. Pediatrics. 2003, 111: 1407-1410. 10.1542/peds.111.6.1407.PubMed Esper F, Boucher D, Weibel C, Martinello RA, Kahn JS: Human metapneumovirus infection in the United States: clinical manifestations associated with a newly emerging respiratory infection in children. Pediatrics. 2003, 111: 1407-1410. 10.1542/peds.111.6.1407.PubMed
34.
Zurück zum Zitat Canducci F, Debiaggi M, Sampaolo M, Marinozzi MC, Berre S, Terulla C, Gargantini G, Cambieri P, Romero E, Clementi M: Two-year prospective study of single infections and co-infections by respiratory syncytial virus and viruses identified recently in infants with acute respiratory disease. J Med Virol. 2008, 80: 716-723. 10.1002/jmv.21108.PubMed Canducci F, Debiaggi M, Sampaolo M, Marinozzi MC, Berre S, Terulla C, Gargantini G, Cambieri P, Romero E, Clementi M: Two-year prospective study of single infections and co-infections by respiratory syncytial virus and viruses identified recently in infants with acute respiratory disease. J Med Virol. 2008, 80: 716-723. 10.1002/jmv.21108.PubMed
35.
Zurück zum Zitat van Woensel JB, Bos AP, Lutter R, Rossen JW, Schuurman R: Absence of human metapneumovirus co-infection in cases of severe respiratory syncytial virus infection. Pediatr Pulmonol. 2006, 41: 872-874. 10.1002/ppul.20459.PubMed van Woensel JB, Bos AP, Lutter R, Rossen JW, Schuurman R: Absence of human metapneumovirus co-infection in cases of severe respiratory syncytial virus infection. Pediatr Pulmonol. 2006, 41: 872-874. 10.1002/ppul.20459.PubMed
36.
Zurück zum Zitat Greensill J, McNamara PS, Dove W, Flanagan B, Smyth RL, Hart CA: Human metapneumovirus in severe respiratory syncytial virus bronchiolitis. Emerg Infect Dis. 2003, 9: 372-375. 10.3201/eid0903.020289.PubMedPubMedCentral Greensill J, McNamara PS, Dove W, Flanagan B, Smyth RL, Hart CA: Human metapneumovirus in severe respiratory syncytial virus bronchiolitis. Emerg Infect Dis. 2003, 9: 372-375. 10.3201/eid0903.020289.PubMedPubMedCentral
37.
Zurück zum Zitat Semple MG, Cowell A, Dove W, Greensill J, McNamara PS, Halfhide C, Shears P, Smyth RL, Hart CA: Dual infection of infants by human metapneumovirus and human respiratory syncytial virus is strongly associated with severe bronchiolitis. J Infect Dis. 2005, 191: 382-386. 10.1086/426457.PubMed Semple MG, Cowell A, Dove W, Greensill J, McNamara PS, Halfhide C, Shears P, Smyth RL, Hart CA: Dual infection of infants by human metapneumovirus and human respiratory syncytial virus is strongly associated with severe bronchiolitis. J Infect Dis. 2005, 191: 382-386. 10.1086/426457.PubMed
38.
Zurück zum Zitat Foulongne V, Guyon G, Rodiere M, Segondy M: Human metapneumovirus infection in young children hospitalized with respiratory tract disease. Pediatr Infect Dis J. 2006, 25: 354-359. 10.1097/01.inf.0000207480.55201.f6.PubMed Foulongne V, Guyon G, Rodiere M, Segondy M: Human metapneumovirus infection in young children hospitalized with respiratory tract disease. Pediatr Infect Dis J. 2006, 25: 354-359. 10.1097/01.inf.0000207480.55201.f6.PubMed
39.
Zurück zum Zitat Konig B, Konig W, Arnold R, Werchau H, Ihorst G, Forster J: Prospective study of human metapneumovirus infection in children less than 3 years of age. J Clin Microbiol. 2004, 42: 4632-4635. 10.1128/JCM.42.10.4632-4635.2004.PubMedPubMedCentral Konig B, Konig W, Arnold R, Werchau H, Ihorst G, Forster J: Prospective study of human metapneumovirus infection in children less than 3 years of age. J Clin Microbiol. 2004, 42: 4632-4635. 10.1128/JCM.42.10.4632-4635.2004.PubMedPubMedCentral
40.
Zurück zum Zitat Maggi F, Pifferi M, Vatteroni M, Fornai C, Tempestini E, Anzilotti S, Lanini L, Andreoli E, Ragazzo V, Pistello M, et al: Human metapneumovirus associated with respiratory tract infections in a 3-year study of nasal swabs from infants in Italy. J Clin Microbiol. 2003, 41: 2987-2991. 10.1128/JCM.41.7.2987-2991.2003.PubMedPubMedCentral Maggi F, Pifferi M, Vatteroni M, Fornai C, Tempestini E, Anzilotti S, Lanini L, Andreoli E, Ragazzo V, Pistello M, et al: Human metapneumovirus associated with respiratory tract infections in a 3-year study of nasal swabs from infants in Italy. J Clin Microbiol. 2003, 41: 2987-2991. 10.1128/JCM.41.7.2987-2991.2003.PubMedPubMedCentral
41.
Zurück zum Zitat Wolf DG, Greenberg D, Kalkstein D, Shemer-Avni Y, Givon-Lavi N, Saleh N, Goldberg MD, Dagan R: Comparison of human metapneumovirus, respiratory syncytial virus and influenza A virus lower respiratory tract infections in hospitalized young children. Pediatr Infect Dis J. 2006, 25: 320-324. 10.1097/01.inf.0000207395.80657.cf.PubMed Wolf DG, Greenberg D, Kalkstein D, Shemer-Avni Y, Givon-Lavi N, Saleh N, Goldberg MD, Dagan R: Comparison of human metapneumovirus, respiratory syncytial virus and influenza A virus lower respiratory tract infections in hospitalized young children. Pediatr Infect Dis J. 2006, 25: 320-324. 10.1097/01.inf.0000207395.80657.cf.PubMed
42.
Zurück zum Zitat Lazar I, Weibel C, Dziura J, Ferguson D, Landry ML, Kahn JS: Human metapneumovirus and severity of respiratory syncytial virus disease. Emerg Infect Dis. 2004, 10: 1318-1320. 10.3201/eid1007.030983.PubMedPubMedCentral Lazar I, Weibel C, Dziura J, Ferguson D, Landry ML, Kahn JS: Human metapneumovirus and severity of respiratory syncytial virus disease. Emerg Infect Dis. 2004, 10: 1318-1320. 10.3201/eid1007.030983.PubMedPubMedCentral
43.
Zurück zum Zitat Poutanen SM, Low DE, Henry B, Finkelstein S, Rose D, Green K, Tellier R, Draker R, Adachi D, Ayers M, et al: Identification of severe acute respiratory syndrome in Canada. N Engl J Med. 2003, 348: 1995-2005. 10.1056/NEJMoa030634.PubMed Poutanen SM, Low DE, Henry B, Finkelstein S, Rose D, Green K, Tellier R, Draker R, Adachi D, Ayers M, et al: Identification of severe acute respiratory syndrome in Canada. N Engl J Med. 2003, 348: 1995-2005. 10.1056/NEJMoa030634.PubMed
44.
Zurück zum Zitat Chan PK, Tam JS, Lam CW, Chan E, Wu A, Li CK, Buckley TA, Ng KC, Joynt GM, Cheng FW, et al: Human metapneumovirus detection in patients with severe acute respiratory syndrome. Emerg Infect Dis. 2003, 9: 1058-1063. 10.3201/eid0909.030304.PubMedPubMedCentral Chan PK, Tam JS, Lam CW, Chan E, Wu A, Li CK, Buckley TA, Ng KC, Joynt GM, Cheng FW, et al: Human metapneumovirus detection in patients with severe acute respiratory syndrome. Emerg Infect Dis. 2003, 9: 1058-1063. 10.3201/eid0909.030304.PubMedPubMedCentral
45.
Zurück zum Zitat Fouchier RA, Kuiken T, Schutten M, van Amerongen G, van Doornum GJ, van den Hoogen BG, Peiris M, Lim W, Stohr K, Osterhaus AD: Aetiology: Koch's postulates fulfilled for SARS virus. Nature. 2003, 423: 240-10.1038/423240a.PubMed Fouchier RA, Kuiken T, Schutten M, van Amerongen G, van Doornum GJ, van den Hoogen BG, Peiris M, Lim W, Stohr K, Osterhaus AD: Aetiology: Koch's postulates fulfilled for SARS virus. Nature. 2003, 423: 240-10.1038/423240a.PubMed
46.
Zurück zum Zitat Choi EH, Lee HJ, Kim SJ, Eun BW, Kim NH, Lee JA, Lee JH, Song EK, Kim SH, Park JY, Sung JY: The association of newly identified respiratory viruses with lower respiratory tract infections in Korean children, 2000–2005. Clin Infect Dis. 2006, 43: 585-592. 10.1086/506350.PubMed Choi EH, Lee HJ, Kim SJ, Eun BW, Kim NH, Lee JA, Lee JH, Song EK, Kim SH, Park JY, Sung JY: The association of newly identified respiratory viruses with lower respiratory tract infections in Korean children, 2000–2005. Clin Infect Dis. 2006, 43: 585-592. 10.1086/506350.PubMed
47.
Zurück zum Zitat Franz A, Adams O, Willems R, Bonzel L, Neuhausen N, Schweizer-Krantz S, Ruggeberg JU, Willers R, Henrich B, Schroten H, Tenenbaum T: Correlation of viral load of respiratory pathogens and co-infections with disease severity in children hospitalized for lower respiratory tract infection. J Clin Virol. 2010, 48: 239-245. 10.1016/j.jcv.2010.05.007.PubMed Franz A, Adams O, Willems R, Bonzel L, Neuhausen N, Schweizer-Krantz S, Ruggeberg JU, Willers R, Henrich B, Schroten H, Tenenbaum T: Correlation of viral load of respiratory pathogens and co-infections with disease severity in children hospitalized for lower respiratory tract infection. J Clin Virol. 2010, 48: 239-245. 10.1016/j.jcv.2010.05.007.PubMed
48.
Zurück zum Zitat Pyrc K, Sims AC, Dijkman R, Jebbink M, Long C, Deming D, Donaldson E, Vabret A, Baric R, van der Hoek L, Pickles R: Culturing the unculturable: human coronavirus HKU1 infects, replicates, and produces progeny virions in human ciliated airway epithelial cell cultures. J Virol. 2010, 84: 11255-11263. 10.1128/JVI.00947-10.PubMedPubMedCentral Pyrc K, Sims AC, Dijkman R, Jebbink M, Long C, Deming D, Donaldson E, Vabret A, Baric R, van der Hoek L, Pickles R: Culturing the unculturable: human coronavirus HKU1 infects, replicates, and produces progeny virions in human ciliated airway epithelial cell cultures. J Virol. 2010, 84: 11255-11263. 10.1128/JVI.00947-10.PubMedPubMedCentral
49.
Zurück zum Zitat Bastien N, Anderson K, Hart L, Van Caeseele P, Brandt K, Milley D, Hatchette T, Weiss EC, Li Y: Human coronavirus NL63 infection in Canada. J Infect Dis. 2005, 191: 503-506. 10.1086/426869.PubMed Bastien N, Anderson K, Hart L, Van Caeseele P, Brandt K, Milley D, Hatchette T, Weiss EC, Li Y: Human coronavirus NL63 infection in Canada. J Infect Dis. 2005, 191: 503-506. 10.1086/426869.PubMed
50.
Zurück zum Zitat Pyrc K, Berkhout B, van der Hoek L: The novel human coronaviruses NL63 and HKU1. J Virol. 2007, 81: 3051-3057. 10.1128/JVI.01466-06.PubMedPubMedCentral Pyrc K, Berkhout B, van der Hoek L: The novel human coronaviruses NL63 and HKU1. J Virol. 2007, 81: 3051-3057. 10.1128/JVI.01466-06.PubMedPubMedCentral
51.
Zurück zum Zitat Gaunt ER, Hardie A, Claas EC, Simmonds P, Templeton KE: Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method. J Clin Microbiol. 2010, 48: 2940-2947. 10.1128/JCM.00636-10.PubMedPubMedCentral Gaunt ER, Hardie A, Claas EC, Simmonds P, Templeton KE: Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method. J Clin Microbiol. 2010, 48: 2940-2947. 10.1128/JCM.00636-10.PubMedPubMedCentral
52.
Zurück zum Zitat Vabret A, Mourez T, Dina J, van der Hoek L, Gouarin S, Petitjean J, Brouard J, Freymuth F: Human coronavirus NL63, France. Emerg Infect Dis. 2005, 11: 1225-1229. 10.3201/eid1108.050110.PubMedPubMedCentral Vabret A, Mourez T, Dina J, van der Hoek L, Gouarin S, Petitjean J, Brouard J, Freymuth F: Human coronavirus NL63, France. Emerg Infect Dis. 2005, 11: 1225-1229. 10.3201/eid1108.050110.PubMedPubMedCentral
53.
Zurück zum Zitat Koetz A, Nilsson P, Linden M, van der Hoek L, Ripa T: Detection of human coronavirus NL63, human metapneumovirus and respiratory syncytial virus in children with respiratory tract infections in south-west Sweden. Clin Microbiol Infect. 2006, 12: 1089-1096. 10.1111/j.1469-0691.2006.01506.x.PubMed Koetz A, Nilsson P, Linden M, van der Hoek L, Ripa T: Detection of human coronavirus NL63, human metapneumovirus and respiratory syncytial virus in children with respiratory tract infections in south-west Sweden. Clin Microbiol Infect. 2006, 12: 1089-1096. 10.1111/j.1469-0691.2006.01506.x.PubMed
54.
Zurück zum Zitat Jin Y, Zhang RF, Xie ZP, Yan KL, Gao HC, Song JR, Yuan XH, Cheng WX, Hou YD, Duan ZJ: Newly identified respiratory viruses associated with acute lower respiratory tract infections in children in Lanzou, China, from 2006 to 2009. Clin Microbiol Infect. 2011, 18: 74-80.PubMed Jin Y, Zhang RF, Xie ZP, Yan KL, Gao HC, Song JR, Yuan XH, Cheng WX, Hou YD, Duan ZJ: Newly identified respiratory viruses associated with acute lower respiratory tract infections in children in Lanzou, China, from 2006 to 2009. Clin Microbiol Infect. 2011, 18: 74-80.PubMed
55.
Zurück zum Zitat Chiu SS, Chan KH, Chu KW, Kwan SW, Guan Y, Poon LL, Peiris JS: Human coronavirus NL63 infection and other coronavirus infections in children hospitalized with acute respiratory disease in Hong Kong, China. Clin Infect Dis. 2005, 40: 1721-1729. 10.1086/430301.PubMed Chiu SS, Chan KH, Chu KW, Kwan SW, Guan Y, Poon LL, Peiris JS: Human coronavirus NL63 infection and other coronavirus infections in children hospitalized with acute respiratory disease in Hong Kong, China. Clin Infect Dis. 2005, 40: 1721-1729. 10.1086/430301.PubMed
56.
Zurück zum Zitat Minosse C, Selleri M, Zaniratti MS, Cappiello G, Spano A, Schifano E, Lauria FN, Gualano G, Puro V, Campanini G, et al: Phylogenetic analysis of human coronavirus NL63 circulating in Italy. J Clin Virol. 2008, 43: 114-119. 10.1016/j.jcv.2008.04.015.PubMed Minosse C, Selleri M, Zaniratti MS, Cappiello G, Spano A, Schifano E, Lauria FN, Gualano G, Puro V, Campanini G, et al: Phylogenetic analysis of human coronavirus NL63 circulating in Italy. J Clin Virol. 2008, 43: 114-119. 10.1016/j.jcv.2008.04.015.PubMed
57.
Zurück zum Zitat Dare RK, Fry AM, Chittaganpitch M, Sawanpanyalert P, Olsen SJ, Erdman DD: Human coronavirus infections in rural Thailand: a comprehensive study using real-time reverse-transcription polymerase chain reaction assays. J Infect Dis. 2007, 196: 1321-1328. 10.1086/521308.PubMed Dare RK, Fry AM, Chittaganpitch M, Sawanpanyalert P, Olsen SJ, Erdman DD: Human coronavirus infections in rural Thailand: a comprehensive study using real-time reverse-transcription polymerase chain reaction assays. J Infect Dis. 2007, 196: 1321-1328. 10.1086/521308.PubMed
58.
Zurück zum Zitat Wu PS, Chang LY, Berkhout B, van der Hoek L, Lu CY, Kao CL, Lee PI, Shao PL, Lee CY, Huang FY, Huang LM: Clinical manifestations of human coronavirus NL63 infection in children in Taiwan. Eur J Pediatr. 2008, 167: 75-80.PubMed Wu PS, Chang LY, Berkhout B, van der Hoek L, Lu CY, Kao CL, Lee PI, Shao PL, Lee CY, Huang FY, Huang LM: Clinical manifestations of human coronavirus NL63 infection in children in Taiwan. Eur J Pediatr. 2008, 167: 75-80.PubMed
59.
Zurück zum Zitat van der Hoek L, Sure K, Ihorst G, Stang A, Pyrc K, Jebbink MF, Petersen G, Forster J, Berkhout B, Uberla K: Croup is associated with the novel coronavirus NL63. PLoS Med. 2005, 2: e240-10.1371/journal.pmed.0020240.PubMedPubMedCentral van der Hoek L, Sure K, Ihorst G, Stang A, Pyrc K, Jebbink MF, Petersen G, Forster J, Berkhout B, Uberla K: Croup is associated with the novel coronavirus NL63. PLoS Med. 2005, 2: e240-10.1371/journal.pmed.0020240.PubMedPubMedCentral
60.
Zurück zum Zitat Kupfer B, Simon A, Jonassen CM, Viazov S, Ditt V, Tillmann RL, Muller A, Matz B, Schildgen O: Two cases of severe obstructive pneumonia associated with an HKU1-like coronavirus. Eur J Med Res. 2007, 12: 134-138.PubMed Kupfer B, Simon A, Jonassen CM, Viazov S, Ditt V, Tillmann RL, Muller A, Matz B, Schildgen O: Two cases of severe obstructive pneumonia associated with an HKU1-like coronavirus. Eur J Med Res. 2007, 12: 134-138.PubMed
61.
Zurück zum Zitat Xiao NG, Xie ZP, Zhou QH, Zhang RF, Zhong LL, Gao HC, Ding XF, Li J, Song JR, Hou YD, et al: [Detection and clinical study on coronavirus HKU1 with acute lower respiratory tract infections of hospitalized children in Changsha]. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi. 2011, 25: 2-4.PubMed Xiao NG, Xie ZP, Zhou QH, Zhang RF, Zhong LL, Gao HC, Ding XF, Li J, Song JR, Hou YD, et al: [Detection and clinical study on coronavirus HKU1 with acute lower respiratory tract infections of hospitalized children in Changsha]. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi. 2011, 25: 2-4.PubMed
62.
Zurück zum Zitat Lau SK, Woo PC, Yip CC, Tse H, Tsoi HW, Cheng VC, Lee P, Tang BS, Cheung CH, Lee RA, et al: Coronavirus HKU1 and other coronavirus infections in Hong Kong. J Clin Microbiol. 2006, 44: 2063-2071. 10.1128/JCM.02614-05.PubMedPubMedCentral Lau SK, Woo PC, Yip CC, Tse H, Tsoi HW, Cheng VC, Lee P, Tang BS, Cheung CH, Lee RA, et al: Coronavirus HKU1 and other coronavirus infections in Hong Kong. J Clin Microbiol. 2006, 44: 2063-2071. 10.1128/JCM.02614-05.PubMedPubMedCentral
63.
Zurück zum Zitat Kuypers J, Martin ET, Heugel J, Wright N, Morrow R, Englund JA: Clinical disease in children associated with newly described coronavirus subtypes. Pediatrics. 2007, 119: e70-e76. 10.1542/peds.2006-1406.PubMed Kuypers J, Martin ET, Heugel J, Wright N, Morrow R, Englund JA: Clinical disease in children associated with newly described coronavirus subtypes. Pediatrics. 2007, 119: e70-e76. 10.1542/peds.2006-1406.PubMed
64.
Zurück zum Zitat Fry AM, Lu X, Chittaganpitch M, Peret T, Fischer J, Dowell SF, Anderson LJ, Erdman D, Olsen SJ: Human bocavirus: a novel parvovirus epidemiologically associated with pneumonia requiring hospitalization in Thailand. J Infect Dis. 2007, 195: 1038-1045. 10.1086/512163.PubMed Fry AM, Lu X, Chittaganpitch M, Peret T, Fischer J, Dowell SF, Anderson LJ, Erdman D, Olsen SJ: Human bocavirus: a novel parvovirus epidemiologically associated with pneumonia requiring hospitalization in Thailand. J Infect Dis. 2007, 195: 1038-1045. 10.1086/512163.PubMed
65.
Zurück zum Zitat Soderlund-Venermo M, Lahtinen A, Jartti T, Hedman L, Kemppainen K, Lehtinen P, Allander T, Ruuskanen O, Hedman K: Clinical assessment and improved diagnosis of bocavirus-induced wheezing in children, Finland. Emerg Infect Dis. 2009, 15: 1423-1430. 10.3201/eid1509.090204.PubMedPubMedCentral Soderlund-Venermo M, Lahtinen A, Jartti T, Hedman L, Kemppainen K, Lehtinen P, Allander T, Ruuskanen O, Hedman K: Clinical assessment and improved diagnosis of bocavirus-induced wheezing in children, Finland. Emerg Infect Dis. 2009, 15: 1423-1430. 10.3201/eid1509.090204.PubMedPubMedCentral
66.
Zurück zum Zitat Kesebir D, Vazquez M, Weibel C, Shapiro ED, Ferguson D, Landry ML, Kahn JS: Human bocavirus infection in young children in the United States: molecular epidemiological profile and clinical characteristics of a newly emerging respiratory virus. J Infect Dis. 2006, 194: 1276-1282. 10.1086/508213.PubMed Kesebir D, Vazquez M, Weibel C, Shapiro ED, Ferguson D, Landry ML, Kahn JS: Human bocavirus infection in young children in the United States: molecular epidemiological profile and clinical characteristics of a newly emerging respiratory virus. J Infect Dis. 2006, 194: 1276-1282. 10.1086/508213.PubMed
67.
Zurück zum Zitat Maggi F, Andreoli E, Pifferi M, Meschi S, Rocchi J, Bendinelli M: Human bocavirus in Italian patients with respiratory diseases. J Clin Virol. 2007, 38: 321-325. 10.1016/j.jcv.2007.01.008.PubMed Maggi F, Andreoli E, Pifferi M, Meschi S, Rocchi J, Bendinelli M: Human bocavirus in Italian patients with respiratory diseases. J Clin Virol. 2007, 38: 321-325. 10.1016/j.jcv.2007.01.008.PubMed
68.
Zurück zum Zitat Allander T, Jartti T, Gupta S, Niesters HG, Lehtinen P, Osterback R, Vuorinen T, Waris M, Bjerkner A, Tiveljung-Lindell A, et al: Human bocavirus and acute wheezing in children. Clin Infect Dis. 2007, 44: 904-910. 10.1086/512196.PubMed Allander T, Jartti T, Gupta S, Niesters HG, Lehtinen P, Osterback R, Vuorinen T, Waris M, Bjerkner A, Tiveljung-Lindell A, et al: Human bocavirus and acute wheezing in children. Clin Infect Dis. 2007, 44: 904-910. 10.1086/512196.PubMed
69.
Zurück zum Zitat Ghietto LM, Camara A, Zhou Y, Pedranti M, Ferreyra S, Frey T, Camara J, Adamo MP: High prevalence of human bocavirus 1 in infants with lower acute respiratory tract disease in Argentina, 2007–2009. Braz J Infect Dis. 2012, 16: 38-44.PubMed Ghietto LM, Camara A, Zhou Y, Pedranti M, Ferreyra S, Frey T, Camara J, Adamo MP: High prevalence of human bocavirus 1 in infants with lower acute respiratory tract disease in Argentina, 2007–2009. Braz J Infect Dis. 2012, 16: 38-44.PubMed
70.
Zurück zum Zitat Christensen A, Nordbo SA, Krokstad S, Rognlien AG, Dollner H: Human bocavirus commonly involved in multiple viral airway infections. J Clin Virol. 2008, 41: 34-37. 10.1016/j.jcv.2007.10.025.PubMed Christensen A, Nordbo SA, Krokstad S, Rognlien AG, Dollner H: Human bocavirus commonly involved in multiple viral airway infections. J Clin Virol. 2008, 41: 34-37. 10.1016/j.jcv.2007.10.025.PubMed
71.
Zurück zum Zitat Esposito S, Daleno C, Prunotto G, Scala A, Tagliabue C, Borzani I, Fossali E, Pelucchi C, Principi N: Impact of viral infections in children with community-acquired pneumonia: results of a study of 17 respiratory viruses. Influenza Other Respi Viruses. 2012, 11: 1750-2659. Esposito S, Daleno C, Prunotto G, Scala A, Tagliabue C, Borzani I, Fossali E, Pelucchi C, Principi N: Impact of viral infections in children with community-acquired pneumonia: results of a study of 17 respiratory viruses. Influenza Other Respi Viruses. 2012, 11: 1750-2659.
72.
Zurück zum Zitat Kapoor A, Simmonds P, Slikas E, Li L, Bodhidatta L, Sethabutr O, Triki H, Bahri O, Oderinde BS, Baba MM, et al: Human bocaviruses are highly diverse, dispersed, recombination prone, and prevalent in enteric infections. J Infect Dis. 2010, 201: 1633-1643. 10.1086/652416.PubMedPubMedCentral Kapoor A, Simmonds P, Slikas E, Li L, Bodhidatta L, Sethabutr O, Triki H, Bahri O, Oderinde BS, Baba MM, et al: Human bocaviruses are highly diverse, dispersed, recombination prone, and prevalent in enteric infections. J Infect Dis. 2010, 201: 1633-1643. 10.1086/652416.PubMedPubMedCentral
73.
Zurück zum Zitat Arthur JL, Higgins GD, Davidson GP, Givney RC, Ratcliff RM: A novel bocavirus associated with acute gastroenteritis in Australian children. PLoS Pathog. 2009, 5: e1000391-10.1371/journal.ppat.1000391.PubMedPubMedCentral Arthur JL, Higgins GD, Davidson GP, Givney RC, Ratcliff RM: A novel bocavirus associated with acute gastroenteritis in Australian children. PLoS Pathog. 2009, 5: e1000391-10.1371/journal.ppat.1000391.PubMedPubMedCentral
74.
Zurück zum Zitat Kantola K, Hedman L, Allander T, Jartti T, Lehtinen P, Ruuskanen O, Hedman K, Soderlund-Venermo M: Serodiagnosis of human bocavirus infection. Clin Infect Dis. 2008, 46: 540-546. 10.1086/526532.PubMed Kantola K, Hedman L, Allander T, Jartti T, Lehtinen P, Ruuskanen O, Hedman K, Soderlund-Venermo M: Serodiagnosis of human bocavirus infection. Clin Infect Dis. 2008, 46: 540-546. 10.1086/526532.PubMed
75.
Zurück zum Zitat Hedman L, Soderlund-Venermo M, Jartti T, Ruuskanen O, Hedman K: Dating of human bocavirus infection with protein-denaturing IgG-avidity assays-Secondary immune activations are ubiquitous in immunocompetent adults. J Clin Virol. 2010, 48: 44-48. 10.1016/j.jcv.2010.02.003.PubMed Hedman L, Soderlund-Venermo M, Jartti T, Ruuskanen O, Hedman K: Dating of human bocavirus infection with protein-denaturing IgG-avidity assays-Secondary immune activations are ubiquitous in immunocompetent adults. J Clin Virol. 2010, 48: 44-48. 10.1016/j.jcv.2010.02.003.PubMed
76.
Zurück zum Zitat Don M, Soderlund-Venermo M, Valent F, Lahtinen A, Hedman L, Canciani M, Hedman K, Korppi M: Serologically verified human bocavirus pneumonia in children. Pediatr Pulmonol. 2010, 45: 120-126. 10.1002/ppul.21151.PubMed Don M, Soderlund-Venermo M, Valent F, Lahtinen A, Hedman L, Canciani M, Hedman K, Korppi M: Serologically verified human bocavirus pneumonia in children. Pediatr Pulmonol. 2010, 45: 120-126. 10.1002/ppul.21151.PubMed
77.
Zurück zum Zitat Martin ET, Fairchok MP, Kuypers J, Magaret A, Zerr DM, Wald A, Englund JA: Frequent and prolonged shedding of bocavirus in young children attending daycare. J Infect Dis. 2010, 201: 1625-1632. 10.1086/652405.PubMedPubMedCentral Martin ET, Fairchok MP, Kuypers J, Magaret A, Zerr DM, Wald A, Englund JA: Frequent and prolonged shedding of bocavirus in young children attending daycare. J Infect Dis. 2010, 201: 1625-1632. 10.1086/652405.PubMedPubMedCentral
78.
Zurück zum Zitat Blessing K, Neske F, Herre U, Kreth HW, Weissbrich B: Prolonged detection of human bocavirus DNA in nasopharyngeal aspirates of children with respiratory tract disease. Pediatr Infect Dis J. 2009, 28: 1018-1019. 10.1097/INF.0b013e3181a854ae.PubMed Blessing K, Neske F, Herre U, Kreth HW, Weissbrich B: Prolonged detection of human bocavirus DNA in nasopharyngeal aspirates of children with respiratory tract disease. Pediatr Infect Dis J. 2009, 28: 1018-1019. 10.1097/INF.0b013e3181a854ae.PubMed
79.
Zurück zum Zitat von Linstow ML, Hogh M, Hogh B: Clinical and epidemiologic characteristics of human bocavirus in Danish infants: results from a prospective birth cohort study. Pediatr Infect Dis J. 2008, 27: 897-902. 10.1097/INF.0b013e3181757b16.PubMed von Linstow ML, Hogh M, Hogh B: Clinical and epidemiologic characteristics of human bocavirus in Danish infants: results from a prospective birth cohort study. Pediatr Infect Dis J. 2008, 27: 897-902. 10.1097/INF.0b013e3181757b16.PubMed
80.
Zurück zum Zitat Longtin J, Bastien M, Gilca R, Leblanc E, de Serres G, Bergeron MG, Boivin G: Human bocavirus infections in hospitalized children and adults. Emerg Infect Dis. 2008, 14: 217-221. 10.3201/eid1402.070851.PubMedPubMedCentral Longtin J, Bastien M, Gilca R, Leblanc E, de Serres G, Bergeron MG, Boivin G: Human bocavirus infections in hospitalized children and adults. Emerg Infect Dis. 2008, 14: 217-221. 10.3201/eid1402.070851.PubMedPubMedCentral
81.
Zurück zum Zitat Manning A, Russell V, Eastick K, Leadbetter GH, Hallam N, Templeton K, Simmonds P: Epidemiological profile and clinical associations of human bocavirus and other human parvoviruses. J Infect Dis. 2006, 194: 1283-1290. 10.1086/508219.PubMed Manning A, Russell V, Eastick K, Leadbetter GH, Hallam N, Templeton K, Simmonds P: Epidemiological profile and clinical associations of human bocavirus and other human parvoviruses. J Infect Dis. 2006, 194: 1283-1290. 10.1086/508219.PubMed
82.
Zurück zum Zitat Calvo C, Garcia-Garcia ML, Pozo F, Carvajal O, Perez-Brena P, Casas I: Clinical characteristics of human bocavirus infections compared with other respiratory viruses in Spanish children. Pediatr Infect Dis J. 2008, 27: 677-680. 10.1097/INF.0b013e31816be052.PubMed Calvo C, Garcia-Garcia ML, Pozo F, Carvajal O, Perez-Brena P, Casas I: Clinical characteristics of human bocavirus infections compared with other respiratory viruses in Spanish children. Pediatr Infect Dis J. 2008, 27: 677-680. 10.1097/INF.0b013e31816be052.PubMed
83.
Zurück zum Zitat Liu WK, Chen DH, Liu Q, Liang HX, Yang ZF, Qin S, Zhou R: Detection of human bocavirus from children and adults with acute respiratory tract illness in Guangzhou, southern China. BMC Infect Dis. 2011, 11: 345-10.1186/1471-2334-11-345.PubMedPubMedCentral Liu WK, Chen DH, Liu Q, Liang HX, Yang ZF, Qin S, Zhou R: Detection of human bocavirus from children and adults with acute respiratory tract illness in Guangzhou, southern China. BMC Infect Dis. 2011, 11: 345-10.1186/1471-2334-11-345.PubMedPubMedCentral
84.
Zurück zum Zitat Schildgen O, Muller A, Allander T, Mackay IM, Volz S, Kupfer B, Simon A: Human bocavirus: passenger or pathogen in acute respiratory tract infections?. Clin Microbiol Rev. 2008, 21: 291-304. 10.1128/CMR.00030-07.PubMedPubMedCentral Schildgen O, Muller A, Allander T, Mackay IM, Volz S, Kupfer B, Simon A: Human bocavirus: passenger or pathogen in acute respiratory tract infections?. Clin Microbiol Rev. 2008, 21: 291-304. 10.1128/CMR.00030-07.PubMedPubMedCentral
85.
Zurück zum Zitat Wang K, Wang W, Yan H, Ren P, Zhang J, Shen J, Deubel V: Correlation between bocavirus infection and humoral response, and co-infection with other respiratory viruses in children with acute respiratory infection. J Clin Virol. 2010, 47: 148-155. 10.1016/j.jcv.2009.11.015.PubMed Wang K, Wang W, Yan H, Ren P, Zhang J, Shen J, Deubel V: Correlation between bocavirus infection and humoral response, and co-infection with other respiratory viruses in children with acute respiratory infection. J Clin Virol. 2010, 47: 148-155. 10.1016/j.jcv.2009.11.015.PubMed
86.
Zurück zum Zitat Gerna G, Piralla A, Campanini G, Marchi A, Stronati M, Rovida F: The human bocavirus role in acute respiratory tract infections of pediatric patients as defined by viral load quantification. New Microbiol. 2007, 30: 383-392.PubMed Gerna G, Piralla A, Campanini G, Marchi A, Stronati M, Rovida F: The human bocavirus role in acute respiratory tract infections of pediatric patients as defined by viral load quantification. New Microbiol. 2007, 30: 383-392.PubMed
87.
Zurück zum Zitat Dina J, Nguyen E, Gouarin S, Petitjean J, Parienti JJ, Nimal D, Brouard J, Freymuth F, Vabret A: Development of duplex real-time PCR for detection of two DNA respiratory viruses. J Virol Methods. 2009, 162: 119-125. 10.1016/j.jviromet.2009.07.025.PubMed Dina J, Nguyen E, Gouarin S, Petitjean J, Parienti JJ, Nimal D, Brouard J, Freymuth F, Vabret A: Development of duplex real-time PCR for detection of two DNA respiratory viruses. J Virol Methods. 2009, 162: 119-125. 10.1016/j.jviromet.2009.07.025.PubMed
88.
Zurück zum Zitat Jartti T, Hedman K, Jartti L, Ruuskanen O, Allander T, Soderlund-Venermo M: Human bocavirus-the first 5 years. Rev Med Virol. 2010, 22: 46-64. Jartti T, Hedman K, Jartti L, Ruuskanen O, Allander T, Soderlund-Venermo M: Human bocavirus-the first 5 years. Rev Med Virol. 2010, 22: 46-64.
89.
Zurück zum Zitat Korner RW, Soderlund-Venermo M, van Koningsbruggen-Rietschel S, Kaiser R, Malecki M, Schildgen O: Severe human bocavirus infection, Germany. Emerg Infect Dis. 2011, 17: 2303-2305. 10.3201/eid1712.110574.PubMedPubMedCentral Korner RW, Soderlund-Venermo M, van Koningsbruggen-Rietschel S, Kaiser R, Malecki M, Schildgen O: Severe human bocavirus infection, Germany. Emerg Infect Dis. 2011, 17: 2303-2305. 10.3201/eid1712.110574.PubMedPubMedCentral
90.
Zurück zum Zitat Kean JM, Rao S, Wang M, Garcea RL: Seroepidemiology of human polyomaviruses. PLoS Pathog. 2009, 5: e1000363-10.1371/journal.ppat.1000363.PubMedPubMedCentral Kean JM, Rao S, Wang M, Garcea RL: Seroepidemiology of human polyomaviruses. PLoS Pathog. 2009, 5: e1000363-10.1371/journal.ppat.1000363.PubMedPubMedCentral
91.
Zurück zum Zitat Neske F, Prifert C, Scheiner B, Ewald M, Schubert J, Opitz A, Weissbrich B: High prevalence of antibodies against polyomavirus WU, polyomavirus KI, and human bocavirus in German blood donors. BMC Infect Dis. 2010, 10: 215-10.1186/1471-2334-10-215.PubMedPubMedCentral Neske F, Prifert C, Scheiner B, Ewald M, Schubert J, Opitz A, Weissbrich B: High prevalence of antibodies against polyomavirus WU, polyomavirus KI, and human bocavirus in German blood donors. BMC Infect Dis. 2010, 10: 215-10.1186/1471-2334-10-215.PubMedPubMedCentral
92.
Zurück zum Zitat Debiaggi M, Canducci F, Brerra R, Sampaolo M, Marinozzi MC, Parea M, Arghittu M, Alessandrino EP, Nava S, Nucleo E, et al: Molecular epidemiology of KI and WU polyomaviruses in infants with acute respiratory disease and in adult hematopoietic stem cell transplant recipients. J Med Virol. 2010, 82: 153-156. 10.1002/jmv.21659.PubMed Debiaggi M, Canducci F, Brerra R, Sampaolo M, Marinozzi MC, Parea M, Arghittu M, Alessandrino EP, Nava S, Nucleo E, et al: Molecular epidemiology of KI and WU polyomaviruses in infants with acute respiratory disease and in adult hematopoietic stem cell transplant recipients. J Med Virol. 2010, 82: 153-156. 10.1002/jmv.21659.PubMed
93.
Zurück zum Zitat Abedi Kiasari B, Vallely PJ, Corless CE, Al-Hammadi M, Klapper PE: Age-related pattern of KI and WU polyomavirus infection. J Clin Virol. 2008, 43: 123-125. 10.1016/j.jcv.2008.05.003.PubMed Abedi Kiasari B, Vallely PJ, Corless CE, Al-Hammadi M, Klapper PE: Age-related pattern of KI and WU polyomavirus infection. J Clin Virol. 2008, 43: 123-125. 10.1016/j.jcv.2008.05.003.PubMed
94.
Zurück zum Zitat Han TH, Chung JY, Koo JW, Kim SW, Hwang ES: WU polyomavirus in children with acute lower respiratory tract infections, South Korea. Emerg Infect Dis. 2007, 13: 1766-1768. 10.3201/eid1311.070872.PubMedPubMedCentral Han TH, Chung JY, Koo JW, Kim SW, Hwang ES: WU polyomavirus in children with acute lower respiratory tract infections, South Korea. Emerg Infect Dis. 2007, 13: 1766-1768. 10.3201/eid1311.070872.PubMedPubMedCentral
95.
Zurück zum Zitat Le BM, Demertzis LM, Wu G, Tibbets RJ, Buller R, Arens MQ, Gaynor AM, Storch GA, Wang D: Clinical and epidemiologic characterization of WU polyomavirus infection, St. Louis, Missouri. Emerg Infect Dis. 2007, 13: 1936-1938. 10.3201/eid1312.070977.PubMedPubMedCentral Le BM, Demertzis LM, Wu G, Tibbets RJ, Buller R, Arens MQ, Gaynor AM, Storch GA, Wang D: Clinical and epidemiologic characterization of WU polyomavirus infection, St. Louis, Missouri. Emerg Infect Dis. 2007, 13: 1936-1938. 10.3201/eid1312.070977.PubMedPubMedCentral
96.
Zurück zum Zitat Abed Y, Wang D, Boivin G: WU polyomavirus in children, Canada. Emerg Infect Dis. 2007, 13: 1939-1941. 10.3201/eid1312.070909.PubMedPubMedCentral Abed Y, Wang D, Boivin G: WU polyomavirus in children, Canada. Emerg Infect Dis. 2007, 13: 1939-1941. 10.3201/eid1312.070909.PubMedPubMedCentral
97.
Zurück zum Zitat Bialasiewicz S, Whiley DM, Lambert SB, Jacob K, Bletchly C, Wang D, Nissen MD, Sloots TP: Presence of the newly discovered human polyomaviruses KI and WU in Australian patients with acute respiratory tract infection. J Clin Virol. 2008, 41: 63-68. 10.1016/j.jcv.2007.11.001.PubMed Bialasiewicz S, Whiley DM, Lambert SB, Jacob K, Bletchly C, Wang D, Nissen MD, Sloots TP: Presence of the newly discovered human polyomaviruses KI and WU in Australian patients with acute respiratory tract infection. J Clin Virol. 2008, 41: 63-68. 10.1016/j.jcv.2007.11.001.PubMed
98.
Zurück zum Zitat Norja P, Ubillos I, Templeton K, Simmonds P: No evidence for an association between infections with WU and KI polyomaviruses and respiratory disease. J Clin Virol. 2007, 40: 307-311. 10.1016/j.jcv.2007.09.008.PubMed Norja P, Ubillos I, Templeton K, Simmonds P: No evidence for an association between infections with WU and KI polyomaviruses and respiratory disease. J Clin Virol. 2007, 40: 307-311. 10.1016/j.jcv.2007.09.008.PubMed
99.
Zurück zum Zitat Zhuang WL, Lu XD, Lin GY, Wu Y, Lin CX, Chen PZ, Xie SX, Zhang N, Ma L: WU polyomavirus infection among children in South China. J Med Virol. 2009, 83: 1440-1445. Zhuang WL, Lu XD, Lin GY, Wu Y, Lin CX, Chen PZ, Xie SX, Zhang N, Ma L: WU polyomavirus infection among children in South China. J Med Virol. 2009, 83: 1440-1445.
100.
Zurück zum Zitat Ren L, Gonzalez R, Xie Z, Zhang J, Liu C, Li J, Li Y, Wang Z, Kong X, Yao Y, et al: WU and KI polyomavirus present in the respiratory tract of children, but not in immunocompetent adults. J Clin Virol. 2008, 43: 330-333. 10.1016/j.jcv.2008.08.003.PubMed Ren L, Gonzalez R, Xie Z, Zhang J, Liu C, Li J, Li Y, Wang Z, Kong X, Yao Y, et al: WU and KI polyomavirus present in the respiratory tract of children, but not in immunocompetent adults. J Clin Virol. 2008, 43: 330-333. 10.1016/j.jcv.2008.08.003.PubMed
101.
Zurück zum Zitat Mourez T, Bergeron A, Ribaud P, Scieux C, de Latour RP, Tazi A, Socie G, Simon F, LeGoff J: Polyomaviruses KI and WU in immunocompromised patients with respiratory disease. Emerg Infect Dis. 2009, 15: 107-109. 10.3201/1501.080758.PubMedPubMedCentral Mourez T, Bergeron A, Ribaud P, Scieux C, de Latour RP, Tazi A, Socie G, Simon F, LeGoff J: Polyomaviruses KI and WU in immunocompromised patients with respiratory disease. Emerg Infect Dis. 2009, 15: 107-109. 10.3201/1501.080758.PubMedPubMedCentral
102.
Zurück zum Zitat Sharp CP, Norja P, Anthony I, Bell JE, Simmonds P: Reactivation and mutation of newly discovered WU, KI, and Merkel cell carcinoma polyomaviruses in immunosuppressed individuals. J Infect Dis. 2009, 199: 398-404. 10.1086/596062.PubMed Sharp CP, Norja P, Anthony I, Bell JE, Simmonds P: Reactivation and mutation of newly discovered WU, KI, and Merkel cell carcinoma polyomaviruses in immunosuppressed individuals. J Infect Dis. 2009, 199: 398-404. 10.1086/596062.PubMed
103.
Zurück zum Zitat Babakir-Mina M, Ciccozzi M, Farchi F, Bergallo M, Cavallo R, Adorno G, Perno CF, Ciotti M: KI and WU polyomaviruses and CD4+ cell counts in HIV-1-infected patients, Italy. Emerg Infect Dis. 2010, 16: 1482-1485. 10.3201/eid1609.100211.PubMedPubMedCentral Babakir-Mina M, Ciccozzi M, Farchi F, Bergallo M, Cavallo R, Adorno G, Perno CF, Ciotti M: KI and WU polyomaviruses and CD4+ cell counts in HIV-1-infected patients, Italy. Emerg Infect Dis. 2010, 16: 1482-1485. 10.3201/eid1609.100211.PubMedPubMedCentral
104.
Zurück zum Zitat Huijskens EG, van Erkel AJ, Peeters MF, Rossen JW: Human polyomavirus KI and WU in adults with community acquired pneumonia in The Netherlands, 2008–2009. J Clin Virol. 2010, 49: 306-307. 10.1016/j.jcv.2010.09.002.PubMed Huijskens EG, van Erkel AJ, Peeters MF, Rossen JW: Human polyomavirus KI and WU in adults with community acquired pneumonia in The Netherlands, 2008–2009. J Clin Virol. 2010, 49: 306-307. 10.1016/j.jcv.2010.09.002.PubMed
105.
Zurück zum Zitat Rao S, Garcea RL, Robinson CC, Simoes EA: WU and KI polyomavirus infections in pediatric hematology/oncology patients with acute respiratory tract illness. J Clin Virol. 2011, 52: 28-32. 10.1016/j.jcv.2011.05.024.PubMed Rao S, Garcea RL, Robinson CC, Simoes EA: WU and KI polyomavirus infections in pediatric hematology/oncology patients with acute respiratory tract illness. J Clin Virol. 2011, 52: 28-32. 10.1016/j.jcv.2011.05.024.PubMed
106.
Zurück zum Zitat Bochkov YA, Gern JE: Clinical and molecular features of human rhinovirus C. Microbes Infect. 2012, 14: 485-494. 10.1016/j.micinf.2011.12.011.PubMedPubMedCentral Bochkov YA, Gern JE: Clinical and molecular features of human rhinovirus C. Microbes Infect. 2012, 14: 485-494. 10.1016/j.micinf.2011.12.011.PubMedPubMedCentral
107.
Zurück zum Zitat Lamson D, Renwick N, Kapoor V, Liu Z, Palacios G, Ju J, Dean A, St George K, Briese T, Lipkin WI: MassTag polymerase-chain-reaction detection of respiratory pathogens, including a new rhinovirus genotype, that caused influenza-like illness in New York State during 2004–2005. J Infect Dis. 2006, 194: 1398-1402. 10.1086/508551.PubMed Lamson D, Renwick N, Kapoor V, Liu Z, Palacios G, Ju J, Dean A, St George K, Briese T, Lipkin WI: MassTag polymerase-chain-reaction detection of respiratory pathogens, including a new rhinovirus genotype, that caused influenza-like illness in New York State during 2004–2005. J Infect Dis. 2006, 194: 1398-1402. 10.1086/508551.PubMed
108.
Zurück zum Zitat McErlean P, Shackelton LA, Lambert SB, Nissen MD, Sloots TP, Mackay IM: Characterisation of a newly identified human rhinovirus, HRV-QPM, discovered in infants with bronchiolitis. J Clin Virol. 2007, 39: 67-75. 10.1016/j.jcv.2007.03.012.PubMed McErlean P, Shackelton LA, Lambert SB, Nissen MD, Sloots TP, Mackay IM: Characterisation of a newly identified human rhinovirus, HRV-QPM, discovered in infants with bronchiolitis. J Clin Virol. 2007, 39: 67-75. 10.1016/j.jcv.2007.03.012.PubMed
109.
Zurück zum Zitat Tapparel C, L'Huillier AG, Rougemont AL, Beghetti M, Barazzone-Argiroffo C, Kaiser L: Pneumonia and pericarditis in a child with HRV-C infection: a case report. J Clin Virol. 2009, 45: 157-160. 10.1016/j.jcv.2009.03.014.PubMed Tapparel C, L'Huillier AG, Rougemont AL, Beghetti M, Barazzone-Argiroffo C, Kaiser L: Pneumonia and pericarditis in a child with HRV-C infection: a case report. J Clin Virol. 2009, 45: 157-160. 10.1016/j.jcv.2009.03.014.PubMed
110.
Zurück zum Zitat Arden KE, Mackay IM: Newly identified human rhinoviruses: molecular methods heat up the cold viruses. Rev Med Virol. 2010, 20: 156-176. 10.1002/rmv.644.PubMed Arden KE, Mackay IM: Newly identified human rhinoviruses: molecular methods heat up the cold viruses. Rev Med Virol. 2010, 20: 156-176. 10.1002/rmv.644.PubMed
111.
Zurück zum Zitat Lau SK, Yip CC, Tsoi HW, Lee RA, So LY, Lau YL, Chan KH, Woo PC, Yuen KY: Clinical features and complete genome characterization of a distinct human rhinovirus (HRV) genetic cluster, probably representing a previously undetected HRV species, HRV-C, associated with acute respiratory illness in children. J Clin Microbiol. 2007, 45: 3655-3664. 10.1128/JCM.01254-07.PubMedPubMedCentral Lau SK, Yip CC, Tsoi HW, Lee RA, So LY, Lau YL, Chan KH, Woo PC, Yuen KY: Clinical features and complete genome characterization of a distinct human rhinovirus (HRV) genetic cluster, probably representing a previously undetected HRV species, HRV-C, associated with acute respiratory illness in children. J Clin Microbiol. 2007, 45: 3655-3664. 10.1128/JCM.01254-07.PubMedPubMedCentral
112.
Zurück zum Zitat Khetsuriani N, Lu X, Teague WG, Kazerouni N, Anderson LJ, Erdman DD: Novel human rhinoviruses and exacerbation of asthma in children. Emerg Infect Dis. 2008, 14: 1793-1796. 10.3201/eid1411.080386.PubMedPubMedCentral Khetsuriani N, Lu X, Teague WG, Kazerouni N, Anderson LJ, Erdman DD: Novel human rhinoviruses and exacerbation of asthma in children. Emerg Infect Dis. 2008, 14: 1793-1796. 10.3201/eid1411.080386.PubMedPubMedCentral
113.
Zurück zum Zitat Miller EK, Edwards KM, Weinberg GA, Iwane MK, Griffin MR, Hall CB, Zhu Y, Szilagyi PG, Morin LL, Heil LH, et al: A novel group of rhinoviruses is associated with asthma hospitalizations. J Allergy Clin Immunol. 2009, 123: 98-104. 10.1016/j.jaci.2008.10.007.PubMed Miller EK, Edwards KM, Weinberg GA, Iwane MK, Griffin MR, Hall CB, Zhu Y, Szilagyi PG, Morin LL, Heil LH, et al: A novel group of rhinoviruses is associated with asthma hospitalizations. J Allergy Clin Immunol. 2009, 123: 98-104. 10.1016/j.jaci.2008.10.007.PubMed
114.
Zurück zum Zitat Wisdom A, Kutkowska AE, McWilliam Leitch EC, Gaunt E, Templeton K, Harvala H, Simmonds P: Genetics, recombination and clinical features of human rhinovirus species C (HRV-C) infections; interactions of HRV-C with other respiratory viruses. PLoS One. 2009, 4: 8518-10.1371/journal.pone.0008518. Wisdom A, Kutkowska AE, McWilliam Leitch EC, Gaunt E, Templeton K, Harvala H, Simmonds P: Genetics, recombination and clinical features of human rhinovirus species C (HRV-C) infections; interactions of HRV-C with other respiratory viruses. PLoS One. 2009, 4: 8518-10.1371/journal.pone.0008518.
115.
Zurück zum Zitat Xiang Z, Gonzalez R, Xie Z, Xiao Y, Liu J, Chen L, Liu C, Zhang J, Ren L, Vernet G, et al: Human rhinovirus C infections mirror those of human rhinovirus A in children with community-acquired pneumonia. J Clin Virol. 2010, 49: 94-99. 10.1016/j.jcv.2010.07.013.PubMed Xiang Z, Gonzalez R, Xie Z, Xiao Y, Liu J, Chen L, Liu C, Zhang J, Ren L, Vernet G, et al: Human rhinovirus C infections mirror those of human rhinovirus A in children with community-acquired pneumonia. J Clin Virol. 2010, 49: 94-99. 10.1016/j.jcv.2010.07.013.PubMed
116.
Zurück zum Zitat Louie JK, Roy-Burman A, Guardia-Labar L, Boston EJ, Kiang D, Padilla T, Yagi S, Messenger S, Petru AM, Glaser CA, Schnurr DP: Rhinovirus associated with severe lower respiratory tract infections in children. Pediatr Infect Dis J. 2009, 28: 337-339. 10.1097/INF.0b013e31818ffc1b.PubMed Louie JK, Roy-Burman A, Guardia-Labar L, Boston EJ, Kiang D, Padilla T, Yagi S, Messenger S, Petru AM, Glaser CA, Schnurr DP: Rhinovirus associated with severe lower respiratory tract infections in children. Pediatr Infect Dis J. 2009, 28: 337-339. 10.1097/INF.0b013e31818ffc1b.PubMed
117.
Zurück zum Zitat Jin Y, Yuan XH, Xie ZP, Gao HC, Song JR, Zhang RF, Xu ZQ, Zheng LS, Hou YD, Duan ZJ: Prevalence and clinical characterization of a newly identified human rhinovirus C species in children with acute respiratory tract infections. J Clin Microbiol. 2009, 47: 2895-2900. 10.1128/JCM.00745-09.PubMedPubMedCentral Jin Y, Yuan XH, Xie ZP, Gao HC, Song JR, Zhang RF, Xu ZQ, Zheng LS, Hou YD, Duan ZJ: Prevalence and clinical characterization of a newly identified human rhinovirus C species in children with acute respiratory tract infections. J Clin Microbiol. 2009, 47: 2895-2900. 10.1128/JCM.00745-09.PubMedPubMedCentral
118.
Zurück zum Zitat Xiang Z, Gonzalez R, Xie Z, Xiao Y, Chen L, Li Y, Liu C, Hu Y, Yao Y, Qian S, et al: Human rhinovirus group C infection in children with lower respiratory tract infection. Emerg Infect Dis. 2008, 14: 1665-1667. 10.3201/eid1410.080545.PubMedPubMedCentral Xiang Z, Gonzalez R, Xie Z, Xiao Y, Chen L, Li Y, Liu C, Hu Y, Yao Y, Qian S, et al: Human rhinovirus group C infection in children with lower respiratory tract infection. Emerg Infect Dis. 2008, 14: 1665-1667. 10.3201/eid1410.080545.PubMedPubMedCentral
119.
Zurück zum Zitat Linsuwanon P, Payungporn S, Samransamruajkit R, Posuwan N, Makkoch J, Theanboonlers A, Poovorawan Y: High prevalence of human rhinovirus C infection in Thai children with acute lower respiratory tract disease. J Infect. 2009, 59: 115-121. 10.1016/j.jinf.2009.05.009.PubMed Linsuwanon P, Payungporn S, Samransamruajkit R, Posuwan N, Makkoch J, Theanboonlers A, Poovorawan Y: High prevalence of human rhinovirus C infection in Thai children with acute lower respiratory tract disease. J Infect. 2009, 59: 115-121. 10.1016/j.jinf.2009.05.009.PubMed
120.
Zurück zum Zitat Greer RM, McErlean P, Arden KE, Faux CE, Nitsche A, Lambert SB, Nissen MD, Sloots TP, Mackay IM: Do rhinoviruses reduce the probability of viral co-detection during acute respiratory tract infections?. J Clin Virol. 2009, 45: 10-15. 10.1016/j.jcv.2009.03.008.PubMed Greer RM, McErlean P, Arden KE, Faux CE, Nitsche A, Lambert SB, Nissen MD, Sloots TP, Mackay IM: Do rhinoviruses reduce the probability of viral co-detection during acute respiratory tract infections?. J Clin Virol. 2009, 45: 10-15. 10.1016/j.jcv.2009.03.008.PubMed
121.
Zurück zum Zitat Tapparel C, Junier T, Gerlach D, Van-Belle S, Turin L, Cordey S, Muhlemann K, Regamey N, Aubert JD, Soccal PM, et al: New respiratory enterovirus and recombinant rhinoviruses among circulating picornaviruses. Emerg Infect Dis. 2009, 15: 719-726. 10.3201/eid1505.081286.PubMedPubMedCentral Tapparel C, Junier T, Gerlach D, Van-Belle S, Turin L, Cordey S, Muhlemann K, Regamey N, Aubert JD, Soccal PM, et al: New respiratory enterovirus and recombinant rhinoviruses among circulating picornaviruses. Emerg Infect Dis. 2009, 15: 719-726. 10.3201/eid1505.081286.PubMedPubMedCentral
122.
Zurück zum Zitat Piralla A, Rovida F, Baldanti F, Gerna G: Enterovirus genotype EV-104 in humans, Italy, 2008–2009. Emerg Infect Dis. 2010, 16: 1018-1021. 10.3201/eid1606.091533.PubMedPubMedCentral Piralla A, Rovida F, Baldanti F, Gerna G: Enterovirus genotype EV-104 in humans, Italy, 2008–2009. Emerg Infect Dis. 2010, 16: 1018-1021. 10.3201/eid1606.091533.PubMedPubMedCentral
123.
Zurück zum Zitat Grard G, Drexler JF, Lekana-Douki S, Caron M, Lukashev A, Nkoghe D, Gonzalez JP, Drosten C, Leroy E: Type 1 wild poliovirus and putative enterovirus 109 in an outbreak of acute flaccid paralysis in Congo, October-November. Euro Surveill. 2010, 15 Grard G, Drexler JF, Lekana-Douki S, Caron M, Lukashev A, Nkoghe D, Gonzalez JP, Drosten C, Leroy E: Type 1 wild poliovirus and putative enterovirus 109 in an outbreak of acute flaccid paralysis in Congo, October-November. Euro Surveill. 2010, 15
124.
Zurück zum Zitat Debiaggi M, Ceresola ER, Sampaolo M, Alessandrino EP, Brerra R, Piazza A, Saita D, Clementi M, Canducci F: Epidemiological, molecular and clinical features of Enterovirus 109 infection in children and in adult stem cell transplant recipients. Virol J. 2012, 9: 183-10.1186/1743-422X-9-183.PubMedPubMedCentral Debiaggi M, Ceresola ER, Sampaolo M, Alessandrino EP, Brerra R, Piazza A, Saita D, Clementi M, Canducci F: Epidemiological, molecular and clinical features of Enterovirus 109 infection in children and in adult stem cell transplant recipients. Virol J. 2012, 9: 183-10.1186/1743-422X-9-183.PubMedPubMedCentral
125.
Zurück zum Zitat Pankovics P, Boros A, Szabo H, Szekely G, Gyurkovits K, Reuter G: Human enterovirus 109 (EV109) in acute paediatric respiratory disease in Hungary. Acta Microbiol Immunol Hung. 2012, 59: 285-290. 10.1556/AMicr.59.2012.2.13.PubMed Pankovics P, Boros A, Szabo H, Szekely G, Gyurkovits K, Reuter G: Human enterovirus 109 (EV109) in acute paediatric respiratory disease in Hungary. Acta Microbiol Immunol Hung. 2012, 59: 285-290. 10.1556/AMicr.59.2012.2.13.PubMed
126.
Zurück zum Zitat Al-Sunaidi M, Williams CH, Hughes PJ, Schnurr DP, Stanway G: Analysis of a new human parechovirus allows the definition of parechovirus types and the identification of RNA structural domains. J Virol. 2007, 81: 1013-1021. 10.1128/JVI.00584-06.PubMedPubMedCentral Al-Sunaidi M, Williams CH, Hughes PJ, Schnurr DP, Stanway G: Analysis of a new human parechovirus allows the definition of parechovirus types and the identification of RNA structural domains. J Virol. 2007, 81: 1013-1021. 10.1128/JVI.00584-06.PubMedPubMedCentral
127.
Zurück zum Zitat Benschop KS, Schinkel J, Minnaar RP, Pajkrt D, Spanjerberg L, Kraakman HC, Berkhout B, Zaaijer HL, Beld MG, Wolthers KC: Human parechovirus infections in Dutch children and the association between serotype and disease severity. Clin Infect Dis. 2006, 42: 204-210. 10.1086/498905.PubMed Benschop KS, Schinkel J, Minnaar RP, Pajkrt D, Spanjerberg L, Kraakman HC, Berkhout B, Zaaijer HL, Beld MG, Wolthers KC: Human parechovirus infections in Dutch children and the association between serotype and disease severity. Clin Infect Dis. 2006, 42: 204-210. 10.1086/498905.PubMed
128.
Zurück zum Zitat Ito M, Yamashita T, Tsuzuki H, Takeda N, Sakae K: Isolation and identification of a novel human parechovirus. J Gen Virol. 2004, 85: 391-398. 10.1099/vir.0.19456-0.PubMed Ito M, Yamashita T, Tsuzuki H, Takeda N, Sakae K: Isolation and identification of a novel human parechovirus. J Gen Virol. 2004, 85: 391-398. 10.1099/vir.0.19456-0.PubMed
129.
Zurück zum Zitat Watanabe K, Oie M, Higuchi M, Nishikawa M, Fujii M: Isolation and characterization of novel human parechovirus from clinical samples. Emerg Infect Dis. 2007, 13: 889-895. 10.3201/eid1306.060896.PubMedPubMedCentral Watanabe K, Oie M, Higuchi M, Nishikawa M, Fujii M: Isolation and characterization of novel human parechovirus from clinical samples. Emerg Infect Dis. 2007, 13: 889-895. 10.3201/eid1306.060896.PubMedPubMedCentral
130.
Zurück zum Zitat Boivin G, Abed Y, Boucher FD: Human parechovirus 3 and neonatal infections. Emerg Infect Dis. 2005, 11: 103-105. 10.3201/eid1101.040606.PubMedPubMedCentral Boivin G, Abed Y, Boucher FD: Human parechovirus 3 and neonatal infections. Emerg Infect Dis. 2005, 11: 103-105. 10.3201/eid1101.040606.PubMedPubMedCentral
131.
Zurück zum Zitat Kim Pham NT, Trinh QD, Takanashi S, Abeysekera C, Abeygunawardene A, Shimizu H, Khamrin P, Okitsu S, Mizuguchi M, Ushijima H: Novel human parechovirus, Sri Lanka. Emerg Infect Dis. 2010, 16: 130-132. 10.3201/eid1601.091105.PubMed Kim Pham NT, Trinh QD, Takanashi S, Abeysekera C, Abeygunawardene A, Shimizu H, Khamrin P, Okitsu S, Mizuguchi M, Ushijima H: Novel human parechovirus, Sri Lanka. Emerg Infect Dis. 2010, 16: 130-132. 10.3201/eid1601.091105.PubMed
132.
Zurück zum Zitat Drexler JF, Grywna K, Stocker A, Almeida PS, Medrado-Ribeiro TC, Eschbach-Bludau M, Petersen N, da Costa-Ribeiro-Jr H, Drosten C: Novel human parechovirus from Brazil. Emerg Infect Dis. 2009, 15: 310-313. 10.3201/eid1502.081028.PubMedPubMedCentral Drexler JF, Grywna K, Stocker A, Almeida PS, Medrado-Ribeiro TC, Eschbach-Bludau M, Petersen N, da Costa-Ribeiro-Jr H, Drosten C: Novel human parechovirus from Brazil. Emerg Infect Dis. 2009, 15: 310-313. 10.3201/eid1502.081028.PubMedPubMedCentral
133.
Zurück zum Zitat Calvert J, Chieochansin T, Benschop KS, McWilliam Leitch EC, Drexler JF, Grywna K, da Costa Ribeiro H, Drosten C, Harvala H, Poovorawan Y, et al: Recombination dynamics of human parechoviruses: investigation of type-specific differences in frequency and epidemiological correlates. J Gen Virol. 2010, 91: 1229-1238. 10.1099/vir.0.018747-0.PubMed Calvert J, Chieochansin T, Benschop KS, McWilliam Leitch EC, Drexler JF, Grywna K, da Costa Ribeiro H, Drosten C, Harvala H, Poovorawan Y, et al: Recombination dynamics of human parechoviruses: investigation of type-specific differences in frequency and epidemiological correlates. J Gen Virol. 2010, 91: 1229-1238. 10.1099/vir.0.018747-0.PubMed
134.
Zurück zum Zitat Li L, Victoria J, Kapoor A, Naeem A, Shaukat S, Sharif S, Alam MM, Angez M, Zaidi SZ, Delwart E: Genomic characterization of novel human parechovirus type. Emerg Infect Dis. 2009, 15: 288-291. 10.3201/eid1502.080341.PubMedPubMedCentral Li L, Victoria J, Kapoor A, Naeem A, Shaukat S, Sharif S, Alam MM, Angez M, Zaidi SZ, Delwart E: Genomic characterization of novel human parechovirus type. Emerg Infect Dis. 2009, 15: 288-291. 10.3201/eid1502.080341.PubMedPubMedCentral
135.
Zurück zum Zitat Harvala H, Robertson I, McWilliam Leitch EC, Benschop K, Wolthers KC, Templeton K, Simmonds P: Epidemiology and clinical associations of human parechovirus respiratory infections. J Clin Microbiol. 2008, 46: 3446-3453. 10.1128/JCM.01207-08.PubMedPubMedCentral Harvala H, Robertson I, McWilliam Leitch EC, Benschop K, Wolthers KC, Templeton K, Simmonds P: Epidemiology and clinical associations of human parechovirus respiratory infections. J Clin Microbiol. 2008, 46: 3446-3453. 10.1128/JCM.01207-08.PubMedPubMedCentral
136.
Zurück zum Zitat Piralla A, Furione M, Rovida F, Marchi A, Stronati M, Gerna G, Baldanti F: Human parechovirus infections in patients admitted to hospital in Northern Italy, 2008–2010. J Med Virol. 2012, 84: 686-690. 10.1002/jmv.23197.PubMed Piralla A, Furione M, Rovida F, Marchi A, Stronati M, Gerna G, Baldanti F: Human parechovirus infections in patients admitted to hospital in Northern Italy, 2008–2010. J Med Virol. 2012, 84: 686-690. 10.1002/jmv.23197.PubMed
137.
Zurück zum Zitat Echevarria-Zuno S, Mejia-Arangure JM, Mar-Obeso AJ, Grajales-Muniz C, Robles-Perez E, Gonzalez-Leon M, Ortega-Alvarez MC, Gonzalez-Bonilla C, Rascon-Pacheco RA, Borja-Aburto VH: Infection and death from influenza A H1N1 virus in Mexico: a retrospective analysis. Lancet. 2009, 374: 2072-2079. 10.1016/S0140-6736(09)61638-X.PubMed Echevarria-Zuno S, Mejia-Arangure JM, Mar-Obeso AJ, Grajales-Muniz C, Robles-Perez E, Gonzalez-Leon M, Ortega-Alvarez MC, Gonzalez-Bonilla C, Rascon-Pacheco RA, Borja-Aburto VH: Infection and death from influenza A H1N1 virus in Mexico: a retrospective analysis. Lancet. 2009, 374: 2072-2079. 10.1016/S0140-6736(09)61638-X.PubMed
138.
Zurück zum Zitat Lopez-Cervantes M, Venado A, Moreno A, Pacheco-Dominguez RL, Ortega-Pierres G: On the spread of the novel influenza A (H1N1) virus in Mexico. J Infect Dev Ctries. 2009, 3: 327-330.PubMed Lopez-Cervantes M, Venado A, Moreno A, Pacheco-Dominguez RL, Ortega-Pierres G: On the spread of the novel influenza A (H1N1) virus in Mexico. J Infect Dev Ctries. 2009, 3: 327-330.PubMed
139.
Zurück zum Zitat Peiris JS, Poon LL, Guan Y: Emergence of a novel swine-origin influenza A virus (S-OIV) H1N1 virus in humans. J Clin Virol. 2009, 45: 169-173. 10.1016/j.jcv.2009.06.006.PubMed Peiris JS, Poon LL, Guan Y: Emergence of a novel swine-origin influenza A virus (S-OIV) H1N1 virus in humans. J Clin Virol. 2009, 45: 169-173. 10.1016/j.jcv.2009.06.006.PubMed
140.
Zurück zum Zitat Dawood FS, Jain S, Finelli L, Shaw MW, Lindstrom S, Garten RJ, Gubareva LV, Xu X, Bridges CB, Uyeki TM: Emergence of a novel swine-origin influenza A (H1N1) virus in humans. N Engl J Med. 2009, 360: 2605-2615.PubMed Dawood FS, Jain S, Finelli L, Shaw MW, Lindstrom S, Garten RJ, Gubareva LV, Xu X, Bridges CB, Uyeki TM: Emergence of a novel swine-origin influenza A (H1N1) virus in humans. N Engl J Med. 2009, 360: 2605-2615.PubMed
141.
Zurück zum Zitat Perez P, la Rosa D, Zamboni D, Ponce De Leon S, Hernandez M, Quinones Falconi F, Bautista E, Ramirez Venegas A, Rojas Serrano J, Ormsby CE, Corrales A, et al: Pneumonia and respiratory failure from swine-origin influenza A (H1N1) in Mexico. N Engl J Med. 2009, 361: 680-689. 10.1056/NEJMoa0904252. Perez P, la Rosa D, Zamboni D, Ponce De Leon S, Hernandez M, Quinones Falconi F, Bautista E, Ramirez Venegas A, Rojas Serrano J, Ormsby CE, Corrales A, et al: Pneumonia and respiratory failure from swine-origin influenza A (H1N1) in Mexico. N Engl J Med. 2009, 361: 680-689. 10.1056/NEJMoa0904252.
142.
Zurück zum Zitat Jain S, Kamimoto L, Bramley AM, Schmitz AM, Benoit SR, Louie J, Sugerman DE, Druckenmiller JK, Ritger KA, Chugh R, et al: Hospitalized patients with 2009 H1N1 influenza in the United States, April-June 2009. N Engl J Med. 2009, 361: 1935-1944. 10.1056/NEJMoa0906695.PubMed Jain S, Kamimoto L, Bramley AM, Schmitz AM, Benoit SR, Louie J, Sugerman DE, Druckenmiller JK, Ritger KA, Chugh R, et al: Hospitalized patients with 2009 H1N1 influenza in the United States, April-June 2009. N Engl J Med. 2009, 361: 1935-1944. 10.1056/NEJMoa0906695.PubMed
143.
Zurück zum Zitat Burioni R, Canducci F, Mancini N, Clementi N, Sassi M, De Marco D, Diotti RA, Saita D, Sampaolo M, Sautto G, et al: Monoclonal antibodies isolated from human B cells neutralize a broad range of H1 subtype influenza A viruses including swine-origin Influenza virus (S-OIV). Virology. 2010, 399: 144-152. 10.1016/j.virol.2009.12.014.PubMed Burioni R, Canducci F, Mancini N, Clementi N, Sassi M, De Marco D, Diotti RA, Saita D, Sampaolo M, Sautto G, et al: Monoclonal antibodies isolated from human B cells neutralize a broad range of H1 subtype influenza A viruses including swine-origin Influenza virus (S-OIV). Virology. 2010, 399: 144-152. 10.1016/j.virol.2009.12.014.PubMed
144.
Zurück zum Zitat Burioni R, Canducci F, Mancini N, Clementi N, Sassi M, De Marco D, Saita D, Diotti RA, Sautto G, Sampaolo M, Clementi M: Molecular cloning of the first human monoclonal antibodies neutralizing with high potency swine-origin influenza A pandemic virus (S-OIV). New Microbiol. 2009, 32: 19-324. Burioni R, Canducci F, Mancini N, Clementi N, Sassi M, De Marco D, Saita D, Diotti RA, Sautto G, Sampaolo M, Clementi M: Molecular cloning of the first human monoclonal antibodies neutralizing with high potency swine-origin influenza A pandemic virus (S-OIV). New Microbiol. 2009, 32: 19-324.
145.
Zurück zum Zitat Burioni R, Canducci F, Clementi M: Pregnancy and H1N1 infection. Lancet. 2009, 374: 1417-1418.PubMed Burioni R, Canducci F, Clementi M: Pregnancy and H1N1 infection. Lancet. 2009, 374: 1417-1418.PubMed
146.
Zurück zum Zitat Ison MG, Lee N: Influenza 2010–2011: lessons from the 2009 pandemic. Cleve Clin J Med. 2010, 77: 812-820. 10.3949/ccjm.77a.10135.PubMed Ison MG, Lee N: Influenza 2010–2011: lessons from the 2009 pandemic. Cleve Clin J Med. 2010, 77: 812-820. 10.3949/ccjm.77a.10135.PubMed
147.
Zurück zum Zitat Libster R, Bugna J, Coviello S, Hijano DR, Dunaiewsky M, Reynoso N, Cavalieri ML, Guglielmo MC, Areso MS, Gilligan T, et al: Pediatric hospitalizations associated with 2009 pandemic influenza A (H1N1) in Argentina. N Engl J Med. 2010, 362: 45-55. 10.1056/NEJMoa0907673.PubMed Libster R, Bugna J, Coviello S, Hijano DR, Dunaiewsky M, Reynoso N, Cavalieri ML, Guglielmo MC, Areso MS, Gilligan T, et al: Pediatric hospitalizations associated with 2009 pandemic influenza A (H1N1) in Argentina. N Engl J Med. 2010, 362: 45-55. 10.1056/NEJMoa0907673.PubMed
148.
Zurück zum Zitat Miller E, Hoschler K, Hardelid P, Stanford E, Andrews N, Zambon M: Incidence of 2009 pandemic influenza A H1N1 infection in England: a cross-sectional serological study. Lancet. 2010, 375: 1100-1108. 10.1016/S0140-6736(09)62126-7.PubMed Miller E, Hoschler K, Hardelid P, Stanford E, Andrews N, Zambon M: Incidence of 2009 pandemic influenza A H1N1 infection in England: a cross-sectional serological study. Lancet. 2010, 375: 1100-1108. 10.1016/S0140-6736(09)62126-7.PubMed
149.
Zurück zum Zitat Sachedina N, Donaldson LJ: Paediatric mortality related to pandemic influenza A H1N1 infection in England: an observational population-based study. Lancet. 2010, 376: 1846-1852. 10.1016/S0140-6736(10)61195-6.PubMed Sachedina N, Donaldson LJ: Paediatric mortality related to pandemic influenza A H1N1 infection in England: an observational population-based study. Lancet. 2010, 376: 1846-1852. 10.1016/S0140-6736(10)61195-6.PubMed
150.
Zurück zum Zitat Skarbinski J, Jain S, Bramley A, Lee EJ, Huang J, Kirschke D, Stone A, Wedlake T, Richards SM, Page S, et al: Hospitalized patients with 2009 pandemic influenza A (H1N1) virus infection in the United States–September-October 2009. Clin Infect Dis. 2012, 52 (Suppl 1): S50-S59. Skarbinski J, Jain S, Bramley A, Lee EJ, Huang J, Kirschke D, Stone A, Wedlake T, Richards SM, Page S, et al: Hospitalized patients with 2009 pandemic influenza A (H1N1) virus infection in the United States–September-October 2009. Clin Infect Dis. 2012, 52 (Suppl 1): S50-S59.
151.
Zurück zum Zitat Lister P, Reynolds F, Parslow R, Chan A, Cooper M, Plunkett A, Riphagen S, Peters M: Swine-origin influenza virus H1N1, seasonal influenza virus, and critical illness in children. Lancet. 2009, 374: 605-607.PubMed Lister P, Reynolds F, Parslow R, Chan A, Cooper M, Plunkett A, Riphagen S, Peters M: Swine-origin influenza virus H1N1, seasonal influenza virus, and critical illness in children. Lancet. 2009, 374: 605-607.PubMed
152.
Zurück zum Zitat Louie JK, Gavali S, Acosta M, Samuel MC, Winter K, Jean C, Glaser CA, Matyas BT, Schechter R: Children hospitalized with 2009 novel influenza A(H1N1) in California. Arch Pediatr Adolesc Med. 2010, 164: 1023-1031. 10.1001/archpediatrics.2010.203.PubMed Louie JK, Gavali S, Acosta M, Samuel MC, Winter K, Jean C, Glaser CA, Matyas BT, Schechter R: Children hospitalized with 2009 novel influenza A(H1N1) in California. Arch Pediatr Adolesc Med. 2010, 164: 1023-1031. 10.1001/archpediatrics.2010.203.PubMed
153.
Zurück zum Zitat Miroballi Y, Baird JS, Zackai S, Cannon JM, Messina M, Ravindranath T, Green R, Della-Latta P, Jenkins S, Greenwald BM, et al: Novel influenza A(H1N1) in a pediatric health care facility in New York City during the first wave of the 2009 pandemic. Arch Pediatr Adolesc Med. 2010, 164: 24-30. 10.1001/archpediatrics.2009.259.PubMed Miroballi Y, Baird JS, Zackai S, Cannon JM, Messina M, Ravindranath T, Green R, Della-Latta P, Jenkins S, Greenwald BM, et al: Novel influenza A(H1N1) in a pediatric health care facility in New York City during the first wave of the 2009 pandemic. Arch Pediatr Adolesc Med. 2010, 164: 24-30. 10.1001/archpediatrics.2009.259.PubMed
154.
Zurück zum Zitat Schnepf N, Resche-Rigon M, Chaillon A, Scemla A, Gras G, Semoun O, Taboulet P, Molina JM, Simon F, Goudeau A, LeGoff J: High burden of non-influenza viruses in influenza-like illness in the early weeks of H1N1v epidemic in France. PLoS One. 2011, 6: e23514-10.1371/journal.pone.0023514.PubMedPubMedCentral Schnepf N, Resche-Rigon M, Chaillon A, Scemla A, Gras G, Semoun O, Taboulet P, Molina JM, Simon F, Goudeau A, LeGoff J: High burden of non-influenza viruses in influenza-like illness in the early weeks of H1N1v epidemic in France. PLoS One. 2011, 6: e23514-10.1371/journal.pone.0023514.PubMedPubMedCentral
155.
Zurück zum Zitat Renois F, Talmud D, Huguenin A, Moutte L, Strady C, Cousson J, Leveque N, Andreoletti L: Rapid detection of respiratory tract viral infections and coinfections in patients with influenza-like illnesses by use of reverse transcription-PCR DNA microarray systems. J Clin Microbiol. 2010, 48: 3836-3842. 10.1128/JCM.00733-10.PubMedPubMedCentral Renois F, Talmud D, Huguenin A, Moutte L, Strady C, Cousson J, Leveque N, Andreoletti L: Rapid detection of respiratory tract viral infections and coinfections in patients with influenza-like illnesses by use of reverse transcription-PCR DNA microarray systems. J Clin Microbiol. 2010, 48: 3836-3842. 10.1128/JCM.00733-10.PubMedPubMedCentral
156.
Zurück zum Zitat Casalegno JS, Ottmann M, Duchamp MB, Escuret V, Billaud G, Frobert E, Morfin F, Lina B: Rhinoviruses delayed the circulation of the pandemic influenza A (H1N1) 2009 virus in France. Clin Microbiol Infect. 2010, 16: 326-329. 10.1111/j.1469-0691.2010.03167.x.PubMed Casalegno JS, Ottmann M, Duchamp MB, Escuret V, Billaud G, Frobert E, Morfin F, Lina B: Rhinoviruses delayed the circulation of the pandemic influenza A (H1N1) 2009 virus in France. Clin Microbiol Infect. 2010, 16: 326-329. 10.1111/j.1469-0691.2010.03167.x.PubMed
157.
Zurück zum Zitat Hino S: TTV, a new human virus with single stranded circular DNA genome. Rev Med Virol. 2002, 12: 151-158. 10.1002/rmv.351.PubMed Hino S: TTV, a new human virus with single stranded circular DNA genome. Rev Med Virol. 2002, 12: 151-158. 10.1002/rmv.351.PubMed
158.
Zurück zum Zitat Bendinelli M, Pistello M, Maggi F, Fornai C, Freer G, Vatteroni ML: Molecular properties, biology, and clinical implications of TT virus, a recently identified widespread infectious agent of humans. Clin Microbiol Rev. 2001, 14: 98-113. 10.1128/CMR.14.1.98-113.2001.PubMedPubMedCentral Bendinelli M, Pistello M, Maggi F, Fornai C, Freer G, Vatteroni ML: Molecular properties, biology, and clinical implications of TT virus, a recently identified widespread infectious agent of humans. Clin Microbiol Rev. 2001, 14: 98-113. 10.1128/CMR.14.1.98-113.2001.PubMedPubMedCentral
159.
Zurück zum Zitat Maggi F, Pifferi M, Fornai C, Andreoli E, Tempestini E, Vatteroni M, Presciuttini S, Marchi S, Pietrobelli A, Boner A, et al: TT virus in the nasal secretions of children with acute respiratory diseases: relations to viremia and disease severity. J Virol. 2003, 77: 2418-2425. 10.1128/JVI.77.4.2418-2425.2003.PubMedPubMedCentral Maggi F, Pifferi M, Fornai C, Andreoli E, Tempestini E, Vatteroni M, Presciuttini S, Marchi S, Pietrobelli A, Boner A, et al: TT virus in the nasal secretions of children with acute respiratory diseases: relations to viremia and disease severity. J Virol. 2003, 77: 2418-2425. 10.1128/JVI.77.4.2418-2425.2003.PubMedPubMedCentral
160.
Zurück zum Zitat Pifferi M, Maggi F, Andreoli E, Lanini L, Marco ED, Fornai C, Vatteroni ML, Pistello M, Ragazzo V, Macchia P, et al: Associations between nasal torquetenovirus load and spirometric indices in children with asthma. J Infect Dis. 2005, 192: 1141-1148. 10.1086/444389.PubMed Pifferi M, Maggi F, Andreoli E, Lanini L, Marco ED, Fornai C, Vatteroni ML, Pistello M, Ragazzo V, Macchia P, et al: Associations between nasal torquetenovirus load and spirometric indices in children with asthma. J Infect Dis. 2005, 192: 1141-1148. 10.1086/444389.PubMed
161.
Zurück zum Zitat Pifferi M, Maggi F, Di Cristofano C, Cangiotti AM, Nelli LC, Bevilacqua G, Macchia P, Bendinelli M, Boner AL: Torquetenovirus infection and ciliary dysmotility in children with recurrent pneumonia. Pediatr Infect Dis J. 2008, 27: 413-418. 10.1097/INF.0b013e318162a14f.PubMed Pifferi M, Maggi F, Di Cristofano C, Cangiotti AM, Nelli LC, Bevilacqua G, Macchia P, Bendinelli M, Boner AL: Torquetenovirus infection and ciliary dysmotility in children with recurrent pneumonia. Pediatr Infect Dis J. 2008, 27: 413-418. 10.1097/INF.0b013e318162a14f.PubMed
Metadaten
Titel
The role of infections and coinfections with newly identified and emerging respiratory viruses in children
verfasst von
Maurizia Debiaggi
Filippo Canducci
Elisa Rita Ceresola
Massimo Clementi
Publikationsdatum
01.12.2012
Verlag
BioMed Central
Erschienen in
Virology Journal / Ausgabe 1/2012
Elektronische ISSN: 1743-422X
DOI
https://doi.org/10.1186/1743-422X-9-247

Weitere Artikel der Ausgabe 1/2012

Virology Journal 1/2012 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Reizdarmsyndrom: Diäten wirksamer als Medikamente

29.04.2024 Reizdarmsyndrom Nachrichten

Bei Reizdarmsyndrom scheinen Diäten, wie etwa die FODMAP-arme oder die kohlenhydratreduzierte Ernährung, effektiver als eine medikamentöse Therapie zu sein. Das hat eine Studie aus Schweden ergeben, die die drei Therapieoptionen im direkten Vergleich analysierte.

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.