Skip to main content
Erschienen in: BMC Infectious Diseases 1/2021

Open Access 01.12.2021 | Research

High resolution melting assay as a reliable method for diagnosing drug-resistant TB cases: a systematic review and meta-analysis

verfasst von: Masoud Keikha, Mohsen Karbalaei

Erschienen in: BMC Infectious Diseases | Ausgabe 1/2021

Abstract

Background

Tuberculosis (TB) is one of the most contagious infectious diseases worldwide. Currently, drug-resistant Mycobacterium tuberculosis (Mtb) isolates are considered as one of the main challenges in the global TB control strategy. Rapid detection of resistant strains effectively reduces morbidity and mortality of world’s population. Although both culture and conventional antibiotic susceptibility testing are time-consuming, recent studies have shown that high resolution melting (HRM) assay can be used to determine the types of antibiotic resistance. In the present meta-analysis, we evaluated the discriminative power of HRM in detecting all drug-resistance cases of TB.

Methods

A systematic search was performed using databases such as Cochrane Library, Scopus, PubMed, Web of Science, and Google Scholar. Related studies on the effect of HRM in the diagnosis of drug-resistant (DR) TB cases were retrieved by April 2021. We used Meta-Disc software to evaluate the pooled diagnostic sensitivity and specificity of HRM for the detection of each type of drug-resistant cases. Finally, diagnostic value of HRM was characterized by summary receiver operating characteristic (SROC) curve and the area under the curve (AUC) method.

Results

Overall 47 studies (4,732 Mtb isolates) met our criteria and were included in the present meta-analysis. Sensitivity, specificity, and AUC of HRM were measured for antibiotics such as isoniazid (93%, 98%, 0.987), rifampin (94%, 97%, 0963), ethambutol (82%, 87%, 0.728), streptomycin (82%, 95%, 0.957), pyrazinamide (72%, 84%, 0.845), fluoroquinolones (86%, 99%, 0.997), MDR-TB (90%, 98%, 0.989), and pan-drug-resistant TB (89%, 95%, 0.973).

Conclusions

The HRM assay has high accuracy for the identification of drug-resistant TB, particularly firs-line anti-TB drugs. Therefore, this method is considered as an alternative option for the rapid diagnosis of DR-TB cases. However, due to heterogeneity of included studies, the results of HRM assays should be interpreted based on conventional drug susceptibility testing.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
TB
Tuberculosis
DR-TB
Drug-resistant tuberculosis
HRM
High resolution melting
Mtb
Mycobacterium tuberculosis
SROC
Summary receiver operating characteristic
AUC
Curve and the area under the curve
TP
True positive
FP
False positive
TN
True negative
FN
False negative
NOS
Newcastle–Ottawa Scale
PRISMA
Preferred reporting items for systematic reviews and meta-analysis
SNP
Single nucleotide polymorphism

Background

A century after the discovery of Mycobacterium tuberculosis (Mtb) as the etiological agent of tuberculosis (TB) by Robert Koch, the disease is still one of the leading causes of death (after AIDS) worldwide [1, 2]. According to the World Health Organization (WHO) report in 2020, approximately 10 million (range, 8.9–11.0 million) people became infected with Mtb in 2019; of these, approximately 1.2 million (range, 1.1–1.3 million) deaths occurred among HIV-negative people [3]. Furthermore 208,000 deaths (range, 177,000–242,000) were related to HIV-positive individuals [4]. According to the use of comprehensive treatment programs, statistics show that the number of TB deaths among HIV-positive and HIV-negative people fell by 31% and 69% between 2000 and 2019, respectively [4]. Drug-resistant tuberculosis (DR-TB) is a global concern for TB control programs, and close to half a million people have been diagnosed with rifampicin-resistant TB (RR-TB); of which 78% had MDR-TB (resistant to both rifampicin and isoniazid). Three countries, India (27%), China (14%), and Russian Federation (8%) had the largest share of the global MDR-TB burden, respectively [4, 5]. Therefore, prompt diagnosis and appropriate treatment of both TB and DR-TB cases are considered as key factors in reducing mortality from this disease [6, 7]. According to WHO guidelines, diagnosis of both resistance and susceptible isolates requires methods such as molecular techniques, cultivation, sequencing, and bacteriological confirmation; although methods e.g. culture (in LJ, 7H10, 7H11 and MGIT media) and phenotypic drug susceptibility testing (DST) are considered as gold standard methods for diagnosis of this bacterium, however, these methods are time-consuming, laborious, and sometimes ambiguous results are obtained [4, 8]. Therefore, reducing the detection time leads to reduce the risk of transmission of resistant strains [9]. In recent years, several rapid methods for diagnosing TB or DR-TB isolates such as PCR, real-time PCR, line probe assay (LPA), Xpert MTB/RIF assay, and BACTEC MGIT 960 liquid culture have been introduced [8]. Xpert MTB/RIF assay is applicable in high-prevalence and low-income settings; although this method has recently been approved by WHO for rapid detection of both Mtb and RR-TB isolates, it has several disadvantages, for example, it is only used for rifampin and is not affordable in all regions of developing countries [811]. BACTEC system is based on the generation of radioactive CO2 from substrate palmitic acid; this system is high specific and helpful in distinguishing Mtb from other mycobacteria, as well as is used as a comparative method versus DST. In general, in this system growth can be detected in 5–10 days; however, the detection time of bacteria in this method is faster than the conventional culture method (more than two weeks), but it takes more time to detect than molecular methods [12]. Overall, molecular methods are more rapid compared to other methods, nevertheless, these methods are costly, and also require standardization and a multi-step process; moreover, the use of these methods increases the risk of cross-contamination and misdiagnosis [13]. High resolution melting (HRM) assay is a new method to detect point mutations, single nucleotide polymorphism (SNP), and internal tandem duplications [14, 15]. HRM technique is based on differences in the melting profiles of test and reference DNAs; in this method, using real-time PCR assay, first, immunofluorescent dyes bind to double-stranded DNA, and during the denaturation step of PCR amplicons, differences in melting curves indicate that a mutation occurs in the test DNAs compared to reference DNA [16]. The recent method is relatively inexpensive and requires only unlabeled primers and dsDNA binding dyes; the process of detection is too fast, and due to the reaction in a closed tube, the risk of contamination is low; unlike other molecular methods, this method has no post-PCR process [17, 18]. To date, various studies have examined the sensitivity and specificity of HRM, and the aim of this meta-analysis was to determine the overall accuracy of HRM in identifying DR-TB cases.

Methods

Literature search strategy

The systematic review was performed based on preferred reporting items for systematic reviews and meta-analysis (PRISMA) guideline [19]. At the first, a comprehensive literature search‏ ‏was‏ ‏conducted‏ ‏using global databases such as‏ ‏Web of Science, PubMed, Scopus, Cochrane Library, and Google scholar. Relevant studies were retrieved according to keywords such as “Mycobacterium tuberculosis”, “Tuberculosis”, “TB”, “Drug-resistant TB”, “High resolution melting”, “Specificity”, and “Sensitivity”. Studies were selected regardless of publication date, and we also evaluated the bibliography of all candidate articles to identify duplicate studies.

Study screening and selection

To determine the eligibility of studies, title, abstract, and full text of potential studies were evaluated. This process was conducted by two authors separately, and disagreements were resolved through discussion. Our inclusion criteria included: (1) original articles on HRM value for diagnosis of DR-TB; (2) evaluated studies by reference tests (antibiogram, BACTEC MGIT 960 system, sequencing) and HRM; (3) studies containing information such as true positive (TP), false positive (FP), true negative (TN), and false negative (FN); (4) English studies. In the present study, excluded criteria were including: (I) congress abstracts, letters, and review articles; (II) articles with unclear results and insufficient data; (III) studies on extrapulmonary TB; (IV) non-English studies. Finally, 24 articles met our included criteria [2043]. ‏

Data extraction and quality assessment

In this step, we used the Newcastle–Ottawa Scale (NOS) to assess the quality of included studies. Information such as first author, publication year, country, subjects, number of Mtb (resistant and susceptible) isolates, studied genes, and number of TP/FP/TN/FN for each participant are listed in Table 1.
Table 1
Characteristic of included studies
Author
Year
Country
Subjects
R/S
Gene
TP (n)
FP (n)
FN (n)
TN (n)
NOS
Refs.
Pietzka
2009
Austria
Multidrug-resistant TB
49/19
rpoB
44
2
5
17
8
[18]
Choi
2010
Korea
Isoniazid resistance
Rifampicin resistance
100/117
73/124
katG, inhA
rpoB
90
72
0
0
10
1
117
124
10
[19]
Ong
2010
Singapore
Isoniazid resistance
Rifampicin resistance
53/6
28/31
katG and mab-inhA
rpoB
52
25
1
0
1
3
5
31
8
[20]
Ramirez
2010
United States
Multidrug-resistant TB
148/104
katG, inhA
rpoB
126
2
22
102
8
[21]
Wang
2011
China
Streptomycin resistance
30/0
rpsL
21
0
9
0
5
[22]
Chen
2011
Australia
Isoniazid resistance
Rifampicin resistance
Ofloxacin resistance
69/46
54/61
41/74
katG and mab-inhA
rpoB
gyrA
67
51
41
0
1
1
2
3
0
48
60
73
9
[23]
Lee
2012
Singapore
Fluoroquinolone and Streptomycin resistance
25/28
48/14
gyrA
rpsL
19
42
0
0
6
6
28
14
7
[24]
Yadav
2012
India
Isoniazid resistance
Rifampicin resistance
Streptomycin resistance
35/20
29/20
34/20
katG
rpoB
rpsL
30
27
21
2
0
0
5
2
13
18
20
20
9
[25]
Nagai
2013
Japan
Isoniazid resistance
Rifampicin resistance
Ethambutol resistance
Streptomycin resistance
12/15
10/17
8/19
11/16
katG, mab-inhA
rpoB
embB
rpsL, rrs
11
10
8
11
0
2
0
1
1
0
0
0
15
15
19
15
10
[26]
Nour
2013
Egypt
Isoniazid resistance
Rifampicin resistance
20/10
13/17
katG, rpoB
17
12
0
0
3
1
10
17
6
[27]
Haeili
2014
Iran
Isoniazid resistance
Rifampicin resistance
21/54
20/54
katG
rpoB
18
19
0
0
3
1
54
54
8
[28]
Pholwat
2014
United States
Pyrazinamide resistance
55/41
pncA
34
7
21
34
8
[29]
Malhotra
2015
India
Rifampicin resistance
103/116
rpoB
93
3
10
113
9
[30]
Pholwat
2015
United states
Drug-resistant TB
186/41
161/58
80/123
107/304
40/180
56/57
inhA or katG
rpoB
embB
rpsL, rrs, eis
gyrA-gyrB
pncA
174
153
62
89
31
49
0
11
35
18
3
2
12
8
18
18
9
7
41
47
88
286
177
55
10
[31]
Osman
2016
Africa
Pyrazinamide resistance
29/66
pncA
14
17
15
49
7
[32]
Galarza
2016
Peru
Multidrug-resistant TB
Isoniazid resistance
Rifampicin resistance
78/89
78/89
78/89
katG, inhA
rpoB
77
77
77
2
2
0
1
1
1
87
87
89
8
[33]
Anthwal
2017
India
Isoniazid resistance
Rifampicin resistance
21/78
11/88
katG, inhA
rpoB
18
10
0
0
3
1
88
88
9
[34]
Rezaei
2017
Iran
Ethambutol resistance
Streptomycin resistance
21/55
25/51
embB
rrs, rpsL
19
22
2
0
2
3
53
51
6
[35]
Sirous
2018
Iran
Isoniazid resistance
Rifampicin resistance
Ofloxacin resistance
16/20
18/20
5/20
katG and mab-inhA
rpoB
gyrA
14
15
4
0
0
0
2
3
1
20
20
20
10
[36]
Negi
2018
India
Multidrug-resistant TB
94/49
katG, rpoB
85
0
9
49
8
[37]
Filipenko
2019
Russia
Pyrazinamide resistance
38/20
pncA
31
3
7
17
7
[38]
Arefzadeh
2020
Iran
Rifampicin resistance
5/75
rpoB
5
8
0
67
8
[39]
Anukool
2020
Thailand
Isoniazid resistance
Rifampicin resistance
34/69
37/70
katG, inhA
rpoB
33
31
4
1
1
6
65
69
9
[40]
Wang
2020
China
Ethambutol resistance
59/163
embB
49
9
10
154
7
[41]

Statistical analysis

The accuracy and reliability of HRM method were measured using indexes such as sensitivity, specificity, and diagnostic odds ratio (DOR) with 95% confidence interval (CI). Subsequently, we employed summary receiver operating characteristic (SROC) curve to measure the area under the curve (AUC) [44]. In addition, Chi-squared and I-squared tests (p < 0.01 or I2 > 50%) were used to measure heterogeneity between studies. Based on significant heterogeneity between studies, we conducted a pooled analysis (fixed-effects model or random-effects model). Furthermore‏,‏ subgroup analysis was performed‏ ‏individually‏ ‏to assess the accuracy of HRM assay for two types of DR-TB including, mono-resistant TB (rifampin, isoniazid, ethambutol, streptomycin, pyrazinamide, or fluoroquinolone) and MDR-TB‏.‏ All statistical‏ ‏tests‏ ‏were two-sided with a significant cut-off (p < 0.05), and were fulfilled by Meta-DiSc software.

Results

Characterization of included studies

After an initial evaluation of the retrieved articles, finally 24 studies were accordance with our criteria (Fig. 1). Included studies had been published in Austria, Korea, Singapore, United States, China, India, Iran, Japan, Egypt, Africa, Peru, Russia, and Thailand during 2009–2020. In this study, data from 4732 Mtb isolates (both drug-resistant and drug-susceptible strains) were studied. In all eligible studies, authors had assessed the accuracy and integrity of HRM assay for both first-line (isoniazid, rifampin, streptomycin, ethambutol, pyrazinamide, and MDR-TB) and second-line (particularly ofloxacine) treatments, using standard methods such as sequencing, MGIT 960, and proportional method (Table 1). In these studies, different primers were designed related to antibiotic resistance including katG, mab-inhA, rpoB, rrs, rpsL, eis, embB, pncA, gyrA‏, and gyrB. Quality assessments showed that most included studies had a low risk of bias, which confirmed the proportion of selected studies.

Meta-analysis results

The results obtained from forest plots showed that the sensitivity and specificity of HRM were acceptable for distinguishing DR-TB strains from susceptible strains. According to statistical analysis, the sensitivity and specificity of DR-TB cases were 89% (95% CI: 88–90) and 95% (95% CI: 94–96), respectively. However, the I2 values for sensitivity and specificity were higher than 50%, which indicated a significant heterogeneity. The diagnostic accuracy of HRM was measured by SROC curve, so that the AUC and Q* values were 0.9754 and 0.9289, respectively.

Subgroup analysis

Due to a significant heterogeneity in the estimated results, we performed subgroup analysis to discover the source of heterogeneity. Each of 47 studies independently had measured Mtb resistance to isoniazid, rifampin, ethambutol, streptomycin, pyrazinamide, fluoroquinolones MDR-TB, and first line. Parameters such as sensitivity, specificity, diagnostic ORs, and SROC for these antibiotics are listed in Table 2.
Table 2
Pooled means of sensitivity and specificity, DOR, and SROC for each antibiotics
Drugs
Sensitivity (95% CI)
Specificity (95% CI)
DOR (95% CI)
SROC
AUC
Q*
Isoniazid
93% (91–95)
98% (97–99)
459.85 (198.64–1064.55)
0.987
0.953
Rifampin
94% (92–95)
97% (95–98)
414.98 (182.7–942.6)
0.963
0.935
Ethambutol
82% (75–88)
87% (83–90)
69.50 (10.57–457.09)
0.728
0.794
Streptomycin
82% (77–87)
95% (93–97)
92.82 (49.36–174.55)
0.957
0.900
Pyrazinamide
72% (65–78)
84% (78–89)
16.11 (3.11–83.5)
0.845
0.777
MDR-TB
90% (86–93)
98% (95–99)
404.41 (87.02–1879.41)
0.989
0.956
fluoroquinolones
86% (78–92)
99% (97–100)
274.63 (83.71–901.02)
0.997
0.980
First-line
89% (88–90)
95% (94–96)
232.05 (121.50–443.21)
0.973
0.925
According to the results of subgrouping analysis, HRM is a reliable method for diagnosis of DR-TB cases, in particular the sensitivity and specificity for isoniazid, rifampin, and MDR-TB was higher than 90%. Furthermore, this method accurately discriminates resistance and susceptibility to other antibiotics such as ethambutol, streptomycin, pyrazinamide, and fluoroquinolones. The SROC curves represented the maximum polymerization spots of sensitivity and specificity associated with each of HRM assay (Fig. 2).

Discussion

In recent years, the emergence of DR-TB strains is accounted a serious threat to TB control worldwide [45]. Diagnosis and screening of patients infected with MDR and extensively drug-resistant (XDR) strains is an important strategy to monitor and prevent the geographical spread of DR-TB strains [46]. Although conventional drug susceptibility testing such as proportional method, absolute concentration method, and resistance ratio method are known as reference methods, these are time-concuming and laborious [47]. To date, conventional drug susceptibility testing by liquid culture system has been introduced as colorimetric redox-indicator method, which in turn reduces the detection time to less than a week, but this system requires expensive tools and cannot be used in all developing countries [48, 49]. The Xpert MTB/RIF assay is a relatively new method recommended by WHO, but it should be noted that this method is only able to detect rifampin-resistant cases [50]. Among the molecular methods that can be used to determine TB antibiotic resistance, HRM is a fast, inexpensive, and simple method, which can detect different mutations using a small number of probes or even without a special probe [51]. In their meta-analysis study (using 7 articles), Yin et al. showed that the sensitivity and specificity of HRM in the diagnosing of rifampin-resistant TB cases were 94% and 99%, respectively [18]. A summary of common methods for detecting drug-resistant TB are listed in Table 3.
Table 3
Comparison of popular methods for the detection of drug-resistant tuberculosis
Test
Type
Advantage
Disadvantage
Limitation
Cost
Refs.
Culture-based methods
Solid-based media
High sensitivity and specificity
Cumbersome, time-consuming, laborious, need to standardization, need to skilled laboratory technicians, need to high-biosafety laboratories
Unreliability of HIV-positive cases, low sensitivity for extrapulmonary TB, less sensitive and slower than liquid culture
Relatively-expensive
[52, 53]
Liquid-based media
Rapid automated, facilitate the processing of large numbers of specimens, high reproducibility, high sensitivity and specificity
Complexity, bio-safety concern, need for standardization, need for equipment
Inability to check the colony morphology of the growing bacteria, invisible contamination, overgrowth of NTM, need of expensive complex systems
High-cost
[54, 55]
Colorimetric- based method
Rapid, inexpensive
Low sensitivity and specificity
NTM can produce cord factor, applied for culture isolates, isoniazid can lead to false-positive, need to large inoculum size
Low-cost
[56, 57]
Molecular-based methods
GeneXpert
A rapid, high reproducibility, high sensitivity and specificity, reliability of results for HIV-infected individuals, and extrapulmonary TB
Complexity, need for specialized laboratories, operator dependency
inability to detect isoniazid mono-resistance, mutation out of the rpoB was not detected, shelf life of the cartridges is only 18 months, very stable electricity supply is required, the instrument needs to be recalibrated annually
High-cost
[58, 59]
Line probe assays
Detection of MTB complex, screening of resistance to isoniazid, rifampin, and MDR-TB, high sensitivity and specificity
Limited number of gene targets, high rate of uninterpretable results, risk of cross contamination due to its open-tube format
Applicable for smear-positive and culture isolates, time consuming due hybridization process, need to trained technicians
High-cost
[60, 61]
HRM
Rapid, simple, closed-tube, homogenous, affordable method, cost-efficient
Variability of sensitivity and specificity for individual clinical diagnostic setting, misdiagnosis of small insertions and deletions, lack of databases
Poor accuracy in genotyping, safe amplicon length (more than 400 bp) depends on good PCR, instruments, and dyes
Low-cost
[18, 6264]
To date, many studies have examined the accuracy of HRM for the diagnosis of DR-TB, however, no study has systematically evaluated the effectiveness of this method. In the present meta-analysis, we estimated the sensitivity and specificity of HRM in detecting DR-TB cases at 89% and 95%, respectively. According to our results, accuracy of HRM was slightly higher than other molecular methods, especially PCR-SSCP, while it was lower compared to the conventional drug susceptibility testing method. HRM method is credible method for detecting of mutations in specific genes; approximately 95% of rifampin-related mutations occur in the rifampicin resistance determining region (RRDR), while, 5% of those are outside this locus and cannot be detected by conventional molecular methods [65]. Nevertheless, some mutations such as nucleotide transversions (A:T and G:C) are difficult to distinguish, since they have very little influence on the overall thermal denaturation profile [66]. Sharma et al. showed that HRM could be a rapid and reliable method for the diagnosis of MDR-TB in cases of extrapulmonary TB [67]. In another study, Mu et al. examined this method for detecting DR-TB in formalin-fixed or paraffin‑embedded tissues; they found that the sensitivity of HRM for antibiotics such as rifampin, isoniazid, levofloxacin, and moxifloxacin was was 95.00%, 96.00%, 100%, and 100%, respectively, while its specificity was 95.15%, 95.92%, 94.69%, and 89.92%, respectively [68]. The stability of our findings are confirmed by similar studies and our results also showed that HRM is a trustworthy method for detecting resistance to some antibiotics, especially isoniazid and rifampin. In the present study, the heterogeneity was significant in some cases so that it was not eliminated by subgroup analysis; this issue requires a comprehensive program. This phenomenon may be due to differences in some factors such as study design, low sample size, references methods, examining tools, and dyes used. Despite its reliability, HRM has disadvatages including: (1) this method is performed only on cultured isolates; (2) HRM results are strongly depend on the quality of the extracted DNA; (3) researchers use a variety of protocols to set up HRM (self-design program). Our study had several limitations: (1) low sample size; (2) potential heterogeneity due to differences in study design and also unreliability of results; (3) inaccessibility to raw data for further analysis; (4) failure to assess the publication bias.

Conclusion

Despite the limitations of the present study, according to previous studies, we have shown that HRM is an accurate method for diagnosing and monitoring DR-TB cases. This method, together with the results of drug susceptibility testing, seems to be a suitable strategy for rapid and inexpensive diagnosis of DR-TB cases.

Acknowledgements

We appreciate from both Mashhad University of Medical Sciences and Jiroft University of Medical Sciences.

Declarations

Not applicable (this paper was provided based on researching in global databases).
Not applicable.

Competing interests

The authors declare no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Drain PK, Bajema KL, Dowdy D, Dheda K, Naidoo K, Schumacher SG, Ma S, Meermeier E, Lewinsohn DM, Sherman DR. Incipient and subclinical tuberculosis: a clinical review of early stages and progression of infection. Clin Microbiol Rev. 2018;31:4.CrossRef Drain PK, Bajema KL, Dowdy D, Dheda K, Naidoo K, Schumacher SG, Ma S, Meermeier E, Lewinsohn DM, Sherman DR. Incipient and subclinical tuberculosis: a clinical review of early stages and progression of infection. Clin Microbiol Rev. 2018;31:4.CrossRef
2.
Zurück zum Zitat Keikha M, Esfahani BN. The relationship between tuberculosis and lung cancer. Adv Biomed Res. 2018;7:1. Keikha M, Esfahani BN. The relationship between tuberculosis and lung cancer. Adv Biomed Res. 2018;7:1.
3.
Zurück zum Zitat Keikha M, Karbalaei M. Overview on coinfection of HTLV-1 and tuberculosis: Mini-review. J Clin Tuberc Other Mycobact Dis. 2021;2021:100224.CrossRef Keikha M, Karbalaei M. Overview on coinfection of HTLV-1 and tuberculosis: Mini-review. J Clin Tuberc Other Mycobact Dis. 2021;2021:100224.CrossRef
4.
Zurück zum Zitat Organization WH: Global tuberculosis report 2020: executive summary. 2020. Organization WH: Global tuberculosis report 2020: executive summary. 2020.
5.
Zurück zum Zitat Keikha M. There is significant relationship between Beijing genotype family strains and resistance to the first-line anti-tuberculosis drugs in the Iranian population. J Clin Tuberc Other Mycobact Dis. 2020;19:1. Keikha M. There is significant relationship between Beijing genotype family strains and resistance to the first-line anti-tuberculosis drugs in the Iranian population. J Clin Tuberc Other Mycobact Dis. 2020;19:1.
6.
Zurück zum Zitat Weyer K, Dennis Falzon D, Jaramillo E, Zignol M, Mirzayev F, Raviglione M. Drug-resistant tuberculosis: what is the situation, what are the needs to roll it back. AMR control. 2017;20:60–7. Weyer K, Dennis Falzon D, Jaramillo E, Zignol M, Mirzayev F, Raviglione M. Drug-resistant tuberculosis: what is the situation, what are the needs to roll it back. AMR control. 2017;20:60–7.
7.
Zurück zum Zitat Keikha M, Karbalaei M. Antithetical effects of MicroRNA molecules in tuberculosis pathogenesis. Adv Biomed Res. 2019;8:1. Keikha M, Karbalaei M. Antithetical effects of MicroRNA molecules in tuberculosis pathogenesis. Adv Biomed Res. 2019;8:1.
8.
Zurück zum Zitat Migliori GB, Tiberi S, Zumla A, Petersen E, Chakaya JM, Wejse C, Torrico MM, Duarte R, Alffenaar JW, Schaaf HS. MDR/XDR-TB management of patients and contacts: challenges facing the new decade The 2020 clinical update by the Global Tuberculosis Network. Int J Infect Dis. 2020;92:S15–25.CrossRef Migliori GB, Tiberi S, Zumla A, Petersen E, Chakaya JM, Wejse C, Torrico MM, Duarte R, Alffenaar JW, Schaaf HS. MDR/XDR-TB management of patients and contacts: challenges facing the new decade The 2020 clinical update by the Global Tuberculosis Network. Int J Infect Dis. 2020;92:S15–25.CrossRef
9.
Zurück zum Zitat Organization WH. The global MDR-TB & XDR-TB response plan 2007–2008. Geneva: World Health Organization; 2007. Organization WH. The global MDR-TB & XDR-TB response plan 2007–2008. Geneva: World Health Organization; 2007.
10.
Zurück zum Zitat Jacobson KR, Theron D, Kendall EA, Franke MF, Barnard M, Van Helden PD, Victor TC, Streicher EM, Murray MB, Warren RM. Implementation of GenoType MTBDR plus reduces time to multidrug-resistant tuberculosis therapy initiation in South Africa. Clin Infect Dis. 2013;56(4):503–8.PubMedCrossRef Jacobson KR, Theron D, Kendall EA, Franke MF, Barnard M, Van Helden PD, Victor TC, Streicher EM, Murray MB, Warren RM. Implementation of GenoType MTBDR plus reduces time to multidrug-resistant tuberculosis therapy initiation in South Africa. Clin Infect Dis. 2013;56(4):503–8.PubMedCrossRef
11.
Zurück zum Zitat Sohn H, Aero AD, Menzies D, Behr M, Schwartzman K, Alvarez GG, Dan A, McIntosh F, Pai M, Denkinger CM. Xpert MTB/RIF testing in a low tuberculosis incidence, high-resource setting: limitations in accuracy and clinical impact. Clin Infect Dis. 2014;58(7):970–6.PubMedCrossRef Sohn H, Aero AD, Menzies D, Behr M, Schwartzman K, Alvarez GG, Dan A, McIntosh F, Pai M, Denkinger CM. Xpert MTB/RIF testing in a low tuberculosis incidence, high-resource setting: limitations in accuracy and clinical impact. Clin Infect Dis. 2014;58(7):970–6.PubMedCrossRef
12.
Zurück zum Zitat Bemer P, Palicova F, Rüsch-Gerdes S, Drugeon HB, Pfyffer GE. Multicenter evaluation of fully automated BACTEC Mycobacteria Growth Indicator Tube 960 system for susceptibility testing of Mycobacterium tuberculosis. J Clin Microbiol. 2002;40(1):150–4.PubMedCrossRef Bemer P, Palicova F, Rüsch-Gerdes S, Drugeon HB, Pfyffer GE. Multicenter evaluation of fully automated BACTEC Mycobacteria Growth Indicator Tube 960 system for susceptibility testing of Mycobacterium tuberculosis. J Clin Microbiol. 2002;40(1):150–4.PubMedCrossRef
14.
Zurück zum Zitat Krypuy M, Newnham GM, Thomas DM, Conron M, Dobrovic A. High resolution melting analysis for the rapid and sensitive detection of mutations in clinical samples: KRAS codon 12 and 13 mutations in non-small cell lung cancer. BMC Cancer. 2006;6(1):1–12.CrossRef Krypuy M, Newnham GM, Thomas DM, Conron M, Dobrovic A. High resolution melting analysis for the rapid and sensitive detection of mutations in clinical samples: KRAS codon 12 and 13 mutations in non-small cell lung cancer. BMC Cancer. 2006;6(1):1–12.CrossRef
15.
Zurück zum Zitat Liew M, Nelson L, Margraf R, Mitchell S, Erali M, Mao R, Lyon E, Wittwer C. Genotyping of human platelet antigens 1 to 6 and 15 by high-resolution amplicon melting and conventional hybridization probes. J Mol Diagn. 2006;8(1):97–104.PubMedCrossRef Liew M, Nelson L, Margraf R, Mitchell S, Erali M, Mao R, Lyon E, Wittwer C. Genotyping of human platelet antigens 1 to 6 and 15 by high-resolution amplicon melting and conventional hybridization probes. J Mol Diagn. 2006;8(1):97–104.PubMedCrossRef
16.
Zurück zum Zitat Athamanolap P, Parekh V, Fraley SI, Agarwal V, Shin DJ, Jacobs MA, Wang T-H, Yang S. Trainable high resolution melt curve machine learning classifier for large-scale reliable genotyping of sequence variants. PLoS ONE. 2014;9(10):e109094.PubMedCrossRef Athamanolap P, Parekh V, Fraley SI, Agarwal V, Shin DJ, Jacobs MA, Wang T-H, Yang S. Trainable high resolution melt curve machine learning classifier for large-scale reliable genotyping of sequence variants. PLoS ONE. 2014;9(10):e109094.PubMedCrossRef
17.
Zurück zum Zitat Montgomery JL, Sanford LN, Wittwer CT. High-resolution DNA melting analysis in clinical research and diagnostics. Expert Rev Mol Diagn. 2010;10(2):219–40.PubMedCrossRef Montgomery JL, Sanford LN, Wittwer CT. High-resolution DNA melting analysis in clinical research and diagnostics. Expert Rev Mol Diagn. 2010;10(2):219–40.PubMedCrossRef
18.
Zurück zum Zitat Yin X, Zheng L, Liu Q, Lin L, Hu X, Hu Y, Wang Q. High-resolution melting curve analysis for rapid detection of rifampin resistance in Mycobacterium tuberculosis: a meta-analysis. J Clin Microbiol. 2013;51(10):3294–9.PubMedCrossRef Yin X, Zheng L, Liu Q, Lin L, Hu X, Hu Y, Wang Q. High-resolution melting curve analysis for rapid detection of rifampin resistance in Mycobacterium tuberculosis: a meta-analysis. J Clin Microbiol. 2013;51(10):3294–9.PubMedCrossRef
19.
Zurück zum Zitat Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1–9.PubMedPubMedCentralCrossRef Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1–9.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Pietzka AT, Indra A, Stöger A, Zeinzinger J, Konrad M, Hasenberger P, Allerberger F, Ruppitsch W. Rapid identification of multidrug-resistant Mycobacterium tuberculosis isolates by rpoB gene scanning using high-resolution melting curve PCR analysis. J Antimicrob Chemother. 2009;63(6):1121–7.PubMedCrossRef Pietzka AT, Indra A, Stöger A, Zeinzinger J, Konrad M, Hasenberger P, Allerberger F, Ruppitsch W. Rapid identification of multidrug-resistant Mycobacterium tuberculosis isolates by rpoB gene scanning using high-resolution melting curve PCR analysis. J Antimicrob Chemother. 2009;63(6):1121–7.PubMedCrossRef
21.
Zurück zum Zitat Choi GE, Lee SM, Yi J, Hwang SH, Kim HH, Lee EY, Cho EH, Kim JH, Kim H-J, Chang CL. High-resolution melting curve analysis for rapid detection of rifampin and isoniazid resistance in Mycobacterium tuberculosis clinical isolates. J Clin Microbiol. 2010;48(11):3893–8.PubMedCrossRef Choi GE, Lee SM, Yi J, Hwang SH, Kim HH, Lee EY, Cho EH, Kim JH, Kim H-J, Chang CL. High-resolution melting curve analysis for rapid detection of rifampin and isoniazid resistance in Mycobacterium tuberculosis clinical isolates. J Clin Microbiol. 2010;48(11):3893–8.PubMedCrossRef
22.
Zurück zum Zitat Ong DC, Yam W-C, Siu GK, Lee AS. Rapid detection of rifampicin-and isoniazid-resistant Mycobacterium tuberculosis by high-resolution melting analysis. J Clin Microbiol. 2010;48(4):1047–54.PubMedCrossRef Ong DC, Yam W-C, Siu GK, Lee AS. Rapid detection of rifampicin-and isoniazid-resistant Mycobacterium tuberculosis by high-resolution melting analysis. J Clin Microbiol. 2010;48(4):1047–54.PubMedCrossRef
23.
Zurück zum Zitat Ramirez MV, Cowart KC, Campbell PJ, Morlock GP, Sikes D, Winchell JM, Posey JE. Rapid detection of multidrug-resistant Mycobacterium tuberculosis by use of real-time PCR and high-resolution melt analysis. J Clin Microbiol. 2010;48(11):4003–9.PubMedCrossRef Ramirez MV, Cowart KC, Campbell PJ, Morlock GP, Sikes D, Winchell JM, Posey JE. Rapid detection of multidrug-resistant Mycobacterium tuberculosis by use of real-time PCR and high-resolution melt analysis. J Clin Microbiol. 2010;48(11):4003–9.PubMedCrossRef
24.
Zurück zum Zitat Wang F, Shen H, Guan M, Wang Y, Feng Y, Weng X, Wang H, Zhang W. High-resolution melting facilitates mutation screening of rpsL gene associated with streptomycin resistance in Mycobacterium tuberculosis. Microbiol Res. 2011;166(2):121–8.PubMedCrossRef Wang F, Shen H, Guan M, Wang Y, Feng Y, Weng X, Wang H, Zhang W. High-resolution melting facilitates mutation screening of rpsL gene associated with streptomycin resistance in Mycobacterium tuberculosis. Microbiol Res. 2011;166(2):121–8.PubMedCrossRef
25.
Zurück zum Zitat Chen X, Kong F, Wang Q, Li C, Zhang J, Gilbert GL. Rapid detection of isoniazid, rifampin, and ofloxacin resistance in Mycobacterium tuberculosis clinical isolates using high-resolution melting analysis. J Clin Microbiol. 2011;49(10):3450–7.PubMedCrossRef Chen X, Kong F, Wang Q, Li C, Zhang J, Gilbert GL. Rapid detection of isoniazid, rifampin, and ofloxacin resistance in Mycobacterium tuberculosis clinical isolates using high-resolution melting analysis. J Clin Microbiol. 2011;49(10):3450–7.PubMedCrossRef
26.
Zurück zum Zitat Lee AS, Ong DC, Wong JC, Siu GK, Yam W-C. High-resolution melting analysis for the rapid detection of fluoroquinolone and streptomycin resistance in Mycobacterium tuberculosis. PLoS ONE. 2012;7(2):e31934.PubMedCrossRef Lee AS, Ong DC, Wong JC, Siu GK, Yam W-C. High-resolution melting analysis for the rapid detection of fluoroquinolone and streptomycin resistance in Mycobacterium tuberculosis. PLoS ONE. 2012;7(2):e31934.PubMedCrossRef
27.
Zurück zum Zitat Yadav R, Sethi S, Mewara A, Dhatwalia S, Gupta D, Sharma M. Rapid detection of rifampicin, isoniazid and streptomycin resistance in M ycobacterium tuberculosis clinical isolates by high-resolution melting curve analysis. J Appl Microbiol. 2012;113(4):856–62.PubMedCrossRef Yadav R, Sethi S, Mewara A, Dhatwalia S, Gupta D, Sharma M. Rapid detection of rifampicin, isoniazid and streptomycin resistance in M ycobacterium tuberculosis clinical isolates by high-resolution melting curve analysis. J Appl Microbiol. 2012;113(4):856–62.PubMedCrossRef
28.
Zurück zum Zitat Nagai Y, Iwade Y, Hayakawa E, Nakano M, Sakai T, Mitarai S, Katayama M, Nosaka T, Yamaguchi T. High resolution melting curve assay for rapid detection of drug-resistant Mycobacterium tuberculosis. J Infect Chemother. 2013;19(6):1116–25.PubMedCrossRef Nagai Y, Iwade Y, Hayakawa E, Nakano M, Sakai T, Mitarai S, Katayama M, Nosaka T, Yamaguchi T. High resolution melting curve assay for rapid detection of drug-resistant Mycobacterium tuberculosis. J Infect Chemother. 2013;19(6):1116–25.PubMedCrossRef
29.
Zurück zum Zitat Nour MS, El-Shokry MH, Shehata IH, Aziz A. Evaluation of rezasurin microtiter assay and high resolution melting curve analysis for detection of rifampicin and isoniazid resistance of Mycobacterium tuberculosis clinical isolates. Clin Lab. 2013;59(7):763–71.PubMed Nour MS, El-Shokry MH, Shehata IH, Aziz A. Evaluation of rezasurin microtiter assay and high resolution melting curve analysis for detection of rifampicin and isoniazid resistance of Mycobacterium tuberculosis clinical isolates. Clin Lab. 2013;59(7):763–71.PubMed
30.
Zurück zum Zitat Haeili M, Fooladi A, Bostanabad S, Sarokhalil D, Siavoshi F, Feizabadi M. Rapid screening of rpoB and katG mutations in Mycobacterium tuberculosis isolates by high-resolution melting curve analysis. Indian J Med Microbiol. 2014;32(4):398.PubMedCrossRef Haeili M, Fooladi A, Bostanabad S, Sarokhalil D, Siavoshi F, Feizabadi M. Rapid screening of rpoB and katG mutations in Mycobacterium tuberculosis isolates by high-resolution melting curve analysis. Indian J Med Microbiol. 2014;32(4):398.PubMedCrossRef
31.
Zurück zum Zitat Pholwat S, Stroup S, Gratz J, Trangan V, Foongladda S, Kumburu H, Juma SP, Kibiki G, Houpt E. Pyrazinamide susceptibility testing of Mycobacterium tuberculosis by high resolution melt analysis. Tuberculosis. 2014;94(1):20–5.PubMedCrossRef Pholwat S, Stroup S, Gratz J, Trangan V, Foongladda S, Kumburu H, Juma SP, Kibiki G, Houpt E. Pyrazinamide susceptibility testing of Mycobacterium tuberculosis by high resolution melt analysis. Tuberculosis. 2014;94(1):20–5.PubMedCrossRef
32.
Zurück zum Zitat Malhotra B, Goyal S, Bhargava S, Reddy P, Chauhan A, Tiwari J. Rapid detection of rifampicin resistance in Mycobacterium tuberculosis by high-resolution melting curve analysis. Int J Tuberc Lung Dis. 2015;19(12):1536–41.PubMedCrossRef Malhotra B, Goyal S, Bhargava S, Reddy P, Chauhan A, Tiwari J. Rapid detection of rifampicin resistance in Mycobacterium tuberculosis by high-resolution melting curve analysis. Int J Tuberc Lung Dis. 2015;19(12):1536–41.PubMedCrossRef
33.
Zurück zum Zitat Pholwat S, Liu J, Stroup S, Gratz J, Banu S, Rahman SM, Ferdous SS, Foongladda S, Boonlert D, Ogarkov O. Integrated microfluidic card with TaqMan probes and high-resolution melt analysis to detect tuberculosis drug resistance mutations across 10 genes. MBio. 2015;6:2.CrossRef Pholwat S, Liu J, Stroup S, Gratz J, Banu S, Rahman SM, Ferdous SS, Foongladda S, Boonlert D, Ogarkov O. Integrated microfluidic card with TaqMan probes and high-resolution melt analysis to detect tuberculosis drug resistance mutations across 10 genes. MBio. 2015;6:2.CrossRef
34.
Zurück zum Zitat Osman F, Ismail F, Osman A, Omar S, Said H, Ismail N. High resolution melting curve analysis for rapid detection of pyrazinamide resistance in Mycobacterium tuberculosis clinical isolates. J Tuberc Res. 2016;4(04):155.CrossRef Osman F, Ismail F, Osman A, Omar S, Said H, Ismail N. High resolution melting curve analysis for rapid detection of pyrazinamide resistance in Mycobacterium tuberculosis clinical isolates. J Tuberc Res. 2016;4(04):155.CrossRef
35.
Zurück zum Zitat Galarza M, Fasabi M, Levano KS, Castillo E, Barreda N, Rodriguez M, Guio H. High-resolution melting analysis for molecular detection of multidrug resistance tuberculosis in Peruvian isolates. BMC Infect Dis. 2016;16(1):1–6.CrossRef Galarza M, Fasabi M, Levano KS, Castillo E, Barreda N, Rodriguez M, Guio H. High-resolution melting analysis for molecular detection of multidrug resistance tuberculosis in Peruvian isolates. BMC Infect Dis. 2016;16(1):1–6.CrossRef
36.
Zurück zum Zitat Anthwal D, Gupta RK, Bhalla M, Bhatnagar S, Tyagi JS, Haldar S. Direct detection of rifampin and isoniazid resistance in sputum samples from tuberculosis patients by high-resolution melt curve analysis. J Clin Microbiol. 2017;55(6):1755–66.PubMedCrossRef Anthwal D, Gupta RK, Bhalla M, Bhatnagar S, Tyagi JS, Haldar S. Direct detection of rifampin and isoniazid resistance in sputum samples from tuberculosis patients by high-resolution melt curve analysis. J Clin Microbiol. 2017;55(6):1755–66.PubMedCrossRef
37.
Zurück zum Zitat Rezaei F, Haeili M, Fooladi AI, Feizabadi MM. High resolution melting curve analysis for rapid detection of streptomycin and ethambutol resistance in Mycobacterium tuberculosis. Maedica. 2017;12(4):246.PubMed Rezaei F, Haeili M, Fooladi AI, Feizabadi MM. High resolution melting curve analysis for rapid detection of streptomycin and ethambutol resistance in Mycobacterium tuberculosis. Maedica. 2017;12(4):246.PubMed
38.
Zurück zum Zitat Sirous M, Khosravi AD, Tabandeh MR, Salmanzadeh S, Ahmadkhosravi N, Amini S. Molecular detection of rifampin, isoniazid, and ofloxacin resistance in Iranian isolates of Mycobacterium tuberculosis by high-resolution melting analysis. Infect Drug Resist. 1819;2018:11. Sirous M, Khosravi AD, Tabandeh MR, Salmanzadeh S, Ahmadkhosravi N, Amini S. Molecular detection of rifampin, isoniazid, and ofloxacin resistance in Iranian isolates of Mycobacterium tuberculosis by high-resolution melting analysis. Infect Drug Resist. 1819;2018:11.
39.
Zurück zum Zitat Negi SS, Singh P, Bhargava A, Chandrakar S, Gaikwad U, Das P, Behra A. Effective pragmatic approach of diagnosis of multidrug-resistant tuberculosis by high-resolution melt curve assay. Int J Mycobacteriol. 2018;7(3):228.PubMedCrossRef Negi SS, Singh P, Bhargava A, Chandrakar S, Gaikwad U, Das P, Behra A. Effective pragmatic approach of diagnosis of multidrug-resistant tuberculosis by high-resolution melt curve assay. Int J Mycobacteriol. 2018;7(3):228.PubMedCrossRef
40.
Zurück zum Zitat Filipenko M, Dymova M, Cherednichenko A, Khrapov E, Mishukova O, Schwartz YS. Detection of Mutations in Mycobacterium tuberculosis pncA gene by modified high-resolution melting curve analysis of PCR products. Bull Exp Biol Med. 2019;168(2):264–9.PubMedCrossRef Filipenko M, Dymova M, Cherednichenko A, Khrapov E, Mishukova O, Schwartz YS. Detection of Mutations in Mycobacterium tuberculosis pncA gene by modified high-resolution melting curve analysis of PCR products. Bull Exp Biol Med. 2019;168(2):264–9.PubMedCrossRef
41.
Zurück zum Zitat Arefzadeh S, Azimi T, Nasiri MJ, Nikpor Z, Dabiri H, Doustdar F, Goudarzi H, Allahyartorkaman M. High-resolution melt curve analysis for rapid detection of rifampicin resistance in Mycobacterium tuberculosis: a single-centre study in Iran. New Microb New Infect. 2020;35:100665.CrossRef Arefzadeh S, Azimi T, Nasiri MJ, Nikpor Z, Dabiri H, Doustdar F, Goudarzi H, Allahyartorkaman M. High-resolution melt curve analysis for rapid detection of rifampicin resistance in Mycobacterium tuberculosis: a single-centre study in Iran. New Microb New Infect. 2020;35:100665.CrossRef
42.
Zurück zum Zitat Anukool U, Phunpae P, Tharinjaroen CS, Butr-Indr B, Saikaew S, Netirat N, Intorasoot S, Suthachai V, Tragoolpua K, Chaiprasert A. Genotypic distribution and a potential diagnostic assay of multidrug-resistant tuberculosis in Northern Thailand. Infect Drug Resist. 2020;13:3375.PubMedCrossRef Anukool U, Phunpae P, Tharinjaroen CS, Butr-Indr B, Saikaew S, Netirat N, Intorasoot S, Suthachai V, Tragoolpua K, Chaiprasert A. Genotypic distribution and a potential diagnostic assay of multidrug-resistant tuberculosis in Northern Thailand. Infect Drug Resist. 2020;13:3375.PubMedCrossRef
43.
Zurück zum Zitat Wang J, Zhao W, Liu R, Huo F, Dong L, Xue Y, Wang Y, Xue Z, Ma L, Pang Y. Rapid detection of ethambutol-resistant Mycobacterium tuberculosis from sputum by high-resolution melting analysis in Beijing China. Infect Drug Resist. 2020;13:3707.PubMedCrossRef Wang J, Zhao W, Liu R, Huo F, Dong L, Xue Y, Wang Y, Xue Z, Ma L, Pang Y. Rapid detection of ethambutol-resistant Mycobacterium tuberculosis from sputum by high-resolution melting analysis in Beijing China. Infect Drug Resist. 2020;13:3707.PubMedCrossRef
44.
Zurück zum Zitat Keikha M, Karbalaei M: P2X7 polymorphism (rs3751143) and its reliability as a diagnostic biomarker for tuberculosis: a systematic review and meta-analysis. Indian J Tuberc 2021. Keikha M, Karbalaei M: P2X7 polymorphism (rs3751143) and its reliability as a diagnostic biomarker for tuberculosis: a systematic review and meta-analysis. Indian J Tuberc 2021.
45.
Zurück zum Zitat Keikha M, Eslami M, Yousefi B, Karbalaei M. Overview of multistage subunit tuberculosis vaccines: advantages and challenges. Reviews in Medical Microbiology. 2020;31(3):144–9.CrossRef Keikha M, Eslami M, Yousefi B, Karbalaei M. Overview of multistage subunit tuberculosis vaccines: advantages and challenges. Reviews in Medical Microbiology. 2020;31(3):144–9.CrossRef
46.
Zurück zum Zitat Dey T, Brigden G, Cox H, Shubber Z, Cooke G, Ford N. Outcomes of clofazimine for the treatment of drug-resistant tuberculosis: a systematic review and meta-analysis. J Antimicrob Chemother. 2013;68(2):284–93.PubMedCrossRef Dey T, Brigden G, Cox H, Shubber Z, Cooke G, Ford N. Outcomes of clofazimine for the treatment of drug-resistant tuberculosis: a systematic review and meta-analysis. J Antimicrob Chemother. 2013;68(2):284–93.PubMedCrossRef
47.
Zurück zum Zitat Van Deun A, Martin A, Palomino JC: Diagnosis of drug-resistant tuberculosis: reliability and rapidity of detection [State of the art series. Drug-resistant tuberculosis. Edited by CY. Chiang. Number 3 in the series]. Int J Tuberc Lung Dis 2010, 14(2):131–140. Van Deun A, Martin A, Palomino JC: Diagnosis of drug-resistant tuberculosis: reliability and rapidity of detection [State of the art series. Drug-resistant tuberculosis. Edited by CY. Chiang. Number 3 in the series]. Int J Tuberc Lung Dis 2010, 14(2):131–140.
48.
Zurück zum Zitat Pai M, Kalantri S, Pascopella L, Riley LW, Reingold AL. Bacteriophage-based assays for the rapid detection of rifampicin resistance in Mycobacterium tuberculosis: a meta-analysis. J Infect. 2005;51(3):175–87.PubMedCrossRef Pai M, Kalantri S, Pascopella L, Riley LW, Reingold AL. Bacteriophage-based assays for the rapid detection of rifampicin resistance in Mycobacterium tuberculosis: a meta-analysis. J Infect. 2005;51(3):175–87.PubMedCrossRef
49.
Zurück zum Zitat Martin A, Portaels F, Palomino JC. Colorimetric redox-indicator methods for the rapid detection of multidrug resistance in Mycobacterium tuberculosis: a systematic review and meta-analysis. J Antimicrob Chemother. 2007;59(2):175–83.PubMedCrossRef Martin A, Portaels F, Palomino JC. Colorimetric redox-indicator methods for the rapid detection of multidrug resistance in Mycobacterium tuberculosis: a systematic review and meta-analysis. J Antimicrob Chemother. 2007;59(2):175–83.PubMedCrossRef
50.
Zurück zum Zitat Blakemore R, Story E, Helb D, Kop J, Banada P, Owens MR, Chakravorty S, Jones M, Alland D. Evaluation of the analytical performance of the Xpert MTB/RIF assay. J Clin Microbiol. 2010;48(7):2495–501.PubMedCrossRef Blakemore R, Story E, Helb D, Kop J, Banada P, Owens MR, Chakravorty S, Jones M, Alland D. Evaluation of the analytical performance of the Xpert MTB/RIF assay. J Clin Microbiol. 2010;48(7):2495–501.PubMedCrossRef
51.
Zurück zum Zitat Erali M, Wittwer CT. High resolution melting analysis for gene scanning. Methods. 2010;50(4):250–61.PubMedCrossRef Erali M, Wittwer CT. High resolution melting analysis for gene scanning. Methods. 2010;50(4):250–61.PubMedCrossRef
52.
Zurück zum Zitat Kalokhe AS, Lee JC, Ray SM, Anderson AM, Nguyen MLT, Wang YF, Shafiq M, Metchock B. Multidrug-resistant tuberculosis drug susceptibility and molecular diagnostic testing. Am J Med Sci. 2013;345(2):143–8.PubMedCrossRef Kalokhe AS, Lee JC, Ray SM, Anderson AM, Nguyen MLT, Wang YF, Shafiq M, Metchock B. Multidrug-resistant tuberculosis drug susceptibility and molecular diagnostic testing. Am J Med Sci. 2013;345(2):143–8.PubMedCrossRef
53.
Zurück zum Zitat van Klingeren B, Dessens-Kroon M, van der Laan T, Kremer K, van Soolingen D. Drug susceptibility testing of Mycobacterium tuberculosis complex by use of a high-throughput, reproducible, absolute concentration method. J Clin Microbiol. 2007;45(8):2662–8.PubMedCrossRef van Klingeren B, Dessens-Kroon M, van der Laan T, Kremer K, van Soolingen D. Drug susceptibility testing of Mycobacterium tuberculosis complex by use of a high-throughput, reproducible, absolute concentration method. J Clin Microbiol. 2007;45(8):2662–8.PubMedCrossRef
54.
Zurück zum Zitat Lawson L, Emenyonu N, Abdurrahman ST, Lawson JO, Uzoewulu GN, Sogaolu OM, Ebisike JN, Parry CM, Yassin MA, Cuevas LE. Comparison of Mycobacterium tuberculosis drug susceptibility using solid and liquid culture in Nigeria. BMC Res Notes. 2013;6(1):1–5.CrossRef Lawson L, Emenyonu N, Abdurrahman ST, Lawson JO, Uzoewulu GN, Sogaolu OM, Ebisike JN, Parry CM, Yassin MA, Cuevas LE. Comparison of Mycobacterium tuberculosis drug susceptibility using solid and liquid culture in Nigeria. BMC Res Notes. 2013;6(1):1–5.CrossRef
55.
Zurück zum Zitat Nguyen TNA, Berre A-L, Bañuls A-L, Nguyen TVA. Molecular diagnosis of drug-resistant tuberculosis; a literature review. Front Microbiol. 2019;10:794.PubMedCrossRef Nguyen TNA, Berre A-L, Bañuls A-L, Nguyen TVA. Molecular diagnosis of drug-resistant tuberculosis; a literature review. Front Microbiol. 2019;10:794.PubMedCrossRef
56.
Zurück zum Zitat Alcántara R, Fuentes P, Antiparra R, Santos M, Gilman RH, Kirwan DE, Zimic M, Sheen P. MODS-Wayne, a colorimetric adaptation of the Microscopic-Observation Drug Susceptibility (MODS) assay for detection of Mycobacterium tuberculosis pyrazinamide resistance from sputum samples. J Clin Microbiol. 2019;57(2):e01162-e1118.PubMedCrossRef Alcántara R, Fuentes P, Antiparra R, Santos M, Gilman RH, Kirwan DE, Zimic M, Sheen P. MODS-Wayne, a colorimetric adaptation of the Microscopic-Observation Drug Susceptibility (MODS) assay for detection of Mycobacterium tuberculosis pyrazinamide resistance from sputum samples. J Clin Microbiol. 2019;57(2):e01162-e1118.PubMedCrossRef
57.
Zurück zum Zitat Syre H, Phyu S, Sandven P, Bjorvatn B, Grewal H. Rapid colorimetric method for testing susceptibility of Mycobacterium tuberculosis to isoniazid and rifampin in liquid cultures. J Clin Microbiol. 2003;41(11):5173–7.PubMedCrossRef Syre H, Phyu S, Sandven P, Bjorvatn B, Grewal H. Rapid colorimetric method for testing susceptibility of Mycobacterium tuberculosis to isoniazid and rifampin in liquid cultures. J Clin Microbiol. 2003;41(11):5173–7.PubMedCrossRef
58.
59.
Zurück zum Zitat Mechal Y, Benaissa E, Benlahlou Y, Bssaibis F, Zegmout A, Chadli M, Malik YS, Touil N, Abid A, Maleb A. Evaluation of GeneXpert MTB/RIF system performances in the diagnosis of extrapulmonary tuberculosis. BMC Infect Dis. 2019;19(1):1–8.CrossRef Mechal Y, Benaissa E, Benlahlou Y, Bssaibis F, Zegmout A, Chadli M, Malik YS, Touil N, Abid A, Maleb A. Evaluation of GeneXpert MTB/RIF system performances in the diagnosis of extrapulmonary tuberculosis. BMC Infect Dis. 2019;19(1):1–8.CrossRef
60.
Zurück zum Zitat Ruesch-Gerdes S, Ismail N, Denkinger C, Gilpin C, Tahirli R, van Deun A, Rigouts L, Hillemann D: REPORT FOR WHO Non-inferiority Evaluation of Nipro NTM+ MDRTB and Hain GenoType MTBDRplus V2 Line Probe Assays. In.: Foundation for Innovative New Diagnostics Geneva, Switzerland; 2015. Ruesch-Gerdes S, Ismail N, Denkinger C, Gilpin C, Tahirli R, van Deun A, Rigouts L, Hillemann D: REPORT FOR WHO Non-inferiority Evaluation of Nipro NTM+ MDRTB and Hain GenoType MTBDRplus V2 Line Probe Assays. In.: Foundation for Innovative New Diagnostics Geneva, Switzerland; 2015.
61.
Zurück zum Zitat Ling DI, Zwerling AA, Pai M. GenoType MTBDR assays for the diagnosis of multidrug-resistant tuberculosis: a meta-analysis. Eur Respir J. 2008;32(5):1165–74.PubMedCrossRef Ling DI, Zwerling AA, Pai M. GenoType MTBDR assays for the diagnosis of multidrug-resistant tuberculosis: a meta-analysis. Eur Respir J. 2008;32(5):1165–74.PubMedCrossRef
62.
Zurück zum Zitat Wittwer CT. High-resolution DNA melting analysis: advancements and limitations. Hum Mutat. 2009;30(6):857–9.PubMedCrossRef Wittwer CT. High-resolution DNA melting analysis: advancements and limitations. Hum Mutat. 2009;30(6):857–9.PubMedCrossRef
63.
Zurück zum Zitat Słomka M, Sobalska-Kwapis M, Wachulec M, Bartosz G, Strapagiel D. High resolution melting (HRM) for high-throughput genotyping—limitations and caveats in practical case studies. Int J Mol Sci. 2017;18(11):2316.CrossRef Słomka M, Sobalska-Kwapis M, Wachulec M, Bartosz G, Strapagiel D. High resolution melting (HRM) for high-throughput genotyping—limitations and caveats in practical case studies. Int J Mol Sci. 2017;18(11):2316.CrossRef
64.
Zurück zum Zitat Li B-S, Wang X-Y, Ma F-L, Jiang B, Song X-X, Xu A-G. Is high resolution melting analysis (HRMA) accurate for detection of human disease-associated mutations? A meta analysis. PLoS ONE. 2011;6(12):e28078.PubMedCrossRef Li B-S, Wang X-Y, Ma F-L, Jiang B, Song X-X, Xu A-G. Is high resolution melting analysis (HRMA) accurate for detection of human disease-associated mutations? A meta analysis. PLoS ONE. 2011;6(12):e28078.PubMedCrossRef
65.
Zurück zum Zitat Caws M, Drobniewski F. Molecular techniques in the diagnosis of Mycobacterium tuberculosis and the detection of drug resistance. Ann N Y Acad Sci. 2001;953(1):138–45.PubMedCrossRef Caws M, Drobniewski F. Molecular techniques in the diagnosis of Mycobacterium tuberculosis and the detection of drug resistance. Ann N Y Acad Sci. 2001;953(1):138–45.PubMedCrossRef
66.
Zurück zum Zitat Hoek K, van Pittius NG, Moolman-Smook H, Carelse-Tofa K, Jordaan A, Van Der Spuy G, Streicher E, Victor T, Van Helden P, Warren R. Fluorometric assay for testing rifampin susceptibility of Mycobacterium tuberculosis complex. J Clin Microbiol. 2008;46(4):1369–73.PubMedCrossRef Hoek K, van Pittius NG, Moolman-Smook H, Carelse-Tofa K, Jordaan A, Van Der Spuy G, Streicher E, Victor T, Van Helden P, Warren R. Fluorometric assay for testing rifampin susceptibility of Mycobacterium tuberculosis complex. J Clin Microbiol. 2008;46(4):1369–73.PubMedCrossRef
67.
Zurück zum Zitat Sharma K, Sharma M, Singh S, Modi M, Sharma A, Ray P, Varma S. Real-time PCR followed by high-resolution melting curve analysis: a rapid and pragmatic approach for screening of multidrug-resistant extrapulmonary tuberculosis. Tuberculosis. 2017;106:56–61.PubMedCrossRef Sharma K, Sharma M, Singh S, Modi M, Sharma A, Ray P, Varma S. Real-time PCR followed by high-resolution melting curve analysis: a rapid and pragmatic approach for screening of multidrug-resistant extrapulmonary tuberculosis. Tuberculosis. 2017;106:56–61.PubMedCrossRef
68.
Zurück zum Zitat Mu J, Liu Z, Zhang C, Wang C, Du W, Lin H, Li K, Song J, Che N, Liu H. Performance of the MeltPro MTB assays in the diagnosis of drug-resistant tuberculosis using formalin-fixed paraffin-embedded tissues. Am J Clin Pathol. 2021;156(1):34–41.PubMedCrossRef Mu J, Liu Z, Zhang C, Wang C, Du W, Lin H, Li K, Song J, Che N, Liu H. Performance of the MeltPro MTB assays in the diagnosis of drug-resistant tuberculosis using formalin-fixed paraffin-embedded tissues. Am J Clin Pathol. 2021;156(1):34–41.PubMedCrossRef
Metadaten
Titel
High resolution melting assay as a reliable method for diagnosing drug-resistant TB cases: a systematic review and meta-analysis
verfasst von
Masoud Keikha
Mohsen Karbalaei
Publikationsdatum
01.12.2021
Verlag
BioMed Central
Erschienen in
BMC Infectious Diseases / Ausgabe 1/2021
Elektronische ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-021-06708-1

Weitere Artikel der Ausgabe 1/2021

BMC Infectious Diseases 1/2021 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

„Jeder Fall von plötzlichem Tod muss obduziert werden!“

17.05.2024 Plötzlicher Herztod Nachrichten

Ein signifikanter Anteil der Fälle von plötzlichem Herztod ist genetisch bedingt. Um ihre Verwandten vor diesem Schicksal zu bewahren, sollten jüngere Personen, die plötzlich unerwartet versterben, ausnahmslos einer Autopsie unterzogen werden.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Schlechtere Vorhofflimmern-Prognose bei kleinem linken Ventrikel

17.05.2024 Vorhofflimmern Nachrichten

Nicht nur ein vergrößerter, sondern auch ein kleiner linker Ventrikel ist bei Vorhofflimmern mit einer erhöhten Komplikationsrate assoziiert. Der Zusammenhang besteht nach Daten aus China unabhängig von anderen Risikofaktoren.

Semaglutid bei Herzinsuffizienz: Wie erklärt sich die Wirksamkeit?

17.05.2024 Herzinsuffizienz Nachrichten

Bei adipösen Patienten mit Herzinsuffizienz des HFpEF-Phänotyps ist Semaglutid von symptomatischem Nutzen. Resultiert dieser Benefit allein aus der Gewichtsreduktion oder auch aus spezifischen Effekten auf die Herzinsuffizienz-Pathogenese? Eine neue Analyse gibt Aufschluss.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.