Skip to main content
Erschienen in: World Journal of Surgical Oncology 1/2020

Open Access 01.12.2020 | Research

BRAFV600E mutation, BRAF-activated long non-coding RNA and miR-9 expression in papillary thyroid carcinoma, and their association with clinicopathological features

verfasst von: Chenlei Shi, Jia Cao, Tiefeng Shi, Meihua Liang, Chao Ding, Yichen Lv, Weifeng Zhang, Chuanle Li, Wenchao Gao, Gang Wu, Jianting Man

Erschienen in: World Journal of Surgical Oncology | Ausgabe 1/2020

Abstract

Background

The incidence of thyroid cancer is increasing worldwide. This study investigated the association of B-type RAF kinase (BRAF)V600E mutation status, the expression of BRAF-activated long non-coding RNA (BANCR) and microRNA miR-9, and the clinicopathological features of papillary thyroid carcinoma (PTC).

Methods

Clinicopathological data for PTC patients (n = 51) diagnosed and treated between 2018 and 2019 were collected. Carcinoma and adjacent normal tissue samples were analyzed for the presence of the BRAFV600E mutation and/or expression of BANCR and miR-9.

Results

Larger tumor, higher rate of bilateral tumors and multifocality, extracapsular invasion, and lateral lymph node metastasis (LNM) were observed in PTC patients with BRAF V600E mutation. Patients with higher BANCR expression had a higher rate of extracapsular invasion and lateral LNM in carcinoma tissue and a lower frequency of bilateral tumors and multifocality in normal adjacent tissue. Patients with higher miR-9 expression had a lower rate of central and lateral LNM in carcinoma tissue and higher rates of bilateral tumor location and multifocality in normal adjacent tissue. Patients with BRAFV600E mutation have a higher rate of BANCR overexpression and tended to have a lower rate of miR-9 overexpression (P = 0.057), and a negative association was observed between BANCR and miR-9 expression in carcinoma tissue.

Conclusions

BRAFV600E mutation and the BANCR and miR-9 expression were closely associated with the tumor size, bilateral tumor location, multifocality, extracapsular invasion, and lateral LNM. PTC patients with these clinicopathological characteristics, BRAFV600E mutation, and high BANCR expression and low miR-9 expression needed earlier surgical treatment and are recommended for total thyroidectomy in primary surgery for reducing the risk of recurrence. These findings provide new insight into the molecular basis for PTC and can inform strategies for the management of PTC.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Thyroid cancer is an endocrine malignancy and its incidence is increasing worldwide, especially in developed countries [1]. Papillary thyroid carcinoma (PTC) is the most common pathological subtype of thyroid cancer, accounting for 80–90% of cases [2]. PTC is thought to arise through interactions between genetic and environmental factors. The most common genetic changes in PTC are mutations in B-type RAF kinase (BRAF) of the RAS/BRAF/mitogen-activated protein kinase signaling pathway [3]; the most frequent mutation (95%) is BRAFV600E [4, 5], which is associated with enhanced extrathyroid extension, lymph node metastasis (LNM), and advanced tumor stage [68]. However, this has not been corroborated by other studies [9], and therefore the relationship between clinicopathological characteristics of PTC and BRAFV600E mutation remains unclear.
Long non-coding (lnc)RNAs are RNA molecules with a length greater than 200 nt that are transcribed from non-protein-coding sequences in the genome. LncRNAs play an important role in gene regulation at the epigenetic, transcriptional, and translation levels and in post-translational protein modification [10, 11], and have been implicated in processes such as tumorigenesis as well as tumor progression, metastasis, and recurrence [1215]. For example, the lncRNA BRAF-activated long non-coding RNA (BANCR) promotes proliferation, inhibits apoptosis and G1 arrest, and stimulates autophagy in IHH-4 thyroid cancer cells [16]. Micro(mi)RNAs are small ncRNAs with length of about 22 nt that negatively regulate the expression of target genes at the post-transcriptional level by inducing the degradation or inhibition of the translation of mRNAs. The interaction between lncRNA and miRNAs has been shown to influence tumor development and progression [17]. The miRNA miR-9 regulates the growth of cancer cells, and BANCR and miR-9 mutually regulate by altering the activity of nuclear factor (NF)-κB in gastric cancer cells [18]. However, it is unclear how this is related to clinicopathological features in PTC patients. Although thyroid tumor diagnosis has been improved by high-frequency ultrasound [19], about 20% of PTC patients show recurrence and have poor prognosis due to distant metastasis [20]. Clarifying the mechanisms underlying PTC progression can lead to the development of more effective treatment strategies.
In this study, we investigated the relationships between the molecular features of PTC including BRAFV600E mutation and BANCR and miR-9 expression, and clinicopathological characteristics of PTC patients. Our findings provide important insight into the molecular basis for pathophysiological changes leading to PTC progression.

Patients and method

Patients

PTC patients (n = 51) who underwent thyroidectomy during the period from March 2018 to October 2019 at the Second Affiliated Hospital of Harbin Medical University were recruited. The study was approved by the Ethics Committee of the Second Affiliated Hospital of Harbin Medical University (no. ky2018-155) and was carried out in accordance with the principles of the Helsinki Declaration. Written informed consent was provided by all participants. The inclusion criteria were as follows: (1) preliminary diagnosis by preoperative palpation and color ultrasound confirmed by intraoperative rapid pathology and postoperative pathology detection; (2) no history of thyroid disease and not receiving thyroid-related medications; (3) no history of Graves’ disease; and (4) surgery performed by the same team of doctors. Patient data including sex, age, tumor location (uni-/bilateral), tumor size, multifocality, extracapsular invasion, extrathyroid extension, Hashimoto’s disease, LNM location (central or lateral), and tumor-node-metastasis (TNM) stage were collected. The clinicopathological classification was carried out according to (2010) American Joint Committee (AJCC) on Cancer 7th Edition. Carcinoma tissue and adjacent tissue (normal gland tissue 5 mm from the tumor edge) were collected and analyzed for the presence of the BRAFV600E mutation and BANCR and miR-9 expression.

Detection of BRAFV600E mutation

Detection of the BRAFV600E mutation in carcinoma tissue was performed as previously described [21]. Genomic DNA was isolated using a commercial kit (AmoyDx FFPE DNA Kit; Amoy Diagnostics, Xiamen, China) according to the manufacturer’s instructions. DNA concentration was measured with an ultraviolet spectrophotometer; the optical density at 260 nm (OD260) and OD280 were 1.8 and 2.0, respectively. BRAFV600E mutation status was determined using a kit (AmoyDx BRAFV600E Mutation Detection Kit; Amoy Diagnostics) on a CFX96 real-time PCR detection system (Bio-Rad, Hercules, CA, USA). The sample was classified as positive or negative for the mutation if the carboxyfluorescein fluorescence signal Ct value was < 28 and ≥ 28, respectively.

Real-time quantitative RT-PCR

Carcinoma (n = 51) and adjacent normal tissue (n = 31) samples were used to detect expression levels of BANCR and miR-9. Total RNA was extracted by TRIpure and reverse transcribed to cDNA using a cDNA Synthesis kit (BioTeke, Beijing, China) for BANCR, and a miRNA First Strand Synthesis kit (Takara, Dalian, China) for miR-9. Real-time PCR was performed on an Exicycler 96 fluorescence quantitative instrument (Bioneer, Seoul, Korea) using the primers shown in Table 1. The expression levels of BANCR and miR-9 were determined with the comparative method (2−∆∆Ct) relative to those of the β-actin and 5S genes, respectively.
Table 1
Primers used in qRT-PCR
Primer
Sequence (5′→3′)
Size of target fragment (bp)
BANCR-F
CCCCTGACCCTAAGGAAATA
150
BANCR-R
GAACTGGCAAGGCTCAAACT
 
β-actin-F
CTTAGTTGCGTTACACCCTTTCTTG
156
β-actin-R
CTGTCACCTTCACCGTTCCAGTTT
 
miR-9-5p-F
CGCCGCTCTTTGGTTATCTAG
63
miR-9-5p-R
GTGCAGGGTCCGAGGTATTC
 
5S-F
TCTCGTCTGATCTCGGAAGC
125
5S-R
TGGTGCAGGGTCCGAGGTAT
 

Statistical analysis

Statistical analyses were performed using SPSS v.13.01S (Beijing Stats Data Mining Co., Beijing, China). Data are presented as mean ± SD or as a percentage as appropriate. Differences between groups were analyzed with the independent samples t test for continuous variables, and with the χ2 test or Fisher’s exact tests for the categorical variables. P values were two-tailed, and P < 0.05 was considered significant.

Results

Clinicopathological characteristics and prognosis of PTC patients

A total of 51 PTC patients who underwent thyroid surgery were enrolled in the study. There were no patients with distant metastasis of lung or bone; 14 of them underwent unilateral thyroidectomy and central lymph node dissection, 20 patients underwent total thyroidectomy and bilateral lymph node dissection, and 17 patients underwent total thyroidectomy and bilateral lymph node dissection and unilateral neck lymph node dissection. There were 37 females and 14 males. The mean age was 41.7 ± 11.6 years (range 23–62 years). Bilateral localization was observed in 60.8% of patients. The mean tumor size was 1.7 ± 0.8 cm (range 0.9–4.3 cm). Multiple tumors were found in 70.6% of patients. Extracapsular invasion and extrathyroid extension were observed in 52.9% and 15.7 of patients, respectively, and 11.8% had Hashimoto’s disease. Central LNM was present in 62.7% of patients while central and lateral LNM were detected in 33.3% of patients. T1, T2, and T3 of TNM stage were observed in 51.0%, 33.3%, and 15.7 of patients, respectively (Table 2).
Table 2
Clinicopathological characteristics of 51 PTC patients
Characteristics
Patients (n)
Percent (%)
Sex
  
 Female
37
72.5
 Male
14
27.5
Age (years)
41.7 ± 11.6
 
 ≤ 45
32
62.7
 > 45
19
37.3
Tumor location
  
 Unilateral
20
39.2
 Bilateral
31
60.8
Tumor size (cm/mean)
1.7 ± 0.8
 
Multifocality
  
 Single
15
29.4
 Multiple (≥ 2)
36
70.6
Extracapsular invasion
  
 No
24
47.1
 Yes
27
52.9
Extrathyroid extension
  
 No
43
84.3
 Yes
8
15.7
Hashimoto’s disease
  
 No
45
88.2
 Yes
6
11.8
Central LNM
  
 No
19
37.3
 Yes
32
62.7
Lateral LNM
  
 No
34
66.7
 Yes
17
33.3
TNM stage
  
 T1
26
51.0
 T2
17
33.3
 T3
8
15.7
LNM lymph node metastasis; TNM tumor-node-metastasis

Differences in clinicopathological characteristics of patients according to BRAFV600E mutation status and BANCR and miR-9 expression in carcinoma tissue

Sex, age, extrathyroid extension, co-occurrence of Hashimoto’s disease, and TNM stage were unrelated to BRAFV600E mutation status and BANCR and miR-9 levels in carcinoma tissue. However, patients with the mutation had larger tumors, a higher frequency of bilateral tumor, multifocality, extracapsular invasion, and lateral LNM compared with those without the mutation. Patients with higher BANCR expression had a higher rate of extracapsular invasion and lateral LNM, and those with higher miR-9 expression had a lower rate of central and lateral LNM but no significant differences in other variables relative to patients with lower miR-9 expression (Table 3).
Table 3
Relationships between clinicopathological characteristics of PTC patients and BRAFV600E mutation status and BANCR and miR-9 expression in carcinoma tissue (n = 51)
 
BRAFV600E mutation (n)
P value
BANCR (n)
P value
miR-9 (n)
P value
Yes
No
> 0.01
≤ 0.01
> 0.01
≤ 0.01
Sex
  
0.471
  
0.742
  
0.475
 Female
27
10
 
26
11
 
20
17
 
 Male
12
2
 
9
5
 
6
8
 
Age (years)
  
0.497
  
0.221
  
0.180
 ≤ 45
23
9
 
20
12
 
14
18
 
 > 45
16
3
 
15
4
 
12
7
 
Tumor location
  
< 0.001
  
0.654
  
0.645
 Unilateral
9
11
 
13
7
 
11
9
 
 Bilateral
30
1
 
22
9
 
15
16
 
Tumor size (cm/mean)
1.8 ± 0.7
1.3 ± 0.4
0.002
1.7 ± 0.8
1.5 ± 0.6
0.501
1.6 ± 0.8
1.7 ± 0.7
0.756
Multifocality
  
0.003
  
0.510
  
0.104
 Single
7
8
 
9
6
 
5
10
 
 Multiple (≥ 2)
32
4
 
26
10
 
21
15
 
Extracapsular invasion
  
0.004
  
0.036
  
0.121
 No
14
10
 
13
11
 
15
9
 
 Yes
25
2
 
22
5
 
11
16
 
Extrathyroid extension
  
0.173
  
0.694
  
0.140
 No
31
12
 
30
13
 
24
19
 
 Yes
8
0
 
5
3
 
2
6
 
Hashimoto’s disease
  
0.616
  
0.363
  
0.419
 No
35
10
 
32
13
 
24
21
 
 Yes
4
2
 
3
3
 
2
4
 
Central LNM
  
0.101
  
0.202
  
0.012
 No
12
7
 
12
6
 
14
5
 
 Yes
27
5
 
23
10
 
12
20
 
Lateral LNM
  
0.042
  
0.033
  
0.029
 No
23
11
 
20
14
 
21
13
 
 Yes
16
1
 
15
2
 
5
12
 
TNM stage
  
0.110
  
0.470
  
0.291
 T1
17
9
 
16
10
 
15
11
 
 T2
14
3
 
12
5
 
9
8
 
 T3
8
0
 
7
1
 
2
6
 
BANCR BRAF-activated long non-coding RNA, LNM lymph node metastasis, TNM tumor-node-metastasis

Relationship between clinicopathological characteristics and BANCR and miR-9 expression in normal adjacent tissue

Patients with higher BANCR expression in adjacent normal tissue had a lower frequency of bilateral tumors and multifocality, and a larger tumor as compared to those with lower BANCR levels. However, patients with elevated miR-9 level had higher rates of bilateral tumors and multifocality. There was no relationship between the other variables and the expression of BANCR and miR-9 (Table 4).
Table 4
Relationship between clinicopathological characteristics and BANCR and miR-9 expression in adjacent normal tissue (n = 31)
 
BANCR (n)
P value
miR-9 (n)
P value
 
> 0.01
≤ 0.01
> 0.01
≤ 0.01
Sex
  
0.063
  
0.185
 Female
1
21
 
18
4
 
 Male
3
6
 
5
4
 
Age (years)
  
0.621
  
0.123
 ≤ 45
3
15
 
11
7
 
 > 45
1
12
 
12
1
 
Tumor location
  
0.007
  
0.006
 Unilateral
4
6
 
4
6
 
 Bilateral
0
21
 
19
2
 
Tumor size (cm/mean)
2.7 ± 1.3
1.6 ± 0.8
0.031
1.7 ± 0.9
1.8 ± 1.1
0.804
Multifocality
  
0.007
  
0.006
 Single
4
6
 
4
6
 
 Multiple (≥ 2)
0
21
 
19
2
 
Extracapsular invasion
  
0.607
  
0.412
 No
1
13
 
9
5
 
 Yes
3
14
 
14
3
 
Extrathyroid extension
  
0.268
  
0.642
 No
2
21
 
16
7
 
 Yes
2
6
 
7
1
 
Hashimoto’s disease
  
0.561
  
0.298
 No
4
21
 
17
8
 
 Yes
0
6
 
6
0
 
Central LNM
  
0.295
  
0.66
 No
0
9
 
6
3
 
 Yes
4
18
 
17
5
 
Lateral LNM
  
0.268
  
0.178
 No
2
21
 
19
4
 
 Yes
2
6
 
4
4
 
TNM stage
  
0.490
  
0.640
 T1
2
15
 
12
5
 
 T2
0
6
 
4
2
 
 T3
2
6
 
7
1
 
LNM lymph node metastasis, TNM tumor-node-metastasis

Relationship between BANCR and miR-9 expression and BRAFV600E mutation status

Patients with BRAFV600E mutation have a higher rate of BANCR overexpression and tended to have a lower rate of miR-9 overexpression (P = 0.057) (Table 5). PTC patients had higher and lower rates of elevated BANCR and miR-9 expression, respectively, in carcinoma vs. adjacent normal tissue, and there was a negative association that was observed between BANCR and miR-9 expression in carcinoma (Table 6).
Table 5
Relationship between BRAFV600E mutation status and BANCR and miR-9 expression in carcinoma tissues (n = 51)
 
BRAFV600E mutation
P value
Yes
No
BANCR
  
0.033
 ≤ 0.01
9
7
 
 > 0.01
30
5
 
miR-9
  
0.057
 ≤ 0.01
22
3
 
 > 0.01
17
9
 
BANCR BRAF-activated long non-coding RNA
Table 6
BANCR and miR-9 expression in carcinoma and adjacent normal tissues
Different tissues
miR-9
P value
BANCR
P value
> 0.01
≤ 0.01
> 0.01
≤ 0.01
Carcinoma tissue (n = 51)
26
25
0.038
35
16
< 0.001
Adjacent tissue (n = 31)
23
8
 
4
27
 
Carcinoma tissue
 BANCR
      
  > 0.01
14
21
0.020
 
  ≤ 0.01
12
4
  
Adjacent tissue
 BANCR
  
0.268
   
  > 0.01
2
2
 
 
  ≤ 0.01
21
6
  
BANCR BRAF-activated long non-coding RNA

Discussion

Among malignant thyroid tumors, PTC is a common histopathological subtype [22, 23]. Given that imaging modalities are used for physical examination of thyroid, the diagnosis rate of thyroid tumors is increasing worldwide. However, this has not translated into a decrease in mortality rate, although it is possible that thyroid cancer is overdiagnosed and overtreated [1, 24]. Ito Y et al. [20] reported that up to 20% of patients show recurrence and have poor prognosis due to distant metastasis in PTC metastasis. Therefore, the excessive or inadequacy treatment on PTC is confusing. Thus, the biological characteristics of PTC require clarification for finding suitable PTC patients of surgery through analyzing the relationship between their clinicopathological features, BRAFV600E mutation status, and BANCR and miR-9 expression.
The BRAFV600E mutation is the most common genetic change in PTC patients and is not observed in normal thyroid tissue or benign lesions; therefore, we did not evaluate BRAFV600E mutation status in normal tissue in the present study. We detected the BRAFV600E mutation in the carcinoma tissue of 76.5% patients; although it was unrelated to sex, age, extrathyroid extension, co-occurrence of Hashimoto’s disease, and TNM stage, patients with the mutation had larger tumors, a higher frequency of bilateral tumor location, multifocality, extracapsular invasion, and lateral LNM compared with those without the mutation. Consistent with our findings, a meta-analysis of 32 studies and 6372 patients found that BRAFV600E mutation was associated with several of the variables used in prognostic staging systems such as tumor size, multifocality, and LNM [25]. Another study indicated that extracapsular invasion is an indicator of distant metastasis and poor prognosis in patients with PTC [26]. Our results showed that patients with higher expressions of BRAFV600E mutation and BANCR have higher rates of extracapsular invasion.
In the present study, patients with higher BANCR expression had a higher rate of lateral LNM, and those with higher miR-9 expression had a lower rate of central and lateral LNM. In addition, patients with the BRAFV600E mutation had a higher frequency of lateral LNM compared with those without the mutation. Previous studies have mainly focused on LNM in the central region [27, 28] based on complete central neck dissection. However, more attention needs to be paid to LNM in the lateral region, not only the confirmed LN should be dissect, but also preventive LN dissection should be performed in the lateral region to prevent the omission and recurrence of tumor. In addition, BANCR and miR-9 expression in adjacent normal tissue was also associated with tumor location, size, and multifocality. Therefore, for patients with high-risk clinicopathological characteristics, surgical treatment can be relaxed from glandular lobectomy to total thyroidectomy as appropriate.
BANCR is a recently identified lncRNA activated by BRAF that plays an important role in the occurrence and progression of PTC. A qRT-PCR analysis revealed that BANCR is highly expressed in PTC tissue compared with normal tissue; it was also found to promote proliferation, inhibit cell apoptosis, alleviate G1 arrest, and stimulate autophagy in IHH-4 thyroid cancer cells [15]. In addition, the expression of miR-9 was downregulated in carcinoma compared with adjacent normal tissue in the present study. Consistent with our finding, Sondermann A et al. [29] observed the significantly downregulated expression of miR-9 in patients with recurrent PTC, which can be used as a prognostic indicator of PTC. Gu Y et al. [30] found that miR-9 may inhibit the activity of PTC cells and tumor growth by directly targeting the expression of BRAF in PTC. In the present study, patients with BRAFV600E mutation have a higher rate of BANCR overexpression and tended to have a lower rate of miR-9 overexpression (P = 0.057), and there is a negative association were found between BANCR and miR-9 expression levels. One study reported that, in gastric cancer cells, downregulation of BANCR decreased NF-κB activity and inhibited cell proliferation while promoting apoptosis, whereas overexpression of NF-κB—a target of miR-9 that regulates cancer cell growth—and inhibition of miR-9 reversed these effects [18]. Given that BANCR is a lncRNA activated by BRAF, we speculate that BRAFV600E mutation and BANCR and miR-9 expression together contribute to PTC development and progression. There were some limitations to this study such as the small size of the study population and the fact that BANCR and miR-9 expression was not evaluated in all adjacent tissues. Therefore, additional studies are needed to validate our findings. In addition, BRAFV600E mutation can be determined by fine-needle aspiration cytology with the current hospital detection technology, while the preoperative sample size is not enough to determine the BANCR and miR-9 expression. The sample size obtained during the operation is enough for determining the BRAFV600E mutation, BANCR, and miR-9 expression, but there is still a lack of rapid detection and analysis technology at present. Therefore, rapid gene detection before and during operation is not available. By expanding the number of retrospective studies to increase the evidence of clinical inquiry and the development of rapid detection technology, it is expected that the research results will be used in clinical practice in the future.

Conclusions

In conclusion, our results demonstrate that the tumor size, bilateral tumor location, multifocality, extracapsular invasion, and lateral LNM are closely associated with BRAFV600E mutation, and the BANCR and miR-9 expression, which could be as the high-risk clinicopathological characteristics. Particularly, PTC patients with high-risk clinicopathological characteristics, BRAFV600E mutation, and high BANCR expression and low miR-9 expression needed earlier surgical treatment, and are recommended for total thyroidectomy in primary surgery for reducing the risk of recurrence. These findings provide new insight into the molecular basis for PTC and can inform strategies for the management of PTC.

Acknowledgements

Not applicable.
The Ethics Committee of the Second Affiliated Hospital of Harbin Medical University approved this study, and consent was provided by all participants
Not applicable

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat La Vecchia C, Malvezzi M, Bosetti C, et al. Thyroid cancer mortality and incidence: a global overview. Int J Cancer. 2015;136:2187–95.CrossRefPubMed La Vecchia C, Malvezzi M, Bosetti C, et al. Thyroid cancer mortality and incidence: a global overview. Int J Cancer. 2015;136:2187–95.CrossRefPubMed
2.
Zurück zum Zitat Moo TA, McGill J, Allendorf J, et al. Impact of prophylactic central neck lymph node dissection on early recurrence in papillary thyroid carcinoma. World J Surg. 2010;34:1187–91.CrossRefPubMed Moo TA, McGill J, Allendorf J, et al. Impact of prophylactic central neck lymph node dissection on early recurrence in papillary thyroid carcinoma. World J Surg. 2010;34:1187–91.CrossRefPubMed
3.
Zurück zum Zitat Zou M, Baitei EY, Alzahrani AS, et al. Concomitant RAS, RET/PTC, or BRAF mutations in advanced stage of papillary thyroid carcinoma. Thyroid. 2014;24:1256–66.CrossRefPubMedCentralPubMed Zou M, Baitei EY, Alzahrani AS, et al. Concomitant RAS, RET/PTC, or BRAF mutations in advanced stage of papillary thyroid carcinoma. Thyroid. 2014;24:1256–66.CrossRefPubMedCentralPubMed
4.
Zurück zum Zitat Kimura ET, Nikiforova MN, Zhu Z, et al. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. 2003;63:1454–7.PubMed Kimura ET, Nikiforova MN, Zhu Z, et al. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. 2003;63:1454–7.PubMed
5.
Zurück zum Zitat Vu-Phan D, Koenig RJ. Genetics and epigenetics of sporadic thyroid cancer. Mol Cell Endocrinol. 2014;386:55–66.CrossRefPubMed Vu-Phan D, Koenig RJ. Genetics and epigenetics of sporadic thyroid cancer. Mol Cell Endocrinol. 2014;386:55–66.CrossRefPubMed
6.
Zurück zum Zitat Xing M, Liu R, Liu X, et al. BRAF V600E and TERT promoter mutations cooperatively identify the most aggressive papillary thyroid cancer with highest recurrence. J Clin Oncol. 2014;32:2718–26.CrossRefPubMedCentralPubMed Xing M, Liu R, Liu X, et al. BRAF V600E and TERT promoter mutations cooperatively identify the most aggressive papillary thyroid cancer with highest recurrence. J Clin Oncol. 2014;32:2718–26.CrossRefPubMedCentralPubMed
7.
Zurück zum Zitat Elisei R, Viola D, Torregrossa L, et al. The BRAF(V600E) mutation is an independent, poor prognostic factor for the outcome of patients with low-risk intrathyroid papillary thyroid carcinoma: single-institution results from a large cohort study. J Clin Endocrinol Metab. 2012;97:4390–8.CrossRefPubMed Elisei R, Viola D, Torregrossa L, et al. The BRAF(V600E) mutation is an independent, poor prognostic factor for the outcome of patients with low-risk intrathyroid papillary thyroid carcinoma: single-institution results from a large cohort study. J Clin Endocrinol Metab. 2012;97:4390–8.CrossRefPubMed
8.
Zurück zum Zitat Liu C, Chen T, Liu Z. Associations between BRAF(V600E) and prognostic factors and poor outcomes in papillary thyroid carcinoma: a meta-analysis. World J Surg Oncol. 2016;14:241.CrossRefPubMedCentralPubMed Liu C, Chen T, Liu Z. Associations between BRAF(V600E) and prognostic factors and poor outcomes in papillary thyroid carcinoma: a meta-analysis. World J Surg Oncol. 2016;14:241.CrossRefPubMedCentralPubMed
9.
Zurück zum Zitat Gandolfi G, Sancisi V, Piana S, et al. Time to re-consider the meaning of BRAF V600E mutation in papillary thyroid carcinoma. Int J Cancer. 2015;137:1001–11.CrossRefPubMed Gandolfi G, Sancisi V, Piana S, et al. Time to re-consider the meaning of BRAF V600E mutation in papillary thyroid carcinoma. Int J Cancer. 2015;137:1001–11.CrossRefPubMed
11.
Zurück zum Zitat Mercer TR, Mattick JS. Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol. 2013;20:300–7.CrossRefPubMed Mercer TR, Mattick JS. Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol. 2013;20:300–7.CrossRefPubMed
12.
Zurück zum Zitat Li CH, Chen Y. Targeting long non-coding RNAs in cancers: progress and prospects. Int J Biochem Cell Biol. 2013;45:1895–910.CrossRefPubMed Li CH, Chen Y. Targeting long non-coding RNAs in cancers: progress and prospects. Int J Biochem Cell Biol. 2013;45:1895–910.CrossRefPubMed
15.
Zurück zum Zitat Lang N, Wang C, Zhao J, et al. Long noncoding RNA BCYRN1 promotes glycolysis and tumor progression by regulating the miR-149/PKM2 axis in non-small-cell lung cancer. Mol Med Rep. 2020;21:1509–16.PubMedPubMedCentral Lang N, Wang C, Zhao J, et al. Long noncoding RNA BCYRN1 promotes glycolysis and tumor progression by regulating the miR-149/PKM2 axis in non-small-cell lung cancer. Mol Med Rep. 2020;21:1509–16.PubMedPubMedCentral
16.
Zurück zum Zitat Wang Y, Guo Q, Zhao Y, et al. BRAF-activated long non-coding RNA contributes to cell proliferation and activates autophagy in papillary thyroid carcinoma. Oncol Lett. 2014;8:1947–52.CrossRefPubMedCentralPubMed Wang Y, Guo Q, Zhao Y, et al. BRAF-activated long non-coding RNA contributes to cell proliferation and activates autophagy in papillary thyroid carcinoma. Oncol Lett. 2014;8:1947–52.CrossRefPubMedCentralPubMed
17.
Zurück zum Zitat Chen X. Predicting lncRNA-disease associations and constructing lncRNA functional similarity network based on the information of miRNA. Sci Rep. 2015;5:13186.CrossRefPubMedCentralPubMed Chen X. Predicting lncRNA-disease associations and constructing lncRNA functional similarity network based on the information of miRNA. Sci Rep. 2015;5:13186.CrossRefPubMedCentralPubMed
18.
Zurück zum Zitat Zhang ZX, Liu ZQ, Jiang B, et al. BRAF activated non-coding RNA (BANCR) promoting gastric cancer cells proliferation via regulation of NF-κB1. Biochem Biophys Res Commun. 2015;465:225–31.CrossRefPubMed Zhang ZX, Liu ZQ, Jiang B, et al. BRAF activated non-coding RNA (BANCR) promoting gastric cancer cells proliferation via regulation of NF-κB1. Biochem Biophys Res Commun. 2015;465:225–31.CrossRefPubMed
19.
Zurück zum Zitat Yoon JH, Lee HS, Kim EK, et al. Short-term follow-up US leads to higher false-positive results without detection of structural recurrences in PTMC. Medicine (Baltimore). 2016; 95: e2435. Yoon JH, Lee HS, Kim EK, et al. Short-term follow-up US leads to higher false-positive results without detection of structural recurrences in PTMC. Medicine (Baltimore). 2016; 95: e2435.
20.
Zurück zum Zitat Ito Y, Tomoda C, Uruno T, et al. Papillary microcarcinoma of the thyroid: how should it be treated? World J Surg. 2004;28:1115–21.CrossRefPubMed Ito Y, Tomoda C, Uruno T, et al. Papillary microcarcinoma of the thyroid: how should it be treated? World J Surg. 2004;28:1115–21.CrossRefPubMed
21.
Zurück zum Zitat Shi C, Guo Y, Lv Y, et al. Clinicopathological features and prognosis of papillary thyroid microcarcinoma for surgery and relationships with the BRAFV600E mutational status and expression of angiogenic factors. PLoS One. 2016;11:e0167414.CrossRefPubMedCentralPubMed Shi C, Guo Y, Lv Y, et al. Clinicopathological features and prognosis of papillary thyroid microcarcinoma for surgery and relationships with the BRAFV600E mutational status and expression of angiogenic factors. PLoS One. 2016;11:e0167414.CrossRefPubMedCentralPubMed
22.
Zurück zum Zitat Liang J, Zeng W, Fang F, et al. Clinical analysis of Hashimoto thyroiditis coexistent with papillary thyroid cancer in 1392 patients. Acta Otorhinolaryngol Ital. 2017;37:393–400.PubMedPubMedCentral Liang J, Zeng W, Fang F, et al. Clinical analysis of Hashimoto thyroiditis coexistent with papillary thyroid cancer in 1392 patients. Acta Otorhinolaryngol Ital. 2017;37:393–400.PubMedPubMedCentral
23.
Zurück zum Zitat Davies L, Welch HG. Increasing incidence of thyroid cancer in the United States, 1973-2002. JAMA. 2006;295:2164–7.CrossRefPubMed Davies L, Welch HG. Increasing incidence of thyroid cancer in the United States, 1973-2002. JAMA. 2006;295:2164–7.CrossRefPubMed
24.
Zurück zum Zitat Brito JP, Davies L. Is there really an increased incidence of thyroid cancer? Curr Opin Endocrinol Diabetes Obes. 2014;21:405–8.CrossRefPubMed Brito JP, Davies L. Is there really an increased incidence of thyroid cancer? Curr Opin Endocrinol Diabetes Obes. 2014;21:405–8.CrossRefPubMed
25.
Zurück zum Zitat Li C, Lee KC, Schneider EB, et al. BRAF V600E mutation and its association with clinicopathological features of papillary thyroid cancer: a meta-analysis. J Clin Endocrinol Metab. 2012;97:4559–70.CrossRefPubMedCentralPubMed Li C, Lee KC, Schneider EB, et al. BRAF V600E mutation and its association with clinicopathological features of papillary thyroid cancer: a meta-analysis. J Clin Endocrinol Metab. 2012;97:4559–70.CrossRefPubMedCentralPubMed
26.
Zurück zum Zitat Yamashita H, Noguchi S, Murakami N, et al. Extracapsular invasion of lymph node metastasis is an indicator of distant metastasis and poor prognosis in patients with thyroid papillary carcinoma. Cancer. 1997;80:2268–72.CrossRefPubMed Yamashita H, Noguchi S, Murakami N, et al. Extracapsular invasion of lymph node metastasis is an indicator of distant metastasis and poor prognosis in patients with thyroid papillary carcinoma. Cancer. 1997;80:2268–72.CrossRefPubMed
27.
Zurück zum Zitat Song CM, Lee DW, Ji YB, et al. Frequency and pattern of central lymph node metastasis in papillary carcinoma of the thyroid isthmus. Head Neck. 2016;38(Suppl 1):E412–6.CrossRefPubMed Song CM, Lee DW, Ji YB, et al. Frequency and pattern of central lymph node metastasis in papillary carcinoma of the thyroid isthmus. Head Neck. 2016;38(Suppl 1):E412–6.CrossRefPubMed
28.
Zurück zum Zitat Chen Q, Wei T, Wang XL, et al. The total number of prelaryngeal and pretracheal lymph node metastases: is it a reliable predictor of contralateral central lymph node metastasis in papillary thyroid carcinoma? J Surg Res. 2017;214:162–7.CrossRefPubMed Chen Q, Wei T, Wang XL, et al. The total number of prelaryngeal and pretracheal lymph node metastases: is it a reliable predictor of contralateral central lymph node metastasis in papillary thyroid carcinoma? J Surg Res. 2017;214:162–7.CrossRefPubMed
29.
Zurück zum Zitat Sondermann A, Andreghetto FM, Moulatlet AC, et al. MiR-9 and miR-21 as prognostic biomarkers for recurrence in papillary thyroid cancer. Clin Exp Metastasis. 2015;32:521–30.CrossRefPubMed Sondermann A, Andreghetto FM, Moulatlet AC, et al. MiR-9 and miR-21 as prognostic biomarkers for recurrence in papillary thyroid cancer. Clin Exp Metastasis. 2015;32:521–30.CrossRefPubMed
30.
Zurück zum Zitat Gu Y, Yang N, Yin L, et al. Inhibitory roles of miR-9 on papillary thyroid cancer through targeting BRAF. Mol Med Rep. 2018;18:965–72.PubMed Gu Y, Yang N, Yin L, et al. Inhibitory roles of miR-9 on papillary thyroid cancer through targeting BRAF. Mol Med Rep. 2018;18:965–72.PubMed
Metadaten
Titel
BRAFV600E mutation, BRAF-activated long non-coding RNA and miR-9 expression in papillary thyroid carcinoma, and their association with clinicopathological features
verfasst von
Chenlei Shi
Jia Cao
Tiefeng Shi
Meihua Liang
Chao Ding
Yichen Lv
Weifeng Zhang
Chuanle Li
Wenchao Gao
Gang Wu
Jianting Man
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
World Journal of Surgical Oncology / Ausgabe 1/2020
Elektronische ISSN: 1477-7819
DOI
https://doi.org/10.1186/s12957-020-01923-7

Weitere Artikel der Ausgabe 1/2020

World Journal of Surgical Oncology 1/2020 Zur Ausgabe

Vorsicht, erhöhte Blutungsgefahr nach PCI!

10.05.2024 Koronare Herzerkrankung Nachrichten

Nach PCI besteht ein erhöhtes Blutungsrisiko, wenn die Behandelten eine verminderte linksventrikuläre Ejektionsfraktion aufweisen. Das Risiko ist umso höher, je stärker die Pumpfunktion eingeschränkt ist.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Deutlich weniger Infektionen: Wundprotektoren schützen!

08.05.2024 Postoperative Wundinfektion Nachrichten

Der Einsatz von Wundprotektoren bei offenen Eingriffen am unteren Gastrointestinaltrakt schützt vor Infektionen im Op.-Gebiet – und dient darüber hinaus der besseren Sicht. Das bestätigt mit großer Robustheit eine randomisierte Studie im Fachblatt JAMA Surgery.

Chirurginnen und Chirurgen sind stark suizidgefährdet

07.05.2024 Suizid Nachrichten

Der belastende Arbeitsalltag wirkt sich negativ auf die psychische Gesundheit der Angehörigen ärztlicher Berufsgruppen aus. Chirurginnen und Chirurgen bilden da keine Ausnahme, im Gegenteil.

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.