Skip to main content
Erschienen in: Journal of Translational Medicine 1/2016

Open Access 01.12.2016 | Research

Intra-articular injection of two different doses of autologous bone marrow mesenchymal stem cells versus hyaluronic acid in the treatment of knee osteoarthritis: multicenter randomized controlled clinical trial (phase I/II)

verfasst von: José M. Lamo-Espinosa, Gonzalo Mora, Juan F. Blanco, Froilán Granero-Moltó, Jorge M. Nuñez-Córdoba, Carmen Sánchez-Echenique, José M. Bondía, Jesús Dámaso Aquerreta, Enrique J. Andreu, Enrique Ornilla, Eva M. Villarón, Andrés Valentí-Azcárate, Fermín Sánchez-Guijo, María Consuelo del Cañizo, Juan Ramón Valentí-Nin, Felipe Prósper

Erschienen in: Journal of Translational Medicine | Ausgabe 1/2016

Abstract

Background

Mesenchymal stromal cells are a promising option to treat knee osteoarthritis. Their safety and usefulness must be confirmed and the optimal dose established. We tested increasing doses of bone marrow mesenchymal stromal cells (BM-MSCs) in combination with hyaluronic acid in a randomized clinical trial.

Materials

A phase I/II multicenter randomized clinical trial with active control was conducted. Thirty patients diagnosed with knee OA were randomly assigned to intraarticularly administered hyaluronic acid alone (control), or together with 10 × 106 or 100 × 106 cultured autologous BM-MSCs, and followed up for 12 months. Pain and function were assessed using VAS and WOMAC and by measuring the knee motion range. X-ray and magnetic resonance imaging analyses were performed to analyze joint damage.

Results

No adverse effects were reported after BM-MSC administration or during follow-up. BM-MSC-administered patients improved according to VAS during all follow-up evaluations and median value (IQR) for control, low-dose and high-dose groups change from 5 (3, 7), 7 (5, 8) and 6 (4, 8) to 4 (3, 5), 2 (1, 3) and 2 (0,4) respectively at 12 months (low-dose vs control group p = 0.005 and high-dose vs control group p < 0.009). BM-MSC-administered patients were also superior according to WOMAC, although improvement in control and low-dose patients could not be significantly sustained beyond 6 months. On the other hand, the BM-MSC high-dose group exhibited an improvement of 16.5 (12, 19) points at 12 months (p < 0.01). Consistent with WOMAC and VAS values, motion ranges remained unaltered in the control group but improved at 12 months with BM-MSCs. X-ray revealed a reduction of the knee joint space width in the control group that was not seen in BM-MSCs high-dose group. MRI (WORMS protocol) showed that joint damage decreased only in the BM-MSC high-dose group, albeit slightly.

Conclusions

The single intraarticular injection of in vitro expanded autologous BM-MSCs together with HA is a safe and feasible procedure that results in a clinical and functional improvement of knee OA, especially when 100 × 106 cells are administered. These results pave the way for a future phase III clinical trial.
Clinical Trials.gov identifier NCT02123368. Nº EudraCT: 2009-017624-72
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​s12967-016-0998-2) contains supplementary material, which is available to authorized users.
José M. Lamo-Espinosa and Gonzalo Mora contributed equally to this work
Abkürzungen
αMEM
alpha minimum essential medium
bFGF
fibroblast growth factor
BM-MSCs
bone marrow mesenchymal stromal cells
GMP
good manufacture practices
HA
hyaluronic acid
ISCT
International Society for Cellular Therapy
K-L
Kellgren and Lawrence scale
MRI
magnetic resonance imaging
MSCs
mesenchymal stromal cells
OA
osteoarthritis
VAS
visual analogue scale
WOMAC
Western Ontario and McMaster Universities Osteoarthritis Index
WORMS
Whole-Organ Magnetic Resonance Imaging Score

Background

Osteoarthritis (OA) is a chronic disease involving progressive degeneration of the articular cartilage and subchondral bone, accompanied by synovitis [1]. Due to its avascular nature and the limited self-renewal capacity of chondrocytes, adult articular cartilage presents limited repair capability [2]. Current treatment options for articular cartilage injury and osteoarthritis are aimed to relieve inflammation and pain, but have no effect on the natural progression of the disease [3]. To date, in severe cases of knee OA, knee replacement is the only therapeutic option [4].
During the last two decades focal cartilage defects have been treated using cell therapy and tissue engineering approaches. In this context, autologous chondrocyte implantation (ACI) or matrix-induced autologous chondrocyte (MACI) implantation techniques have been applied with promising results, although the large non-contained cartilage defects found in OA and its own pathogenesis cannot be treated using ACI or MACI [57]. The use of intraarticular injections of mesenchymal stromal cells (MSCs) may represent some advantages over chondrocytes in patients with OA. First, because of their ability for self-renewal, the number of cells that can be obtained is increased without cartilage donor site morbidity and with reduced cost [68]. Second, MSCs are responsible for the normal turnover and maintenance of adult mesenchymal tissues, including cartilage, and has been suggested that the number of MSCs present in the subchondral bone decreases with age and OA grade, suggesting that such MSCs deficit could prime the degenerative process [912]. It has also been proposed that during tissue injury MSCs migrate to participate in the reparative process, giving MSCs a potential therapeutic value when added exogenously [13, 14]. Additionally, cultured MSCs induce in vitro chondrocyte proliferation and extracellular matrix protein synthesis, including aggrecan and type II collagen, which support their critical role in cartilage tissue repair [15, 16].
There is an increasing number of reports on the treatment of OA using MSC, but these are methodologically heterogeneous in dose, cell source, coadjuvants and cell processing methods, which makes it difficult to compare the different studies [17]. In many cases, treatments consist of the administration of bone marrow concentrates as a source of MSCs. However, it is well known that only 0.001 % of the mononuclear cells found in the bone marrow could be considered as MSCs as defined by the ICRS in 2006. Therefore, their number in a bone marrow concentrate is very limited compared to that obtained upon culturing MSCs [1820]. Only a few studies using MSCs produced by good manufacture practices (GMP) such as advanced cell-therapy products have been reported [2124]. In addition, there is a need to explore the effect of different cell doses in a randomized way to gain insight into the ideal conditions for knee OA patients to take advantage of MSC therapy. For these reasons, the purpose of this study was to randomly assess the safety, feasibility and efficacy of the intra-articular injection of two different doses of GMP-produced autologous bone marrow MSCs (BM-MSCs) with hyaluronic acid (HA) in patients with knee OA.

Methods

Participants and study design

This is a phase I/II randomized clinical trial with active control conducted between August 2012 and October 2014, involving the Clínica Universidad de Navarra (Pamplona, Spain) and IBSAL-Hospital Universitario de Salamanca (Salamanca, Spain). All the procedures were approved by the Institutional Review Board of Navarra and the Spanish Agency of Medicines and Medical Devices (Nº EudraCT: 2009-017624-72, Clinical Trials.gov identifier: NCT02123368). All participants provided written informed consent.

Criteria for eligibility of patients

Inclusion criteria were as follows: males and females aged 50–80, diagnosis of knee OA according to American College of Rheumatology criteria, visual analogue scale (VAS) joint pain ≥2.5, Kellgren–Lawrence radiological classification scale ≥2, body mass index between 20 and 35 kg/m [2], and availability to be followed during the study period; exclusion criteria were: previous diagnosis of polyarticular disease, severe mechanical extra-articular deformation (>15° varus/15° valgus), systemic autoimmune rheumatic disease, arthroscopy or intraarticular infiltration in the last 6 months, chronic treatment with immunosuppressive or anticoagulant drugs, corticosteroids treatment in the 3 last months, nonsteroidal anti-inflammatory drugs therapy in the last 15 days, bilateral knee OA requiring treatment in both knees, poorly controlled diabetes mellitus, blood dyscrasias, and allergy to HA or bird proteins.

Treatment groups

Participants were assigned to comparison groups by an unblinded computer-generated list, based on unrestricted randomization, which was maintained centrally by staff with no clinical involvement in the trial so no center knew the treatment allocation of any patient until the patient had been recruited into the trial.
Three groups were created:
Control group, constituted by patients who received a single intra-articular injection of 60 mg HA (Hyalone®) in a final volume of 4 ml.
Low-dose BM-MSCs group, constituted by patients who received a single intra-articular injection of 10 × 106 autologous cultured BM-MSC in 1.5 ml Ringer’s lactate solution, followed by an intraarticular injection of 4 ml HA.
High-dose BM-MSCs group, constituted by patients who received a single intra-articular injection of 100 × 106 autologous cultured BM-MSCs in 3 ml Ringer’s lactate solution, followed by an intraarticular injection of 4 ml HA.

Sample size calculation

We estimated that a sample size of ten patients per group was required to detect an effect size of 0.6 with a power of 80 %, assuming a balanced allocation to treatment groups, and a 5 % type I error probability.

Cell culture

BM-MSCs were generated under good manufacturing practice conditions (GMP) with standard operating procedures. Briefly, bone marrow (100 ml) was harvested from the pelvic bone (iliac crest) under sterile conditions. The mononuclear cell fraction was isolated by Ficoll density gradient centrifugation (Ficoll-Paque, GE Healthcare Bio-Sciences AB, Uppsala, Sweden). Cells, ranging between 20 × 106 and 60 × 106, were subsequently seeded in 175 cm2 flasks with growth medium, which consisted of αMEM without ribonucleosides (Gibco, Life Technologies, Carlsbad, CA, USA) supplemented with 5 % platelet lisate, 2 units/ml heparin, penicillin–streptomycin at 1 % (Gibco) and 1 ng/ml human fibroblast growth factor (bFGF) (Sigma-Aldrich, St. Louis, MO, USA). The flasks were maintained in culture at 37 °C in 5 % CO2 atmosphere. The growth medium was changed every 3–4 days. About 10–15 days later, colonies were formed and the cells were split with TrypLE Select™ (Life Technologies) and seeded at 3000–5000 cells/cm2. Once 70–80 % confluence was reached, cells were split again and cultured until they were available at the amounts required to be administered to patients. Finally, cells were harvested with TrypLE Select™, washed three times with PBS and resuspended in Ringer’s lactate buffer (Grifols, Barcelona, Spain) containing 1 % human albumin (Grifols), to be administered within 24 h of harvesting of the cells. Cells were characterized according to ISCT criteria. Cells were then analyzed by flow cytometry (FACSCalibur, BD Biosciences, San José, CA, USA) with the appropriate antibodies (BD Biosciences) to confirm expression of surface markers CD90, CD73 and CD44, as well as absence of CD34 and CD45.

Cell injection

Cell injection was performed without radiographic guidance through a lateral patellar approach by three different orthopaedic surgeons from both involved centers (Additional file 1: Figure S1), 3–4 weeks after the iliac crest biopsy had been performed. In 90 % of the patients, cells were administered within the first hour after being harvested. For this purpose, a 19 G needle was used in two consecutive intraarticular injections. In the first one, 10 × 106 (low dose) or 100 × 106 (high dose) BM-MSCs were administered in 1.5 and 3 ml doses respectively. Subsequently, 4 ml HA (Hyalone®) were injected using the same via.

Outcomes of interest

The occurrence of complications and/or adverse effects during the study was registered. In addition, the response to the intra-articular infusion of HA with or without BM-MSCs was assessed using the following procedures:
A goniometer-based evaluation of the articular range of motion at baseline i.e. before treatment administration, and 3, 6 and 12 months after treatment.
Two scale-based methods Visual Analog Scale (VAS) [25] and the Likert version of the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) [26, 27], evaluated at baseline and 3, 6 and 12 months after treatment, to clinically assess pain and function. VAS ranges from 0 (maximum relief, i.e., no pain) to 10 (no relief, i.e., maximal pain). WOMAC comprises three subscores: pain, which includes 5 items; stiffness, with 2 items; and physical function, with 17 items. According to previous literature, patients were considered WOMAC responders when they reported an improvement of 20 % in at least two items together with an improvement of ten points in the overall scale [28].
Rosenberg X-ray projections at baseline and 6 and 12 months afterwards to provide a radiographic assessment of the joint space width. A custom methacrylate patient positioner was used to achieve a comparative view (Additional file 2: Figure S2).
A magnetic resonance imaging (MRI) study at baseline and 6 and 12 months after treatment. Two experienced radiologists evaluated MRI images in a blinded manner by assessing the number and location of the lesions, cartilage thickness, signal intensity, and subchondral bone alteration and volume, following the Whole-Organ Magnetic Resonance Imaging Score (WORMS) protocol, in which higher score values indicate more damage [29]. 3T Magnetom TRIO equipment (Siemens, Erlangen, Germany) was used following a protocol which included an axial T1 weighted image (WI) with slice thickness of 5 mm, coronal T1 WI (4 mm), sagittal T1 WI (4 mm), sagittal T2 FS WI (4 mm) and sagittal gradient echo 3D (DESS) (2 mm).

Statistics

The analyses were performed according to treatment assignment, and all available data from all patients were included in the analyses, following the intention-to-treat principle. Descriptive data summaries are presented as median [interquartile range (IQR)] or percentages. Within each group, the comparison of each clinical and radiographic endpoint between the value obtained at 6 or 12 months and the baseline value, i.e. the one obtained immediately before the administration of the treatment, was performed using the Mann–Whitney U test. Changes in the same end points over time were determined calculating the differences between the measurements collected at the 6 or 12-month follow-up visit and the baseline visit. Subsequently, comparisons between treatment groups were carried out using the Kruskal–Wallis test and the Mann–Whitney U test. All tests were two-tailed. A p value of 0.05 was considered to indicate statistical significance, without adjustment for multiple testing. All analyses were performed using Stata 14 (StataCorp. 2015. Stata Statistical Software: Release 14. College Station, TX: StataCorp LP) and IBM SPSS Statistics 20 (IBM Corp. Released 2011. IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY: IBM Corp).

Results

Demographics of patients

Thirty-two patients were assessed for eligibility, and were consecutively randomized to treatment groups (Fig. 1). Two patients who had been randomly assigned to the control group withdrew consent and were excluded from the trial. All the groups showed similar baseline characteristics of age and body mass index. Patients in the three groups showed an uneven distribution according to the Kellgren–Lawrence scale but without statistical significance (p = 0.585, Table 1).
Table 1
Baseline characteristics of patients
 
Control
BM-MSCs
Low-dose
High-dose
N
10
10
10
Age (years)
60.3 (55.1, 61.1)
65.9 (59.5, 70.6)
57.8 (55.0, 60.8)
Males, n (%)
7 (70)
4 (40)
8 (80)
BMI (kg/m2)
29.6 (26.2, 30.8)
27.1 (24.4, 31.2)
28.5 (25.8, 31.0)
Time since OA diagnosis (years)
6 (2, 8)
9 (4, 12)
10 (7, 15)
K-L 2, n (%)
4 (40)
1 (10)
3 (30)
K-L 3, n (%)
2 (20)
2 (20)
3 (30)
K-L 4, n (%)
4 (40)
7 (70)
4 (40)
Unless specified, data are presented as median [interquartile range (IQR)]. OA osteoarthritis, K–L Kellgren and Lawrence grading scale of severity of knee OA

Safety

No serious adverse events or complications derived from the procedures or treatments were noted. There were no clinically important trends in the results of physical examination, vital signs and laboratory tests during the study. Articular pain requiring anti-inflammatory treatment during the first 24 h after infiltration was observed in 1, 3 and 6 patients in the control, low-dose BM-MSC and high-dose BM-MSC groups respectively. All patients recovered completely without sequelae and no treatment group-dependent differences were detected in the dose of required anti-inflammatory drug or in the time that passed until recovery.

Clinical assessment of pain and function

VAS and WOMAC clinical scores were used in order to obtain the best picture of how patients perceived their own evolution. Evaluations were performed before the administration of treatment and 3, 6 and 12 months afterwards, and the results are summarized in Fig. 2, Additional file 3: Table S1 (VAS) and Table 2 (WOMAC). The patients that were solely given HA did not show changes during follow up in their pain status according to VAS (Fig. 2; Additional file 3: Table S1). Furthermore, although they initially perceived some improvement according to the WOMAC pain and physical function subscores, this perception was not significantly sustained in the long term (Table 2). Inatraarticular delivery of BM-MSCs, specially when used at high dose, enabled patients to perceive an improvement in their perception of pain in their daily activity. On one hand, the VAS score value was significantly reduced upon treatment with low and high BM-MSC doses at all follow-up times (Fig. 2; Additional file 3: Table S1). Furthermore, treatment with 100 × 106 cells was associated with a significant improvement in all WOMAC subscores at 12 months (Table 2). It is important to note that, when the overall WOMAC value at 12 months was subtracted from the baseline value in each patient, the median decrease in the score, i.e. the relief of the symptoms, was notably larger if patients had been treated with BM-MSCs [−6.5 (−19, 4), −14 (−27, 4), and −14 (−15, −8), median (IQR), for control, low-dose and high-dose BM-MSCs groups respectively]. Thus, only the patients who had been treated with BM-MSCs met criteria to be considered WOMAC responders in the long term.
Table 2
WOMAC score before administration of treatments and 3, 6 and 12 months afterwards
WOMAC
Time
Control
BM-MSCs
Low-dose
High-dose
Pain
Baseline
5.5 (5, 6)
7.5 (5, 9)
4.5 (4, 5)
3 months
3 (1, 3)*
3.5 (3, 7)
3 (2, 5)
6 months
2.5 (1, 5)*
3.5 (3, 7)
3.5 (2, 5)
12 months
2 (1, 6)
3.5 (3, 5)
2.5 (2, 4)*
Stiffness
Baseline
2 (1, 3)
4 (2, 5)
2.5 (2, 4)
3 months
2 (1, 2)
2 (0, 4)
2 (1, 2)
6 months
0.5 (0, 2)
1.5 (1, 3)*
2 (1, 3)
12 months
2 (1, 2)
2 (1, 2)*
2 (1, 2)*
Function
Baseline
21 (13, 24)
26.5 (23, 32)
19 (12, 25)
3 months
9 (7, 11)*
17.5 (8, 26)
10 (7, 18)
6 months
7.5 (2, 13)*
18 (10, 23)
14.5 (8, 17)
12 months
9.5 (5, 23)
17 (10, 20)
11 (9, 14)*
Overall
Baseline
29 (19, 38)
37 (32, 42)
28 (16, 34)
3 months
12 (11, 14)*
25.5 (11, 37)
13 (11, 26)*
6 months
10 (4, 20)*
24 (13, 31)
20 (13, 23)
12 months
13.5 (8, 33)
21.5 (15, 26)
16.5 (12, 19)**
The values of each one of the three WOMAC subscales as well as the overall WOMAC score at baseline and 3, 6 and 12 months afterwards are presented. Data are the median (IQR) of each group. Function means physical function. *p < 0.05, **p < 0.01 with respect to the baseline value of the same group

Effect of treatments on the range of knee motion

The knee flexion and extension ranges of motion were significantly improved in the patients who were treated with BM-MSCs and the effect was seen earlier in patients receiving the higher doses of BM-MSC. No improvement was seen in patients receiving HA alone (Fig. 3; Additional file 4: Table S2).

Radiological and MRI findings

The analysis of the knee joint space by X-rays during follow up showed a borderline reduction in the control group (p = 0.05 at 12 months), which was not observed in patients treated with high dose BM-MSC (Table 3; Additional file 5: Table S3). The assessment in the low dose group was not possible because the baseline value was 0. These results suggest that BM-MSC may halt the progressive loss of cartilage observed in patients with OA despite the use of HA.
Table 3
X-ray measurement of the evolution of the knee articular interline at 6 and 12 months after the administration of treatments
Time
Control
BM-MSCs
Low-dose
High-dose
6 months
−3 (−6, 0)
0 (−1, 0)
0 (−1, 1)
12 months
−4 (−18, 0)
0 (0, 3)
0 (−1, 2)
For each group of treatment, variation for knee joint space width, which was measured in mm, was calculated by subtracting, for each patient of the group, the value at 6 or 12 months from the baseline value. Data are presented as the median (IQR) of each group
Consistent with the X-Ray results, the analysis of the MRI following the WORMS protocol showed a reduction in the score value during follow up (Table 4). Patients treated with high dose BM-MSCs showed a median improvement of 4 points at 12 months, with an improvement of 22 points in 25 % of patients, while there were no signs of improvement either in the control or in the low BM-MSC group.
Table 4
WORMS score before administration of treatments and 6 and 12 months afterwards
Time
Control
BM-MSCs
Low-dose
High-dose
Baseline
79 (41, 94)
75 (64, 107)
60 (53, 84)
6 months
78 (34, 107)
70 (57, 126)
53 (51, 90)
12 months
83 (25, 95)
90 (67, 140)
53 (46, 82)
12 months evolution
−0.5 (−16, 15)
2.5 (−3, 25)
−4 (−22, 2)
The overall WORMS scores at baseline and 6 and 12 months afterwards are presented as the median (IQR) of each group. The evolution within each treatment group at 12 months is also presented, and was calculated by subtracting for each patient the values at 12 months from the corresponding baseline values. Data are the median (IQR) of each group

Discussion

The interest in the clinical use of MSCs for the treatment of knee OA has recently grown. However, the optimal dose and source of cells, as well as the use of coadjuvants, are not yet established. In the present clinical trial we used two single doses of BM-MSCs, 10 and 100 × 106 cells, coadministered with HA, and compared their effects with the single administration of HA in patients with knee OA.
We found that the use of BM-MSCs resulted in a significant relief of pain symptoms in the long term. According to the VAS scores, when BM-MSCs had been administered, an improvement was seen from the earliest evaluation and was maintained until the last one, at 12 months, at which time point the highest effect was observed. Interestingly, this pain reduction was independent of the dose of BM-MSCs administered. On the other hand, no significant changes in VAS were detected in the control group, and the value at 12 months was similar to the one registered before the administration of the treatments. Accordingly, the analysis of the information provided by WOMAC score confirmed that BM-MSCs induced relief of pain symptoms. It is interesting to note that, although treatment with HA alone was able to reduce the WOMAC score during the first 6 months, this improvement was not sustained in the long term, but when patients received BM-MSCs, a significant reduction in WOMAC score was detected at 12 months. In addition, unlike what was observed with VAS, only the high dose of BM-MSCs showed an efficient reduction in the WOMAC score. Furthermore, it is notable that only patients treated with high-dose BM-MSCs met the criteria to be considered WOMAC responders [28].
The effect of MSCs on pain improvement in knee OA is controversial and the literature provides differing accounts. One metaanalysis and a comprehensive review have been recently published on this topic. Xia et al. [17] performed a metaanalysis by managing the results of seven clinical trials, concluding that cell treatments were not able to reduce pain scores. Unfortunately, the heterogeneity in the methodology used in the different studies, with different cell production methods and dosage, precludes these authors from drawing solid conclusions. On the other hand, Rodríguez-Merchán [30] reviewed 25 articles that reported the use of intra-articular injection of MSCs in knee OA, finding that MSCs induce pain relief and functional improvement in three randomized clinical trials which, however, were not comparable to ours methodologically. One of them used bone marrow concentrate, another used peripheral blood progenitor cells, while the third one used cultured autologous BM-MSCs together with a high tibial osteotomy, which is a surgical treatment with a well-known impact on pain relief [3133]. The number of clinical randomized trials comparing different treatment and dosage is limited. In an interesting study, Orozco et al. [24, 34] reported an improvement in pain and function with the use of a single intra-articular injection of 40 × 106 cultured autologous MSCs in twelve patients. In a more comparable randomized clinical trial, using allogenic MSCs, Vega et al. reported good clinical outcomes in pain control and function when comparing the use of a single intra-articular injection of 40 × 106 cultured allogenic MSCs against a single intraarticular injection of HA [23].
Osteoarthritis is not considered a classical inflammatory arthropathy due to the absence of neutrophils in the synovial fluid and the lack of systemic manifestations of inflammation [35]. However, it is frequently associated with inflammation signs and symptoms such as joint pain, swelling and stiffness, leading to significant functional impairment and disability [36]. The improvement in pain scores together with the mild effect on function and MRI scores suggests that the positive effect of BM-MSCs that we have observed may rely on their paracrine function. In support of this notion, MSC antiinflammatory properties have been correlated with pain reduction elsewhere [3740]. In addition, the reduction in pain scores may explain the positive changes in flexion and extension. Although such changes are small, it must be noted that a limitation of only a few degrees in flexo-extension may severely compromise the daily functional activity. These improvements together with the findings in the image analyses, suggest that MSC-based therapies may be indicated in asymptomatic patients with mild OA grade, in whom the injected MSCs could be more effective through their paracrine function when a healthier cartilage is still present.
The maintenance of the knee joint space width has been related to an appropriate cartilage thickness [41]. Unlike what happened in the patients that were treated with HA only, who experienced a reduction of this space over the time of the study, the space width was preserved when BM-MSC were also administered, even though the results obtained in the patients that had received the low dose must be taken cautiously since the baseline value in 25 % of them was already zero, which precludes suitable follow-up. Nevertheless, a difference could be observed between the high dose and control groups, which did exhibit comparable baseline values. This finding is consistent with MRI observations and is in agreement with previous reports that also investigated the role of cultured MSCs or MSCs embedded in scaffolds in knee OA [23, 24, 4244].
The required dose of MSCs to treat knee OA efficiently is a topic of active research. Recently Jo et al. [12] performed a pilot study comparing three doses of cultured adipose tissue-derived MSCs (1 × 106, n = 3; 50 × 106, n = 3; and 100 × 106, n = 3). They found a significant reduction in the VAS score only in the high dose group at 6 months, in spite of the small number of patients included. Since results were better with the highest dose, they focused on this in a second phase of the study 100 × 106 (n = 9), with promising results. Our findings also suggest that it is preferable to administer 100 × 106 rather than 10 × 106 cells. However, we have to bear in mind that, despite randomization, the OA degree at recruitment was more severe in the patients who received only 10 × 106 cells, which may obscure our interpretation of this result.
It is accepted that OA patients have a MSC deficit that leads to a degenerative process, and the number, in vitro proliferation and differentiation potential of BM-MSCs present in the subchondral bone decreases with age and OA grade [10, 11, 45]. However, we were able to obtain a sufficient amount of BM-MSCs in osteoarthritis patients, regardless of their age or grade of disease [4649]. We have not identified any problems during the process of production of autologous BM-MSCs, achieving the number of autologous BM-MSCs proposed, even though the mean age of patients was around 60 years.
The present study is not exempt from limitations. First, ethical issues prevented us from performing a double-blinded trial. In order to minimize this inconvenience, subjective clinical scores were contrasted with objective measures to minimize bias. In addition, two independent radiologists carried out the MRI analyses in a blinded manner. Second, the relatively short duration of the study prevented us from analyzing the efficiency of the treatments beyond 1 year after the administration of the treatments. Finally, as anticipated, the severe initial condition of a portion of patients who were going to be administered the low dose of cells may have stopped these exerting more beneficial effects.

Conclusions

Our study shows that the single intraarticular injection of in vitro expanded autologous BM-MSCs together with HA is a safe and feasible procedure that results in a clinical and functional improvement of knee OA, especially when 100 × 106 cells are administered. These results pave the way for a future phase III clinical trial.

Authors’ contributions

Study design: JML-E, GM, JM-NC, MCC, FP. Provision of study materials or patients: JML-E, GM, JFB, AV-A, EMV, GS-G, JRV-N, EA, FP. Data collection and assembly: JML-E, GM, EA, JFB, JMN-C, FG-M, CS-E, JMB, JD-A. Obtaining of funding: FG-M, MCC and FP. Drafting manuscript: JML-E, FG-M, FP. JML-E, FG-M, JMN-C, FP take responsibility for the integrity of the data analysis. All authors read and approved the final manuscript.

Acknowledgements

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Availability of data and materials

All the data presented is available upon request.
All the procedures were approved by the Institutional Review Board of Navarra and the Spanish Agency of Medicines and Medical Devices.

Funding

This work has been partially supported by Grants PI13/01633 (MINECO through Instituto de Salud Carlos III to FG-M) and RD12/0019/0017 (to MCC) and RD12/0019/0031 (to FP) from Instituto de Salud Carlos III (red TerCel). EMV is supported by Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Consejería de Sanidad, Junta de Castilla y León.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Ishiguro N, Kojima T, Poole AR. Mechanism of cartilage destruction in osteoarthritis. Nagoya J Med Sci. 2002;65(3–4):73–84.PubMed Ishiguro N, Kojima T, Poole AR. Mechanism of cartilage destruction in osteoarthritis. Nagoya J Med Sci. 2002;65(3–4):73–84.PubMed
2.
Zurück zum Zitat Mazor M, Lespessailles E, Coursier R, Daniellou R, Best TM, Toumi H. Mesenchymal stem-cell potential in cartilage repair: an update. J Cell Mol Med. 2014;18(12):2340–50.CrossRefPubMedPubMedCentral Mazor M, Lespessailles E, Coursier R, Daniellou R, Best TM, Toumi H. Mesenchymal stem-cell potential in cartilage repair: an update. J Cell Mol Med. 2014;18(12):2340–50.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Buckwalter JA, Saltzman C, Brown T. The impact of osteoarthritis: implications for research. Clin Orthop Relat Res. 2004;427:S6–15.CrossRefPubMed Buckwalter JA, Saltzman C, Brown T. The impact of osteoarthritis: implications for research. Clin Orthop Relat Res. 2004;427:S6–15.CrossRefPubMed
5.
Zurück zum Zitat Steinert AF, Ghivizzani SC, Rethwilm A, Tuan RS, Evans CH, Noth U. Major biological obstacles for persistent cell-based regeneration of articular cartilage. Arthritis Res Ther. 2007;9(3):213.CrossRefPubMedPubMedCentral Steinert AF, Ghivizzani SC, Rethwilm A, Tuan RS, Evans CH, Noth U. Major biological obstacles for persistent cell-based regeneration of articular cartilage. Arthritis Res Ther. 2007;9(3):213.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Knutsen G, Drogset JO, Engebretsen L, Grontvedt T, Isaksen V, Ludvigsen TC, Roberts S, Solheim E, Strand T, Johansen O. A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. J Bone Joint Surg Am. 2007;89(10):2105–12.CrossRefPubMed Knutsen G, Drogset JO, Engebretsen L, Grontvedt T, Isaksen V, Ludvigsen TC, Roberts S, Solheim E, Strand T, Johansen O. A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. J Bone Joint Surg Am. 2007;89(10):2105–12.CrossRefPubMed
7.
Zurück zum Zitat Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331(14):889–95.CrossRefPubMed Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331(14):889–95.CrossRefPubMed
8.
Zurück zum Zitat Nejadnik H, Hui JH, Feng Choong EP, Tai BC, Lee EH. Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. Am J Sports Med. 2010;38(6):1110–6.CrossRefPubMed Nejadnik H, Hui JH, Feng Choong EP, Tai BC, Lee EH. Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. Am J Sports Med. 2010;38(6):1110–6.CrossRefPubMed
9.
Zurück zum Zitat Caplan AI. Review: mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. Tissue Eng. 2005;11(7–8):1198–211.CrossRefPubMed Caplan AI. Review: mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. Tissue Eng. 2005;11(7–8):1198–211.CrossRefPubMed
10.
Zurück zum Zitat Caplan AI. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol. 2007;213(2):341–7.CrossRefPubMed Caplan AI. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol. 2007;213(2):341–7.CrossRefPubMed
11.
Zurück zum Zitat Murphy JM, Dixon K, Beck S, Fabian D, Feldman A, Barry F. Reduced chondrogenic and adipogenic activity of mesenchymal stem cells from patients with advanced osteoarthritis. Arthritis Rheum. 2002;46(3):704–13.CrossRefPubMed Murphy JM, Dixon K, Beck S, Fabian D, Feldman A, Barry F. Reduced chondrogenic and adipogenic activity of mesenchymal stem cells from patients with advanced osteoarthritis. Arthritis Rheum. 2002;46(3):704–13.CrossRefPubMed
12.
Zurück zum Zitat Jo CH, Lee YG, Shin WH, Kim H, Chai JW, Jeong EC, Kim JE, Shim H, Shin JS, Shin IS, Ra JC, Oh S, Yoon KS. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells. 2014;32(5):1254–66.CrossRefPubMed Jo CH, Lee YG, Shin WH, Kim H, Chai JW, Jeong EC, Kim JE, Shim H, Shin JS, Shin IS, Ra JC, Oh S, Yoon KS. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells. 2014;32(5):1254–66.CrossRefPubMed
13.
Zurück zum Zitat Campagnoli C, Roberts IA, Kumar S, Bennett PR, Bellantuono I, Fisk NM. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood. 2001;98(8):2396–402.CrossRefPubMed Campagnoli C, Roberts IA, Kumar S, Bennett PR, Bellantuono I, Fisk NM. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood. 2001;98(8):2396–402.CrossRefPubMed
14.
Zurück zum Zitat Karp JM, Leng Teo GS. Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell. 2009;4(3):206–16.CrossRefPubMed Karp JM, Leng Teo GS. Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell. 2009;4(3):206–16.CrossRefPubMed
15.
Zurück zum Zitat Horie M, Choi H, Lee RH, Reger RL, Ylostalo J, Muneta T, Sekiya I, Prockop DJ. Intra-articular injection of human mesenchymal stem cells (MSCs) promote rat meniscal regeneration by being activated to express Indian hedgehog that enhances expression of type II collagen. Osteoarthr Cartil. 2012;20(10):1197–207.CrossRefPubMedPubMedCentral Horie M, Choi H, Lee RH, Reger RL, Ylostalo J, Muneta T, Sekiya I, Prockop DJ. Intra-articular injection of human mesenchymal stem cells (MSCs) promote rat meniscal regeneration by being activated to express Indian hedgehog that enhances expression of type II collagen. Osteoarthr Cartil. 2012;20(10):1197–207.CrossRefPubMedPubMedCentral
16.
17.
Zurück zum Zitat Xia P, Wang X, Lin Q, Li X. Efficacy of mesenchymal stem cells injection for the management of knee osteoarthritis: a systematic review and meta-analysis. Int Orthop. 2015;39(12):2363–72.CrossRefPubMed Xia P, Wang X, Lin Q, Li X. Efficacy of mesenchymal stem cells injection for the management of knee osteoarthritis: a systematic review and meta-analysis. Int Orthop. 2015;39(12):2363–72.CrossRefPubMed
18.
Zurück zum Zitat Qi Y, Feng G, Yan W. Mesenchymal stem cell-based treatment for cartilage defects in osteoarthritis. Mol Biol Rep. 2012;39(5):5683–9.CrossRefPubMed Qi Y, Feng G, Yan W. Mesenchymal stem cell-based treatment for cartilage defects in osteoarthritis. Mol Biol Rep. 2012;39(5):5683–9.CrossRefPubMed
19.
Zurück zum Zitat Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.CrossRefPubMed Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.CrossRefPubMed
20.
Zurück zum Zitat Simmons PJ, Torok-Storb B. Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood. 1991;78(1):55–62.PubMed Simmons PJ, Torok-Storb B. Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood. 1991;78(1):55–62.PubMed
21.
Zurück zum Zitat Burger SR. Current regulatory issues in cell and tissue therapy. Cytotherapy. 2003;5(4):289–98.CrossRefPubMed Burger SR. Current regulatory issues in cell and tissue therapy. Cytotherapy. 2003;5(4):289–98.CrossRefPubMed
22.
Zurück zum Zitat Fekete N, Rojewski MT, Furst D, Kreja L, Ignatius A, Dausend J, Schrezenmeier H. GMP-compliant isolation and large-scale expansion of bone marrow-derived MSC. PLoS One. 2012;7(8):e43255.CrossRefPubMedPubMedCentral Fekete N, Rojewski MT, Furst D, Kreja L, Ignatius A, Dausend J, Schrezenmeier H. GMP-compliant isolation and large-scale expansion of bone marrow-derived MSC. PLoS One. 2012;7(8):e43255.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Vega A, Martin-Ferrero MA, Del Canto F, Alberca M, Garcia V, Munar A, Orozco L, Soler R, Fuertes JJ, Huguet M, Sanchez A, Garcia-Sancho J. Treatment of knee osteoarthritis with allogeneic bone marrow mesenchymal stem cells: a randomized controlled trial. Transplantation. 2015;99(8):1681–90.CrossRefPubMed Vega A, Martin-Ferrero MA, Del Canto F, Alberca M, Garcia V, Munar A, Orozco L, Soler R, Fuertes JJ, Huguet M, Sanchez A, Garcia-Sancho J. Treatment of knee osteoarthritis with allogeneic bone marrow mesenchymal stem cells: a randomized controlled trial. Transplantation. 2015;99(8):1681–90.CrossRefPubMed
24.
Zurück zum Zitat Orozco L, Munar A, Soler R, Alberca M, Soler F, Huguet M, Sentis J, Sanchez A, Garcia-Sancho J. Treatment of knee osteoarthritis with autologous mesenchymal stem cells: two-year follow-up results. Transplantation. 2014;97(11):e66–8.CrossRefPubMed Orozco L, Munar A, Soler R, Alberca M, Soler F, Huguet M, Sentis J, Sanchez A, Garcia-Sancho J. Treatment of knee osteoarthritis with autologous mesenchymal stem cells: two-year follow-up results. Transplantation. 2014;97(11):e66–8.CrossRefPubMed
26.
Zurück zum Zitat Bellamy N. Outcome measurement in osteoarthritis clinical trials. J Rheumatol Suppl. 1995;43:49–51.PubMed Bellamy N. Outcome measurement in osteoarthritis clinical trials. J Rheumatol Suppl. 1995;43:49–51.PubMed
27.
Zurück zum Zitat Escobar A, Quintana JM, Bilbao A, Azkarate J, Guenaga JI. Validation of the Spanish version of the WOMAC questionnaire for patients with hip or knee osteoarthritis. Western Ontario and McMaster Universities Osteoarthritis Index. Clin Rheumatol. 2002;21(6):466–71.CrossRefPubMed Escobar A, Quintana JM, Bilbao A, Azkarate J, Guenaga JI. Validation of the Spanish version of the WOMAC questionnaire for patients with hip or knee osteoarthritis. Western Ontario and McMaster Universities Osteoarthritis Index. Clin Rheumatol. 2002;21(6):466–71.CrossRefPubMed
28.
Zurück zum Zitat Escobar A, Gonzalez M, Quintana JM, Vrotsou K, Bilbao A, Herrera-Espineira C, Garcia-Perez L, Aizpuru F, Sarasqueta C. Patient acceptable symptom state and OMERACT-OARSI set of responder criteria in joint replacement. Identification of cut-off values. Osteoarthr Cartil. 2012;20(2):87–92.CrossRefPubMed Escobar A, Gonzalez M, Quintana JM, Vrotsou K, Bilbao A, Herrera-Espineira C, Garcia-Perez L, Aizpuru F, Sarasqueta C. Patient acceptable symptom state and OMERACT-OARSI set of responder criteria in joint replacement. Identification of cut-off values. Osteoarthr Cartil. 2012;20(2):87–92.CrossRefPubMed
29.
Zurück zum Zitat Peterfy CG, Guermazi A, Zaim S, Tirman PF, Miaux Y, White D, Kothari M, Lu Y, Fye K, Zhao S, Genant HK. Whole-organ magnetic resonance imaging score (WORMS) of the knee in osteoarthritis. Osteoarthr Cartil. 2004;12(3):177–90.CrossRefPubMed Peterfy CG, Guermazi A, Zaim S, Tirman PF, Miaux Y, White D, Kothari M, Lu Y, Fye K, Zhao S, Genant HK. Whole-organ magnetic resonance imaging score (WORMS) of the knee in osteoarthritis. Osteoarthr Cartil. 2004;12(3):177–90.CrossRefPubMed
30.
Zurück zum Zitat Rodriguez-Merchan EC. Intra-articular injections of mesenchymal stem cells for knee osteoarthritis. Am J Orthop. 2014;43(12):E282–91.PubMed Rodriguez-Merchan EC. Intra-articular injections of mesenchymal stem cells for knee osteoarthritis. Am J Orthop. 2014;43(12):E282–91.PubMed
31.
Zurück zum Zitat Wong KL, Lee KB, Tai BC, Law P, Lee EH, Hui JH. Injectable cultured bone marrow-derived mesenchymal stem cells in varus knees with cartilage defects undergoing high tibial osteotomy: a prospective, randomized controlled clinical trial with 2 years follow-up. Arthroscopy. 2013;29(12):2020–8.CrossRefPubMed Wong KL, Lee KB, Tai BC, Law P, Lee EH, Hui JH. Injectable cultured bone marrow-derived mesenchymal stem cells in varus knees with cartilage defects undergoing high tibial osteotomy: a prospective, randomized controlled clinical trial with 2 years follow-up. Arthroscopy. 2013;29(12):2020–8.CrossRefPubMed
32.
Zurück zum Zitat Varma HS, Dadarya B, Vidyarthi A. The new avenues in the management of osteo-arthritis of knee–stem cells. J Indian Med Assoc. 2010;108(9):583–5.PubMed Varma HS, Dadarya B, Vidyarthi A. The new avenues in the management of osteo-arthritis of knee–stem cells. J Indian Med Assoc. 2010;108(9):583–5.PubMed
33.
Zurück zum Zitat Saw KY, Anz A, Jee CSY, Merican S, Ng RC, Roohi SA, Ragavanaidu K. Articular cartilage regeneration with autologous peripheral blood stem cells versus hyaluronic acid: a randomized controlled trial. Arthroscopy. 2013;29(4):684–94.CrossRefPubMed Saw KY, Anz A, Jee CSY, Merican S, Ng RC, Roohi SA, Ragavanaidu K. Articular cartilage regeneration with autologous peripheral blood stem cells versus hyaluronic acid: a randomized controlled trial. Arthroscopy. 2013;29(4):684–94.CrossRefPubMed
34.
Zurück zum Zitat Orozco L, Munar A, Soler R, Alberca M, Soler F, Huguet M, Sentis J, Sanchez A, Garcia-Sancho J. Treatment of knee osteoarthritis with autologous mesenchymal stem cells: a pilot study. Transplantation. 2013;95(12):1535–41.CrossRefPubMed Orozco L, Munar A, Soler R, Alberca M, Soler F, Huguet M, Sentis J, Sanchez A, Garcia-Sancho J. Treatment of knee osteoarthritis with autologous mesenchymal stem cells: a pilot study. Transplantation. 2013;95(12):1535–41.CrossRefPubMed
36.
37.
Zurück zum Zitat Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008;8(9):726–36.CrossRefPubMed Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008;8(9):726–36.CrossRefPubMed
38.
Zurück zum Zitat Doorn J, Moll G, Le Blanc K, van Blitterswijk C, de Boer J. Therapeutic applications of mesenchymal stromal cells: paracrine effects and potential improvements. Tissue Eng Part B Rev. 2012;18(2):101–15.CrossRefPubMed Doorn J, Moll G, Le Blanc K, van Blitterswijk C, de Boer J. Therapeutic applications of mesenchymal stromal cells: paracrine effects and potential improvements. Tissue Eng Part B Rev. 2012;18(2):101–15.CrossRefPubMed
39.
Zurück zum Zitat Salgado AJ, Reis RL, Sousa NJ, Gimble JM. Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine. Curr Stem Cell Res Ther. 2010;5(2):103–10.CrossRefPubMed Salgado AJ, Reis RL, Sousa NJ, Gimble JM. Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine. Curr Stem Cell Res Ther. 2010;5(2):103–10.CrossRefPubMed
40.
Zurück zum Zitat Abumaree M, Al Jumah M, Pace RA, Kalionis B. Immunosuppressive properties of mesenchymal stem cells. Stem Cell Rev. 2012;8(2):375–92.CrossRefPubMed Abumaree M, Al Jumah M, Pace RA, Kalionis B. Immunosuppressive properties of mesenchymal stem cells. Stem Cell Rev. 2012;8(2):375–92.CrossRefPubMed
41.
Zurück zum Zitat Buckland-Wright JC, Macfarlane DG, Lynch JA, Jasani MK, Bradshaw CR. Joint space width measures cartilage thickness in osteoarthritis of the knee: high resolution plain film and double contrast macroradiographic investigation. Ann Rheum Dis. 1995;54(4):263–8.CrossRefPubMedPubMedCentral Buckland-Wright JC, Macfarlane DG, Lynch JA, Jasani MK, Bradshaw CR. Joint space width measures cartilage thickness in osteoarthritis of the knee: high resolution plain film and double contrast macroradiographic investigation. Ann Rheum Dis. 1995;54(4):263–8.CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Centeno CJ, Busse D, Kisiday J, Keohan C, Freeman M, Karli D. Increased knee cartilage volume in degenerative joint disease using percutaneously implanted, autologous mesenchymal stem cells. Pain Physician. 2008;11(3):343–53.PubMed Centeno CJ, Busse D, Kisiday J, Keohan C, Freeman M, Karli D. Increased knee cartilage volume in degenerative joint disease using percutaneously implanted, autologous mesenchymal stem cells. Pain Physician. 2008;11(3):343–53.PubMed
43.
Zurück zum Zitat Emadedin M, Aghdami N, Taghiyar L, Fazeli R, Moghadasali R, Jahangir S, Farjad R, Baghaban Eslaminejad M. Intra-articular injection of autologous mesenchymal stem cells in six patients with knee osteoarthritis. Arch Iran Med. 2012;15(7):422–8.PubMed Emadedin M, Aghdami N, Taghiyar L, Fazeli R, Moghadasali R, Jahangir S, Farjad R, Baghaban Eslaminejad M. Intra-articular injection of autologous mesenchymal stem cells in six patients with knee osteoarthritis. Arch Iran Med. 2012;15(7):422–8.PubMed
44.
Zurück zum Zitat Kim YS, Choi YJ, Lee SW, Kwon OR, Suh DS, Heo DB, Koh YG. Assessment of clinical and MRI outcomes after mesenchymal stem cell implantation in patients with knee osteoarthritis: a prospective study. Osteoarthr Cartil. 2015. doi:10.1016/j.joca.2015.08.009. Kim YS, Choi YJ, Lee SW, Kwon OR, Suh DS, Heo DB, Koh YG. Assessment of clinical and MRI outcomes after mesenchymal stem cell implantation in patients with knee osteoarthritis: a prospective study. Osteoarthr Cartil. 2015. doi:10.​1016/​j.​joca.​2015.​08.​009.
45.
Zurück zum Zitat Chua KH, Zaman Wan Safwani WK, Hamid AA, Shuhup SK, Mohd Haflah NH, Mohd Yahaya NH. Retropatellar fat pad-derived stem cells from older osteoarthritic patients have lesser differentiation capacity and expression of stemness genes. Cytotherapy. 2014;16(5):599–611.CrossRefPubMed Chua KH, Zaman Wan Safwani WK, Hamid AA, Shuhup SK, Mohd Haflah NH, Mohd Yahaya NH. Retropatellar fat pad-derived stem cells from older osteoarthritic patients have lesser differentiation capacity and expression of stemness genes. Cytotherapy. 2014;16(5):599–611.CrossRefPubMed
46.
Zurück zum Zitat Im GI, Jung NH, Tae SK. Chondrogenic differentiation of mesenchymal stem cells isolated from patients in late adulthood: the optimal conditions of growth factors. Tissue Eng. 2006;12(3):527–36.CrossRefPubMed Im GI, Jung NH, Tae SK. Chondrogenic differentiation of mesenchymal stem cells isolated from patients in late adulthood: the optimal conditions of growth factors. Tissue Eng. 2006;12(3):527–36.CrossRefPubMed
47.
Zurück zum Zitat Dudics V, Kunstar A, Kovacs J, Lakatos T, Geher P, Gomor B, Monostori E, Uher F. Chondrogenic potential of mesenchymal stem cells from patients with rheumatoid arthritis and osteoarthritis: measurements in a microculture system. Cells Tissues Organs. 2009;189(5):307–16.CrossRefPubMed Dudics V, Kunstar A, Kovacs J, Lakatos T, Geher P, Gomor B, Monostori E, Uher F. Chondrogenic potential of mesenchymal stem cells from patients with rheumatoid arthritis and osteoarthritis: measurements in a microculture system. Cells Tissues Organs. 2009;189(5):307–16.CrossRefPubMed
48.
Zurück zum Zitat Kafienah W, Mistry S, Dickinson SC, Sims TJ, Learmonth I, Hollander AP. Three-dimensional cartilage tissue engineering using adult stem cells from osteoarthritis patients. Arthritis Rheum. 2007;56(1):177–87.CrossRefPubMed Kafienah W, Mistry S, Dickinson SC, Sims TJ, Learmonth I, Hollander AP. Three-dimensional cartilage tissue engineering using adult stem cells from osteoarthritis patients. Arthritis Rheum. 2007;56(1):177–87.CrossRefPubMed
49.
Zurück zum Zitat Scharstuhl A, Schewe B, Benz K, Gaissmaier C, Buhring HJ, Stoop R. Chondrogenic potential of human adult mesenchymal stem cells is independent of age or osteoarthritis etiology. Stem Cells. 2007;25(12):3244–51.CrossRefPubMed Scharstuhl A, Schewe B, Benz K, Gaissmaier C, Buhring HJ, Stoop R. Chondrogenic potential of human adult mesenchymal stem cells is independent of age or osteoarthritis etiology. Stem Cells. 2007;25(12):3244–51.CrossRefPubMed
Metadaten
Titel
Intra-articular injection of two different doses of autologous bone marrow mesenchymal stem cells versus hyaluronic acid in the treatment of knee osteoarthritis: multicenter randomized controlled clinical trial (phase I/II)
verfasst von
José M. Lamo-Espinosa
Gonzalo Mora
Juan F. Blanco
Froilán Granero-Moltó
Jorge M. Nuñez-Córdoba
Carmen Sánchez-Echenique
José M. Bondía
Jesús Dámaso Aquerreta
Enrique J. Andreu
Enrique Ornilla
Eva M. Villarón
Andrés Valentí-Azcárate
Fermín Sánchez-Guijo
María Consuelo del Cañizo
Juan Ramón Valentí-Nin
Felipe Prósper
Publikationsdatum
01.12.2016
Verlag
BioMed Central
Erschienen in
Journal of Translational Medicine / Ausgabe 1/2016
Elektronische ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-016-0998-2

Weitere Artikel der Ausgabe 1/2016

Journal of Translational Medicine 1/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.