Skip to main content
Erschienen in: Virology Journal 1/2020

Open Access 01.12.2020 | Research

Viral metagenomics revealed diverse CRESS-DNA virus genomes in faeces of forest musk deer

verfasst von: Qi Liu, Hao Wang, Yu Ling, Shi-Xing Yang, Xiao-Chun Wang, Rui Zhou, Yu-Qing Xiao, Xu Chen, Jie Yang, Wei-Guo Fu, Wen Zhang, Gui-Lan Qi

Erschienen in: Virology Journal | Ausgabe 1/2020

Abstract

Background

Musk deer can produce musk which has high medicinal value and is closely related to human health. Viruses in forest musk deer both threaten the health of forest musk deer and human beings.

Methods

Using viral metagenomics we investigated the virome in 85 faeces samples collected from forest musk deer.

Results

In this article, eight novel CRESS-DNA viruses were characterized, whole genomes were 2148 nt–3852 nt in length. Phylogenetic analysis indicated that some viral genomes were part of four different groups of CRESS-DNA virus belonging in the unclassified CRESS-DNA virus, Smacoviridae, pCPa-like virus and pPAPh2-like virus. UJSL001 (MN621482), UJSL003 (MN621469) and UJSL017 (MN621476) fall into the branch of unclassified CRESS-DNA virus (CRESSV1–2), UJSL002 (MN621468), UJSL004 (MN621481) and UJSL007 (MN621470) belong to the cluster of Smacoviridae, UJSL005 (MN604398) showing close relationship with pCPa-like (pCRESS4–8) clusters and UJSL006 (MN621480) clustered into the branch of pPAPh2-like (pCRESS9) virus, respectively.

Conclusion

The virome in faeces samples of forest musk deer from Chengdu, Sichuan province, China was revealed, which further characterized the diversity of viruses in forest musk deer intestinal tract.
Hinweise

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s12985-020-01332-y.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
BLAST
Basic local alignment search tool
CRESS
Circular rep-encoding single stranded
GasCSV
Gastropod-associated circular ssDNA virus
NCBI
National Center for Biotechnology Information
ORF
Open reading frame
pCPa
Circular plasmids from plant-pathogenic
PCR
Polymerase chain reaction
pPAPh2
Plasmids Plant Pathogens of Phytoplasma
P. pulchra plasmids
Pyropia pulchra plasmids

Introduction

Forest musk deer is a national protected animal, mainly distributed in Sichuan province, Guangxi province and other places, China [1, 2]. The death of forest musk deer occurs mainly in the young musk deer. Diseases were the most important factor in causing fawn death [3]. There have been studies on the diagnosis and prevention of some known diseases [47], but there is a lack of research on the unknown etiology.
Viruses with small circular rep-encoding ssDNA (CRESS-DNA) genomes encode a replication associated protein (Rep), mainly includes Circoviridae [8], Genomoviridae.
[9], Smacoviridae [10], Geminiviridae, Nanoviridae and Bacilladnaviridae [11]. These are widely found in various environments [12, 13], plant samples [1417], dragonflies and damselflies [1821], mosquitoes [22], rats [23], bats [24], duck [25], cattle [26], pigs [27, 28], dogs [29], human [3033], and turkey [34]. CRESS-DNA genomes typically encode a replication initiator protein (Rep) and a capsid protein (Cap) [35].
In this study, the virus community in the intestinal tract of forest musk deer was analyzed by virus metagenomics. The results of this study put forward for the first time on CRESS-DNA viruses propagating among forest musk deer.

Materials and methods

Samples

In 2016, 85 forest musk deer faeces samples were collected from Chengdu, Sichuan province, China. Samples were collected by disposable materials and transported to the laboratory on dry-ice and store in the − 80 °C refrigerator. Samples were put into 1.5 ml tubes containing phosphate buffered saline (PBS). The supernatants of fecal samples were collected after vigorous eddy current for 5 min and centrifugation for 10 min (15,000 g) [36, 37].

Viral metagenomic analysis

500 μl of supernatant was filtered through a 0.45 μm filter (Millipore) to remove eukaryotic and bacterial cell sized particles. The viral particle enrichment filtrate was then treated with uncleases to digest nonparticle protected nucleic acid at 37 °C for 90 min [38]. Remaining total nucleic acid, protected from digestion with in viral capsids, were then extracted using the QiaAmp Mini Viral RNA kit (Qianen) according to manufacturer’s protocol [37, 39, 40]. Eight separate pools of nucleic acids from 85 faecal specimens were generated randomly, of which six contained ten faecal apecimens, the other one contained 12 faecal specimens and another one contained 13 faecal specimens. These eight viral nucleic acid pools, containing both DNA and RNA viral sequences, were then subjected to RT reactions with SuperScript III reverse transcriptase (Invitrogen) and 100 pmol of a random hexamer primer, followed by a single round of DNA synthesis using Klenow fragment polymerase [37, 41]. Eight libraries were constructed using Nextera XT DNA Sample Preparation Kit (Illumina) and sequenced using the MiSeq Illumina platform with 250 bases paired ends with dual barcoding for each library. The data is processed using an internal analysis pipeline running on a 32-nodes Linux cluster. Clonal reads were removed, and low quality sequence tails were trimmed with Phred quality score ten as the threshold. The adapter is trimmed using of VecScreen’s default parameters, NCBI BLASTn, with specialized parameters designed for adapter removal [42]. After deleting repeated reads and reads less than 50 in length followed by de novo assembly [43]. The contigs and singlets were matched against an internal viral proteome database using BLASTx with an E-value cutoff of < 10–5. BLASTx were used to identify viral sequences in order to annotated viral proteins available in GenBank’s viral RefSeq database [44].

Genome acquisition and PCR screening

Putative open reading frames (ORFs) in the circular genomes were predicted by Geneious software version 2019.0.3 [45], and the stem-loop in the circular genomes were located through the The Mfold [24] (Table 1 and Fig. 1b). If the whole genome sequence of the virus was not obtained through sequence reads analysis, inverse PCR was needed. Two whole genomes of UJSL004 and UJSL005 were acquired by screen PCR and inverse PCR. Primers are shown in an additional file (see Additional file 1). The PCR conditions in screen PCR were: 95 °C for 5 min, 31 cycles 95 °C for 30 s, 50 °C (for the first round) or 57 °C (for the second round) for 30 s and 72 °C for 40 s, a final extension at 72 °C for 5 min, resulting in an expected amplicon of 300 bp–500 bp. The PCR conditions in inverse PCR of UJSL004 were: 95 °C for 5 min, 35 cycles 95 °C for 30 s, 50 °C (for the first round) or 55 °C (for the second round) for 30 s and 72 °C for 1.5 min, a final extension at 72 °C for 5 min, resulting in an expected amplicon of 1000 bp. The PCR conditions in inverse PCR of UJSL005 were: 95 °C for 5 min, 35 cycles 95 °C for 30 s, 50 °C (for the first round) or 51 °C (for the second round) for 30 s and 72 °C for 1.5 min, a final extension at 72 °C for 5 min, resulting in an expected amplicon of 1000 bp.
Table 1
Loop sequences of these CRESS-DNA virus CRESS-DNA, small circular rep-encoding ssDNA
strain name
Loop sequence
sequence length
UJSL001
ATTCTTCTACGCTT
14
UJSL002
GCCACCCTCGAC
12
UJSL003
AGTATGAGGT
10
UJSL004
AGGCTCATCATAT
13
UJSL005
CCAACCCCCCAAG
13
UJSL006
GCTTAATATTACC
13
UJSL007
ATAGTTCACT
10
UJSL017
ACCTGAATATT
11

Phylogenetic analysis

The Rep protein sequences of these novel virus were homology alignment with the reference sequences in GenBank using the ClustalW program in MEGA7.0. Phylogenetic analyses were constructed using full-length rep protein of novel virus and other genetically close relatives [22, 46]. Save the aligned sequence as a Nexus form file, which was used to construct the phylogenetic tree using Bayes’ theorem in Mrbayes3.2.7 program. Using mixed models and Markov chain Monte Carlo (MCMC) methods. In phylogenetic analyses, tree samples are typically most divergent, so we introduced the average standard deviation of split frequencies (ASDSF) in MrBayes to allow quantitative evaluation of similarity among these samples. MrBayes allow users to set cut-off frequency (default value 0.10, [4749]). We used the “sump” and “sumt” commands to get more detailed diagnostic information after the run has completed.

Results

The 85 faeces samples of the eight libraries generated a total of 6, 153, 736 unique sequence reads using illumine Miseq sequencing runs with 250 base pair terminals. The Ensemble program was used to read the de novo assembly sequence [43] and BLASTx was used to compare it with Genbank’s non-redundant protein database. The results indicated that CRESS-DNA virus accounted for the main part of the total mammalian virus readings, with 4, 775 reads showing sequence similarity to the CRESS-DNA virus, 462 reads related to viruses from Smacoviridae and 473 reads sequence similar to the virus of Circoviridae. Table 2 list the detailed information.
Table 2
Characterization of the viral sequence reads in forest musk deer faeces samples. nt nucleotides, aa amino acids
Library ID (Total unique reads)
Family
Genus
Strain name
Accession number
No. of nt in the genome
No. of aa in protein
GC-content(%)
GenBank no. of the matches
Aa identities with the match(s)
Max_Contig
Total reads
Rep (Direction)
Cap (Direction)
L1(1136670)
Circoviridae
Circovirus
UJSL017
MN621476
3025
355(−)
380(+)
42.6
KU043411.1
62.54%
2497
1123
L2(991928)
None
None
UJSL001
MN621482
3518
399(−)
190(+)
41
KY487934.1
48.76%
3448
583
L3(307679)
Circoviridae
None
UJSL002
MN621468
2665
283(−)
372(+)
50.8
NC_030125.1
69.09%
3919
205
None
None
UJSL003
MN621469
3212
281(−)
173(+)
46.5
MH617688.1
44.00%
3330
206
L5(777594)
Circoviridae
None
UJSL004
MN621481
2866
390(−)
204(+)
40.6
NC_039054.1
75.39%
2053
41
L6(530538)
Circoviridae
None
UJSL005
MN604398
3852
428(−)
692(+)
42.4
NC_026635.1
32.63%
3155
473
L7(1237606)
None
None
UJSL006
MN621480
2148
327(+)
203(+)
32.4
MK858258.1
58.86%
2253
2863
L8(802429)
 
L9(369292)
None
None
UJSL007
MN621470
2526
280(−)
337(+)
45.6
MH500284.1/MH500317.1
95.54%
2672
216
Total(6153736)
 

CRESS-DNA genomes

Four complete CRESS-DNA genomes showing the highest sequence identity to CRESS-DNA virus. Genomes were 3518 nt (UJSL001, from library 2), 3212 nt (UJSL003, from library 3), 2148 nt (UJSL006, from library 7) and 3025 nt (UJSL017, from library 1) in length. As shown in Fig. 1a, the genomes of UJSL001, UJSL003 and UJSL017 contained two bidirectional ORFs while UJSL006 is in the same direction, encoding the putative Rep and Cap proteins. BLASTp search in GenBank based on the protein sequence of Rep showed UJSL001 shared the highest identity of 48.76% to unclassified circular virus (KY487934.1), UJSL003 shared the highest sequence identity of 44.00% to unclassified ssDNA viruses (MH617688.1), UJSL006 shared the highest sequence identity of 58.86% to an unclassified circular DNA viruses (MK858258.1) and UJSL017 shared the highest identity of 62.54% to unclassified ssDNA viruses (KU043411.1) (Table 2).
Three complete CRESS-DNA genomes showing the highest identity to Smacovirus. Genomes were 2665 nt (UJSL002, from library 3), 2866 nt (UJSL004, from library 5) were obtained through inverse PCR, and 2526 nt (UJSL007, from library 9) in length, respectively. Figure 1a manifested the genomic organization of UJSL002, UJSL004 and UJSL007, where the predicted Rep and Cap of the three viruses are differently arranged. BLASTp search in GenBank based on the protein sequence of Rep showed UJSL002 shared the highest sequence identity of 69.09% to a Bovine faeces associated smacovirus5 (NC_030125.1), UJSL004 shared the highest sequence identity of 75.39% to a Bovismacovirus (NC_039054.1) and UJSL007 shared the highest sequence identity of 95.54% to two Porprismacovirus (MH500284.1 and MH500317.1) (Table 2).
A complete CRESS-DNA genome showing the highest sequence identity to Circoviridae. Genome was 3852 nt (UJSL005, from library 6) in length. UJSL005 genome was acquired through inverse PCR based on a large contigs from library 6 and Sanger sequencing. Figure 1a indicated the genomic organization of UJSL005, where the predicted Rep and Cap of the UJSL005 in the opposite direction. BLASTp search in GenBank based on the protein sequence of Rep showed UJSL005 shared the highest sequence identity of 32.63% to unclassified Circoviridae (NC_026635.1) (Table 2).
Based on the alignment of the Rep amino acid sequences herein detected with the best matches of BLASTp search in GenBank and those of representative CRESS-DNA genomes including 6 groups of unclassified CRESS-DNA virus (CRESSV1–6), two GasCSV-like viruses, Bacterial plasmids (pCRESS1–9) and a small group of Eukaryotic plasmids (P. pulchra plasmids) from GenBank, a phylogenetic tree was constructed [5052]. For phylogenetic analyses, we used a dataset with 672 sequences of the Rep amino acid (Fig. 2) (Additional file 2).
UJSL001, UJSL003 and UJSL017 fall into the branch of unclassified CRESS-DNA virus (CRESSV1–2), UJSL001 and UJSL003 belong to the cluster of CRESSV2, UJSL001 showing close relationship with CRESS_AUM21936, UJSL003 showing close relationship with CRESS_AXH77830 (Fig. 3a) (see Additional file 3) and UJSL017 belong to the cluster of CRESSV1, showing close relationship with CRESSV1_KJ206566 and CRESSV1_KU043411 (Fig. 3e) (see Additional file 7). UJSL002, UJSL004 and UJSL007 belong to the cluster of Smacoviridae (Fig. 3b) (see Additional file 4), UJSL005 fall into the branch showing close relationship with pCPa-like (pCRESS4–8) clusters (Fig. 3c) (see Additional file 5) and UJSL006 fall into pPAPh2-like (pCRESS9) clusters, showing close relationship with pCRESS9_KXT29032 (Fig. 3d) (see Additional file 6).

Nucleotide sequence accession numbers

The viral genomes described in detail here were deposited in GenBank under the following accession numbers: MN604398, MN621468- MN621470, MN621480- MN621482 and MN621476.

Discussion

Our report describes viral nucleic acids enriched in forest musk deer faeces, shows that CRESS-DNA virus sequences are present in all libraries and have the most reads compared to other viruses. This suggests that these viruses are likely to replicate in forest musk deer host cells, but there is no evidence for this. Based on phylogenetic analysis, four different groups of CRESS-DNA genomes in forest musk deer faeces were detected, which belonged to CRESS-DNA virus, Smacoviridae, pCPa-like virus (pCRESS4–8) and pPAPh2-like (pCRESS9). For the first time, CRESS-DNA virus in the faeces of forest musk deer was mentioned, which was beneficial to further understanding of the genetic and evolutionary diversity of these viruses.
CRESS-DNA viruses with small, circular replication-associated protein (Rep)-encoding single stranded (CRESS) DNA genomes, are largely identified based on conserved rolling circle replication proteins [11]. It consists of a large group of highly specific viruses that can infect many types of host [53]. These virus included: Circoviridae [39], which can infect vertebrates, Geminiviridae [14] and Nanoviridae [54] which can infect plants. The genomes of Circoviridae range in size from 1.7 to 2.1 kb and contain two major ORFs, which encode Rep and Cap proteins. According to the International Committee on Taxonomy of Viruses (ICTV), the ssDNA has genomes between 1.7-6 kb. Eight CRESS-DNA virus extracted in this study, the genomes range in size from 2.1 kb to 3.5 kb. Previous research on the stem-loop structure of diverse circovirus and cycloviruses, a highly conserved stem-loop structure is also found [31, 52, 55], because they study multiple viruses of the same genus. Eight viruses in our study located in different genera based on rep protein phylogenetic analysis, so the stem-loop structure sequences are different from each other.
In the recent years, a large number of CRESS-DNA genomes have been determined in human and any other mammals, birds, insects, plants, fungi, and environment samples which bringing to light a high level of genetic diversity among these virus [25, 26, 31, 33, 52, 56]. Although use metagenomics to identify these viruses from forest musk deer faeces, we cannot rule out that they may also represent food contaminants and environmental pollution [57]. These viruses exploit host polymerases for DNA synthesis and code for proteins that modulate the host’s cell cycle favourably for virus multiplication [58]. There are reports that the virus is associated with disease, but it has not been proven to cause the disease directly [59, 60]. And the effects and disease correlation of these viruses on the health of forest musk deer need further study.
In conclusion, this study is the first to discover a variety of new CRESS-DNA viruses in the intestinal tract of forest musk deer and analyze their genomic characteristics, which is of great significance for the study of forest musk deer virus and the genetic and evolutionary diversity of CRESS-DNA virus. At the same time, the host adaptability and pathogenicity of the new CRESS-DNA virus need further study.

Conclusions

The virome in faeces samples of forest musk deer from Chengdu included the viruses showing sequence similarity to CRESS-DNA viruses, where eight divergent genomes of CRESS-DNA viruses were identified in detail. The contents include genome protein structure, stem-loop structure and rep protein phylogenetic analysis. Although CRESS-DNA virus is prevalent in forest musk deer, its pathogenicity has not been known. This study increased the knowledge of the diversity of viruses in forest musk deer faeces.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s12985-020-01332-y.

Acknowledgements

Not applicable.
Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Yang QS, Meng XX, Xia L, Feng ZJ. Conservation status and causes of decline of musk deer (Moschus spp.) in China. Biol Conserv. 2003;109:333–42.CrossRef Yang QS, Meng XX, Xia L, Feng ZJ. Conservation status and causes of decline of musk deer (Moschus spp.) in China. Biol Conserv. 2003;109:333–42.CrossRef
2.
Zurück zum Zitat Zou FD, Yue BS, Xu L, Zhang Y. Isolation and characterization of microsatellite loci from forest musk deer (Moschus berezovskii). Zool Sci. 2005;22:593–8.CrossRef Zou FD, Yue BS, Xu L, Zhang Y. Isolation and characterization of microsatellite loci from forest musk deer (Moschus berezovskii). Zool Sci. 2005;22:593–8.CrossRef
3.
Zurück zum Zitat Xu ZQ, Xu HF. Population characteristics and fawn survival in musk deer (Moshus moschiferus). Acta Theriologica Sinica. 2003;1:17–21. Xu ZQ, Xu HF. Population characteristics and fawn survival in musk deer (Moshus moschiferus). Acta Theriologica Sinica. 2003;1:17–21.
4.
Zurück zum Zitat Fu WL, Fu CM, Wang JM, Cai YH. Diagnosis and treatment of deep part abscess on the rearward of forest musk deer throat. J Econ Anim. 2010;4:222–4. Fu WL, Fu CM, Wang JM, Cai YH. Diagnosis and treatment of deep part abscess on the rearward of forest musk deer throat. J Econ Anim. 2010;4:222–4.
5.
Zurück zum Zitat Li L, Wang BB, Ge YF, Wan QH. Major histocompatibility complex class II polymorphisms in forest musk deer (Moschus berezovskii) and their probable association with purulent disease. Int J Immunogenet. 2014;41:401–12.PubMedCrossRef Li L, Wang BB, Ge YF, Wan QH. Major histocompatibility complex class II polymorphisms in forest musk deer (Moschus berezovskii) and their probable association with purulent disease. Int J Immunogenet. 2014;41:401–12.PubMedCrossRef
6.
Zurück zum Zitat Sun X, Cai R, Jin X, Shafer ABA, Hu X, Yang S, Li Y, Qi L, Liu S, Hu D. Blood transcriptomics of captive forest musk deer (Moschus berezovskii) and possible associations with the immune response to abscesses. Sci Rep. 2018;8(1):599.PubMedPubMedCentralCrossRef Sun X, Cai R, Jin X, Shafer ABA, Hu X, Yang S, Li Y, Qi L, Liu S, Hu D. Blood transcriptomics of captive forest musk deer (Moschus berezovskii) and possible associations with the immune response to abscesses. Sci Rep. 2018;8(1):599.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Zhao K, Tian Y, Yue B, Wang H, Zhang X. Virulence determinants and biofilm production among Trueperella pyogenes recovered from abscesses of captive forest musk deer. Arch Microbiol. 2013;195(3):203–9.PubMedCrossRef Zhao K, Tian Y, Yue B, Wang H, Zhang X. Virulence determinants and biofilm production among Trueperella pyogenes recovered from abscesses of captive forest musk deer. Arch Microbiol. 2013;195(3):203–9.PubMedCrossRef
8.
Zurück zum Zitat Breitbart M, Delwart E, Rosario K, Segalés J, Varsani A, ICTV report consortium. ICTV virus taxonomy profile:Circoviridae. J Gen Virol. 2017;98(8):1997–8.PubMedPubMedCentralCrossRef Breitbart M, Delwart E, Rosario K, Segalés J, Varsani A, ICTV report consortium. ICTV virus taxonomy profile:Circoviridae. J Gen Virol. 2017;98(8):1997–8.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Krupovic M, Ghabrial SA, Jiang D, Varsani A. Genomoviridae: a new family of widespread single-stranded DNA viruses. Arch Virol. 2016;161(9):2633–43.PubMedCrossRef Krupovic M, Ghabrial SA, Jiang D, Varsani A. Genomoviridae: a new family of widespread single-stranded DNA viruses. Arch Virol. 2016;161(9):2633–43.PubMedCrossRef
10.
Zurück zum Zitat Varsani A, Krupovic M. Correction to: Smacoviridae : a new family of animal-associated single-stranded DNA viruses. Arch Virol. 2018;163(11):3213–4.PubMedCrossRef Varsani A, Krupovic M. Correction to: Smacoviridae : a new family of animal-associated single-stranded DNA viruses. Arch Virol. 2018;163(11):3213–4.PubMedCrossRef
11.
Zurück zum Zitat Guo Z, He Q, Tang C, Zhang B, Yue H. Identification and genomic characterization of a novel CRESS DNA virus from a calf with severe hemorrhagic enteritis in China. Virus Res. 2018;255:141–6.PubMedPubMedCentralCrossRef Guo Z, He Q, Tang C, Zhang B, Yue H. Identification and genomic characterization of a novel CRESS DNA virus from a calf with severe hemorrhagic enteritis in China. Virus Res. 2018;255:141–6.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Bistolas K, Jackson EW, Watkins JM, Rudstam LG, Hewson I. Distribution of circular single-stranded DNA viruses associated with benthic amphipods of genus Diporeia in the Laurentian Great Lakes. Freshw Biol. 2017;62(7):1220–31.CrossRef Bistolas K, Jackson EW, Watkins JM, Rudstam LG, Hewson I. Distribution of circular single-stranded DNA viruses associated with benthic amphipods of genus Diporeia in the Laurentian Great Lakes. Freshw Biol. 2017;62(7):1220–31.CrossRef
13.
Zurück zum Zitat Reavy B, Swanson MM, Cock PJ, Dawson L, Freitag TE, Singh BK, Torrance L, Mushegian AR, Taliansky M. Distinct circular single-stranded DNA viruses exist in different soil types. Appl Environ Microbiol. 2015;81(12):3934.PubMedPubMedCentralCrossRef Reavy B, Swanson MM, Cock PJ, Dawson L, Freitag TE, Singh BK, Torrance L, Mushegian AR, Taliansky M. Distinct circular single-stranded DNA viruses exist in different soil types. Appl Environ Microbiol. 2015;81(12):3934.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Brown JK, Merritt R, Nelson. Characterisation of watermelon curly mottle virus, a geminivirus distinct from squash leaf curl virus. Ann Appl Biol. 1989;115(2):243–52.CrossRef Brown JK, Merritt R, Nelson. Characterisation of watermelon curly mottle virus, a geminivirus distinct from squash leaf curl virus. Ann Appl Biol. 1989;115(2):243–52.CrossRef
15.
Zurück zum Zitat Bryan D, Harrison HB, Bock KR, Guthrie EJ, Gina Meredith M, ATKINSON. Plant viruses with circular single-stranded DNA. Nature. 1977;270(5639):760–2.CrossRef Bryan D, Harrison HB, Bock KR, Guthrie EJ, Gina Meredith M, ATKINSON. Plant viruses with circular single-stranded DNA. Nature. 1977;270(5639):760–2.CrossRef
16.
Zurück zum Zitat Howarth AJ, Goodman RM. Plant viruses with genomes of single-stranded DNA. Trends Biochem Sci. 1982;7(5):180–2.CrossRef Howarth AJ, Goodman RM. Plant viruses with genomes of single-stranded DNA. Trends Biochem Sci. 1982;7(5):180–2.CrossRef
17.
Zurück zum Zitat Ikegami M, Yazaki K, Honda Y, Iwaki M, Fujii H, Morinaga T, Miura K. Single-stranded DNA in Mung bean yellow mosaic virus. Microbiol Immunol. 2013;29(8):783–9.CrossRef Ikegami M, Yazaki K, Honda Y, Iwaki M, Fujii H, Morinaga T, Miura K. Single-stranded DNA in Mung bean yellow mosaic virus. Microbiol Immunol. 2013;29(8):783–9.CrossRef
18.
Zurück zum Zitat Dayaram A, Potter KA, Pailes R, Marinov M, Rosenstein DD, Varsani A. Identification of diverse circular single-stranded DNA viruses in adult dragonflies and damselflies (Insecta: Odonata) of Arizona and Oklahoma, USA. Infect Genet Evol. 2015;30:278–87.PubMedCrossRef Dayaram A, Potter KA, Pailes R, Marinov M, Rosenstein DD, Varsani A. Identification of diverse circular single-stranded DNA viruses in adult dragonflies and damselflies (Insecta: Odonata) of Arizona and Oklahoma, USA. Infect Genet Evol. 2015;30:278–87.PubMedCrossRef
19.
Zurück zum Zitat Islam SU, Lin W, Wu R, Lin C, Islam W, Arif M, Du Z, Wu Z. Complete genome sequences of three novel cycloviruses identified in a dragonfly (Odonata: Anisoptera) from China. Arch Virol. 2018;163(9):1–5.CrossRef Islam SU, Lin W, Wu R, Lin C, Islam W, Arif M, Du Z, Wu Z. Complete genome sequences of three novel cycloviruses identified in a dragonfly (Odonata: Anisoptera) from China. Arch Virol. 2018;163(9):1–5.CrossRef
20.
Zurück zum Zitat Rosario K, Dayaram A, Marinov M, Ware J, Kraberger S, Stainton D, Breitbart M, Varsani A. Diverse circular ssDNA viruses discovered in dragonflies (Odonata: Epiprocta). J Gen Virol. 2012;93(Pt 12):2668.PubMedCrossRef Rosario K, Dayaram A, Marinov M, Ware J, Kraberger S, Stainton D, Breitbart M, Varsani A. Diverse circular ssDNA viruses discovered in dragonflies (Odonata: Epiprocta). J Gen Virol. 2012;93(Pt 12):2668.PubMedCrossRef
21.
Zurück zum Zitat Rosario K, Marinov M, Stainton D, Kraberger S, Wiltshire EJ, Collings DA, Walters M, Martin DP, Breitbart M, Varsani A. Dragonfly cyclovirus, a novel single-stranded DNA virus discovered in dragonflies (Odonata: Anisoptera). J Gen Virol. 2011;92(Pt 6):1302.PubMedCrossRef Rosario K, Marinov M, Stainton D, Kraberger S, Wiltshire EJ, Collings DA, Walters M, Martin DP, Breitbart M, Varsani A. Dragonfly cyclovirus, a novel single-stranded DNA virus discovered in dragonflies (Odonata: Anisoptera). J Gen Virol. 2011;92(Pt 6):1302.PubMedCrossRef
22.
Zurück zum Zitat Garigliany MM, Börstler J, Jöst H, Badusche M, Desmecht D, Schmidt-Chanasit J, Cadar D. Characterization of a novel circo-like virus in Aedes vexans mosquitoes from Germany: evidence for a new genus within the Circoviridae family. J Gen Virol. 2015;96(Pt 4):915–20.PubMedCrossRef Garigliany MM, Börstler J, Jöst H, Badusche M, Desmecht D, Schmidt-Chanasit J, Cadar D. Characterization of a novel circo-like virus in Aedes vexans mosquitoes from Germany: evidence for a new genus within the Circoviridae family. J Gen Virol. 2015;96(Pt 4):915–20.PubMedCrossRef
23.
Zurück zum Zitat Hansen TA, Fridholm H, Frøslev TG, Kjartansdóttir KR, Willerslev E, Nielsen LP, Hansen AJ. New type of papillomavirus and novel circular single stranded DNA virus discovered in urban Rattus norvegicus using circular DNA enrichment and Metagenomics. PLoS One. 2015;10(11):e0141952.PubMedPubMedCentralCrossRef Hansen TA, Fridholm H, Frøslev TG, Kjartansdóttir KR, Willerslev E, Nielsen LP, Hansen AJ. New type of papillomavirus and novel circular single stranded DNA virus discovered in urban Rattus norvegicus using circular DNA enrichment and Metagenomics. PLoS One. 2015;10(11):e0141952.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Ge X, Li J, Peng C, Wu L, Yang X, Wu Y, Zhang Y, Shi Z. Genetic diversity of novel circular ssDNA viruses in bats in China. J Gen Virol. 2011;92(Pt 11):2646–53.PubMedCrossRef Ge X, Li J, Peng C, Wu L, Yang X, Wu Y, Zhang Y, Shi Z. Genetic diversity of novel circular ssDNA viruses in bats in China. J Gen Virol. 2011;92(Pt 11):2646–53.PubMedCrossRef
25.
Zurück zum Zitat Fehér E, Kaszab E, Forró B, Bali K, Marton S, Lengyel G, Bányai K. Genome sequence of a mallard duck origin cyclovirus, DuACyV-1. Arch Virol. 2017;162(12):1–5.CrossRef Fehér E, Kaszab E, Forró B, Bali K, Marton S, Lengyel G, Bányai K. Genome sequence of a mallard duck origin cyclovirus, DuACyV-1. Arch Virol. 2017;162(12):1–5.CrossRef
26.
Zurück zum Zitat Wang H, Li S, Mahmood A, Yang S, Wang X, Shen Q, Shan T, Deng X, Li J, Hua X, Cui L, Delwart E, Zhang W. Plasma virome of cattle from forest region revealed diverse small circular ssDNA viral genomes. Virol J. 2018;15(1):11.PubMedPubMedCentralCrossRef Wang H, Li S, Mahmood A, Yang S, Wang X, Shen Q, Shan T, Deng X, Li J, Hua X, Cui L, Delwart E, Zhang W. Plasma virome of cattle from forest region revealed diverse small circular ssDNA viral genomes. Virol J. 2018;15(1):11.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Cheung AK, Ng TF, Lager KM, Bayles DO, Alt DP, Delwart EL, Pogranichniy RM, Kehrli ME Jr. A divergent clade of circular single-stranded DNA viruses from pig feces. Arch Virol. 2013;158(10):2157–62.PubMedPubMedCentralCrossRef Cheung AK, Ng TF, Lager KM, Bayles DO, Alt DP, Delwart EL, Pogranichniy RM, Kehrli ME Jr. A divergent clade of circular single-stranded DNA viruses from pig feces. Arch Virol. 2013;158(10):2157–62.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Sikorski A, Argüello-Astorga GR, Dayaram A, Dobson RC, Varsani A. Discovery of a novel circular single-stranded DNA virus from porcine faeces. Arch Virol. 2013;158(1):283–9.PubMedCrossRef Sikorski A, Argüello-Astorga GR, Dayaram A, Dobson RC, Varsani A. Discovery of a novel circular single-stranded DNA virus from porcine faeces. Arch Virol. 2013;158(1):283–9.PubMedCrossRef
29.
Zurück zum Zitat Li L, McGraw S, Zhu K, Leutenegger CM, Marks SL, Kubiski S, Gaffney P, Dela Cruz FN Jr, Wang C, Delwart E, Pesavento PA. Circovirus in tissues of dogs with vasculitis and hemorrhage. Emerg Infect Dis. 2013;19(4):534–41.PubMedPubMedCentralCrossRef Li L, McGraw S, Zhu K, Leutenegger CM, Marks SL, Kubiski S, Gaffney P, Dela Cruz FN Jr, Wang C, Delwart E, Pesavento PA. Circovirus in tissues of dogs with vasculitis and hemorrhage. Emerg Infect Dis. 2013;19(4):534–41.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Tan le V, van Doorn HR, Nghia HD, Chau TT, Tu le TP, de Vries M, Canuti M, Deijs M, Jebbink MF, Baker S, Bryant JE, Tham NT, BKrong NT, Boni MF, Loi TQ, Phuong le T, Verhoeven JT, Crusat M, Jeeninga RE, Schultsz C, Chau NV, Hien TT, van der Hoek L, Farrar J, de Jong MD. Identification of a new cyclovirus in cerebrospinal fluid of patients with acute central nervous system infections. mBio. 2013;4(3):00231–13.CrossRef Tan le V, van Doorn HR, Nghia HD, Chau TT, Tu le TP, de Vries M, Canuti M, Deijs M, Jebbink MF, Baker S, Bryant JE, Tham NT, BKrong NT, Boni MF, Loi TQ, Phuong le T, Verhoeven JT, Crusat M, Jeeninga RE, Schultsz C, Chau NV, Hien TT, van der Hoek L, Farrar J, de Jong MD. Identification of a new cyclovirus in cerebrospinal fluid of patients with acute central nervous system infections. mBio. 2013;4(3):00231–13.CrossRef
31.
Zurück zum Zitat Li L, Kapoor A, Slikas B, Bamidele OS, Wang C, Shaukat S, Masroor MA, Wilson ML, Ndjango JB, Peeters M, Gross-Camp ND, Muller MN, Hahn BH, Wolfe ND, Triki H, Bartkus J, Zaidi SZ, Delwart E. Multiple diverse circoviruses infect farm animals and are commonly found in human and chimpanzee feces. J Virol. 2010;84(4):1674–82.PubMedCrossRef Li L, Kapoor A, Slikas B, Bamidele OS, Wang C, Shaukat S, Masroor MA, Wilson ML, Ndjango JB, Peeters M, Gross-Camp ND, Muller MN, Hahn BH, Wolfe ND, Triki H, Bartkus J, Zaidi SZ, Delwart E. Multiple diverse circoviruses infect farm animals and are commonly found in human and chimpanzee feces. J Virol. 2010;84(4):1674–82.PubMedCrossRef
32.
Zurück zum Zitat Phan TG, Mori D, Deng X, Rajindrajith S, Ranawaka U, Fan Ng TF, Bucardo-Rivera F, Orlandi P, Ahmed K, Delwart E. Small circular single stranded DNA viral genomes in unexplained cases of human encephalitis, diarrhea, and in untreated sewage. Virology. 2015;482(12):98–104.PubMedCrossRef Phan TG, Mori D, Deng X, Rajindrajith S, Ranawaka U, Fan Ng TF, Bucardo-Rivera F, Orlandi P, Ahmed K, Delwart E. Small circular single stranded DNA viral genomes in unexplained cases of human encephalitis, diarrhea, and in untreated sewage. Virology. 2015;482(12):98–104.PubMedCrossRef
33.
Zurück zum Zitat Altan E, Del Valle MJ, Deng X, Phan TG, Sadeghi M, Delwart EL. Small circular rep-encoding single-stranded DNA genomes in Peruvian diarrhea Virome. Genome Announcements. 2017;5(38):e00822–17.PubMedPubMedCentralCrossRef Altan E, Del Valle MJ, Deng X, Phan TG, Sadeghi M, Delwart EL. Small circular rep-encoding single-stranded DNA genomes in Peruvian diarrhea Virome. Genome Announcements. 2017;5(38):e00822–17.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Reuter G, Boros Á, Delwart E, Pankovics P. Novel circular single-stranded DNA virus from turkey faeces. Arch Virol. 2014;159(8):2161–4. Reuter G, Boros Á, Delwart E, Pankovics P. Novel circular single-stranded DNA virus from turkey faeces. Arch Virol. 2014;159(8):2161–4.
35.
Zurück zum Zitat Fontenele RS, Lacorte C, Lamas NS, Schmidlin K, Varsani A, Ribeiro SG. Single Stranded DNA Viruses Associated with Capybara Faeces Sampled in Brazil. Viruses. 2019;11(8):710. Fontenele RS, Lacorte C, Lamas NS, Schmidlin K, Varsani A, Ribeiro SG. Single Stranded DNA Viruses Associated with Capybara Faeces Sampled in Brazil. Viruses. 2019;11(8):710.
36.
Zurück zum Zitat Qi D, Shan T, Liu Z, Deng X, Zhang Z, Bi W, Owens JR, Feng F, Zheng L, Huang F, Delwart E, Hou R, Zhang W. A novel polyomavirus from the nasal cavity of a giant panda (Ailuropoda melanoleuca). Virol J. 2017;14(1):207.PubMedPubMedCentralCrossRef Qi D, Shan T, Liu Z, Deng X, Zhang Z, Bi W, Owens JR, Feng F, Zheng L, Huang F, Delwart E, Hou R, Zhang W. A novel polyomavirus from the nasal cavity of a giant panda (Ailuropoda melanoleuca). Virol J. 2017;14(1):207.PubMedPubMedCentralCrossRef
37.
38.
Zurück zum Zitat Kapoor A, Victoria J, Simmonds P, Slikas E, Chieochansin T, Naeem A, Shaukat S, Sharif S, Alam MM, Angez M, Wang C, Shafer RW, Zaidi S, Delwart E. A highly prevalent and genetically diversified Picornaviridae genus in south Asian children. Proc Natl Acad Sci U S A. 2008;105(51):20482–7.PubMedPubMedCentralCrossRef Kapoor A, Victoria J, Simmonds P, Slikas E, Chieochansin T, Naeem A, Shaukat S, Sharif S, Alam MM, Angez M, Wang C, Shafer RW, Zaidi S, Delwart E. A highly prevalent and genetically diversified Picornaviridae genus in south Asian children. Proc Natl Acad Sci U S A. 2008;105(51):20482–7.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Zhang W, Li L, Deng X, Blümel J, Nübling CM, Hunfeld A, Baylis SA, Delwart E. Viral nucleic acids in human plasma pools. Transfusion. 2016;56(9):2248–55.PubMedCrossRef Zhang W, Li L, Deng X, Blümel J, Nübling CM, Hunfeld A, Baylis SA, Delwart E. Viral nucleic acids in human plasma pools. Transfusion. 2016;56(9):2248–55.PubMedCrossRef
40.
Zurück zum Zitat Victoria JG, Kapoor A, Li L, Blinkova O, Slikas B, Wang C, Naeem A, Zaidi S, Delwart E. Metagenomic Analyses of Viruses in Stool Samples from Children with Acute Flaccid Paralysis. J Virol. 2009;83(9):4642–51.PubMedPubMedCentralCrossRef Victoria JG, Kapoor A, Li L, Blinkova O, Slikas B, Wang C, Naeem A, Zaidi S, Delwart E. Metagenomic Analyses of Viruses in Stool Samples from Children with Acute Flaccid Paralysis. J Virol. 2009;83(9):4642–51.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Liu Z, Yang S, Wang Y, Shen Q, Yang Y, Deng X, Zhang W, Delwart E. Identification of a novel human papillomavirus by metagenomic analysis of vaginal swab samples from pregnant women. Virol J. 2016;13(1):122.PubMedPubMedCentralCrossRef Liu Z, Yang S, Wang Y, Shen Q, Yang Y, Deng X, Zhang W, Delwart E. Identification of a novel human papillomavirus by metagenomic analysis of vaginal swab samples from pregnant women. Virol J. 2016;13(1):122.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Zhang W, Yang S, Shan T, Hou R, Liu Z, Li W, Guo L, Wang Y, Chen P, Wang X, Feng F, Wang H, Chen C, Shen Q, Zhou C, Hua X, Cui L, Deng X, Zhang Z, Qi D, Delwart E. Virome comparisons in wild-diseased and healthy captive giant pandas. Microbiome. 2017;5(1):90.PubMedPubMedCentralCrossRef Zhang W, Yang S, Shan T, Hou R, Liu Z, Li W, Guo L, Wang Y, Chen P, Wang X, Feng F, Wang H, Chen C, Shen Q, Zhou C, Hua X, Cui L, Deng X, Zhang Z, Qi D, Delwart E. Virome comparisons in wild-diseased and healthy captive giant pandas. Microbiome. 2017;5(1):90.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Deng X, Naccache SN, Ng T, Federman S, Li L, Chiu CY, Delwart EL. An ensemble strategy that significantly improves de novo assembly of microbial genomes from metagenomic next-generation sequencing data. Nucleic Acids Res. 2015;43(7):e46.PubMedPubMedCentralCrossRef Deng X, Naccache SN, Ng T, Federman S, Li L, Chiu CY, Delwart EL. An ensemble strategy that significantly improves de novo assembly of microbial genomes from metagenomic next-generation sequencing data. Nucleic Acids Res. 2015;43(7):e46.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Robert A, Edwards FR. Viral metagenomics. Nat Rev Microbiol. 2005;3(6):504–10.CrossRef Robert A, Edwards FR. Viral metagenomics. Nat Rev Microbiol. 2005;3(6):504–10.CrossRef
45.
Zurück zum Zitat Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28(12):1647–9.PubMedPubMedCentralCrossRef Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28(12):1647–9.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Castrignano SB, Nagasse-Sugahara TK, Garrafa P, Monezi TA, Barrella KM, Mehnert DU. Identification of circo-like virus-Brazil genomic sequences in raw sewage from the metropolitan area of São Paulo: evidence of circulation two and three years after the first detection. Mem Inst Oswaldo Cruz. 2017;112(3):175–81.PubMedPubMedCentralCrossRef Castrignano SB, Nagasse-Sugahara TK, Garrafa P, Monezi TA, Barrella KM, Mehnert DU. Identification of circo-like virus-Brazil genomic sequences in raw sewage from the metropolitan area of São Paulo: evidence of circulation two and three years after the first detection. Mem Inst Oswaldo Cruz. 2017;112(3):175–81.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17(8):754–5.CrossRefPubMed Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17(8):754–5.CrossRefPubMed
48.
Zurück zum Zitat Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19(12):1572–4.PubMedCrossRef Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19(12):1572–4.PubMedCrossRef
49.
Zurück zum Zitat Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61(3):539–42.PubMedPubMedCentralCrossRef Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61(3):539–42.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Dayaram A, Goldstien S, Zawar-Reza P, Gomez C, Harding JS, Varsani A. Novel ssDNA virus recovered from estuarine Mollusc (Amphibola crenata) whose replication associated protein (rep) shares similarities with rep-like sequences of bacterial origin. J Gen Virol. 2013;94(5):1104–10.PubMedCrossRef Dayaram A, Goldstien S, Zawar-Reza P, Gomez C, Harding JS, Varsani A. Novel ssDNA virus recovered from estuarine Mollusc (Amphibola crenata) whose replication associated protein (rep) shares similarities with rep-like sequences of bacterial origin. J Gen Virol. 2013;94(5):1104–10.PubMedCrossRef
51.
Zurück zum Zitat Kazlauskas D, Varsani A, Koonin EV, Krupovic M. Multiple origins of prokaryotic and eukaryotic single-stranded DNA viruses from bacterial and archaeal plasmids. Nat Commun. 2019;10(1):3425.PubMedPubMedCentralCrossRef Kazlauskas D, Varsani A, Koonin EV, Krupovic M. Multiple origins of prokaryotic and eukaryotic single-stranded DNA viruses from bacterial and archaeal plasmids. Nat Commun. 2019;10(1):3425.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Rosario K, Breitbart M, Harrach B, Segalés J, Delwart E, Biagini P, Varsani A. Revisiting the taxonomy of the family Circoviridae: establishment of the genus Cyclovirus and removal of the genus Gyrovirus. Arch Virol. 2017;162(5):1447–63.PubMedCrossRef Rosario K, Breitbart M, Harrach B, Segalés J, Delwart E, Biagini P, Varsani A. Revisiting the taxonomy of the family Circoviridae: establishment of the genus Cyclovirus and removal of the genus Gyrovirus. Arch Virol. 2017;162(5):1447–63.PubMedCrossRef
53.
Zurück zum Zitat Rosario K, Duffy S, Breitbart M. A field guide to eukaryotic circular single-stranded DNA viruses: insights gained from metagenomics. Arch Virol. 2012;157(10):1851–71.PubMedCrossRef Rosario K, Duffy S, Breitbart M. A field guide to eukaryotic circular single-stranded DNA viruses: insights gained from metagenomics. Arch Virol. 2012;157(10):1851–71.PubMedCrossRef
54.
Zurück zum Zitat Hassan-Sheikhi P, Heydarnejad J, Massumi H, Kraberger S, Varsani A. Novel nanovirus and associated alphasatellites identified in milk vetch plants with chlorotic dwarf disease in Iran. Virus Res. 2020;276:197830.PubMedCrossRef Hassan-Sheikhi P, Heydarnejad J, Massumi H, Kraberger S, Varsani A. Novel nanovirus and associated alphasatellites identified in milk vetch plants with chlorotic dwarf disease in Iran. Virus Res. 2020;276:197830.PubMedCrossRef
55.
Zurück zum Zitat Mankertz A, Caliskan R, Hattermann K, Hillenbrand B, Kurzendoerfer P, Mueller B, Schmitt C, Steinfeldt T, Finsterbusch T. Molecular biology of porcine circovirus: analyses of gene expression and viral replication. Vet Microbiol. 2003;98(2):81–8.CrossRef Mankertz A, Caliskan R, Hattermann K, Hillenbrand B, Kurzendoerfer P, Mueller B, Schmitt C, Steinfeldt T, Finsterbusch T. Molecular biology of porcine circovirus: analyses of gene expression and viral replication. Vet Microbiol. 2003;98(2):81–8.CrossRef
56.
Zurück zum Zitat Belák S, Karlsson OE, Blomström AL, Berg M, Granberg F. New viruses in veterinary medicine, detected by metagenomic approaches. Vet Microbiol. 2013;165(1–2):95–101.PubMedCrossRef Belák S, Karlsson OE, Blomström AL, Berg M, Granberg F. New viruses in veterinary medicine, detected by metagenomic approaches. Vet Microbiol. 2013;165(1–2):95–101.PubMedCrossRef
57.
Zurück zum Zitat Kraberger S, Argüello-Astorga GR, Greenfield LG, Galilee C, Law D, Martin DP, Varsani A. Characterisation of a diverse range of circular replication-associated protein encoding DNA viruses recovered from a sewage treatment oxidation pond. Infect Genet Evol. 2015;31:73–86.PubMedCrossRef Kraberger S, Argüello-Astorga GR, Greenfield LG, Galilee C, Law D, Martin DP, Varsani A. Characterisation of a diverse range of circular replication-associated protein encoding DNA viruses recovered from a sewage treatment oxidation pond. Infect Genet Evol. 2015;31:73–86.PubMedCrossRef
58.
Zurück zum Zitat Gronenborn B. Nanoviruses: genome organisation and protein function. Vet Microbiol. 2004;98(2):103–9.PubMedCrossRef Gronenborn B. Nanoviruses: genome organisation and protein function. Vet Microbiol. 2004;98(2):103–9.PubMedCrossRef
59.
Zurück zum Zitat O'Dea MA, Kabay MJ, Carr J, Wilcox GE, Richards RB. Porcine circovirus-associated disease in weaner pigs in Western Australia. Aust Vet J. 2011;89(4):122–30.PubMedCrossRef O'Dea MA, Kabay MJ, Carr J, Wilcox GE, Richards RB. Porcine circovirus-associated disease in weaner pigs in Western Australia. Aust Vet J. 2011;89(4):122–30.PubMedCrossRef
Metadaten
Titel
Viral metagenomics revealed diverse CRESS-DNA virus genomes in faeces of forest musk deer
verfasst von
Qi Liu
Hao Wang
Yu Ling
Shi-Xing Yang
Xiao-Chun Wang
Rui Zhou
Yu-Qing Xiao
Xu Chen
Jie Yang
Wei-Guo Fu
Wen Zhang
Gui-Lan Qi
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
Virology Journal / Ausgabe 1/2020
Elektronische ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-020-01332-y

Weitere Artikel der Ausgabe 1/2020

Virology Journal 1/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Reizdarmsyndrom: Diäten wirksamer als Medikamente

29.04.2024 Reizdarmsyndrom Nachrichten

Bei Reizdarmsyndrom scheinen Diäten, wie etwa die FODMAP-arme oder die kohlenhydratreduzierte Ernährung, effektiver als eine medikamentöse Therapie zu sein. Das hat eine Studie aus Schweden ergeben, die die drei Therapieoptionen im direkten Vergleich analysierte.

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.