Skip to main content
Erschienen in: Molecular Brain 1/2019

Open Access 01.12.2019 | Micro report

Enriched expression of NF1 in inhibitory neurons in both mouse and human brain

verfasst von: Hyun-Hee Ryu, Minkyung Kang, Jinsil Park, Sung-Hye Park, Yong-Seok Lee

Erschienen in: Molecular Brain | Ausgabe 1/2019

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Neurofibromatosis type 1 (NF1) is an autosomal dominant disease caused by loss-of-function mutations in NF1 gene, which encodes a GTPase activating protein for RAS. NF1 affects multiple systems including brain and is highly associated with cognitive deficits such as learning difficulties and attention deficits. Previous studies have suggested that GABAergic inhibitory neuron is the cell type primarily responsible for the learning deficits in mouse models of NF1. However, it is not clear how NF1 mutations selectively affect inhibitory neurons in the central nervous system. In this study, we show that the expression level of Nf1 is significantly higher in inhibitory neurons than in excitatory neurons in mouse hippocampus and cortex by using in situ hybridization. Furthermore, we also found that NF1 is enriched in inhibitory neurons in the human cortex, confirming that the differential expressions of NF1 between two cell types are evolutionarily conserved. Our results suggest that the enriched expression of NF1 in inhibitory neurons may underlie inhibitory neuron-specific deficits in NF1.
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1186/​s13041-019-0481-0) contains supplementary material, which is available to authorized users.
Hyun-Hee Ryu and Minkyung Kang contributed equally to this work.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
ERK
Extracellular signal-regulated kinases
GABAergic
Gamma-aminobutyric acidergic
GAP
GTPase-activating protein
HCN
Hyperpolarization-activated cyclic nucleotide-gated channel
NF1
Neurofibromatosis type I
PV
Parvalbumin
RNA-seq
RNA-sequencing
vGAT
Vesicular gamma-aminobutyric acid transporter
αCaMKII
Alpha Ca2+/calmodulin-dependent kinase II
Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder caused by loss of function mutations in NF1 gene, which occurs in approximately 1 of 3000 births [1]. NF1 affects multiple organs, mainly skin, bone, and brain, and is diagnosed by café-au-lait spots, neurofibromas, optic glioma, Lisch nodules in iris, bone malformations [13]. NF1 is most abundantly expressed in the nervous system [4]. Subsequently, a wide range of cognitive deficits is associated with NF1, which include deficits in visuospatial perception, executive functioning, attention, social function and learning [57]. NF1 gene encodes neurofibromin (NF1) which is a GTPase-activating protein (GAP) for RAS [810]. Thus, loss of function mutations in NF1 gene cause increases in the activation of RAS and its downstream signaling cascades [11]. Studies using mouse models of NF1 have shown that the enhanced activation of RAS-extracellular signal-related kinase (ERK) signaling is responsible for the learning deficits in NF1 [1114]. Nf1 heterozygous knockout mice showed deficits in spatial learning and working memory, which can be rescued by attenuating RAS activation [12, 14]. Interestingly, elegant studies by Silva and colleagues have shown that gamma-aminobutyric acidergic (GABAergic) inhibitory synaptic function is altered in both hippocampus and cortex of Nf1+/− mice [12, 13, 15]. To define the cell type responsible for the learning deficits in Nf1+/− mice, Cui and colleagues deleted Nf1 selectively in excitatory neurons, inhibitory neurons, or glia and found that deleting Nf1 only in inhibitory neurons can recapitulate behavioral and cellular phenotypes shown in Nf1+/− mice such as deficits in spatial learning and long-term synaptic plasticity [13]. Since NF1 was shown to be ubiquitously expressed in adult neurons, oligodendrocytes, and Schwann cells [4, 16], it is intriguing that deleting Nf1 selectively affect inhibitory neurons. Recently, we have shown that the genes in RAS-ERK signaling network are differentially expressed between excitatory and inhibitory neurons in mouse hippocampus by performing cell type-specific transcriptome analyses [17]. Interestingly, Nf1 expression was found to be higher in vesicular gamma-aminobutyric acid transporter (vGAT)-positive neurons than in alpha Ca2+/calmodulin-dependent kinase II (αCaMKII)-positive neurons in mouse hippocampus by using cell type-specific RNA-sequencing (RNA-seq) analysis [17], which suggest that inhibitory neuron-enriched expression of NF1 may underlie the cell type-specific pathophysiology of NF1.
To confirm the expression pattern of Nf1 in mouse brain (male C57Bl/6 J, 7–8 weeks) by using a different method, we performed fluorescent in situ hybridization. We used a gene-specific probe for mouse Nf1 together with probes for αCamkII and vGAT as markers for excitatory and inhibitory neurons, respectively. Consistent with the previous RNA-seq result [17], we found that the Nf1 expression level is significantly higher in inhibitory neurons than in excitatory neurons in the mouse hippocampus (Fig. 1a and b). The area of Nf1 mRNA particles in vGAT+ neurons were significantly larger than in αCamkII+ neurons in hippocampal CA1 region (Area of Nf1 particles: αCamkII+, 3.97 ± 0.16 μm2; vGAT+, 8.25 ± 1.24 μm2; unpaired t-test, ****p < 0.0001; Fig. 1a and b). Next, we examined the expression of Nf1 in mouse cortex (Fig. 1c and d). As in the hippocampus, total area of Nf1 mRNA particles were bigger in vGAT+ neurons than in αCamKII+ neurons in the parietal cortex (Area of Nf1 particles: αCamkII+, 3.21 ± 0.21 μm2; vGAT+, 6.1 ± 0.46 μm2; unpaired t-test, ****p < 0.0001; Fig. 1c and d). Thus, these results show that the Nf1 is enriched in vGAT+ inhibitory neurons in the mouse hippocampus and cortex, which are hubs of spatial learning and higher-level executive brain function. This inhibitory neuron-enriched expression of Nf1 might explain how inhibitory synaptic function is selectively affected in Nf1 mutant mice.
To verify that NF1 expression is also higher in inhibitory neurons than in excitatory neurons in human, we examined the NF1 mRNA expression in human cortex. Since the human tissues showed strong auto-fluorescent signals probably due to the fix condition, we used dual color chromogenic in situ hybridization system: NF1 was co-stained with either αCaMKII (also known as CaMK2A) or vGAT (also known as SL32A1). We used cortical biopsy samples from two human subjects who underwent surgery for focal cortical dysplasia type I. Normal cortical tissues around the affected area were used in this study. As previously reported [18], NF1 was detected in neurons in human brains (Fig. 1e and g). To examine whether NF1 is also enriched in inhibitory neurons in human, we analyzed the area of NF1 mRNA particle in vGAT+ or αCaMKII+ neurons. Consistent with our finding in mouse cortex, area of human NF1 particle in each cell was also significantly larger in vGAT+ neurons than in αCaMKII+ neurons in both samples (Area of NF1 particles: #20399, αCamkII+, 10.31 ± 0.4 μm2; vGAT+, 12.14 ± 0.74 μm2; unpaired t-test, *p < 0.0001; #17490, αCamkII+, 10.21 ± 0.48 μm2; vGAT+, 15.76 ± 0.98 μm2; unpaired t-test, *p < 0.0001; Fig. 1f and h). Collectively, we found that NF1 mRNA is enriched in vGAT+ neurons compared to αCaMKII+ neurons both in mouse and human brain. Importantly, hybridizations using a negative control probe targeting a bacterial gene dihydrodipicolinate reductase (DapB) did not show any nonspecific background signal in mouse and human cortex (Additional file 1: Figure S1). To further examine the specificity of the probes, we performed cross-species hybridization experiments in which we used the mouse Nf1 probe on human tissue and the human NF1 probe on mouse tissue. We detected almost no signals compared to those from species-matching conditions (Additional file 1: Figure S1).
Initially, Costa and colleagues found that monosynaptically evoked inhibitory postsynaptic potentials are significantly larger in Nf1+/− mice compared to those in wild type littermates, which was reversed by reducing Ras activity, showing that Nf1 deletion increases synaptic inhibition through Ras activation [12]. Later, Cui and colleagues showed that neurofibromin regulates ERK and synapsin phosphorylation in GABAergic neurons [13]. However, it is not clear how neurofibromin mainly regulates inhibitory synaptic functions. Recently, Omrani and colleagues showed that neurofibromin interacts with hyperpolarization-activated cyclic nucleotide-gated (HCN) channel which is enriched in parvalbumin (PV)-expressing interneurons [19]. HCN current is selectively reduced in PV-expressing interneurons, resulting in hyperexcitability in PV-expressing inhibitory neurons both in Nf1+/− and Nf19a−/9a- mice in which the neuron-specific exon 9 is deleted, which may contribute to inhibitory neuron-specific phenotypes in NF1 mouse models [19].
In our previous study, we showed that major components in RAS-ERK signaling pathway including Nf1 are differentially expressed between excitatory and inhibitory neurons in mouse hippocampus, proposing that this cell type-specific distribution of signaling molecules may underlie cell type selective pathophysiology observed in NF1 and other Rasopathies such as Noonan syndrome [17]. The expression pattern of NF1 has been extensively studied both in rodents and human brains, which have revealed that NF1 is expressed in neurons, oligodendrocytes, and Schwann cells, and even astrocytes depending on the conditions and the isoforms [4, 16, 18, 2022]. However, it was not clear in which neuronal type NF1 is enriched. Our results clearly demonstrate that NF1 is enriched in inhibitory neuron in mouse and human brain. Specific inhibitory neuronal types in which NF1 is enriched remains to be determined. Taken together, our results strongly suggest that the cell type-specific RAS-ERK signaling networks might be, at least for several molecules, evolutionarily conserved between mouse and human and therefore, the mechanisms for cognitive deficits revealed in NF1 mouse models may turn out to be also true in human NF1.

Acknowledgements

Not applicable.
Animal study was approved by the Institutional Animal Care and Use Committees at Seoul National University. Human cortical tissues were obtained from archives of Department of Pathology, Seoul National University Hospital and this study was approved by the Institutional Review Board at Seoul National University Hospital (1712–086-907).
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Neurologie & Psychiatrie

Kombi-Abonnement

Mit e.Med Neurologie & Psychiatrie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

e.Med Neurologie

Kombi-Abonnement

Mit e.Med Neurologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes, den Premium-Inhalten der neurologischen Fachzeitschriften, inklusive einer gedruckten Neurologie-Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Upadhyaya M, Cooper DN. Neurofibromatosis type 1 : molecular and cellular biology. Berlin. New York: Springer; 2012.CrossRef Upadhyaya M, Cooper DN. Neurofibromatosis type 1 : molecular and cellular biology. Berlin. New York: Springer; 2012.CrossRef
2.
Zurück zum Zitat DeBella K, Szudek J, Friedman JM. Use of the national institutes of health criteria for diagnosis of neurofibromatosis 1 in children. Pediatrics. 2000;105:608–14.CrossRef DeBella K, Szudek J, Friedman JM. Use of the national institutes of health criteria for diagnosis of neurofibromatosis 1 in children. Pediatrics. 2000;105:608–14.CrossRef
3.
Zurück zum Zitat Gutmann DH, Aylsworth A, Carey JC, Korf B, Marks J, Pyeritz RE, Rubenstein A, Viskochil D. The diagnostic evaluation and multidisciplinary management of neurofibromatosis 1 and neurofibromatosis 2. JAMA. 1997;278:51–7.CrossRef Gutmann DH, Aylsworth A, Carey JC, Korf B, Marks J, Pyeritz RE, Rubenstein A, Viskochil D. The diagnostic evaluation and multidisciplinary management of neurofibromatosis 1 and neurofibromatosis 2. JAMA. 1997;278:51–7.CrossRef
4.
Zurück zum Zitat Daston MM, Ratner N. Neurofibromin, a predominantly neuronal GTPase activating protein in the adult, is ubiquitously expressed during development. Dev Dyn. 1992;195:216–26.CrossRef Daston MM, Ratner N. Neurofibromin, a predominantly neuronal GTPase activating protein in the adult, is ubiquitously expressed during development. Dev Dyn. 1992;195:216–26.CrossRef
5.
Zurück zum Zitat Hyman SL, Shores A, North KN. The nature and frequency of cognitive deficits in children with neurofibromatosis type 1. Neurology. 2005;65:1037–44.CrossRef Hyman SL, Shores A, North KN. The nature and frequency of cognitive deficits in children with neurofibromatosis type 1. Neurology. 2005;65:1037–44.CrossRef
6.
Zurück zum Zitat Chisholm AK, Anderson VA, Pride NA, Malarbi S, North KN, Payne JM. Social function and autism Spectrum disorder in children and adults with Neurofibromatosis type 1: a systematic review and meta-analysis. Neuropsychol Rev. 2018;28:317–40.CrossRef Chisholm AK, Anderson VA, Pride NA, Malarbi S, North KN, Payne JM. Social function and autism Spectrum disorder in children and adults with Neurofibromatosis type 1: a systematic review and meta-analysis. Neuropsychol Rev. 2018;28:317–40.CrossRef
7.
Zurück zum Zitat Krab LC, Aarsen FK, de Goede-Bolder A, Catsman-Berrevoets CE, Arts WF, Moll HA, Elgersma Y. Impact of neurofibromatosis type 1 on school performance. J Child Neurol. 2008;23:1002–10.CrossRef Krab LC, Aarsen FK, de Goede-Bolder A, Catsman-Berrevoets CE, Arts WF, Moll HA, Elgersma Y. Impact of neurofibromatosis type 1 on school performance. J Child Neurol. 2008;23:1002–10.CrossRef
8.
Zurück zum Zitat Ballester R, Marchuk D, Boguski M, Saulino A, Letcher R, Wigler M, Collins F. The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell. 1990;63:851–9.CrossRef Ballester R, Marchuk D, Boguski M, Saulino A, Letcher R, Wigler M, Collins F. The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell. 1990;63:851–9.CrossRef
9.
Zurück zum Zitat Martin GA, Viskochil D, Bollag G, McCabe PC, Crosier WJ, Haubruck H, Conroy L, Clark R, O'Connell P, Cawthon RM, et al. The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell. 1990;63:843–9.CrossRef Martin GA, Viskochil D, Bollag G, McCabe PC, Crosier WJ, Haubruck H, Conroy L, Clark R, O'Connell P, Cawthon RM, et al. The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell. 1990;63:843–9.CrossRef
10.
Zurück zum Zitat Xu GF, Lin B, Tanaka K, Dunn D, Wood D, Gesteland R, White R, Weiss R, Tamanoi F. The catalytic domain of the neurofibromatosis type 1 gene product stimulates ras GTPase and complements ira mutants of S. cerevisiae. Cell. 1990;63:835–41.CrossRef Xu GF, Lin B, Tanaka K, Dunn D, Wood D, Gesteland R, White R, Weiss R, Tamanoi F. The catalytic domain of the neurofibromatosis type 1 gene product stimulates ras GTPase and complements ira mutants of S. cerevisiae. Cell. 1990;63:835–41.CrossRef
11.
Zurück zum Zitat Shilyansky C, Lee YS, Silva AJ. Molecular and cellular mechanisms of learning disabilities: a focus on NF1. Annu Rev Neurosci. 2010;33:221–43.CrossRef Shilyansky C, Lee YS, Silva AJ. Molecular and cellular mechanisms of learning disabilities: a focus on NF1. Annu Rev Neurosci. 2010;33:221–43.CrossRef
12.
Zurück zum Zitat Costa RM, Federov NB, Kogan JH, Murphy GG, Stern J, Ohno M, Kucherlapati R, Jacks T, Silva AJ. Mechanism for the learning deficits in a mouse model of neurofibromatosis type 1. Nature. 2002;415:526–30.CrossRef Costa RM, Federov NB, Kogan JH, Murphy GG, Stern J, Ohno M, Kucherlapati R, Jacks T, Silva AJ. Mechanism for the learning deficits in a mouse model of neurofibromatosis type 1. Nature. 2002;415:526–30.CrossRef
13.
Zurück zum Zitat Cui Y, Costa RM, Murphy GG, Elgersma Y, Zhu Y, Gutmann DH, Parada LF, Mody I, Silva AJ. Neurofibromin regulation of ERK signaling modulates GABA release and learning. Cell. 2008;135:549–60.CrossRef Cui Y, Costa RM, Murphy GG, Elgersma Y, Zhu Y, Gutmann DH, Parada LF, Mody I, Silva AJ. Neurofibromin regulation of ERK signaling modulates GABA release and learning. Cell. 2008;135:549–60.CrossRef
14.
Zurück zum Zitat Li W, Cui Y, Kushner SA, Brown RA, Jentsch JD, Frankland PW, Cannon TD, Silva AJ. The HMG-CoA reductase inhibitor lovastatin reverses the learning and attention deficits in a mouse model of neurofibromatosis type 1. Curr Biol. 2005;15:1961–7.CrossRef Li W, Cui Y, Kushner SA, Brown RA, Jentsch JD, Frankland PW, Cannon TD, Silva AJ. The HMG-CoA reductase inhibitor lovastatin reverses the learning and attention deficits in a mouse model of neurofibromatosis type 1. Curr Biol. 2005;15:1961–7.CrossRef
15.
Zurück zum Zitat Shilyansky C, Karlsgodt KH, Cummings DM, Sidiropoulou K, Hardt M, James AS, Ehninger D, Bearden CE, Poirazi P, Jentsch JD, et al. Neurofibromin regulates corticostriatal inhibitory networks during working memory performance. Proc Natl Acad Sci U S A. 2010;107:13141–6.CrossRef Shilyansky C, Karlsgodt KH, Cummings DM, Sidiropoulou K, Hardt M, James AS, Ehninger D, Bearden CE, Poirazi P, Jentsch JD, et al. Neurofibromin regulates corticostriatal inhibitory networks during working memory performance. Proc Natl Acad Sci U S A. 2010;107:13141–6.CrossRef
16.
Zurück zum Zitat Gutmann DH, Geist RT, Wright DE, Snider WD. Expression of the neurofibromatosis 1 (NF1) isoforms in developing and adult rat tissues. Cell Growth Differ. 1995;6:315–23.PubMed Gutmann DH, Geist RT, Wright DE, Snider WD. Expression of the neurofibromatosis 1 (NF1) isoforms in developing and adult rat tissues. Cell Growth Differ. 1995;6:315–23.PubMed
17.
Zurück zum Zitat Ryu H-H, Kim T, Kim J-W, Kang M, Park P, Kim YG, Kim H, Ha J, Choi JE, Lee J, et al. Excitatory neuron–specific SHP2-ERK signaling network regulates synaptic plasticity and memory. Sci Signal. 2019;12:eaau5755.CrossRef Ryu H-H, Kim T, Kim J-W, Kang M, Park P, Kim YG, Kim H, Ha J, Choi JE, Lee J, et al. Excitatory neuron–specific SHP2-ERK signaling network regulates synaptic plasticity and memory. Sci Signal. 2019;12:eaau5755.CrossRef
18.
Zurück zum Zitat Nordlund ML, Rizvi TA, Brannan CI, Ratner N. Neurofibromin expression and astrogliosis in neurofibromatosis (type 1) brains. J Neuropathol Exp Neurol. 1995;54:588–600.CrossRef Nordlund ML, Rizvi TA, Brannan CI, Ratner N. Neurofibromin expression and astrogliosis in neurofibromatosis (type 1) brains. J Neuropathol Exp Neurol. 1995;54:588–600.CrossRef
19.
Zurück zum Zitat Omrani A, van der Vaart T, Mientjes E, van Woerden GM, Hojjati MR, Li KW, Gutmann DH, Levelt CN, Smit AB, Silva AJ, et al. HCN channels are a novel therapeutic target for cognitive dysfunction in Neurofibromatosis type 1. Mol Psychiatry. 2015;20:1311–21.CrossRef Omrani A, van der Vaart T, Mientjes E, van Woerden GM, Hojjati MR, Li KW, Gutmann DH, Levelt CN, Smit AB, Silva AJ, et al. HCN channels are a novel therapeutic target for cognitive dysfunction in Neurofibromatosis type 1. Mol Psychiatry. 2015;20:1311–21.CrossRef
20.
Zurück zum Zitat Geist RT, Gutmann DH. Expression of a developmentally-regulated neuron-specific isoform of the neurofibromatosis 1 (NF1) gene. Neurosci Lett. 1996;211:85–8.CrossRef Geist RT, Gutmann DH. Expression of a developmentally-regulated neuron-specific isoform of the neurofibromatosis 1 (NF1) gene. Neurosci Lett. 1996;211:85–8.CrossRef
21.
Zurück zum Zitat Gutmann DH, Zhang Y, Hirbe A. Developmental regulation of a neuron-specific neurofibromatosis 1 isoform. Ann Neurol. 1999;46:777–82.CrossRef Gutmann DH, Zhang Y, Hirbe A. Developmental regulation of a neuron-specific neurofibromatosis 1 isoform. Ann Neurol. 1999;46:777–82.CrossRef
22.
Zurück zum Zitat Hewett SJ, Choi DW, Gutmann DH. Expression of the neurofibromatosis 1 (NF1) gene in reactive astrocytes in vitro. Neuroreport. 1995;6:1565–8.CrossRef Hewett SJ, Choi DW, Gutmann DH. Expression of the neurofibromatosis 1 (NF1) gene in reactive astrocytes in vitro. Neuroreport. 1995;6:1565–8.CrossRef
Metadaten
Titel
Enriched expression of NF1 in inhibitory neurons in both mouse and human brain
verfasst von
Hyun-Hee Ryu
Minkyung Kang
Jinsil Park
Sung-Hye Park
Yong-Seok Lee
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
Molecular Brain / Ausgabe 1/2019
Elektronische ISSN: 1756-6606
DOI
https://doi.org/10.1186/s13041-019-0481-0

Weitere Artikel der Ausgabe 1/2019

Molecular Brain 1/2019 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Schwindelursache: Massagepistole lässt Otholiten tanzen

14.05.2024 Benigner Lagerungsschwindel Nachrichten

Wenn jüngere Menschen über ständig rezidivierenden Lagerungsschwindel klagen, könnte eine Massagepistole der Auslöser sein. In JAMA Otolaryngology warnt ein Team vor der Anwendung hochpotenter Geräte im Bereich des Nackens.

Schützt Olivenöl vor dem Tod durch Demenz?

10.05.2024 Morbus Alzheimer Nachrichten

Konsumieren Menschen täglich 7 Gramm Olivenöl, ist ihr Risiko, an einer Demenz zu sterben, um mehr als ein Viertel reduziert – und dies weitgehend unabhängig von ihrer sonstigen Ernährung. Dafür sprechen Auswertungen zweier großer US-Studien.

Bluttest erkennt Parkinson schon zehn Jahre vor der Diagnose

10.05.2024 Parkinson-Krankheit Nachrichten

Ein Bluttest kann abnorm aggregiertes Alpha-Synuclein bei einigen Menschen schon zehn Jahre vor Beginn der motorischen Parkinsonsymptome nachweisen. Mit einem solchen Test lassen sich möglicherweise Prodromalstadien erfassen und die Betroffenen früher behandeln.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.