Skip to main content
Erschienen in: Insights into Imaging 1/2020

Open Access 01.12.2020 | Educational Review

Parasitic diseases as a cause of acute abdominal pain: imaging findings

verfasst von: Emre Ünal, Sevtap Arslan, Mehmet Ruhi Onur, Erhan Akpinar

Erschienen in: Insights into Imaging | Ausgabe 1/2020

Abstract

Acute abdominal pain can be seen in cases with parasitic diseases delivered to emergency departments. The diagnosis of the parasitic disease can be delayed because of the similar clinical signs encountered in other frequently seen causes of acute abdomen. Nevertheless, the features detected in imaging scans can be helpful in the diagnosis. The present study aims to raise awareness about abdominal parasitosis in emergency conditions and also to underline the association between imaging findings and the life cycle of parasites with illustrative cases.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
CT
Computed tomography
MRI
Magnetic resonance imaging
US
Ultrasonography

Key points

  • Some types of parasites are endemic for certain locations.
  • Immigration and travel are responsible for worldwide cases.
  • A parasite may involve a specific organ or migrate through several organs.
  • A parasite may induce a cyst formation that could be complicated with rupture, superinfection, or mass effect.
  • Clinical and radiological findings may vary for the different types of parasites and their site of involvement.

Background

Parasitic diseases are common. Although some types of parasites are endemic for certain locations, worldwide cases can be seen due to immigration and travel. A previously published systematic review reported that parasitic diseases resulted in 48.4 million cases annually and 59,724 deaths per year [1]. The diseases caused by most parasites results in significant morbidity and mortality among vulnerable populations. In the same study, researchers emphasize that enteric protozoa, ascariasis, and toxoplasmosis are the most common parasitic diseases; however, the global burden of disease is highest in cysticercosis. Therefore, these data indicate that there is no correlation between the incidence of the parasitic disease and the frequency and severity of symptoms [1]. Parasitic diseases may be transmitted in three different ways as (i) fecal-oral route, (ii) active penetration of the skin by larvae, and (iii) vector arthropods [2]. Infestation affects different parts of the body. Nevertheless, abdominal involvement is seen in the majority of cases. Although the clinical symptoms are usually nonspecific, patients may present with acute abdominal pain due to inflammatory changes in parenchymal organ, bowel walls, bile ducts, and peritoneal surfaces and obstructive changes in bowels and bile ducts. Acute abdominal pain may also result from complications of parasitic involvement such as abscess formation and rupture of focal parasitic cystic lesions. A parasite may be hosted by a specific intraabdominal organ, or may travel among several intraabdominal organs, or may induce a cyst formation that could be complicated with rupture, superinfection, or mass effect. Therefore, clinical and radiological findings may vary for the different types of parasites and also for their site of involvement. The present study aims to raise awareness about abdominal parasitosis that we encountered in our emergency radiology practice. A detailed literature search was also carried out to be able to summarize the epidemiologic aspects, radiological, clinical, and laboratory findings of these particular parasitic diseases (Tables 1 and 2) [319, 67, 74, 78].
Table 1
Epidemiologic aspects, route for transmission, and methods used for the definitive diagnosis of the parasitic diseases
Disease
Parasite
Epidemiology
Geographic distribution
1 Hosts/vectors
2 Transmission
Final diagnosis (routinely used method)
Cystic echinococcosis(c) [36]
E. granulosus(a)
2–404/10,000
High prevalence in Mediterranean regions, southern and central parts of Russia, central Asia, China, Australia, South America and Africa
1 Definitive hosts (dogs and foxes)
Intermediate hosts (sheep and human)
2 Ingestion of eggs
- Imaging based (primarily ultrasound findings)
- Serologic assay
- Aspiration of cyst content during imaging guided intervention
E. multilocularis
0.2–3400/100,000
Asia, Central Europe and the northern parts of Europe, and North America
E. oligarthrus
Very rare, 106 human cases
Central and South America
E. vogeli
Fascioliasis(c) [3, 7]
F. hepatica(a)
0.9–6.1%
Worldwide, high prevalence in Europe and America
1 Intermediate hosts (Freshwater snails)
Definitive hosts (herbivorous mammals, including humans)
2 Ingestion of watercress or contaminated water containing encysted larva
- Stool examination
- Serologic assay
F. gigantica
Tropical areas of Asia and Africa
Ascariasis(c) [3, 8]
Ascaris lumbricoides
8.8–22.3%
Asia, Africa, and South America
1 No intermediate host
Humans are the only definitive hosts
2 Ingestion of fecally contaminated food
Stool examination
Toxocariasis(c) [9]
T. canis(a)
0.7–15%
Worldwide
1 Intermediate hosts (rabbit, lamb, fowl)
Definitive hosts (domestic dogs and cats). Humans are accidentally infected intermediate hosts
2 Ingestion of eggs from contaminated foods
Serologic assay
T. cati
Intestinal taeniasis(c) [1012]
T. saginata
0.7–4.9%
Sub-Saharan Africa and the Middle East, Eastern Europe, the Philippines, and Latin America
1 Intermediate hosts (pigs for T. solium, cattle for T. saginata)
Definitive hosts (Humans are the only definitive hosts)
2 Ingestion of larvae for taeniasis and ingestion of eggs for cysticercosis
Stool examination
T. solium
Worldwide; especially in Mexico, Latin America, West Africa, Russia, India, Manchuria, and Southeast Asia
T. asiatica
Taiwan, Korea, Indonesia, Nepal, Thailand and China
Amoebiasis(c) [13]
E. histolytica(b)
5–42%
Worldwide. Endemic in developing parts of Central and South America, Africa, and Asia
1 Humans are the principal host and reservoir
2 Ingestion of the cyst from fecally contaminated food or water
- Stool examination
- The real-time PCR (to identify E. histolytica)
E. dispar(a)
E. moshkovskii
Malaria(c) [14, 15]
P. falciparum(b)
5.2–75%
Tropical Africa, South America, South-eastern Asia, and Western Pacific
1 Vectors (Anopheles mosquitos)
2 Transmitted by infected female mosquitoes’ bites
Microscopic examination of blood
P. vivax
P. ovale
P. malariae
P. knowlesi
Visceral leishmaniasis(c) [16]
Leishmania(a,b)donovani
200,000–400,000/per year
Northeast of the Indian subcontinent, East Africa
1 Vectors (Phlebotomus sandflies)
2 Transmitted by infected Phlebotomus sandflies’ bites
- Bone marrow sampling
- Serological examination
Leishmania infantum
Mediterranean region, Latin America
Dientamoebiasis(c) [17]
Dientamoeba fragilis
0.4–42%
Worldwide
1 Humans are the principal host
2 Fecal-oral (hypothetical transmission via Enterobius vermicularis eggs)
Stool examination
Anisakiasis(c) [18]
Anisakis simple
3/1,000,000 in Japan
Japan, Korea, Latin America, and Europe (Scandinavia, The Netherlands, Spain, France, Britain). Over 90% of cases are from Japan
1 Intermediate hosts (different species of crustaceans, fish, or squid)
Definitive hosts big sea mammals (whales, dolphins, or seals)
Humans are accidentally infected intermediate hosts
2 Ingestion of raw or undercooked fish containing larvae of the anisakis worm
Endoscopy, histopathological examination
aMost common
bMore severe clinical presentation
cReferences
Table 2
Parasitosis and affected abdominal organs. Associated radiological, clinical, and laboratory findings
Disease type
Imaging findings
Clinical presentation
Lab findings
Cystic echinococcosisa [2, 3, 1931]
Liver
Perihepatic rupture
- Fluid collection through the course of cyst’s content
- Mural thickening of the bowel loops and fat tissue stranding adjacent to cyst contents
- Focal outward bulging, discontinuity of the cyst wall
RUQ or generalized abdominal pain, fever, nausea and vomiting, urticaria, and fatal anaphylaxis
Leukocytosis, elevated CRP (C reactive protein), eosinophilia, increase in serum aspartate transaminase (AST) and alanine aminotransferase (ALT) levels
Biliary rupture
- Structural deformity, loss of spherical shape of the cyst
- Dilatation of the intrahepatic bile ducts with linear filling defects within the biliary tract
- Lipid-fluid level due to bile
- Air or an air-fluid level within the cyst if superinfection is present
RUQ pain, jaundice, pruritus, fever, nausea and vomiting, anaphylactic reaction
Leukocytosis, elevated CRP, eosinophilia, elevated serum AST, ALT, gamma-glutamyl transferase (GGT), alkaline phosphatase (ALP), bilirubin, and amylase
Vascular invasion
- Dilatation of the affected vein (most commonly hepatic veins)
- Total occlusion or linear filling defects within the lumen
- Parenchymal hemodynamic change at vascular territory
RUQ pain, dyspnea and chest pain in case of pulmonary embolism
Leukocytosis, eosinophilia, abnormal liver function tests and, hypoxemia and hypocapnia/hypercapnia in case of pulmonary embolism
Biliary compression
- Dilatation of the intrahepatic bile ducts without linear filling defects; however, increased echogenicity/decreased T2 signal could be seen due to within the biliary tract. Dilatation of the intrahepatic bile ducts, enhancement of intrahepatic biliary duct, parenchymal changes (increased signal intensity on T2-weighted images, segmental parenchymal enhancement)
-RUQ, jaundice, pruritus
-Fever, nausea and vomiting less common compared to biliary rupture
Eosinophilia, elevated ALP, GGT, and bilirubin
Kidney
Perirenal rupture
- Fluid collection through the course of cyst’s content
- Focal outward bulging, discontinuity of the cyst wall
Flank pain, fever, nausea and vomiting, urticaria, and fatal anaphylaxis
Leukocytosis, elevated CRP, eosinophilia, high serum blood urea nitrogen (BUN), and creatinine
Pelvicalyceal system rupture
- Structural deformity, loss of spherical shape of the cyst
- Hydroureteronephrosis, pyonephrosis may accompany
- Filling defects within the pelvicalyceal system
- Urinoma may accompany in case of pelvicalyceal system rupture
Flank pain, fever, nausea and vomiting, urticaria, and fatal anaphylaxis
Pelvicalyceal system compression
- Hydroureteronephrosis without filling defects
- Urinary dilatation is seen above the level of compression
Flank pain, fever, nausea and vomiting, urticaria, and fatal anaphylaxis
Eosinophilia, elevated BUN, and creatinine
Fascioliasisa [2, 3, 3243]
Liver
Hepatic stage
- Multiple microabscesses, “tunnels and caves” sign
- Subcapsular hemorrhage-effusion, focal liver capsule thickening and enhancement
- Periportal lymphadenopathy, rarely portal vein thrombosis and wedge-shaped hemorrhagic infarction
- Splenomegaly may accompany
RUQ pain, urticaria, right upper quadrant pain and fever, fatigue
Leukocytosis, eosinophilia, elevated liver enzymes
Biliary stage
- Dilated biliary ducts, periportal thickening
- Floating particles in the biliary system
- Cholecystitis and/or pancreatitis may accompany
RUQ pain, pain could be disseminated in case of pancreatitis, jaundice, fever, nausea, diarrhea, pruritus
Leukocytosis, eosinophilia, elevated liver enzymes, hyperbilirubinemia, and elevated pancreatic enzymes in case of pancreatitis
Ascariasisa [2, 3, 4449]
Gastrointestinal system (GIS)
-Tubular structure within the lumen of stomach or bowel, associated fat tissue stranding
- Dilated bowels in case of intestinal obstruction
- Rarely, intraabdominal free fluid, gas, and/or fluid collection in case of GIS perforation
- Inflamed and distended appendix vermiformis
Abdominal distension, dyspepsia, nausea and vomiting in case of GIS obstruction, generalized abdominal pain fever and sepsis in case of GIS perforation, RLQ pain in case of acute appendicitis
Anemia, leukocytosis, eosinophilia
Liver
- Areas of decreased attenuation on CT, altered echogenicity on US due to parenchymal involvement
- Filling defects within the biliary tree or gallbladder
- Biliary dilatation, periportal inflammation
- Gallbladder wall thickening and distention
- Parenchymal or perihepatic abscess
RUQ pain, fatigue, fever, jaundice and pruritus in case of biliary dilatation, MURPHY sign positivity in case of acute cholecystitis, septic status can be seen in case of gallbladder perforation or liver abscess
Anemia, leukocytosis, eosinophilia, and elevated liver tests including bilirubin
Pancreas
- Thickening of pancreas, peripancreatic fat tissue stranding and fluid collection may accompany
Epigastric pain and acute pancreatitis can be the sole presentation or be seen following biliary involvement
Leukocytosis, eosinophilia, elevated pancreatic enzymes, mild hyperbilirubinemia, high ALP and GGT levels
Toxocariasisa [2, 4649]
Liver
- Multiple, ill-defined, oval shaped, small lesions (< 2 cm) in parenchyma
- Lesions may coalescence on follow-up
- Splenomegaly may accompany
RUQ pain, fatigue, fever, nausea and vomiting
Leukocytosis, eosinophilia, mildly elevated liver enzymes
Taeniasisa [2, 18, 5056]
Gastrointestinal system (GIS)
-Tubular structure within the lumen of stomach or bowel, associated fat tissue stranding
- Dilated bowels in case of intestinal obstruction
- Rarely, intraabdominal free fluid, gas and/or fluid collection in case of GIS perforation
- Inflamed and distended appendix vermiformis
Abdominal distension, dyspepsia, nausea and vomiting in case of GIS obstruction, generalized abdominal pain fever and sepsis in case of GIS perforation, RLQ pain in case of acute appendicitis
Leukocytosis, eosinophilia, anemia
Liver
- Filling defects within the biliary tree or gallbladder
- Biliary dilatation, periportal inflammation
- Gallbladder wall thickening and distention
RUQ pain, fatigue, fever, jaundice and pruritus in case of biliary dilatation, MURPHY sign positivity in case of acute cholecystitis, septic status can be seen in case of gallbladder perforation
Leukocytosis, eosinophilia, hyperbilirubinemia and elevated liver enzymes
Pancreas
- Thickening of pancreas, peripancreatic fat tissue stranding and fluid collection may accompany
Epigastric pain and acute pancreatitis can be the sole presentation or be seen following biliary involvement
Leukocytosis, eosinophilia, elevated pancreatic and liver enzymes
Amoebiasisa [44, 5759]
Colon
- Colonic wall thickening, mucosal edema and increased mucosal enhancement (primarily ascending colon)
- Rarely, intraabdominal free fluid, gas and/or fluid collection in case of colonic perforation
Bloody diarrhea, tenesmus, fever, and abdominal pain.
Generalized abdominal pain and sepsis in case of colonic perforation
Leukocytosis, anemia
Liver
- Parenchymal loculated fluid collection (abscess), air or an air-fluid level can be seen within the collection.
- Perihepatic fluid and right-sided pleural effusion may accompany
RUQ pain, fever, colonic symptoms may accompany, sepsis in case of diffuse liver abscesses
Leukocytosis without eosinophilia, anemia, elevated liver enzymes, high erythrocyte sedimentation rate and CRP
Malariaa [14, 6066]
Liver
- Hepatomegaly, periportal edema, perihepatic or intraabdominal ascites
- Gallbladder wall thickening and distention due to acalculous cholecystitis
RUQ pain, fatigue and fever, MURPHY sign positivity in case of acute cholecystitis
Anemia, thrombocytopenia, leukocytosis, mild hyperbilirubinemia, mildly elevated liver enzymes
Spleen
- Areas of decreased attenuation on CT, altered echogenicity on US due to infarction, splenomegaly
- Parenchymal or perisplenic hemorrhage/hematoma in case of spontaneous splenic rupture
LUQ pain
Rapid clinical deterioration tachycardia and hemorrhagic shock in case of splenic rupture
Gastrointestinal system (GIS)
- Dilated bowels in case of intestinal obstruction
- Rarely, intraabdominal free fluid, gas, and/or fluid collection in case of GIS perforation
Nausea and vomiting in case of GIS obstruction, generalized abdominal pain fever and sepsis in case of GIS perforation
Pancreas
- Thickening of pancreas, peripancreatic fat tissue stranding and fluid collection may accompany
Epigastric pain and symptoms related to acute pancreatitis
Anemia, thrombocytopenia, leukocytosis, hyperbilirubinemia, elevated liver and pancreatic enzymes
Visceral leishmaniasisa [16, 6772]
Liver
- Hepatomegaly, ascites, right-sided pleural effusion
- Nodular shaped focal parenchymal lesions
RUQ pain, fatigue and fever,
Pancytopenia, elevated CRP, hypergammaglobulinemia
Spleen
- Splenomegaly, ascites, left sided pleural effusion
- Nodular shaped focal parenchymal lesions
- Parenchymal or perisplenic hemorrhage/hematoma in case of spontaneous splenic rupture
LUQ pain, fatigue and fever, rapid clinical deterioration tachycardia, and hemorrhagic shock in case of splenic rupture
Lymph nodes
- Enlarged and heterogeneous lymph nodes, central cystic changes can be seen in case of necrosis
Painful and palpable peripherally located lymphadenopathy
Dientamoebiasisa [17, 73]
Gastrointestinal system (GIS)
- Bowel wall thickening, mucosal edema, associated intra-abdominal free fluid
- Dilated bowels in case of intestinal obstruction
Abdominal pain, diarrhea, anorexia
Leukocytosis, rarely eosinophilia
Liver
- Periportal fat tissue stranding and/or edema
RUQ or epigastric pain, fever
Anisakiasisa [7477]
Gastrointestinal system (GIS)
- Severe submucosal edema of the involved gastrointestinal area, adjacent fat tissue stranding, enlargement of lymph nodes, intraabdominal free fluid may accompany. Rarely intestinal obstruction due to intussusception
Abdominal pain, nausea, vomiting, diarrhea, signs of peritoneal irritation
Ileus/intestinal obstruction with or without intussusception
Leukocytosis
aReferences

Hydatid cyst

Hydatid disease is a worldwide zoonosis produced by the larval stage of the Echinococcus tapeworm. There are 4 types of Echinococcus infections. E. granulosus is the most common type, whereas E. multilocularis is less common but more invasive, mimicking malignancy [20]. E. vogeli and E. oligarthrus are very rare.
In humans, hydatid disease involves the liver in approximately 75% of the cases [21]. Although the liver is the most frequent site of involvement, any part of the body may host the hydatid disease. Hepatic hydatid cyst is commonly detected incidentally and patients are asymptomatic in most of the cases. Ultrasonography (US) can be used as a screening method of choice in liver hydatidosis. Gharbi classification system and World Health Organization (WHO) classification system classify the hydatid cysts based on their gray-scale ultrasound appearances. Unilocular or multilocular appearance, anechoic or echogenic content, multivesicular or multiseptated appearance, presence of hydatid sand, daughter cysts, floating membrane, and/or calcified wall are the sonographic features which determine the type of the hydatid cyst in Gharbi’s or WHO classification system [18, 22, 23]. Gharbi’s and WHO classification systems are helpful to determine to evaluate the cyst activity the appropriate treatment method (medical treatment, percutaneous drainage, or surgical excision) for the hydatid cyst type [2225]. The sensitivity of computed tomography (CT) in liver hydatidosis is 94% [20]. Evaluation of cystic component, vascular and biliary tree involvement, and extrahepatic extension may be assessed with magnetic resonance imaging (MRI) [26].
Hepatic hydatid cyst may cause acute abdominal pain due to its complications. The most common complication is the rupture and the most common site of the rupture is the biliary tree [21, 27, 28]. Other sites of the rupture are peritoneal cavity, thoracic cavity, hepatic subcapsular space, hollow viscera, and abdominal wall [21, 27]. The rupture may cause superinfection and anaphylaxis [27, 28]. The imaging findings of intrabiliary rupture of the hydatid cyst are structural deformity, loss of spherical shape, dilatation of the intrahepatic bile ducts, and linear filling defects within the biliary tract (Figs. 1 and 2) [21, 27, 28]. Also, air or an air-fluid level within the cyst may be present and this may indicate superinfection (Fig. 3) [28]. Intraperitoneal rupture is a rare complication and may cause peritoneal seeding (Fig. 4) [27, 29]. Superficial, large, and thin-walled hepatic hydatid cysts are most vulnerable to abdominal rupture [28]. The imaging findings of intraperitoneal rupture of the hydatid cyst are focal outward bulging, discontinuity of the cyst wall adjacent to the hepatic capsule, and intraperitoneal fluid collections [21, 2729]. Also, mural thickening of the bowel loops and peritoneal fat tissue stranding may occur due to the local allergic reactions (Fig. 5). Large hydatid cysts in the liver or other organs may cause acute abdominal symptoms due to mass effect. Alveolar echinococcosis (E. multilocularis) may demonstrate an infiltrative growth pattern and patients’ symptoms are correlated with the size of the lesion. Compression of the biliary system may result in acute cholangitis and imaging findings may resemble those seen in liver malignancy (Fig. 6) [30]. Rupture or mass effect may be seen in other abdominal organ involvement (Fig. 7) [31]. In renal hydatid disease, the rupture of the hydatid cyst in the pelvicalyceal system is a rare complication (Fig. 8). Other rare complications of abdominal hydatid cyst (disease) are portal hypertension, portal vein thrombosis, and Budd-Chiari syndrome due to mass effect on the portal and hepatic veins [28].

Fascioliasis

Fascioliasis is an important disease caused by Fasciola hepatica and Fasciola gigantica. F. hepatica is the most common type. Freshwater snail species are the intermediate hosts for fasciola parasites while many herbivorous mammals including humans are the definitive host [32]. Fasciola parasites develop into adult flukes in the bile ducts of infected mammals, which transfer immature Fasciola eggs through their feces [36].
The infection in humans begins when watercress or contaminated water containing encysted larva are ingested. The larvae reach the liver after penetrating the duodenal wall, migrating through the peritoneal cavity and penetrating the Glisson’s capsule. The flukes then migrate through the liver parenchyma to the bile ducts and gallbladder which are their permanent residence. The migratory larval and resting adult stages correspond to two clinical stages of the life cycle, called the hepatic and biliary stages [34, 35]. Common symptoms of the hepatic phase are urticaria, right upper quadrant pain, and fever. The biliary phase is usually accompanied by intermittent right upper quadrant pain, with or without cholangitis or cholestasis [36].
The migration process causes multiple microabscesses in the liver. The findings of the migration process become visible on CT as a “tunnel-like tract” from the entry site at the Glisson’s capsule deep to the parenchyma and clustered small necrotic cavities arranged in serpentine fashion are seen as “caves” [3437]. “'Tunnels and caves” sign is very characteristic for fascioliasis (Figs. 9 and 10). Subcapsular hemorrhage-effusion, thickening, and enhancement of the focal liver capsule may occur due to penetration of the Glisson’s capsule by larva [36, 38]. Wedge-shaped hemorrhagic infarction in the periphery of the liver was reported as a result of an experimental study on hepatobiliary fascioliasis [39]. A case presenting portal vein thrombosis has also been reported [40]. Periportal lymphadenopathy is a frequent and helpful finding which can be encountered in both hepatic and biliary stage [38].
In the biliary stage, adult flukes in the extrahepatic bile ducts and gallbladder cause biliary epithelial hyperplasia, hypertrophy, and partially or complete biliary obstruction [3436]. The obstruction causes acute abdominal pain due to complications such as cholestasis, cholecystitis, cholangitis, and pancreatitis [4143]. Imaging features of acute abdominal pain due to biliary obstruction by adult flukes include dilated biliary ducts, linear echogenic floating particles in the biliary system on ultrasonography (US), and irregular thickening of bile duct walls, contrast enhancement of duct walls, and intermediate signal filling defects in the dilated ducts on T2-weighted MR images. Imaging features of accompanying microabscesses in the liver parenchyma such as heterogeneous echotexture due to focal small hypo- or hyperechoic lesions on US and round or oval clustered hypodense lesions with peripheral contrast enhancement on CT and MRI may be helpful in the differential diagnosis [34, 35, 38, 79]. A large cavitary lesion may occur rarely as a result of reinvasion of the hepatic parenchyma by an adult worm and rupture of the bile duct. As a rare complication of fascioliasis, acute hemobilia related to the bleeding ulcer in the bile duct may be observed [36].

Ascariasis

Ascaris lumbricoides is the most common and the largest roundworm parasite of the human intestine [2]. A. lumbricoides are transmitted through the ingestion of contaminated food. After eggs are dissolved in the stomach to initiate larva formation, the larvae reach the caecum and migrate through the liver via penetrating portal vein branches. They reach hepatic veins via hepatic sinusoids and finally, the right heart and lungs are involved. They travel to bronchi and trachea and may be seen in sputum at this stage. When sputum is swallowed again, they reach the gastrointestinal system where they become adult worms [44].
Patients with ascariasis are asymptomatic or present with nonspecific abdominal symptoms. Acute abdominal pain may occur due to complications [2]. Small bowel obstruction is an expected complication in the massive infestation. Massive worm aggregates may cause bowel infarction and gangrene. The worms have a predilection for the orifices and the ampulla of Vater is frequently involved. Thus, biliary and pancreatic complications are also common [45]. Biliary colic, acute cholecystitis, recurrent cholangitis, liver abscess, and acute pancreatitis are related complications [45, 46]. Rarely the worm causes gastrointestinal perforation [47]. On sonography, the roundworm may be seen as single or multiple, long, linear, and thick echogenic strips without acoustic shadowing [48]. A central, longitudinal anechoic tube between two parallel echogenic lines, known as “triple line sign,” represents the digestive tract of the Ascaris worm [46, 49]. US may reveal the movement of the worm during real-time scanning. Acute intestinal obstruction secondary to ascariasis may present on CT as dilated bowel loops and elongated or rounded filling defects in the contrast filled lumen of the bowel [48]. Ascaris worms manifest as relatively hyperattenuating tubular structures surrounded by less attenuated bile in the setting of bile duct obstruction [48]. Acute pancreatitis caused by Ascaris worms presents on CT as diffusely dilated pancreatic duct and peripancreatic edema. (Fig. 11).

Toxocariasis

Toxocariasis is the infection in the human host with Toxocara canis or Toxocara cati. Their definitive hosts are the domestic dog and cat. Humans (especially children) are accidentally infected hosts when they ingest the eggs from contaminated foods. The larvae hatch in the small intestine, penetrate the wall, and migrate to all organs via the bloodstream (visceral larva migrans) [80]. The liver, lungs, central nervous system, and eyes are the most affected organs. Cardiac involvement may rarely be encountered (Fig. 12). Tissue damage is largely dependent upon eosinophilic inflammation as a response of the host immune system to the dead larvae [80].
Clinically, most of the patients are asymptomatic. Heavy infection can cause fever, abdominal pain, general weakness, weight loss, and pulmonary and neurological symptoms [81, 82]. Liver involvement appears as small, oval, multiple hypoechoic lesions on US [81, 82]. On CT, the most common imaging finding of the hepatic toxocariasis is multiple, ill-defined, oval or sometimes angular or trapezoid in shape, low-attenuating nodules along the portal vein branches that are measured less than 2 cm, best seen on the portal venous phase. An enhancing rim may be seen on arterial phase images. When the infection becomes severe, the small lesions fuse to form large lesions, some of which are crossed by portal vein branches (Fig. 12) [81, 82]. Toxocariasis appears as single or multiple lesions with low signal intensity on T1-weighted images and high signal intensity on T2-weighted images. Portal phase images after intravenous (IV) gadolinium administration are the most helpful method to demonstrate poorly defined low-signal intensity lesions. Concomitant lung lesions may also be seen in severe infection [82]. Cardiac involvement including myocarditis, pericarditis, and Loeffler’s endocarditis may be encountered in rare cases with Toxocariasis [83].

Intestinal taeniasis

Human taeniasis is a parasitic infection caused by three tapeworm species, Taenia saginata, Taenia solium, and Taenia asiatica. Humans are the only definitive hosts for these Taenia tapeworms. Humans become infected with tapeworms when they eat raw or undercooked beef or pork containing infective cysticerci [50]. Intestinal taeniasis is acquired by ingesting T. solium or T.saginata larvae, whereas ingestion of T. solium eggs causes cysticercosis [50]. Following Taenia solium ingestion, the embryos may penetrate the bowel wall and enter portal circulation. Afterward, they reach distal capillaries (cysticercosis) of richly perfused tissues (central nervous system, skeletal muscle, eyes, and subcutaneous tissue) [18, 50].
Most people with tapeworm infections have no symptoms or mild symptoms. But rare complications such as intestinal obstruction, intestinal perforation, gallbladder perforation, acute pancreatitis, acute appendicitis, and acute cholecystitis may cause acute abdominal pain [5155]. Adult worms in gallbladder lumen, bile ducts, and pancreatic duct become visible as linear hyperechoic materials on US with dilatation of the involved ducts [53]. Intestinal taeniasis appears as a fine, tubular structure with hyperechoic walls in the intestinal lumen on US (Fig. 15). Taenia worms cause double-reflective, ribbon-like echo in the lumen of the bowels (Fig. 13) [56]. MRCP images demonstrate hypointense linear structures within the dilated intra- and extrahepatic bile ducts in biliary system involvement [59]. The presence of abundant free fluid and free air on imaging studies suggests perforation of luminal organs involved by the parasite [51, 52].

Amoebiasis

Amoebiasis is a parasitic disease caused by Entamoeba histolytica. Humans are the only natural hosts. Ingestion of the cyst from contaminated food or water initiates the infection. The cyst forms the trophozoite stage within the terminal ileum or colon [57]. The trophozoite form causes disease and may spread to the extraintestinal localizations via the portal vein, the lymphatics, or by direct extension through the peritoneum [58].
Most of the infected patients are asymptomatic; however, about 10% may show with clinical symptoms. The right-side colon tends to be more severely involved. The terminal ileum may be involved up to 10% [44]. Acute amebic colitis presents with bloody diarrhea, tenesmus, and abdominal pain [57, 58]. In amebic colitis, CT may demonstrate wall thickening, mucosal edema, and increased mucosal enhancement (Fig. 14) [44]. Fulminant amebic colitis is characterized by transmural extension of amebic colitis which may result in total colonic gangrene and bowel perforation [44, 59]. Imaging features of fulminant amebic colitis include deep ulcerations, submucosal and intramural tracking of contrast agent, and discontinuous bowel necrosis seen as alternating enhancing and nonenhancing bowel wall [84].
The most common extraintestinal manifestation of the disease is a liver abscess. Symptoms of liver abscess are fever, right upper quadrant pain, and tenderness [57]. Amebic abscesses are predominantly solitary, oval or round shaped, and located near the liver capsule in the right lobe of the liver. Sonographic features of amebic abscess consist of a hypoechoic lesion with low-level internal echoes and the absence of significant wall echoes. On CT scan, it is seen as a low-density lesion with a peripheral enhancing rim thickened wall. A mild contrast enhancement around the abscess in the adjacent liver parenchyma occurs due to the peripheral zone of edema [85]. Amebic liver abscess is frequently together with right-sided pleural effusion and perihepatic fluid [44].

Malaria

Malaria is a serious parasitic infectious disease that is caused by Plasmodium species. Plasmodium species are transmitted through infected female mosquitoes that bite humans. These parasites grow within erythrocytes and are released by cyclic hemolysis [60].
The main symptom of malaria is episodic fever [60]. One of the most commonly involved systems during acute malaria is the gastrointestinal tract. Gastrointestinal symptoms are common in children with falciparum malaria. Abdominal symptoms of malaria are vomiting, dyspepsia, diarrhea, abdominal pain, and intestinal hemorrhage [61]. Acute pancreatitis, acalculous cholecystitis, and subacute intestinal obstruction are rare complications of the falciparum malaria. The precise mechanism of these complications is not clearly defined. Plasmodium falciparum infection was stipulated to have resulted in microvascular obstruction and consequently result in affected organ ischemia [14]. Rarely perforation can also occur [62]. Splenomegaly is the most common finding on CT examination in patients with gastrointestinal symptoms (Fig. 15). Other findings are hepatomegaly, splenic infarction, spontaneous splenic rupture and hemorrhage, ascites, and periportal edema [60, 63]. In patients with malaria and acute abdominal pain, CT is the mainstay imaging technique in the differentiation between splenic infarction and spontaneous rupture. Discontinuation of splenic contours, heterogeneous enhancement of splenic parenchyma, and perisplenic and intraabdominal free fluid with density levels ranging between 35 and 60 HU that suggests hemoperitoneum and presence of highest attenuation of the intraabdominal free fluid (sentinel clot) nearest to spleen should suggest splenic rupture in patients with suspicion of malaria due to travel history to the endemic areas [64]. Patients with malaria have also been reported to develop non-cardiogenic pulmonary edema and acute respiratory distress syndrome (ARDS) due to increased capillary permeability or endothelial damage (Fig. 15) [65, 66].

Visceral leishmaniasis

Leishmaniasis is a vector-borne parasitic disease caused by Leishmania species. There are 3 main forms of leishmaniases: cutaneous, mucocutaneous, and visceral [68]. Persistent irregular fever and splenomegaly are characteristic findings for visceral leishmaniasis. Besides, lymphadenopathy, hepatomegaly, pallor, night sweats, weakness, anorexia, asthenia, cutaneous pigmentation, and weight loss may be seen. Left upper quadrant pain may be caused by massive splenomegaly [68]. Gastrointestinal hemorrhage may be encountered in leishmaniasis due to the involvement of bowels as the duodenum being the most frequently involved segment [69].
Regarding US findings in the patients, splenomegaly, lymphadenopathy, and hepatomegaly are common. Less common sonographic findings include ascites, pleural effusion, portal vein dilatation, and inferior vena cava dilatation. Increased echogenicity of the kidneys and decreased echogenicity of the pancreas may be seen very rarely [70]. On contrast-enhanced CT, hepatosplenomegaly, hypodense nodular lesions in the liver, and spleen and lymphadenopathy may be detected (Fig. 16). CT angiography may reveal intraluminal contrast extravasation in cases with gastrointestinal hemorrhage. In the differential diagnosis, lymphoma should be kept in mind due to the above-mentioned mimicking findings [71, 72]. Rarely, splenic infarction and splenic rupture may occur.

Anisakiasis

Ingestion of raw or undercooked fish or other seafood may cause a rare parasitic disease, Anisakiasis [75]. There is a controversy in previous reports about the ability of the larvae of genus Anisakis during penetration of the gastrointestinal wall. Some reports indicate that the larva can only be stuck on the gastrointestinal wall while others emphasize the penetrating ability of the parasite [7577]. Attachment of larvae in the gastrointestinal wall causes local tissue damage including ulceration, granulomatous inflammation, or perforation while an allergic reaction of the gastrointestinal wall or IgE-mediated systemic allergic reaction may also occur [76]. Gastric involvement forms 90–95% of cases [77]. Symptoms include abrupt onset of abdominal pain, nausea, vomiting, fever in gastric anisakiasis with additional diarrhea, peritoneal irritation, and intestinal obstruction caused by intussusception in intestinal anisakiasis [75, 77]. Diagnosis of anisakiasis with imaging findings solely is usually difficult if one neglects the history of raw or undercooked seafood consumption. US, as a frequently used imaging technique in epigastric or right upper quadrant pain, may demonstrate diffuse concentric wall thickening in gastric or intestinal walls with hypoechoic submucosal edema, irregularity of the lumen surface due to edema of the Kerckring’s folds (corn sign), and accompanying free fluid around involved segment [75].
The features of anisakiasis in CT imaging during gastric and intestinal involvement include gastric or intestinal wall thickening due to submucosal edema, perigastric fat stranding in gastric anisakiasis, and trace ascites. Prompt diagnosis of gastric anisakiasis can be accomplished with endoscopy followed by endoscopic removal of larvae. Management of intestinal anisakiasis depends on conservative medical treatment with antihelminthic drugs such as albendazole [77].

Dientamoebiasis

Dientamoeba fragilis is a protozoan parasite of the human bowel. It has been considered for years to be a nonpathogenic organism but more recent reports throughout the world show association of this parasite with gastrointestinal symptoms [86]. The most common symptoms of dientamoebiasis are diarrhea, abdominal pain, loose stools, and anorexia [87]. Acute abdominal pain is a rare symptom [73, 88]. CT may demonstrate nonspecific inflammatory changes due to involvement (Fig. 17).

Conclusion

Acute abdominal pain may be seen in parasitic diseases. The diagnosis can be delayed because of the similar clinical signs encountered in other frequently seen causes of acute abdomen. Therefore, parasitic infections should be included in the differential diagnosis of acute abdominal pain particularly in patients from known endemic areas. Awareness of imaging findings in abdominal parasitic involvement is triggering to raise the suspicion for parasitic disease as a cause of acute abdominal pain.
Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Torgerson PR, Devleesschauwer B, Praet N et al (2015) World Health Organization estimates of the global and regional disease burden of 11 foodborne parasitic diseases, 2010: A Data Synthesis. PLoS Med 12:e1001920PubMedPubMedCentral Torgerson PR, Devleesschauwer B, Praet N et al (2015) World Health Organization estimates of the global and regional disease burden of 11 foodborne parasitic diseases, 2010: A Data Synthesis. PLoS Med 12:e1001920PubMedPubMedCentral
2.
Zurück zum Zitat Ortega CD, Ogawa NY, Rocha MS et al (2010) Helminthic diseases in the abdomen: an epidemiologic and radiologic overview. Radiographics 30:253–267PubMed Ortega CD, Ogawa NY, Rocha MS et al (2010) Helminthic diseases in the abdomen: an epidemiologic and radiologic overview. Radiographics 30:253–267PubMed
3.
Zurück zum Zitat Catalano OA, Sahani DV, Forcione DG et al (2009) Biliary infections: spectrum of imaging findings and management. Radiographics 29:2059–2080PubMed Catalano OA, Sahani DV, Forcione DG et al (2009) Biliary infections: spectrum of imaging findings and management. Radiographics 29:2059–2080PubMed
4.
Zurück zum Zitat Tappe D, Stich A, Frosch M (2008) Emergence of polycystic neotropical echinococcosis. Emerg Infect Dis 14:292–297PubMedPubMedCentral Tappe D, Stich A, Frosch M (2008) Emergence of polycystic neotropical echinococcosis. Emerg Infect Dis 14:292–297PubMedPubMedCentral
5.
Zurück zum Zitat Grosso G, Gruttadauria S, Biondi A, Marventano S, Mistretta A (2012) Worldwide epidemiology of liver hydatidosis including the Mediterranean area. World J Gastroenterol 18:1425–1437PubMedPubMedCentral Grosso G, Gruttadauria S, Biondi A, Marventano S, Mistretta A (2012) Worldwide epidemiology of liver hydatidosis including the Mediterranean area. World J Gastroenterol 18:1425–1437PubMedPubMedCentral
6.
Zurück zum Zitat Baumann S, Shi R, Liu W et al (2019) Worldwide literature on epidemiology of human alveolar echinococcosis: a systematic review of research published in the twenty-first century. Infection 47:703–727PubMed Baumann S, Shi R, Liu W et al (2019) Worldwide literature on epidemiology of human alveolar echinococcosis: a systematic review of research published in the twenty-first century. Infection 47:703–727PubMed
7.
Zurück zum Zitat Mas-Coma MS, Esteban JG, Bargues MD (1999) Epidemiology of human fascioliasis: a review and proposed new classification. Bull World Health Organ 77:340–346PubMedPubMedCentral Mas-Coma MS, Esteban JG, Bargues MD (1999) Epidemiology of human fascioliasis: a review and proposed new classification. Bull World Health Organ 77:340–346PubMedPubMedCentral
8.
Zurück zum Zitat Pullan RL, Brooker SJ (2012) The global limits and population at risk of soil-transmitted helminth infections in 2010. Parasit Vectors 5:81PubMedPubMedCentral Pullan RL, Brooker SJ (2012) The global limits and population at risk of soil-transmitted helminth infections in 2010. Parasit Vectors 5:81PubMedPubMedCentral
9.
Zurück zum Zitat Macpherson CN (2013) The epidemiology and public health importance of toxocariasis: a zoonosis of global importance. Int J Parasitol 43:999–1008PubMed Macpherson CN (2013) The epidemiology and public health importance of toxocariasis: a zoonosis of global importance. Int J Parasitol 43:999–1008PubMed
10.
Zurück zum Zitat Ale A, Victor B, Praet N et al (2014) Epidemiology and genetic diversity of Taenia asiatica: a systematic review. Parasit Vectors 7:45PubMedPubMedCentral Ale A, Victor B, Praet N et al (2014) Epidemiology and genetic diversity of Taenia asiatica: a systematic review. Parasit Vectors 7:45PubMedPubMedCentral
11.
Zurück zum Zitat Trevisan C, Sotiraki S, Laranjo-Gonzalez M et al (2018) Epidemiology of taeniosis/cysticercosis in Europe, a systematic review: eastern Europe. Parasit Vectors 11:569PubMedPubMedCentral Trevisan C, Sotiraki S, Laranjo-Gonzalez M et al (2018) Epidemiology of taeniosis/cysticercosis in Europe, a systematic review: eastern Europe. Parasit Vectors 11:569PubMedPubMedCentral
12.
Zurück zum Zitat Rajshekhar V, Joshi DD, Doanh NQ, van De N, Xiaonong Z (2003) Taenia solium taeniosis/cysticercosis in Asia: epidemiology, impact and issues. Acta Trop 87:53–60PubMed Rajshekhar V, Joshi DD, Doanh NQ, van De N, Xiaonong Z (2003) Taenia solium taeniosis/cysticercosis in Asia: epidemiology, impact and issues. Acta Trop 87:53–60PubMed
13.
Zurück zum Zitat Shirley DT, Farr L, Watanabe K, Moonah S (2018) A review of the global burden, new diagnostics, and current therapeutics for amebiasis. Open Forum Infect Dis; 5:ofy161 Shirley DT, Farr L, Watanabe K, Moonah S (2018) A review of the global burden, new diagnostics, and current therapeutics for amebiasis. Open Forum Infect Dis; 5:ofy161
15.
Zurück zum Zitat Autino B, Noris A, Russo R, Castelli F (2012) Epidemiology of malaria in endemic areas. Mediterr J Hematol Infect Dis 4:e2012060PubMedPubMedCentral Autino B, Noris A, Russo R, Castelli F (2012) Epidemiology of malaria in endemic areas. Mediterr J Hematol Infect Dis 4:e2012060PubMedPubMedCentral
16.
Zurück zum Zitat Georgiadou SP, Makaritsis KP, Dalekos GN (2015) Leishmaniasis revisited: Current aspects on epidemiology, diagnosis and treatment. J Transl Int Med 3:43–50PubMedPubMedCentral Georgiadou SP, Makaritsis KP, Dalekos GN (2015) Leishmaniasis revisited: Current aspects on epidemiology, diagnosis and treatment. J Transl Int Med 3:43–50PubMedPubMedCentral
17.
Zurück zum Zitat Stark D, Barratt J, Roberts T, Marriott D, Harkness J, Ellis J (2010) A review of the clinical presentation of dientamoebiasis. Am J Trop Med Hyg 82:614–619PubMedPubMedCentral Stark D, Barratt J, Roberts T, Marriott D, Harkness J, Ellis J (2010) A review of the clinical presentation of dientamoebiasis. Am J Trop Med Hyg 82:614–619PubMedPubMedCentral
18.
Zurück zum Zitat Carnero PR, Mateo PH, Martín-Garre S, Pérez ÁG, Del Campo LJ (2017) Unexpected hosts: imaging parasitic diseases. Insights Imaging 8:101–125 Carnero PR, Mateo PH, Martín-Garre S, Pérez ÁG, Del Campo LJ (2017) Unexpected hosts: imaging parasitic diseases. Insights Imaging 8:101–125
19.
Zurück zum Zitat Parashari UC, Upadhyay D, Khanduri S, Qayyum FA, Bhadury S (2011) Primary renal hydatidosis with associated macroscopic hydatiduria--a computed tomography urography diagnosis with pathological confirmation. Trop Doct 41:187–189PubMed Parashari UC, Upadhyay D, Khanduri S, Qayyum FA, Bhadury S (2011) Primary renal hydatidosis with associated macroscopic hydatiduria--a computed tomography urography diagnosis with pathological confirmation. Trop Doct 41:187–189PubMed
20.
Zurück zum Zitat Polat P, Kantarci M, Alper F, Suma S, Koruyucu MB, Okur A (2003) Hydatid disease from head to toe. Radiographics 23:475–494 quiz 536-477PubMed Polat P, Kantarci M, Alper F, Suma S, Koruyucu MB, Okur A (2003) Hydatid disease from head to toe. Radiographics 23:475–494 quiz 536-477PubMed
21.
Zurück zum Zitat Pedrosa I, Saiz A, Arrazola J, Ferreiros J, Pedrosa CS (2000) Hydatid disease: radiologic and pathologic features and complications. Radiographics 20:795–817PubMed Pedrosa I, Saiz A, Arrazola J, Ferreiros J, Pedrosa CS (2000) Hydatid disease: radiologic and pathologic features and complications. Radiographics 20:795–817PubMed
22.
Zurück zum Zitat Gharbi HA, Hassine W, Brauner MW, Dupuch K (1981) Ultrasound examination of the hydatic liver. Radiology 139:459–463PubMed Gharbi HA, Hassine W, Brauner MW, Dupuch K (1981) Ultrasound examination of the hydatic liver. Radiology 139:459–463PubMed
23.
Zurück zum Zitat WHO Informal Working Group (2003) International classification of ultrasound images in cystic echinococcosis for application in clinical and field epidemiological settings. Acta Trop 85:253–261 WHO Informal Working Group (2003) International classification of ultrasound images in cystic echinococcosis for application in clinical and field epidemiological settings. Acta Trop 85:253–261
24.
Zurück zum Zitat Akhan O, Ozmen MN, Dincer A, Sayek I, Gocmen A (1996) Liver hydatid disease: long-term results of percutaneous treatment. Radiology 198:259–264PubMed Akhan O, Ozmen MN, Dincer A, Sayek I, Gocmen A (1996) Liver hydatid disease: long-term results of percutaneous treatment. Radiology 198:259–264PubMed
25.
Zurück zum Zitat Akhan O, Salik AE, Ciftci T, Akinci D, Islim F, Akpinar B (2017) Comparison of long-term results of percutaneous treatment techniques for hepatic cystic echinococcosis types 2 and 3b. AJR Am J Roentgenol 208:878–884PubMed Akhan O, Salik AE, Ciftci T, Akinci D, Islim F, Akpinar B (2017) Comparison of long-term results of percutaneous treatment techniques for hepatic cystic echinococcosis types 2 and 3b. AJR Am J Roentgenol 208:878–884PubMed
26.
Zurück zum Zitat Marrone G, Crino F, Caruso S et al (2012) Multidisciplinary imaging of liver hydatidosis. World J Gastroenterol 18:1438–1447PubMedPubMedCentral Marrone G, Crino F, Caruso S et al (2012) Multidisciplinary imaging of liver hydatidosis. World J Gastroenterol 18:1438–1447PubMedPubMedCentral
27.
Zurück zum Zitat Antonopoulos P, Tavernaraki K, Charalampopoulos G, Constantinidis F, Petroulakis A, Drossos C (2008) Hydatid hepatic cysts rupture into the biliary tract, the peritoneal cavity, the thoracic cavity and the hepatic subcapsular space: specific computed tomography findings. Abdom Imaging 33:294–300PubMed Antonopoulos P, Tavernaraki K, Charalampopoulos G, Constantinidis F, Petroulakis A, Drossos C (2008) Hydatid hepatic cysts rupture into the biliary tract, the peritoneal cavity, the thoracic cavity and the hepatic subcapsular space: specific computed tomography findings. Abdom Imaging 33:294–300PubMed
28.
Zurück zum Zitat Alghofaily KA, Saeedan MB, Aljohani IM et al (2017) Hepatic hydatid disease complications: review of imaging findings and clinical implications. Abdom Radiol (NY) 42:199–210 Alghofaily KA, Saeedan MB, Aljohani IM et al (2017) Hepatic hydatid disease complications: review of imaging findings and clinical implications. Abdom Radiol (NY) 42:199–210
29.
Zurück zum Zitat Derici H, Tansug T, Reyhan E, Bozdag AD, Nazli O (2006) Acute intraperitoneal rupture of hydatid cysts. World J Surg 30:1879–1883 discussion 1884-1875PubMed Derici H, Tansug T, Reyhan E, Bozdag AD, Nazli O (2006) Acute intraperitoneal rupture of hydatid cysts. World J Surg 30:1879–1883 discussion 1884-1875PubMed
30.
Zurück zum Zitat Czermak BV, Unsinn KM, Gotwald T et al (2001) Echinococcus multilocularis revisited. AJR Am J Roentgenol 176:1207–1212PubMed Czermak BV, Unsinn KM, Gotwald T et al (2001) Echinococcus multilocularis revisited. AJR Am J Roentgenol 176:1207–1212PubMed
31.
Zurück zum Zitat Kusaslan R, Sahin DA, Belli AK, Dilek ON (2007) Rupture of a mesenteric hydatid cyst: a rare cause of acute abdomen. Can J Surg 50:E3–E4PubMedPubMedCentral Kusaslan R, Sahin DA, Belli AK, Dilek ON (2007) Rupture of a mesenteric hydatid cyst: a rare cause of acute abdomen. Can J Surg 50:E3–E4PubMedPubMedCentral
32.
Zurück zum Zitat Mandell G, Dolin R, Bennett J (2019) Mandell, Douglas, and Bennett's principles and practice of infectious diseases, 9th edn. Elsevier, chapter 288:3459–3460 Mandell G, Dolin R, Bennett J (2019) Mandell, Douglas, and Bennett's principles and practice of infectious diseases, 9th edn. Elsevier, chapter 288:3459–3460
33.
Zurück zum Zitat Mas-Coma S, Bargues MD, Valero MA (2005) Fascioliasis and other plant-borne trematode zoonoses. Int J Parasitol 35:1255–1278PubMed Mas-Coma S, Bargues MD, Valero MA (2005) Fascioliasis and other plant-borne trematode zoonoses. Int J Parasitol 35:1255–1278PubMed
34.
Zurück zum Zitat Lim JH, Mairiang E, Ahn GH (2008) Biliary parasitic diseases including clonorchiasis, opisthorchiasis and fascioliasis. Abdom Imaging 33:157–165PubMed Lim JH, Mairiang E, Ahn GH (2008) Biliary parasitic diseases including clonorchiasis, opisthorchiasis and fascioliasis. Abdom Imaging 33:157–165PubMed
35.
Zurück zum Zitat Dusak A, Onur MR, Cicek M, Firat U, Ren T, Dogra VS (2012) Radiological imaging features of Fasciola hepatica infection—a pictorial review. J Clin Imaging Sci; 2:2 Dusak A, Onur MR, Cicek M, Firat U, Ren T, Dogra VS (2012) Radiological imaging features of Fasciola hepatica infection—a pictorial review. J Clin Imaging Sci; 2:2
36.
Zurück zum Zitat Koc Z, Ulusan S, Tokmak N (2009) Hepatobiliary fascioliasis: imaging characteristics with a new finding. Diagn Interv Radiol 15:247–251PubMed Koc Z, Ulusan S, Tokmak N (2009) Hepatobiliary fascioliasis: imaging characteristics with a new finding. Diagn Interv Radiol 15:247–251PubMed
37.
Zurück zum Zitat Lim JH, Kim SY, Park CM (2007) Parasitic diseases of the biliary tract. AJR Am J Roentgenol 188:1596–1603PubMed Lim JH, Kim SY, Park CM (2007) Parasitic diseases of the biliary tract. AJR Am J Roentgenol 188:1596–1603PubMed
38.
Zurück zum Zitat Kabaalioglu A, Ceken K, Alimoglu E et al (2007) Hepatobiliary fascioliasis: sonographic and CT findings in 87 patients during the initial phase and long-term follow-up. AJR Am J Roentgenol 189:824–828PubMed Kabaalioglu A, Ceken K, Alimoglu E et al (2007) Hepatobiliary fascioliasis: sonographic and CT findings in 87 patients during the initial phase and long-term follow-up. AJR Am J Roentgenol 189:824–828PubMed
39.
Zurück zum Zitat Han JK, Jang HJ, Choi BI et al (1999) Experimental hepatobiliary fascioliasis in rabbits: a radiology-pathology correlation. Invest Radiol 34:99–108PubMed Han JK, Jang HJ, Choi BI et al (1999) Experimental hepatobiliary fascioliasis in rabbits: a radiology-pathology correlation. Invest Radiol 34:99–108PubMed
40.
Zurück zum Zitat Fica A, Dabanch J, Farias C, Castro M, Jercic MI, Weitzel T (2012) Acute fascioliasis—clinical and epidemiological features of four patients in Chile. Clin Microbiol Infect 18:91–96PubMed Fica A, Dabanch J, Farias C, Castro M, Jercic MI, Weitzel T (2012) Acute fascioliasis—clinical and epidemiological features of four patients in Chile. Clin Microbiol Infect 18:91–96PubMed
41.
Zurück zum Zitat Riedtmann HJ, Obeid T, Aeberhard P, Sakmann P (1995) Fasciola hepatica—a unusual cause of acute cholecystitis with cholestatic jaundice. Schweiz Med Wochenschr 125:1642–1648PubMed Riedtmann HJ, Obeid T, Aeberhard P, Sakmann P (1995) Fasciola hepatica—a unusual cause of acute cholecystitis with cholestatic jaundice. Schweiz Med Wochenschr 125:1642–1648PubMed
42.
Zurück zum Zitat Sezgin O, Altintas E, Tombak A, Ucbilek E (2010) Fasciola hepatica-induced acute pancreatitis: report of two cases and review of the literature. Turk J Gastroenterol 21:183–187PubMed Sezgin O, Altintas E, Tombak A, Ucbilek E (2010) Fasciola hepatica-induced acute pancreatitis: report of two cases and review of the literature. Turk J Gastroenterol 21:183–187PubMed
43.
Zurück zum Zitat Echenique-Elizondo M, Amondarain J, Liron de Robles C (2005) Fascioliasis: an exceptional cause of acute pancreatitis. JOP 6:36–39PubMed Echenique-Elizondo M, Amondarain J, Liron de Robles C (2005) Fascioliasis: an exceptional cause of acute pancreatitis. JOP 6:36–39PubMed
44.
Zurück zum Zitat Park MS, Kim KW, Ha HK, Lee DH (2008) Intestinal parasitic infection. Abdom Imaging 33:166–171PubMed Park MS, Kim KW, Ha HK, Lee DH (2008) Intestinal parasitic infection. Abdom Imaging 33:166–171PubMed
45.
Zurück zum Zitat Khuroo MS, Zargar SA, Mahajan R (1990) Hepatobiliary and pancreatic ascariasis in India. Lancet 335:1503–1506PubMed Khuroo MS, Zargar SA, Mahajan R (1990) Hepatobiliary and pancreatic ascariasis in India. Lancet 335:1503–1506PubMed
46.
Zurück zum Zitat Kenamond CA, Warshauer DM, Grimm IS (2006) Best cases from the AFIP: Ascaris pancreatitis. Radiographics 26:1567–1570PubMed Kenamond CA, Warshauer DM, Grimm IS (2006) Best cases from the AFIP: Ascaris pancreatitis. Radiographics 26:1567–1570PubMed
47.
Zurück zum Zitat Darlington Cd Mbbs MS, Anitha Gfs Mbbs MD (2018) Ascaridial volvulus: an uncommon cause of ileal perforation. Iran J Med Sci 43:432–435PubMedPubMedCentral Darlington Cd Mbbs MS, Anitha Gfs Mbbs MD (2018) Ascaridial volvulus: an uncommon cause of ileal perforation. Iran J Med Sci 43:432–435PubMedPubMedCentral
48.
Zurück zum Zitat Das CJ, Kumar J, Debnath J, Chaudhry A (2007) Imaging of ascariasis. Australas Radiol 51:500–506PubMed Das CJ, Kumar J, Debnath J, Chaudhry A (2007) Imaging of ascariasis. Australas Radiol 51:500–506PubMed
49.
Zurück zum Zitat Lynser D, Handique A, Daniala C, Phukan P, Marbaniang E (2015) Sonographic images of hepato-pancreatico-biliary and intestinal ascariasis: A pictorial review. Insights Imaging 6:641–646PubMedPubMedCentral Lynser D, Handique A, Daniala C, Phukan P, Marbaniang E (2015) Sonographic images of hepato-pancreatico-biliary and intestinal ascariasis: A pictorial review. Insights Imaging 6:641–646PubMedPubMedCentral
50.
Zurück zum Zitat Zammarchi L, Strohmeyer M, Bartalesi F et al (2013) Epidemiology and management of cysticercosis and Taenia solium taeniasis in Europe, systematic review 1990-2011. PLoS One 8:e69537PubMedPubMedCentral Zammarchi L, Strohmeyer M, Bartalesi F et al (2013) Epidemiology and management of cysticercosis and Taenia solium taeniasis in Europe, systematic review 1990-2011. PLoS One 8:e69537PubMedPubMedCentral
51.
Zurück zum Zitat Bekraki A, Hanna K (2016) Peritonitis caused by jejunal perforation with Taenia saginata: report of a case. J Parasit Dis 40:203–204PubMed Bekraki A, Hanna K (2016) Peritonitis caused by jejunal perforation with Taenia saginata: report of a case. J Parasit Dis 40:203–204PubMed
52.
Zurück zum Zitat Hakeem SY, Rashid A, Khuroo S, Bali RS (2012) Taenia saginata: a rare cause of gall bladder perforation. Case Rep Surg 2012:572484PubMedPubMedCentral Hakeem SY, Rashid A, Khuroo S, Bali RS (2012) Taenia saginata: a rare cause of gall bladder perforation. Case Rep Surg 2012:572484PubMedPubMedCentral
53.
Zurück zum Zitat Liu YM, Bair MJ, Chang WH, Lin SC, Chan YJ (2005) Acute pancreatitis caused by tapeworm in the biliary tract. Am J Trop Med Hyg 73:377–380PubMed Liu YM, Bair MJ, Chang WH, Lin SC, Chan YJ (2005) Acute pancreatitis caused by tapeworm in the biliary tract. Am J Trop Med Hyg 73:377–380PubMed
54.
Zurück zum Zitat Chakrabarti I, Gangopadhyay M, Bandopadhyay A, Das NK (2014) A rare case of gangrenous appendicitis by eggs of Taenia species. J Parasit Dis 38:135–137PubMed Chakrabarti I, Gangopadhyay M, Bandopadhyay A, Das NK (2014) A rare case of gangrenous appendicitis by eggs of Taenia species. J Parasit Dis 38:135–137PubMed
55.
Zurück zum Zitat Yu HJ, Ahn CS, Lim S et al (2019) Biliary taeniasis with cholecystitis: an unusual case of Taenia solium infection with a literature review. Am J Trop Med Hyg 100:135–139PubMed Yu HJ, Ahn CS, Lim S et al (2019) Biliary taeniasis with cholecystitis: an unusual case of Taenia solium infection with a literature review. Am J Trop Med Hyg 100:135–139PubMed
56.
Zurück zum Zitat Fabijanic D, Giunio L, Ivani N, Fabijanic A, Miric D, Kardum D (2001) Ultrasonographic appearance of colon taeniasis. J Ultrasound Med 20:275–277PubMed Fabijanic D, Giunio L, Ivani N, Fabijanic A, Miric D, Kardum D (2001) Ultrasonographic appearance of colon taeniasis. J Ultrasound Med 20:275–277PubMed
57.
58.
Zurück zum Zitat Salles JM, Salles MJ, Moraes LA, Silva MC (2007) Invasive amebiasis: an update on diagnosis and management. Expert Rev Anti Infect Ther 5:893–901PubMed Salles JM, Salles MJ, Moraes LA, Silva MC (2007) Invasive amebiasis: an update on diagnosis and management. Expert Rev Anti Infect Ther 5:893–901PubMed
59.
Zurück zum Zitat Chaturvedi R, Gupte PA, Joshi AS (2015) Fulminant amoebic colitis: a clinicopathological study of 30 cases. Postgrad Med J 91:200–205PubMed Chaturvedi R, Gupte PA, Joshi AS (2015) Fulminant amoebic colitis: a clinicopathological study of 30 cases. Postgrad Med J 91:200–205PubMed
60.
Zurück zum Zitat Kim EM, Cho HJ, Cho CR, Kwak YG, Kim MY, Cho YK (2010) Abdominal computed tomography findings of malaria infection with Plasmodium vivax. Am J Trop Med Hyg 83:1202–1205PubMedPubMedCentral Kim EM, Cho HJ, Cho CR, Kwak YG, Kim MY, Cho YK (2010) Abdominal computed tomography findings of malaria infection with Plasmodium vivax. Am J Trop Med Hyg 83:1202–1205PubMedPubMedCentral
61.
Zurück zum Zitat Sowunmi A, Ogundahunsi OA, Falade CO, Gbotosho GO, Oduola AM (2000) Gastrointestinal manifestations of acute falciparum malaria in children. Acta Trop 74:73–76PubMed Sowunmi A, Ogundahunsi OA, Falade CO, Gbotosho GO, Oduola AM (2000) Gastrointestinal manifestations of acute falciparum malaria in children. Acta Trop 74:73–76PubMed
62.
Zurück zum Zitat Bhandari TR, Shahi S, Poudel R, Chaudhary N (2016) A child with severe malaria presenting with acute surgical abdomen (Duodenal Perforation). Case Rep Pediatr 2016:3092130PubMedPubMedCentral Bhandari TR, Shahi S, Poudel R, Chaudhary N (2016) A child with severe malaria presenting with acute surgical abdomen (Duodenal Perforation). Case Rep Pediatr 2016:3092130PubMedPubMedCentral
64.
Zurück zum Zitat Tonolini M, Ierardi AM, Carrafiello G (2016) Atraumatic splenic rupture, an underrated cause of acute abdomen. Insights Imaging 7:641–646PubMedPubMedCentral Tonolini M, Ierardi AM, Carrafiello G (2016) Atraumatic splenic rupture, an underrated cause of acute abdomen. Insights Imaging 7:641–646PubMedPubMedCentral
65.
Zurück zum Zitat Elzein F, Mohammed N, Ali N, Bahloul A, Albadani A, Alsherbeeni N (2017) Pulmonary manifestation of Plasmodium falciparum malaria: case reports and review of the literature. Respir Med Case Rep 22:83–86PubMedPubMedCentral Elzein F, Mohammed N, Ali N, Bahloul A, Albadani A, Alsherbeeni N (2017) Pulmonary manifestation of Plasmodium falciparum malaria: case reports and review of the literature. Respir Med Case Rep 22:83–86PubMedPubMedCentral
66.
Zurück zum Zitat Taylor WRJ, Hanson J, Turner GDH, White NJ, Dondorp AM (2012) Respiratory manifestations of malaria. Chest 142:492–505PubMed Taylor WRJ, Hanson J, Turner GDH, White NJ, Dondorp AM (2012) Respiratory manifestations of malaria. Chest 142:492–505PubMed
67.
Zurück zum Zitat Rovira RE, Diaz-Gomez JR, Lapuebla X, Aguar MC (2005) [Spontaneous rupture of the spleen in a patient with visceral leishmaniasis]. Enferm Infecc Microbiol Clin; 23:327 Rovira RE, Diaz-Gomez JR, Lapuebla X, Aguar MC (2005) [Spontaneous rupture of the spleen in a patient with visceral leishmaniasis]. Enferm Infecc Microbiol Clin; 23:327
68.
Zurück zum Zitat Torres-Guerrero E, Quintanilla-Cedillo MR, Ruiz-Esmenjaud J, Arenas R (2017) Leishmaniasis: a review. F1000Res; 6:750 Torres-Guerrero E, Quintanilla-Cedillo MR, Ruiz-Esmenjaud J, Arenas R (2017) Leishmaniasis: a review. F1000Res; 6:750
69.
Zurück zum Zitat Keramati MR, Khooei A, Aelami MH (2013) Visceral leishmaniasis with massive hematemesis and peripheral blood involvement. Clin Lab 59:425–427PubMed Keramati MR, Khooei A, Aelami MH (2013) Visceral leishmaniasis with massive hematemesis and peripheral blood involvement. Clin Lab 59:425–427PubMed
70.
Zurück zum Zitat Elsafi Ahmed Abdalla CEA, Ahmed AMF, ElGaddal ASA, Saeed A (2014) Ultrasound findings in patients with visceral leishmaniasis. International Journal of Medical Imaging 2:5 Elsafi Ahmed Abdalla CEA, Ahmed AMF, ElGaddal ASA, Saeed A (2014) Ultrasound findings in patients with visceral leishmaniasis. International Journal of Medical Imaging 2:5
71.
Zurück zum Zitat Bukte Y, Nazaroglu H, Mete A, Yilmaz F (2004) Visceral leishmaniasis with multiple nodular lesions of the liver and spleen: CT and sonographic findings. Abdom Imaging 29:82–84PubMed Bukte Y, Nazaroglu H, Mete A, Yilmaz F (2004) Visceral leishmaniasis with multiple nodular lesions of the liver and spleen: CT and sonographic findings. Abdom Imaging 29:82–84PubMed
72.
Zurück zum Zitat Raeymaeckers S, Docx M, Demeyere N (2012) MRI-findings of nodular lesions in an enlarged spleen, associated with visceral Leishmaniasis. Eur J Radiol 81:2550–2553PubMed Raeymaeckers S, Docx M, Demeyere N (2012) MRI-findings of nodular lesions in an enlarged spleen, associated with visceral Leishmaniasis. Eur J Radiol 81:2550–2553PubMed
73.
Zurück zum Zitat Vassalou E, Vassalos CM, Spanakos G et al (2016) First report of Dientamoeba fragilis infection explaining acute non-specific abdominal pain. Indian J Med Microbiol 34:106–108PubMed Vassalou E, Vassalos CM, Spanakos G et al (2016) First report of Dientamoeba fragilis infection explaining acute non-specific abdominal pain. Indian J Med Microbiol 34:106–108PubMed
74.
Zurück zum Zitat Yasunaga H, Horiguchi H, Kuwabara K, Hashimoto H, Matsuda S (2010) Clinical features of bowel anisakiasis in Japan. Am J Trop Med Hyg 83:104–105PubMedPubMedCentral Yasunaga H, Horiguchi H, Kuwabara K, Hashimoto H, Matsuda S (2010) Clinical features of bowel anisakiasis in Japan. Am J Trop Med Hyg 83:104–105PubMedPubMedCentral
75.
Zurück zum Zitat Rodriguez Carnero P, Hernandez Mateo P, Martin-Garre S, Garcia Perez A, Del Campo L (2017) Unexpected hosts: imaging parasitic diseases. Insights Imaging 8:101–125PubMed Rodriguez Carnero P, Hernandez Mateo P, Martin-Garre S, Garcia Perez A, Del Campo L (2017) Unexpected hosts: imaging parasitic diseases. Insights Imaging 8:101–125PubMed
76.
Zurück zum Zitat Shibata E, Ueda T, Akaike G, Saida Y (2014) CT findings of gastric and intestinal anisakiasis. Abdom Imaging 39:257–261PubMedPubMedCentral Shibata E, Ueda T, Akaike G, Saida Y (2014) CT findings of gastric and intestinal anisakiasis. Abdom Imaging 39:257–261PubMedPubMedCentral
77.
Zurück zum Zitat Lalchandani UR, Weadock WJ, Brady GF, Wasnik AP (2018) Imaging in gastric anisakiasis. Clin Imaging 50:286–288PubMed Lalchandani UR, Weadock WJ, Brady GF, Wasnik AP (2018) Imaging in gastric anisakiasis. Clin Imaging 50:286–288PubMed
78.
Zurück zum Zitat Cwiklinski K, O'Neill SM, Donnelly S, Dalton JP (2016) A prospective view of animal and human Fasciolosis. Parasite Immunol 38:558–568PubMedPubMedCentral Cwiklinski K, O'Neill SM, Donnelly S, Dalton JP (2016) A prospective view of animal and human Fasciolosis. Parasite Immunol 38:558–568PubMedPubMedCentral
79.
Zurück zum Zitat Gonzalo-Orden M, Millan L, Alvarez M et al (2003) Diagnostic imaging in sheep hepatic fascioliasis: ultrasound, computer tomography and magnetic resonance findings. Parasitol Res 90:359–364PubMed Gonzalo-Orden M, Millan L, Alvarez M et al (2003) Diagnostic imaging in sheep hepatic fascioliasis: ultrasound, computer tomography and magnetic resonance findings. Parasitol Res 90:359–364PubMed
80.
Zurück zum Zitat Despommier D (2003) Toxocariasis: clinical aspects, epidemiology, medical ecology, and molecular aspects. Clin Microbiol Rev 16:265–272PubMedPubMedCentral Despommier D (2003) Toxocariasis: clinical aspects, epidemiology, medical ecology, and molecular aspects. Clin Microbiol Rev 16:265–272PubMedPubMedCentral
81.
Zurück zum Zitat Chang S, Lim JH, Choi D et al (2006) Hepatic visceral larva migrans of Toxocara canis: CT and sonographic findings. AJR Am J Roentgenol 187:W622–W629PubMed Chang S, Lim JH, Choi D et al (2006) Hepatic visceral larva migrans of Toxocara canis: CT and sonographic findings. AJR Am J Roentgenol 187:W622–W629PubMed
82.
Zurück zum Zitat Lim JH (2008) Toxocariasis of the liver: visceral larva migrans. Abdom Imaging 33:151–156PubMed Lim JH (2008) Toxocariasis of the liver: visceral larva migrans. Abdom Imaging 33:151–156PubMed
83.
Zurück zum Zitat Kuenzli E, Neumayr A, Chaney M, Blum J (2016) Toxocariasis-associated cardiac diseases--A systematic review of the literature. Acta Trop 154:107–120PubMed Kuenzli E, Neumayr A, Chaney M, Blum J (2016) Toxocariasis-associated cardiac diseases--A systematic review of the literature. Acta Trop 154:107–120PubMed
84.
Zurück zum Zitat Kinoo SM, Ramkelawon VV, Maharajh J, Singh B (2018) Fulminant amoebic colitis in the era of computed tomography scan: a case report and review of the literature. SA J Radiol 22:1354PubMedPubMedCentral Kinoo SM, Ramkelawon VV, Maharajh J, Singh B (2018) Fulminant amoebic colitis in the era of computed tomography scan: a case report and review of the literature. SA J Radiol 22:1354PubMedPubMedCentral
85.
Zurück zum Zitat Mortele KJ, Segatto E, Ros PR (2004) The infected liver: radiologic-pathologic correlation. Radiographics 24:937–955PubMed Mortele KJ, Segatto E, Ros PR (2004) The infected liver: radiologic-pathologic correlation. Radiographics 24:937–955PubMed
86.
Zurück zum Zitat Stark D, Barratt J, Chan D, Ellis JT (2016) Dientamoeba fragilis, the Neglected Trichomonad of the Human Bowel. Clin Microbiol Rev 29:553–580PubMedPubMedCentral Stark D, Barratt J, Chan D, Ellis JT (2016) Dientamoeba fragilis, the Neglected Trichomonad of the Human Bowel. Clin Microbiol Rev 29:553–580PubMedPubMedCentral
87.
Zurück zum Zitat Vandenberg O, Peek R, Souayah H et al (2006) Clinical and microbiological features of dientamoebiasis in patients suspected of suffering from a parasitic gastrointestinal illness: a comparison of Dientamoeba fragilis and Giardia lamblia infections. Int J Infect Dis 10:255–261PubMed Vandenberg O, Peek R, Souayah H et al (2006) Clinical and microbiological features of dientamoebiasis in patients suspected of suffering from a parasitic gastrointestinal illness: a comparison of Dientamoeba fragilis and Giardia lamblia infections. Int J Infect Dis 10:255–261PubMed
88.
Zurück zum Zitat Schwartz MD, Nelson ME (2003) Dientamoeba fragilis infection presenting to the emergency department as acute appendicitis. J Emerg Med 25:17–21PubMed Schwartz MD, Nelson ME (2003) Dientamoeba fragilis infection presenting to the emergency department as acute appendicitis. J Emerg Med 25:17–21PubMed
Metadaten
Titel
Parasitic diseases as a cause of acute abdominal pain: imaging findings
verfasst von
Emre Ünal
Sevtap Arslan
Mehmet Ruhi Onur
Erhan Akpinar
Publikationsdatum
01.12.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Insights into Imaging / Ausgabe 1/2020
Elektronische ISSN: 1869-4101
DOI
https://doi.org/10.1186/s13244-020-00892-5

Weitere Artikel der Ausgabe 1/2020

Insights into Imaging 1/2020 Zur Ausgabe

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

S3-Leitlinie zu Pankreaskrebs aktualisiert

23.04.2024 Pankreaskarzinom Nachrichten

Die Empfehlungen zur Therapie des Pankreaskarzinoms wurden um zwei Off-Label-Anwendungen erweitert. Und auch im Bereich der Früherkennung gibt es Aktualisierungen.

Fünf Dinge, die im Kindernotfall besser zu unterlassen sind

18.04.2024 Pädiatrische Notfallmedizin Nachrichten

Im Choosing-Wisely-Programm, das für die deutsche Initiative „Klug entscheiden“ Pate gestanden hat, sind erstmals Empfehlungen zum Umgang mit Notfällen von Kindern erschienen. Fünf Dinge gilt es demnach zu vermeiden.

„Nur wer sich gut aufgehoben fühlt, kann auch für Patientensicherheit sorgen“

13.04.2024 Klinik aktuell Kongressbericht

Die Teilnehmer eines Forums beim DGIM-Kongress waren sich einig: Fehler in der Medizin sind häufig in ungeeigneten Prozessen und mangelnder Kommunikation begründet. Gespräche mit Patienten und im Team können helfen.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.