Skip to main content
Erschienen in: Insights into Imaging 1/2021

Open Access 01.12.2021 | COVID-19 | Educational Review

Mimickers of novel coronavirus disease 2019 (COVID-19) on chest CT: spectrum of CT and clinical features

verfasst von: Ali H. Elmokadem, Nihal M. Batouty, Dalia Bayoumi, Basma N. Gadelhak, Rihame M. Abdel-Wahab, Mona Zaky, Sherif A. Abo-Hedibah, Ahmed Ehab, Ahmed El-Morsy

Erschienen in: Insights into Imaging | Ausgabe 1/2021

Abstract

COVID-19 (coronavirus disease 2019) is a recently emerged pulmonary infection caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2). It started in Wuhan, China, in December 2019 and led to a highly contagious disease. Since then COVID-19 continues to spread, causing exponential morbidity and mortality and threatening economies worldwide. While the primary diagnostic test for COVID-19 is the reverse transcriptase–polymerase chain reaction (RT-PCR) assay, chest CT has proven to be a diagnostic tool of high sensitivity. A variety of conditions demonstrates CT features that are difficult to differentiate from COVID-19 rendering CT to be of low specificity. Radiologists and physicians should be aware of imaging patterns of these conditions to prevent an erroneous diagnosis that could adversely influence management and patients’ outcome. Our purpose is to provide a practical review of the conditions that mimic COVID-19. A brief description of the forementioned clinical conditions with their CT features will be included.
Begleitmaterial
Additional file 1. Three-dimensional semitransparent volume-rendered reconstructions show the peripheral and basal distribution of the ground-glass opacities across both lungs for 54 years old man with COVID-19 positive RT-PCR test.
Hinweise

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s13244-020-00956-6.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
AFOP
Acute fibrinous organizing pneumonia
AIP
Acute interstitial pneumonia
ARDS
Acute respiratory distress syndrome.
COP
Cryptogenic organizing pneumonia
COVID-19
Coronavirus disease 2019
DAD
Diffuse alveolar damage
GGO
Ground-glass opacity
HRCT
High-resolution computed tomography
ICU
Intensive care unit
LDH
Lactate dehydrogenase
MERS
Middle East respiratory syndrome
OP
Organizing pneumonia
PJP
Pneumocystis jiroveci pneumonia
RT-PCR
Reverse transcription-polymerase chain reaction
SARS
Severe acute respiratory syndrome
SARS-CoV-2
Severe acute respiratory syndrome coronavirus 2

Key points

  • Categorizing COVID-19 mimickers according to chest CT features.
  • Review of clinical and chest CT characteristics of COVID-19 mimickers.
  • Differentiation between COVID-19 and other mimickers.

Background

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a new type of coronavirus that was isolated from respiratory tract samples in the city of Wuhan, Hubei Province, China, in December 2019 [1]. COVID-19 (coronavirus disease 2019) became a highly infectious disease that was officially recognized as a pandemic in March 2020 [2]. More than 49 million patients and 1.2 million deaths of COVID-19 have been reported worldwide by November 10, 2020 [3]. During the rapid spread of SARS-COV-2 globally, diagnostic methods for detecting the virus have many limitations. RT-PCR testing has low sensitivity early in the disease (ranging from 37 to 71%) [4]. CT chest has high sensitivity, but low specificity [47]. This low specificity may stem from the fact that it is difficult to distinguish COVID-19 from other diseases on chest CT [8].
In order to optimize patient management, medical care and disease control, radiologists and chest physicians should be aware of CT chest features that distinguish COVID-19 from other etiologies [9]. The aim of the review is to differentiate between the COVID-19 findings on CT and other mimickers.

COVID-19

Patients infected with COVID-19 usually presents with fever (88.7–98%), cough (67.8–76%) and dyspnea (55%), less commonly headache, fatigue, hemoptysis conjunctival congestion and loss of smell [10, 11]. Abdominal symptoms such as nausea, vomiting and diarrhea are possible [11]. The disease can progress to acute respiratory distress syndrome, metabolic acidosis, septic shock, coagulation dysfunction and multi-organ failure [12]. Laboratory findings in COVID-19 are a decreased lymphocyte count and an increased CRP and high-sensitivity C-reactive protein level [1012]. Lymphopenia was reported to be a dependable indicator to categorize the moderate, severe, and critical ill types [13].
COVID-19 patients are classified as having minimal, common, severe and critical illness [12]. Minimal disease patients have subtle clinical symptoms. Common cases have symptoms such as fever and mild coughing. Severe cases are the ones meet any of the following criteria: (1) resting blood oxygen saturation ≤ 93%; (2) respiratory rate ≥ 30 beats/min; or (3) oxygen concentration ≤ 300 mmHg. Critical patients can be affected with one of the following: (1) respiratory failure needing mechanical ventilators; (2) shock; and (3) organ failure requiring intensive care management.
Ground-glass (GGO) pattern with or without consolidation is the most common feature of COVID-19 infections. They are usually bilateral, multifocal and peripheral with posterior or lower lung zone distribution [6, 7, 1416]. Ground-glass opacification is defined as hazy increased lung opacity with preserved bronchovascular margins contrary to consolidation that is defined as a homogeneously increased parenchymal attenuation with obscuration of margins of airway and vessel walls [14]. A different unifocal pattern of GGO was reported by Zhou, et al. in early phase of disease, commonly at the inferior lobe of right lung [17]. Furthermore, Bernheim, et al. reported a significant number of cases having opacities of non-specific distribution and non-predominant perihilar pattern [6]. GGO has also been frequently reported to have a “crazy paving” pattern [6, 7, 14, 18] that is defined as thickening of interlobular septa and intralobular lines with superimposed GGO [17, 19]. Vascular dilatation and traction bronchiectasis are typical findings found in the GGO detected in COVID-19 patients [20]. Architectural distortion with the formation of subpleural bands was reported in some cases during a peak stage of the disease [9]. Pulmonary embolism was found among patients with COVID-19 and was linked to elevated D-dimer [21]. Other findings typically were seen in infection as thickening of bronchial wall, mucoid impactions and centrilobular nodules (tree-in-bud), and lymphadenopathy and pleural effusion are rarely observed [6, 14]. Figures 1, 2 and 3, and Additional file 1 demonstrate typical CT features of COVID-19 pneumonia.
CT Findings in patients with COVID-19 vary according to the timing of imaging. A negative CT during first two days after onset of symptoms with GGO usually develops between first and fourth days after symptom onset with the peak at 6–13 days have been reported [6, 9, 18, 22]. The frequency of consolidation, mixed patterns and reversed halo increases later in the disease [6, 9, 18].
The Radiological Society of North America expert consensus proposed four categories to report chest CT findings attributed to COVID-19 (typical, indeterminate, atypical and negative for pneumonia) [11]. Based on this classification, we categorized the mimics into three categories (Table 1): The first and second category based only on similarity to the imaging features of COVID-19 regardless of the differences in clinical course and the third category based on similarity to COVID-19-related clinical manifestations.
(1)
CT mimickers of typical COVID-19 that displays bilateral, peripheral GGO or multifocal rounded GGO of rounded morphology with or without consolidation, “crazy-paving” pattern or reversed halo sign.
 
(2)
CT mimickers of indeterminate COVID-19 that manifests as multifocal, diffuse, perihilar or unilateral GGO with or without consolidation, non-specific distribution or non-rounded GGO.
 
(3)
Conditions presented by clinical scenarios that mimic COVID-19 but with atypical CT features such as lobar or segmental consolidation without GGO, pulmonary nodules (centrilobular or “tree in-bud”), pulmonary cavitation, smooth interlobular septal thickening, pleural effusion and lymphadenopathy. Table 2 summarizes the CT findings, extra-pulmonary manifestation and laboratory findings of COVID-19 and mimickers.
 
Table 1
Proposed reporting categories for CT findings related to COVID-19 [11]
COVID-19 pneumonia
Imaging classification
CT findings
Differential diagnosis
CT mimickers of typical COVID-19
Commonly reported imaging features of greater specificity for COVID-19 pneumonia
Typical findings are:
1. Peripheral, bilateral, GGO with or without consolidation or crazy-paving
2. Multifocal GGO of rounded morphology with or without consolidation or crazy-paving
3. Reverse halo sign or other findings of organizing pneumonia
1. Influenza pneumonia
2. SARS and MERS pneumonia
3. Organizing pneumonia
4. Connective tissue disease (RA)
5. Drug toxicity
6. Acute interstitial pneumonia
CT mimickers of indeterminate COVID-19
Commonly reported imaging features of greater specificity for COVID-19 pneumonia
Absence of typical features AND presence of:
1. Multifocal, diffuse, perihilar or unilateral GGO with or without consolidation
2. Lacking of specific distribution
3. Non-rounded or non-peripheral GGO
1. Other causes of viral pneumonia
2. Atypical bacterial infections
3. Pneumocystis infection
4. Pulmonary edema
5. ARDS
6. Acute hypersensitivity pneumonitis,
7. Eosinophilic pneumonia
8. Diffuse alveolar hemorrhage
9. Pulmonary alveolar proteinosis
Conditions presented by clinical scenarios that mimic COVID-19 but with atypical CT features
Uncommonly or not reported CT features
Absence of typical or indeterminate features AND presence of:
1. Isolated lobar or segmental consolidation without GGO
2. Discrete small nodules (centrilobular or “tree in-bud”)
3. Lung cavitation
4. Smooth interlobular septal thickening with pleural effusion
Alternative diagnoses rather than COVID-19 should be considered such as typical bacterial pneumonia, TB or other non-infective processes
Table 2
CT findings, extra-pulmonary manifestation and characteristic laboratory findings of COVID-19 and its mimics
Disease
CT findings
Extra-pulmonary manifestation
Characteristic
Laboratory findings
Location
GGO
Consolidation
Crazy paving
Nodules
Pleural effusion
Other findings
(1) COVID-19
Multi-/(less) Unifocal
Bilateral
Peripheral
Posterior or lower zonal
 ++++ 
 ± 
(more later in the course)
 ++ 
(R)
(either Tree-in-bud or centrilobular)
(R)
(T) Vascular dilation and traction bronchiectasis
(S)Architectural distortion and subpleural bands
(R) bronchial wall thickening, mucoid impaction or LNs
Abdominal symptoms
Acute necrotizing encephalopathy
Myocarditis
Acute kidney injury
(- -) Lymphocyte count
(++) CRP
(2) Viral pneumonia
(a) Influenza A, B and C
Focal
Multifocal
Diffuse
 ++++ 
 ++
 
 ++
(Centrilobular)
 ++
Pseudo-cavitation
Pneumatocele
LNs
 ± ARDS
 
Lymphocytosis or lymphopenia
(b) Coronaviridae (SARS/MERS)
Upper and lower resp. infection
Multifocal
 ++++ 
 ++
  
(R)
(C) Reticulation
(R) Cavitation
(R) LNs
 
(c) HPIV
Multifocal
 ++
 ++++ 
(patchy)
 
 + 
(Centrilobular)
 
Bronchial wall thickening
 
(d) Human adenovirus
Bilateral
Multifocal
 +++ 
Patchy (lobar/segmental)
 
 ++++ 
(Centrilobular)
 ++++ 
  
(e) Herpes viruses
Multifocal segmental
Diffuse
 ++++ 
 + 
 
(C) Multiple hemorrhagic
 ++++ 
(C) fungal pneumonia
Gingivostomatitis,
pharyngitis and herpes labialis (HSV)
(f) Human bocavirus
Diffuse
Along bronchovascular bundles
 ++++ 
 ++++ 
(patchy)
 ++++ 
    
(g) Rhinovirus
Multifocal
 ++
 + 
 
(R)
(R)
  
(h) RSV
Airway centric
 
 ± 
 
 ++++ 
 
Bronchial wall thickening
 
(j) Measles
Peribronchial
   
Nodular/reticulo-nodular infiltrates
 +++ 
Thick interlobular septae
(S) Fibrosis
(C) Hilar LNs
Lymphadenopathy gastroenteritis,
Encephalitis
(3) Atypical Bacterial pneumonia (Mycoplasma P. and Chlamydia P.)
Uni-/Bilateral
 + 
 + 
 
 + 
(Centrilobular/peribronchovascular)
(R)
Thick bronchovascular bundle
(R) atelectasis
Chlamydia P. reticular or linear opacity, airway dilatation and emphysema
Fatigue, Malaise
Mildly ( +) or normal WBC
(4) Pneumocystis jiroveci pneumonia (PJP)
Central with peripheral sparing
(++) in upper lobes
 ++++ 
(extensive in non-HIV)
 +++ 
(in non-HIV patients)
 ++
(in advanced cases)
 + 
(solitary/multiple)
 
(C) pulmonary cysts spontaneous pneumothorax
(R) cancer-like mass
(S) interstitial fibrosis
Tachypnea, tachycardia and cyanosis
(++) LDH (not specific)
(5) Pulmonary edema cardiogenic/non-cardiogenic (ARDS)
Bilateral
Perihilar symmetrical (cardiogenic)
 ++++ 
 +++ 
in ARDS (heterogeneous, peripherally and dependent)
 ++
 
 +++ 
in cardiogenic edema
(T) Anteroposterior density gradient
Pulmonary cysts lately
Cardiomegaly
Cyanosis, dyspnea tachypnea in cardiogenic edema
 
(6) Hypersensitivity pneumonitis
Acute: normal or diffuse
Subacute: mid/upper lung zone
Chronic: peribronchovascular (++) at mid/upper lung zones
 +++ 
  
Acute: centrilobular ground-glass nodules
Subacute: poorly defined CL nodules
 
Subacute: air trapping
(S) Thin walled cysts
Chronic: fibrotic changes (septal thickening, traction bronchiectasis, honey combing)
Cyanosis, fatigue, anorexia and weight loss
Non-specific increased ESR and CRP
(7) Diffuse alveolar hemorrhage
Diffuse
Patchy
Lobular
Perihilar
Gravity-dependent
 +++ 
 +++ 
 ± 
   
Hemoptysis, anemia, signs of collagen-vascular disease
Thrombocytopenia
Coagulopathy
(8) Pulmonary alveolar proteinosis
Patchy
Subpleural sparing
Geographic distribution
 ++in lower lung
  
 +++ 
(T)
No
No
No LNs
Weight loss
Elevated LDH
(9) Eosinophilic P.
Bilateral non-segmental areas
Middle and upper lobar predominance
 + 
 ++++ 
(no subpleural spacing)
 
 + 
 + 
(S) lung reticulations and mediastinal LNs
 
Alveolar and blood eosinophilia
 ++IgE
 ++ ESR
Peripheral thrombocytosis
(10) Interstitial lung disease
(A) COP
Multifocal
Subpleural
Peribronchial distribution
 ++++ 
 ++++ 
 
 + 
 
(R) masses with regional architectural distortion and interlobular septal thickening.
(T) “atoll sign”
Weight loss, generalized bone aches
 
(B) DAD/AIP
Symmetric and bilateral
Lower lobe predominance
Sparing C/P recesses
 ++++ 
 ++ 
(in the dependent portions)
 + 
  
Later fibrotic phase of DAD
Architectural distortion, honeycombing and traction bronchiectasis (similar to UIP)
  
(C) CTD associated P.
Subpleural and basal predominance
(S) extensive
(S)
Segmental
 
(S)
 
(C) reticular densities, traction bronchiectasis, honey combing and clustered cysts
(S) mosaic perfusion, discrete cysts and air trapping
Systemic manifestation according to type of disease
Detected antinuclear antibodies (ANA) and an antibody to ribonucleoprotein (RNP)
(C): common, (R): rare, (S):some cases, (T): typical

Chest CT mimickers of typical COVID-19

Viral pneumonias

Viruses are considered the most common pathogens causing acute respiratory tract infections [23] usually, the clinical signs and symptoms of viral pneumonia are non-specific, and the clinical course vary according to patient age and immune status [24]. CT features of viral pneumonia are variable and may be affected by immunity and pathophysiology of the virus [23]. Differentiating between COVID-19 and non-COVID19 pneumonia is a crucial need in the current situation to reduce unnecessary quarantine for suspected patients. Bai et al. [9] demonstrate that radiologists are capable of distinguishing COVID-19 from other viral etiologies of pneumonia on chest CT with high specificity (93–100%).
HPIV (human parainfluenza virus) presents on CT as multifocal patchy consolidation with GGO of non-specific distribution and in one-fourth of patients show centrilobular nodules with bronchial wall thickening [25].
Influenza A, B and C pneumonia (Fig. 4) manifested on CT as focal, multifocal, or diffuse GGO with areas of consolidation. Unlike COVID-19, centrilobular nodules, pseudocavitation, pneumatocele formation and lymphadenopathy are commonly seen. Pleural effusion and cavitation can develop later in the course of the disease [23, 24]. An H1N1 (a subtype of Influenza A) pandemic reported in more than 70 countries with 30,000 cases of infection occurred in 2009 [26].
Corona virus cause pneumonia, bronchiolitis and even acute respiratory distress syndrome (ARDS). SARS Coronavirus (severe acute respiratory syndrome) outbreak originated from Guangdong Province, China, occurred during 2002–2003 [27]. In 2012, another coronavirus-related epidemic occurred in the Middle East, identified as MERS (Middle East respiratory syndrome) [27]. CT features of both diseases are similar to COVID-19 pneumonia including multifocal GGOs with less common consolidations. Reticulation is noted after the second week. Cavitation, lymphadenopathy or pleural effusion are not common findings [23].

Organizing pneumonias (OP)

Cryptogenic organizing pneumonia (COP) is a disease of unknown etiology previously named bronchiolitis obliterans organizing pneumonia (BOOP). It is commonest among the 55–60 age groups and it usually presents with a several-month history of nonproductive cough, low-grade fever, malaise and shortness of breath in contrary to the rapidly progressive course of COVID-19. COP can be caused by different infective and non-infective causes and results in bronchiolar occlusion [28]. On CT, COP usually shows multifocal GOO or consolidations predominantly subpleural and peribronchial distribution. Less commonly, CT includes variable-sized solid nodules with peribronchial or peribronchiolar distribution with architectural distortion and interlobular septal thickening [29]. COP is characterized by areas of clearing consolidation with central ground-glass density, which are known as the reversed halo sign or "atoll sign" (Fig. 5); however, these signs are only seen in less than 20% of patients [28, 29]. Reversed halo sign can also be secondary to other causes such as pulmonary mucormycosis, invasive pulmonary aspergillosis, pulmonary infarction due to venous thromboembolism, granulomatosis with polyangiitis, sarcoidosis, lymphomatoid granulomatosis and lipoid pneumonitis. It is uncommon feature for COVID-19 but possible finding that occurs later with disease progression.

Connective tissue disease (CTD)-associated pneumonias:

Rheumatoid arthritis (RA), systemic sclerosis, scleroderma, polymyositis or dermatomyositis, systemic lupus erythematosus and Sjögren’s syndrome can all be associated with the development of interstitial lung disease. RA is the commonest among the aforementioned disease and is characterized by subacute or chronic inflammatory polyarthropathy. Parenchymal affection in rheumatoid patients has two common types, usual interstitial pneumonia (UIP) pattern and non-specific interstitial pneumonia (NSIP) pattern [30]. Other less common patterns may happen as OP and obliterative bronchiolitis that may simulate COVID-19 on chest CT; however, the clinical course is different considering the gradual progressive course of CTD-associated pneumonias. The overlap between it manifests on CT by extensive GGO and patchy mosaic perfusion (Fig. 5), solid nodules, discrete cysts, air trapping and segmental consolidations [31].
NSIP occurs more commonly in association with other connective tissue diseases such as scleroderma and polymyositis or dermatomyositis interstitial lung disease (PM/DM ILD). The most characteristic CT finding in NSIP is GGO, which is usually bilateral and symmetric with lower lobe predominance. Other common CT findings include traction bronchiectasis, fine reticulation and volume loss of lower lobes. Unlike COVID-19, subpleural sparing of the posterior regions of the lower lobes and mediastinal lymph node enlargement are relatively common features in NSIP [31]. Furthermore, consolidation is not a common finding in NSIP and only seen when it is superimposed with organizing pneumonia.

Drug induced acute lung injury

Drug toxicity is a common and underdiagnosed cause of acute lung disease. Radiologic features and clinical symptoms of drug-induced lung injury differ according to the histopathological pattern of affection. The histopathologic manifestations that could simulate COVID-19 disease include diffuse alveolar damage (DAD) and OP.
Bleomycin, busulfan, carmustine, cyclophosphamide, mitomycin, melphalan and gold salts are the most common drugs that cause DAD [32], while drugs that most commonly induce OP are bleomycin, gold salts, methotrexate and cyclophosphamide (Fig. 5) [32, 33]. Recently, a crucial side effect has arisen as a lung-specific toxicity caused by an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) for the treatment of non-small cell lung cancer (NSCLC) [33]. Fibrosis can regress significantly, remain stable, or evolve to honeycomb lung based on the severity of the lung injury [34].

Diffuse alveolar damage (DAD)/acute interstitial pneumonia (AIP)

Acute interstitial pneumonia is rapidly progressive pneumonia that occurs in an otherwise healthy person over a few days to weeks [31]. It is indistinguishable both clinically and histologically from ARDS. AIP occurs in wide age range (mean age 50 years) [35]. CT findings of AIP are similar to those of ARDS and the sever form of COVID-19, though AIP more often produces symmetric and bilateral GGO more commonly in the lower lobes with the tendency to spare the costophrenic recesses crazy paving pattern is occasionally present. Areas of consolidation predominantly located in the dependent portions but less extensive than GOO. The delayed fibrotic phase of DAD simulates UIP (Fig. 6), and it is associated with architectural distortion, traction bronchiectasis and honeycombing [31, 35].

Chest CT mimickers of indeterminate COVID-19

Viral pneumonias

Viral pneumonia may have CT features mimicking indeterminate COVID-19 (Fig. 7) including perihilar distribution, centrilobular/tree in pud nodules, pleural thickening, effusion or lymphadenopathy.
Human Adenovirus pneumonia shows bilateral multifocal GGO with patchy consolidations and may show lobar or segmental distribution unlike COVID-19. Centrilobular nodules and pleural effusion are common [23].
Herpes viruses include HSV types 1 and 2 and CMV. A predominantly multifocal segmental or diffuse GGO is a common feature of herpes pneumonia, consolidation is less evident [24]. The presence of multiple hemorrhagic nodules, associated fungal pneumonia or pleural effusion is frequent with HSV infection [23, 25].
Human bocavirus manifests as diffuse GGO or patchy consolidation along bronchovascular bundles associated with interlobular septal thickening [23].
Rhinovirus A, B and C severe pneumonia characterized by bilateral patchy consolidations with multifocal GOO and interlobular septal thickening [36]

Atypical bacterial pneumonias

Mycoplasma (M) pneumonia and chlamydia (C) pneumonia are known as atypical pneumonia, patients present with dry or productive cough, fatigue and malaise with mildly elevated or normal white blood cell count [37, 38]. Both C pneumoniae pneumonia and M pneumonia (Fig. 8) cause infectious bronchiolitis or bronchopneumonia that may simulate COVID-19 as they are presented with unilateral or bilateral areas of consolidation or GGO and thickened broncovascular bundle [37]. However, the presence of centrilobular or peribronchovascular nodules may help in differentiation from COVID-19. Pleural effusion and atelectasis are less frequent features. C pneumonia had a higher frequency of reticular or linear opacity, airway dilatation and pulmonary emphysema that represent its chronic nature [38].

Pneumocystis jirovecii pneumonia (PJP)

Pneumocystis jirovecii is an atypical fungus that causes pneumonia in immunocompromised patients [39]. The presentation of PJP in a patient with HIV infection typically is subacute, characterized by a gradual onset (over 1 month duration) of dry cough and dyspnea with signs of respiratory compromise, including tachycardia, tachypnea and cyanosis [40]. On CT, extensive GGO is the principal finding in PJP (Fig. 8). In HIV-related PJP, CT shows commonly central distribution of GGO with relative peripheral sparing and predilection for the upper lobes. CT in non-HIV patients shows a greater extent of GGO with more common and rapidly developing lung consolidation [39, 40]. In advanced disease, crazy paving pattern and consolidation are noted. Interstitial fibrosis may occur in patients recovering from PJP, thus known as chronic Pneumocystis pneumonia [39].

Pulmonary edema

Pulmonary edema has various types and etiologies with different radiological patterns: cardiogenic pulmonary edema (e.g., congestive heart failure), non-cardiogenic pulmonary edema and fluid overload (e.g., renal failure) [41]. Both pulmonary edema and COVID 19 infection may have bilateral GGO but with different distribution and other associated signs. The diffuse ground-glass pattern of cardiogenic pulmonary edema tends to be perihilar, bilateral and symmetrical (Fig. 9). Cardiogenic pulmonary edema is presented by acute dyspnea, associated with cardiomegaly and pleural effusion is common, while ARDS has dense-dependent consolidations, with or without interlobular septal thickening, and pleural effusion may occur [41, 42]. Pulmonary edema can also be presented by crazy paving pattern [42].

Acute respiratory distress syndrome (ARDS)

ARDS in adults is a non-specific catastrophic response of the lung to injury. Pneumonia, aspiration of gastric contents, toxic fumes inhalation and near drowning are the common pulmonary causes. The extra-pulmonic causes are systemic sepsis, non-cardiogenic shock, severe trauma, pancreatitis, drug overdose and multiple blood transfusions [43]. Signs and symptoms are dyspnea, cyanosis, tachypnea and hypoxemia mimicking those of cardiogenic pulmonary edema. Similar to COVID-19, CT features in extra-pulmonary ARDS are bilateral GGO and consolidations distributed peripherally and mainly in the dependent parts of the lung (Fig. 9) [42]. In pulmonary ARDS, the distribution of lung changes is more likely to be asymmetrical, with mixed GGO and non-dependent consolidation [43]. Pleural effusion and bronchial dilatation within GGO are equally common to both types of ARDS.

Hypersensitivity pneumonia (HP)

HP is a diffuse parenchymal lung disease caused by inhalation and sensitization to a long list of aerosolized antigens [44]. HP is often categorized into acute, subacute and chronic stages. Acute HP symptoms range from dyspnea, cough and myalgia to extensive pulmonary edema, while subacute HP symptoms are lesser and more insidious and may be associated with cyanosis, fatigue and weight loss [44, 45]. CT in acute HP may be normal or show diffuse ground-glass opacity. In subacute HP, CT often shows GGO similar to COVID-19 though the presence of faint centrilobular nodules and air trapping more in the upper and middle lung zones are characteristic features for subacute HP that help in differentiation between both diseases (Fig. 10). Lobular areas of reduced attenuation are often seen in expiratory phase and indicative of air trapping. Sometimes thin-walled cysts (< 15 mm in diameter) may be found. Additionally, the head-cheese sign is relatively specific for HP and consists of a constellation of GGO, air trapping and normal intervening lung with geographic margins [45]. In chronic HP, fibrotic changes as traction bronchiectasis and honeycombing are found [31, 45].

Eosinophilic pneumonia

An idiopathic disease that usually affects middle age with relative predominance in females and asthmatic patients [46]. Diagnosis of eosinophilic pneumonia is complex and usually based on the association of the respiratory and general manifestations (including shortness of breath, dyspnea and fever) with characteristic laboratory findings as alveolar and blood eosinophilia. In CT, there are typical bilateral non-segmental areas of airspace consolidation (no subpleural sparing) with predominance for the middle and upper lobes (Fig. 10), unlike the lower lobe predominance seen in COVID-19. Less common presentations include GGO, lung reticulations and solid pulmonary nodules. Pleural effusion and mediastinal lymphadenopathy may be seen [42, 46].

Diffuse alveolar hemorrhage (DAH)

DAH is a severe and potentially fatal condition. Clinical history is important in diagnosis of DAH and differentiation from COVID-19. The presence of anemia, thrombocytopenia, coagulopathy, hemoptysis, collagen-vascular disease, pulmonary-renal syndromes (Wegener granulomatosis and Goodpasture syndrome) or recent bone marrow transplantation raises the possibility of DAH [47]. On CT, DAH often shows diffuse, patchy or lobular GGO and consolidation with perihilar and dependent distribution. A “crazy-paving” pattern occurs resulting from associated interlobular septal thickening (Fig. 11). DAH usually resolves within 10 days to 2 weeks [42, 47].

Pulmonary alveolar proteinosis (PAP)

PAP is a rare lung disorder with three clinical forms: autoimmune, secondary and congenital. It is characterized by periodic acid Schiff stain positive material within the alveoli. CT shows areas of “crazy-paving” pattern that is more common in patients with autoimmune PAP than in secondary PAP (Fig. 12). Subpleural sparing, geographic distribution and lower lung predominance were also more frequent in autoimmune PAP [48]. Air space disease with patchy areas of parenchymal abnormalities may also reproduce a COVID-19 appearance; however, perihilar distribution in PAP is a differentiating point. Pulmonary nodules, pleural effusion and lymphadenopathy are not a feature of PAP but if present, then a superimposed infection should be considered. Clinically, PAP is different from COVID-19 as patients often present with low-grade fever, progressive exertional dyspnea and cough; however, patients may experience respiratory failure and require mechanical ventilation, which is an unusual but recognized complication [49].

Interstitial lung abnormality (ILA)

ILA is increasingly recognized, and evolving descriptive term often encompasses different nondependent pulmonary abnormalities detected on chest CT and affecting more than 5% of any lung zone. It is observed in patients with no prior or established history of interstitial lung disease, in 4%–9% of smokers and 2%–7% of nonsmokers. Clinically, ILA manifested by chronic cough and shortness of breath, reduced total lung capacity and reduced exercise capacity [5052]. It often progresses to a subclinical or early phase of lung fibrosis. Several non-fibrotic and fibrotic CT patterns have been described as ILA, including ground-glass opacities with or without reticulation, mosaic attenuation, centrilobular nodularity, honeycombing nonemphysematous cysts and traction bronchiectasis [50].

Clinical mimickers of COVID-19 with atypical CT chest features

The clinical course of viral or bacterial pneumonia may simulate COVID-19; however, CT features such as perihilar predominance, centrilobular / tree in pud nodules, pleural effusion and lymphadenopathy are in favor of viral pneumonia rather than COVID-19. For example, RSV (respiratory syncytial virus) pneumonia was noted to be common in adults who require ICU admission in the winter season; unlike COVID-19, it shows an airway centric distribution, with bronchial wall thickening and tree in bud opacities, consolidation may or may not occur [53]. Varicella-zoster, measles and mumps typically present with multifocal centrilobular nodular infiltration and less commonly GGO (Fig. 13a) [23, 54]. In contrary to COVID-19, hilar lymphadenopathy and pleural effusion are common association with measles. Segmental or lobar consolidation with cavitation is a sign of bacterial pneumonia (Fig. 13b) or coexistence infection with COVID-19 (Fig. 13c). This common radiological appearance mostly cannot be used to predict the causative organism [53].

Conclusion

A broad spectrum of pulmonary conditions demonstrates imaging features that mimic those of COVID-19 and are difficult to differentiate from it. Awareness of these conditions, careful radiologic analysis and attention to the clinical data are required to prevent an erroneous diagnosis that could potentially adversely impact management and patients’ outcome. A correct diagnosis of these conditions may prevent unnecessary hospitalization and reduce strict quarantine measures for all suspected patients that hold significant pressure on healthcare providers and medical infrastructure.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s13244-020-00956-6.
Institutional Review Board approval was not required because our work is considered as a review article. Written informed consent was not required for this study because our work is considered as a review article / pictorial essay. No human experimentation was done.
The authors hereby transfer, assign or otherwise convey all copyright ownership to the insight into imaging journal in the event that such work is published in that Journal.

Competing interests

The authors declare that they have no conflict of interest.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Anhänge

Supplementary information

Additional file 1. Three-dimensional semitransparent volume-rendered reconstructions show the peripheral and basal distribution of the ground-glass opacities across both lungs for 54 years old man with COVID-19 positive RT-PCR test.
Literatur
7.
Zurück zum Zitat Pan F, Ye T, Sun P et al (2019) Time course of lung changes on chest CT during recovery from novel coronavirus (COVID-19) pneumonia. Radiology 295(3):715–721CrossRef Pan F, Ye T, Sun P et al (2019) Time course of lung changes on chest CT during recovery from novel coronavirus (COVID-19) pneumonia. Radiology 295(3):715–721CrossRef
11.
Zurück zum Zitat Simpson S, Kay FU, Abbara S et al (2020) Radiological Society of North America Expert Consensus Statement on Reporting Chest CT Findings Related to COVID-19. Endorsed by the Society of Thoracic Radiology, the American College of Radiology, and RSNA. Radiology Cardiothorac Imaging. https://doi.org/10.1148/ryct.2020200152 Simpson S, Kay FU, Abbara S et al (2020) Radiological Society of North America Expert Consensus Statement on Reporting Chest CT Findings Related to COVID-19. Endorsed by the Society of Thoracic Radiology, the American College of Radiology, and RSNA. Radiology Cardiothorac Imaging. https://​doi.​org/​10.​1148/​ryct.​2020200152
13.
Zurück zum Zitat Tan L, Wang Q, Zhang D et al (2020) Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. Signal Transduct Target Ther 5(1):1–3 Tan L, Wang Q, Zhang D et al (2020) Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. Signal Transduct Target Ther 5(1):1–3
15.
Zurück zum Zitat Kong W, Agarwal PP (2020) Chest imaging appearance of COVID-19 infection. Radiology Cardiothorac Imaging 2(1):200028CrossRef Kong W, Agarwal PP (2020) Chest imaging appearance of COVID-19 infection. Radiology Cardiothorac Imaging 2(1):200028CrossRef
19.
Zurück zum Zitat Oikonomou A, Prassopoulos P (2013) Mimics in chest disease: interstitial opacities. Insights Imaging 4(1):9–27CrossRefPubMed Oikonomou A, Prassopoulos P (2013) Mimics in chest disease: interstitial opacities. Insights Imaging 4(1):9–27CrossRefPubMed
20.
Zurück zum Zitat Zhao W, Zhong Z, Xie X, Yu Q, Liu J (2020) Relation between chest CT findings and clinical conditions of coronavirus disease (COVID-19) pneumonia: a multicenter study. AJR Am J Roentgenol 214(5):1072–1077CrossRefPubMed Zhao W, Zhong Z, Xie X, Yu Q, Liu J (2020) Relation between chest CT findings and clinical conditions of coronavirus disease (COVID-19) pneumonia: a multicenter study. AJR Am J Roentgenol 214(5):1072–1077CrossRefPubMed
21.
Zurück zum Zitat Leonard-Lorant I, Delabranche X, Severac F et al (2020) Acute pulmonary embolism in COVID-19 patients on CT angiography and relationship to D-dimer levels. Radiology 201561 Leonard-Lorant I, Delabranche X, Severac F et al (2020) Acute pulmonary embolism in COVID-19 patients on CT angiography and relationship to D-dimer levels. Radiology 201561
33.
Zurück zum Zitat Rosenow EC III, Myers JL, Swensen SJ, Pisani RJ (1992) Drug-induced pulmonary disease: an update. Chest 102(1):239–250CrossRefPubMed Rosenow EC III, Myers JL, Swensen SJ, Pisani RJ (1992) Drug-induced pulmonary disease: an update. Chest 102(1):239–250CrossRefPubMed
35.
Zurück zum Zitat Mueller-Mang C, Grosse C, Schmid K, Stiebellehner L, Bankier AA (2007) What every radiologist should know about idiopathic interstitial pneumonias. Radiographics 27(3):595–615CrossRefPubMed Mueller-Mang C, Grosse C, Schmid K, Stiebellehner L, Bankier AA (2007) What every radiologist should know about idiopathic interstitial pneumonias. Radiographics 27(3):595–615CrossRefPubMed
39.
Zurück zum Zitat Hardak E, Brook O, Yigla M (2010) Radiological features of pneumocystisjirovecii pneumonia in immunocompromised patients with and without AIDS. Lung 188(2):159–163CrossRefPubMed Hardak E, Brook O, Yigla M (2010) Radiological features of pneumocystisjirovecii pneumonia in immunocompromised patients with and without AIDS. Lung 188(2):159–163CrossRefPubMed
40.
Zurück zum Zitat Kanne JP, Yandow DR, Meyer CA (2012) Pneumocystis jirovecii pneumonia: high-resolution CT findings in patients with and without HIV infection. AJR Am J Roentgenol 198(6):W555–W561CrossRefPubMed Kanne JP, Yandow DR, Meyer CA (2012) Pneumocystis jirovecii pneumonia: high-resolution CT findings in patients with and without HIV infection. AJR Am J Roentgenol 198(6):W555–W561CrossRefPubMed
42.
Zurück zum Zitat Yacoub W, Attia M, Affes M, et al. Ground-glass opacities on chest CT scans: how to deal with them? 2019. European Congress of Radiology 2019. Yacoub W, Attia M, Affes M, et al. Ground-glass opacities on chest CT scans: how to deal with them? 2019. European Congress of Radiology 2019.
45.
Zurück zum Zitat Hanak V, Golbin JM, and Ryu JH. Causes and presenting features in 85 consecutive patients with hypersensitivity pneumonitis. in Mayo Clinic Proceedings. 2007. Elsevier. Hanak V, Golbin JM, and Ryu JH. Causes and presenting features in 85 consecutive patients with hypersensitivity pneumonitis. in Mayo Clinic Proceedings. 2007. Elsevier.
47.
Zurück zum Zitat Castañer E, Alguersuari A, Gallardo X, Andreu M, Pallardó Y, Mata JM, Ramírez J (2010) When to suspect pulmonary vasculitis: radiologic and clinical clues. Radiographics 30(1):33–53CrossRefPubMed Castañer E, Alguersuari A, Gallardo X, Andreu M, Pallardó Y, Mata JM, Ramírez J (2010) When to suspect pulmonary vasculitis: radiologic and clinical clues. Radiographics 30(1):33–53CrossRefPubMed
49.
Zurück zum Zitat Akira M, Inoue Y, Arai T et al (2016) Pulmonary fibrosis on high-resolution CT of patients with pulmonary alveolar proteinosis. AJR Am J Roentgenol 207(3):544–551CrossRefPubMed Akira M, Inoue Y, Arai T et al (2016) Pulmonary fibrosis on high-resolution CT of patients with pulmonary alveolar proteinosis. AJR Am J Roentgenol 207(3):544–551CrossRefPubMed
51.
Zurück zum Zitat Washko GR, Hunninghake GM, Fernandez IE et al (2011) Lung volumes and emphysema in smokers with interstitial lung abnormalities. N Engl J Med 364(10):897–906CrossRefPubMedPubMedCentral Washko GR, Hunninghake GM, Fernandez IE et al (2011) Lung volumes and emphysema in smokers with interstitial lung abnormalities. N Engl J Med 364(10):897–906CrossRefPubMedPubMedCentral
52.
Zurück zum Zitat Jin GY, Lynch D, Chawla A et al (2013) Interstitial lung abnormalities in a CT lung cancer screening population: prevalence and progression rate. Radiology 268(2):563–571CrossRefPubMedPubMedCentral Jin GY, Lynch D, Chawla A et al (2013) Interstitial lung abnormalities in a CT lung cancer screening population: prevalence and progression rate. Radiology 268(2):563–571CrossRefPubMedPubMedCentral
53.
Zurück zum Zitat Miller WT Jr, Mickus TJ, Barbosa E Jr et al (2011) CT of viral lower respiratory tract infections in adults: comparison among viral organisms and between viral and bacterial infections. AJR Am J Roentgenol 197(5):1088–1095CrossRefPubMed Miller WT Jr, Mickus TJ, Barbosa E Jr et al (2011) CT of viral lower respiratory tract infections in adults: comparison among viral organisms and between viral and bacterial infections. AJR Am J Roentgenol 197(5):1088–1095CrossRefPubMed
Metadaten
Titel
Mimickers of novel coronavirus disease 2019 (COVID-19) on chest CT: spectrum of CT and clinical features
verfasst von
Ali H. Elmokadem
Nihal M. Batouty
Dalia Bayoumi
Basma N. Gadelhak
Rihame M. Abdel-Wahab
Mona Zaky
Sherif A. Abo-Hedibah
Ahmed Ehab
Ahmed El-Morsy
Publikationsdatum
01.12.2021
Verlag
Springer International Publishing
Schlagwort
COVID-19
Erschienen in
Insights into Imaging / Ausgabe 1/2021
Elektronische ISSN: 1869-4101
DOI
https://doi.org/10.1186/s13244-020-00956-6

Weitere Artikel der Ausgabe 1/2021

Insights into Imaging 1/2021 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.