Skip to main content
Erschienen in: Clinical Pharmacokinetics 10/2002

01.08.2002 | Leading Article

Considerations in the Use of Cerebrospinal Fluid Pharmacokinetics to Predict Brain Target Concentrations in the Clinical Setting

Implications of the Barriers Between Blood and Brain

verfasst von: Dr Elizabeth C.M. de Lange, Meindert Danhof

Erschienen in: Clinical Pharmacokinetics | Ausgabe 10/2002

Einloggen, um Zugang zu erhalten

Abstract

In the clinical setting, drug concentrations in cerebrospinal fluid (CSF) are sometimes used as a surrogate for drug concentrations at the target site within the brain. However, the brain consists of multiple compartments and many factors are involved in the transport of drugs from plasma into the brain and the distribution within the brain. In particular, active transport processes at the level of the blood-brain barrier and blood-CSF barrier, such as those mediated by P-glycoprotein, may lead to complex relationships between concentrations in plasma, ventricular and lumbar CSF, and other brain compartments. Therefore, CSF concentrations may be difficult to interpret and may have limited value. Pharmacokinetic data obtained by intracerebral microdialysis monitoring may be used instead, providing more valuable information. As non-invasive alternative techniques, positron emission tomography or magnetic resonance spectroscopy may be of added value.
Literatur
1.
Zurück zum Zitat Collins JM, Dedrick LD. Distributed model for drag delivery to CSF and brain tissue. Am J Physiol 1983; 14: R303–10 Collins JM, Dedrick LD. Distributed model for drag delivery to CSF and brain tissue. Am J Physiol 1983; 14: R303–10
2.
Zurück zum Zitat Kandel E, Schwartz J. Principles of neural sciences. 2nd ed. New York: McGraw Hill, 1985: 840 Kandel E, Schwartz J. Principles of neural sciences. 2nd ed. New York: McGraw Hill, 1985: 840
3.
Zurück zum Zitat Abott NJ, Revest PA. Control of brain endothelial permeability. Cerebrovasc Brain Metab Rev 1991; 3: 39–72 Abott NJ, Revest PA. Control of brain endothelial permeability. Cerebrovasc Brain Metab Rev 1991; 3: 39–72
4.
Zurück zum Zitat Bodor N, Brewster ME. Problems of drug delivery of drugs to the brain. Pharmacol Ther 1983; 19: 337–86CrossRef Bodor N, Brewster ME. Problems of drug delivery of drugs to the brain. Pharmacol Ther 1983; 19: 337–86CrossRef
5.
Zurück zum Zitat Comford EM. The blood-brain barrier, a dynamic regulatory interface. Mol Physiol 1985; 7: 219–60 Comford EM. The blood-brain barrier, a dynamic regulatory interface. Mol Physiol 1985; 7: 219–60
6.
Zurück zum Zitat Pardridge WM. Recent advances in blood-brain barrier transport. Annu Rev Pharmacol Toxicol 1988; 28: 25–39PubMedCrossRef Pardridge WM. Recent advances in blood-brain barrier transport. Annu Rev Pharmacol Toxicol 1988; 28: 25–39PubMedCrossRef
7.
Zurück zum Zitat Rubin LL, Staddon JM. The cell biology of the blood-brain barrier. Annu Rev Neurosci 1999; 22: 11–28PubMedCrossRef Rubin LL, Staddon JM. The cell biology of the blood-brain barrier. Annu Rev Neurosci 1999; 22: 11–28PubMedCrossRef
8.
Zurück zum Zitat Vorbrodt AW. Ultrastructural cytochemistry of blood-brain barrier endothelia. Prog Histochem Cytochem 1988; 18: 1–99PubMedCrossRef Vorbrodt AW. Ultrastructural cytochemistry of blood-brain barrier endothelia. Prog Histochem Cytochem 1988; 18: 1–99PubMedCrossRef
9.
Zurück zum Zitat Cserr HF. Physiology of the choroid plexus. Physiol Rev 1971; 51: 273–311PubMed Cserr HF. Physiology of the choroid plexus. Physiol Rev 1971; 51: 273–311PubMed
10.
Zurück zum Zitat Davson H, Segal MB. Physiology of the CSF and blood-brain barriers. Boca Raton (FL): CRC Press, 1996 Davson H, Segal MB. Physiology of the CSF and blood-brain barriers. Boca Raton (FL): CRC Press, 1996
11.
Zurück zum Zitat Meller K. Ultrastructural aspects of the choroid plexus epithelium as revealed by rapid-freezing and deep etching techniques. Cell Tissue Res 1985; 239: 189–201CrossRef Meller K. Ultrastructural aspects of the choroid plexus epithelium as revealed by rapid-freezing and deep etching techniques. Cell Tissue Res 1985; 239: 189–201CrossRef
12.
Zurück zum Zitat Mihorat TH. Structure and function of the choroid plexus and other sites of cerebrospinal fluid formation. Int Rev Cytol 1976; 47: 225–89CrossRef Mihorat TH. Structure and function of the choroid plexus and other sites of cerebrospinal fluid formation. Int Rev Cytol 1976; 47: 225–89CrossRef
14.
Zurück zum Zitat Gross PM, Sposito NM, Pettersen SE, et al. Differences in function and structure of the capillary endothelium in gray matter, white matter, and a circumventricular organ of rat brain. Blood Vessels 1886; 23: 261–70 Gross PM, Sposito NM, Pettersen SE, et al. Differences in function and structure of the capillary endothelium in gray matter, white matter, and a circumventricular organ of rat brain. Blood Vessels 1886; 23: 261–70
15.
Zurück zum Zitat Levin VA. Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability. J Med Chem 1980; 23: 682–4PubMedCrossRef Levin VA. Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability. J Med Chem 1980; 23: 682–4PubMedCrossRef
16.
Zurück zum Zitat Oldendorf WH. Lipid solubility and drug penetration of the blood-brain barrier. Proc Exp Biol Med 1974; 14: 813–6 Oldendorf WH. Lipid solubility and drug penetration of the blood-brain barrier. Proc Exp Biol Med 1974; 14: 813–6
17.
Zurück zum Zitat Oldendorf WH. Measurement of brain uptake of radiolabelled substances using a tritiated water internal standard. Brain Res 1970; 24: 372–6PubMedCrossRef Oldendorf WH. Measurement of brain uptake of radiolabelled substances using a tritiated water internal standard. Brain Res 1970; 24: 372–6PubMedCrossRef
18.
Zurück zum Zitat Fenstermacher JD, Wei L, Acuff V, et al. The dependency of influx across the blood-brain barrier on blood flow and the apparent flow-independence of glucose influx during stress. In: Greenwood J, Begley DJ, Segal MB, et al., editors. New concepts of a blood-brain barrier. New York: Plenum Press, 1995: 89–101 Fenstermacher JD, Wei L, Acuff V, et al. The dependency of influx across the blood-brain barrier on blood flow and the apparent flow-independence of glucose influx during stress. In: Greenwood J, Begley DJ, Segal MB, et al., editors. New concepts of a blood-brain barrier. New York: Plenum Press, 1995: 89–101
19.
Zurück zum Zitat Rowley M, Kulagowski JJ, Watt AP, et al. Effect of plasma protein binding on in vivo activity and brain penetration of glycine/NMDA receptor antagonists. J Med Chem 1997; 40: 4053–68PubMedCrossRef Rowley M, Kulagowski JJ, Watt AP, et al. Effect of plasma protein binding on in vivo activity and brain penetration of glycine/NMDA receptor antagonists. J Med Chem 1997; 40: 4053–68PubMedCrossRef
20.
Zurück zum Zitat Robinson PJ, Rapoport SI. Kinetics of protein binding determine rates of uptake of drugs by brain. Am J Physiol 1986; 251: R1212–20PubMed Robinson PJ, Rapoport SI. Kinetics of protein binding determine rates of uptake of drugs by brain. Am J Physiol 1986; 251: R1212–20PubMed
21.
Zurück zum Zitat Cox EH, Kerbusch T, van der Graaf PH, et al. Pharmacokinetic-pharmacodynamic modeling of the electroencephalogram effect of synthetic opioids in the rat. Correlation with binding at the μ-opioid receptor. J Pharmacol Exp Ther 1998; 284: 1095–103PubMed Cox EH, Kerbusch T, van der Graaf PH, et al. Pharmacokinetic-pharmacodynamic modeling of the electroencephalogram effect of synthetic opioids in the rat. Correlation with binding at the μ-opioid receptor. J Pharmacol Exp Ther 1998; 284: 1095–103PubMed
22.
Zurück zum Zitat Kim KS, Wass CA, Cross AS. Blood-brain barrier permeability during the development of experimental bacterial meningitis in the rat. Exp Neurol 1997; 145: 253–7PubMedCrossRef Kim KS, Wass CA, Cross AS. Blood-brain barrier permeability during the development of experimental bacterial meningitis in the rat. Exp Neurol 1997; 145: 253–7PubMedCrossRef
23.
Zurück zum Zitat Mandema JW, Danhof M. EEG effect measures and relationships between pharmacokinetics and pharmacodynamics of psychotropic drugs [thesis]. The Netherlands: Leiden, Division of Pharmacology, Center for Biopharmaceutical Sciences, 1991 Mandema JW, Danhof M. EEG effect measures and relationships between pharmacokinetics and pharmacodynamics of psychotropic drugs [thesis]. The Netherlands: Leiden, Division of Pharmacology, Center for Biopharmaceutical Sciences, 1991
24.
Zurück zum Zitat Cornford EM, Young D, Paxton JW, et al. Blood-brain barrier penetration of felbamate. Epilepsia 1992; 33: 944–54PubMedCrossRef Cornford EM, Young D, Paxton JW, et al. Blood-brain barrier penetration of felbamate. Epilepsia 1992; 33: 944–54PubMedCrossRef
25.
Zurück zum Zitat Jolliet P, Simon N, Bree F, et al. Blood-to-brain transfer of various oxicams: effects of plasma binding on their brain delivery. Pharm Res 1997; 14: 650–6PubMedCrossRef Jolliet P, Simon N, Bree F, et al. Blood-to-brain transfer of various oxicams: effects of plasma binding on their brain delivery. Pharm Res 1997; 14: 650–6PubMedCrossRef
26.
Zurück zum Zitat Lin TH, Sawada Y, Sugiyama Y, et al. Effects of albumin and alpha 1-acid glycoprotein on the transport of imipramine and desipramine through the blood-brain barrier in rats. Chem Pharm Bull (Tokyo) 1987; 35: 294–301CrossRef Lin TH, Sawada Y, Sugiyama Y, et al. Effects of albumin and alpha 1-acid glycoprotein on the transport of imipramine and desipramine through the blood-brain barrier in rats. Chem Pharm Bull (Tokyo) 1987; 35: 294–301CrossRef
27.
Zurück zum Zitat Lolin YI, Ratnaraj N, Hjelm M, et al. Antiepileptic drug pharmacokinetics and neuropharmacokinetics in individual rats by repetitive withdrawal of blood and cerebrospinal fluid. Epilepsy Res 1994; 19: 99–110PubMedCrossRef Lolin YI, Ratnaraj N, Hjelm M, et al. Antiepileptic drug pharmacokinetics and neuropharmacokinetics in individual rats by repetitive withdrawal of blood and cerebrospinal fluid. Epilepsy Res 1994; 19: 99–110PubMedCrossRef
28.
Zurück zum Zitat Tanaka H, Mizojiri K. Drug-protein binding and blood-brain barrier permeability. J Pharmacol Exp Ther 1999; 288: 912–8PubMed Tanaka H, Mizojiri K. Drug-protein binding and blood-brain barrier permeability. J Pharmacol Exp Ther 1999; 288: 912–8PubMed
29.
Zurück zum Zitat Urien S, Pinquier JL, Paquette B, et al. Effect of the binding of isradipine and darodipine to different plasma proteins on their transfer through the blood-brain barrier. J Pharmacol Exp Ther 1987; 242: 349–53PubMed Urien S, Pinquier JL, Paquette B, et al. Effect of the binding of isradipine and darodipine to different plasma proteins on their transfer through the blood-brain barrier. J Pharmacol Exp Ther 1987; 242: 349–53PubMed
30.
Zurück zum Zitat Pardridge WM, Sakiyama R, Fierer G. Transport of propanolol and lidocaine through the rat blood-brain barrier. Primary role of globulin-bound drug. J Clin Invest 1983; 71: 900–8PubMedCrossRef Pardridge WM, Sakiyama R, Fierer G. Transport of propanolol and lidocaine through the rat blood-brain barrier. Primary role of globulin-bound drug. J Clin Invest 1983; 71: 900–8PubMedCrossRef
31.
Zurück zum Zitat Cserr HF. Convection of brain interstitial fluid. In: Shapiro K, Marmarou A, editor. Hydrocephalus. New York: Raven Press, 1984: 59–68 Cserr HF. Convection of brain interstitial fluid. In: Shapiro K, Marmarou A, editor. Hydrocephalus. New York: Raven Press, 1984: 59–68
32.
Zurück zum Zitat Segal MB. The blood-CSF barrier and the choroid plexus. In: Pardridge WM, editor. Introduction to the blood-brain barrier: methodology, biology and pathology. Cambridge: Cambridge University Press, 1998: 251–8CrossRef Segal MB. The blood-CSF barrier and the choroid plexus. In: Pardridge WM, editor. Introduction to the blood-brain barrier: methodology, biology and pathology. Cambridge: Cambridge University Press, 1998: 251–8CrossRef
33.
Zurück zum Zitat Atack JR, Rapoport SI, Shapiro MB. Cerebrospinal fluid production is normal in Down Syndrome. Neurobiol Aging 1998; 19: 307–9PubMedCrossRef Atack JR, Rapoport SI, Shapiro MB. Cerebrospinal fluid production is normal in Down Syndrome. Neurobiol Aging 1998; 19: 307–9PubMedCrossRef
34.
Zurück zum Zitat Williams SA, Davson H, Segal MB. Transport of the nucleoside thymidine, in the central nervous system: the blood-cerebrospinal fluid and blood-brain barriers. In: Greenwood J, Begley DJ, Segal MB, editors. New concepts of a blood-brain barrier. New York: Plenum Press, 1995: 175–87 Williams SA, Davson H, Segal MB. Transport of the nucleoside thymidine, in the central nervous system: the blood-cerebrospinal fluid and blood-brain barriers. In: Greenwood J, Begley DJ, Segal MB, editors. New concepts of a blood-brain barrier. New York: Plenum Press, 1995: 175–87
35.
Zurück zum Zitat Bruni JE. Ependymal development, proliferation, and functions: a review. Microsc Res Tech 1998; 41: 2–13PubMedCrossRef Bruni JE. Ependymal development, proliferation, and functions: a review. Microsc Res Tech 1998; 41: 2–13PubMedCrossRef
36.
Zurück zum Zitat Del Bigio MR. The ependyma: a protective barrier between brain and cerebrospinal fluid. Glia 1995; 14: 1–13PubMedCrossRef Del Bigio MR. The ependyma: a protective barrier between brain and cerebrospinal fluid. Glia 1995; 14: 1–13PubMedCrossRef
37.
Zurück zum Zitat Fenstermacher JD, Patlak CS, Blasberg RG. Transport of material between brain extracellular fluid, brain cells and blood. Fed Proc 1974; 33: 2070–4PubMed Fenstermacher JD, Patlak CS, Blasberg RG. Transport of material between brain extracellular fluid, brain cells and blood. Fed Proc 1974; 33: 2070–4PubMed
38.
Zurück zum Zitat Fenstermacher JD, Rall DP, Patlak CS, et al. Ventricular perfusion as a technique for analysis of brain capillary permeability and extracellular transport. In: Crone C, Lassen N, editors. Capillary permeability. Copenhagen: Munksgaard, 1970: 483–90 Fenstermacher JD, Rall DP, Patlak CS, et al. Ventricular perfusion as a technique for analysis of brain capillary permeability and extracellular transport. In: Crone C, Lassen N, editors. Capillary permeability. Copenhagen: Munksgaard, 1970: 483–90
39.
Zurück zum Zitat Malhotra BK, Lemaire M, Sawchuk RJ. Investigation of the distribution of EAB 515 to cortical ECF and CSF in freely moving rats utilizing microdialysis. Pharm Res 1994; 11: 1223–31PubMedCrossRef Malhotra BK, Lemaire M, Sawchuk RJ. Investigation of the distribution of EAB 515 to cortical ECF and CSF in freely moving rats utilizing microdialysis. Pharm Res 1994; 11: 1223–31PubMedCrossRef
40.
Zurück zum Zitat Aird RB. A study of intrathecal, cerebrospinal fluid-to-brain exchange. Exp Neurol 1984; 86: 342–58PubMedCrossRef Aird RB. A study of intrathecal, cerebrospinal fluid-to-brain exchange. Exp Neurol 1984; 86: 342–58PubMedCrossRef
41.
Zurück zum Zitat Blasberg RG, Patlak CS, Fenstermacher JD, et al. Intrathecal chemotherapy: brain tissue profiles after ventriculocisternal perfusion. J Pharmacol Exp Ther 1975; 195: 73–83PubMed Blasberg RG, Patlak CS, Fenstermacher JD, et al. Intrathecal chemotherapy: brain tissue profiles after ventriculocisternal perfusion. J Pharmacol Exp Ther 1975; 195: 73–83PubMed
42.
Zurück zum Zitat De Lange ECM, Danhof M, De Boer AG, et al. Critical factors of intracerebral microdialysis as a technique to determine the pharmacokinetics of drugs in rat brain. Brain Res 1994; 666: 1–8PubMedCrossRef De Lange ECM, Danhof M, De Boer AG, et al. Critical factors of intracerebral microdialysis as a technique to determine the pharmacokinetics of drugs in rat brain. Brain Res 1994; 666: 1–8PubMedCrossRef
43.
Zurück zum Zitat Patlak CS, Fenstermacher JD. Measurements of dog blood-brain transfer constants by ventriculocisternal perfusion. Am J Physiol 1975; 229: 877–84PubMed Patlak CS, Fenstermacher JD. Measurements of dog blood-brain transfer constants by ventriculocisternal perfusion. Am J Physiol 1975; 229: 877–84PubMed
44.
Zurück zum Zitat De Lange ECM, Bouw MR, Danhof M, et al. Application of intracerebral microdialysis to study regional distribution kinetics of drugs in rat brain. Br J Pharmacol 1995; 116: 538–2544CrossRef De Lange ECM, Bouw MR, Danhof M, et al. Application of intracerebral microdialysis to study regional distribution kinetics of drugs in rat brain. Br J Pharmacol 1995; 116: 538–2544CrossRef
45.
Zurück zum Zitat Baker SD, Heideman RL, Crom WR, et al. Cerebrospinal fluid pharmacokinetics and penetration of continuous infusion topotecan in children with central nervous system tumors. Cancer Chemother Pharmacol 1996; 37: 195–202PubMedCrossRef Baker SD, Heideman RL, Crom WR, et al. Cerebrospinal fluid pharmacokinetics and penetration of continuous infusion topotecan in children with central nervous system tumors. Cancer Chemother Pharmacol 1996; 37: 195–202PubMedCrossRef
46.
Zurück zum Zitat Balis FM, Blaney SM, McCully CL, et al. Methotrexate distribution within the subarachnoid space after intraventricular and intravenous administration. Cancer Chemother Pharmacol 2000; 45: 259–64PubMedCrossRef Balis FM, Blaney SM, McCully CL, et al. Methotrexate distribution within the subarachnoid space after intraventricular and intravenous administration. Cancer Chemother Pharmacol 2000; 45: 259–64PubMedCrossRef
47.
Zurück zum Zitat Blaney SM, Daniel MJ, Harker AJ, et al. Pharmacokinetics of lamivudine and BCH-189 in plasma and cerebrospinal fluid of nonhuman primates. Antimicrob Agents Chemother 1995; 39: 2779–82PubMedCrossRef Blaney SM, Daniel MJ, Harker AJ, et al. Pharmacokinetics of lamivudine and BCH-189 in plasma and cerebrospinal fluid of nonhuman primates. Antimicrob Agents Chemother 1995; 39: 2779–82PubMedCrossRef
48.
Zurück zum Zitat Freund M, Adwan M, Kooijman H, et al. Quantitative analysis of spinal CSF dynamics using magnetic resonance imaging: experimental and clinical studies. Rofo Fortschritte Geb Rontgenstr Bild Verfahren 2001; 173: 306–14CrossRef Freund M, Adwan M, Kooijman H, et al. Quantitative analysis of spinal CSF dynamics using magnetic resonance imaging: experimental and clinical studies. Rofo Fortschritte Geb Rontgenstr Bild Verfahren 2001; 173: 306–14CrossRef
49.
Zurück zum Zitat Kawakami J, Yamamoto K, Sawada Y, et al. Prediction of brain delivery of ofloxacin, a new quinolone, in the human from animal data. J Pharmacokinet Biopharm 1994; 22: 207–27PubMed Kawakami J, Yamamoto K, Sawada Y, et al. Prediction of brain delivery of ofloxacin, a new quinolone, in the human from animal data. J Pharmacokinet Biopharm 1994; 22: 207–27PubMed
50.
Zurück zum Zitat Marsala M, Malmberg AB, Yaksh TL. The spinal loop dialysis catheter: characterization of use in the unanesthetized rat. J Neurosci Methods 1995; 62: 43–53PubMedCrossRef Marsala M, Malmberg AB, Yaksh TL. The spinal loop dialysis catheter: characterization of use in the unanesthetized rat. J Neurosci Methods 1995; 62: 43–53PubMedCrossRef
51.
Zurück zum Zitat Morikawa N, Mori T, Kawashima H, et al. Pharmacokinetics of anticancer drugs in cerebrospinal fluid. Ann Pharmacother 1998; 32: 1008–12PubMedCrossRef Morikawa N, Mori T, Kawashima H, et al. Pharmacokinetics of anticancer drugs in cerebrospinal fluid. Ann Pharmacother 1998; 32: 1008–12PubMedCrossRef
52.
Zurück zum Zitat Falkenstein E, Tillmann HC, Christ M, et al. Multiple actions of steroid hormones: a focus on rapid, nongenomic effects. Pharmacol Rev 2000; 52: 513–55PubMed Falkenstein E, Tillmann HC, Christ M, et al. Multiple actions of steroid hormones: a focus on rapid, nongenomic effects. Pharmacol Rev 2000; 52: 513–55PubMed
53.
Zurück zum Zitat Gottesman MM. Report of a meeting: molecular basis of cancer therapy. J Natl Cancer Inst 1994; 86: 1277–85PubMedCrossRef Gottesman MM. Report of a meeting: molecular basis of cancer therapy. J Natl Cancer Inst 1994; 86: 1277–85PubMedCrossRef
54.
Zurück zum Zitat Fletcher CV. Pharmacologic considerations for therapeutic success with antiretroviral agents. Ann Pharmacother 1999; 33: 989–95PubMedCrossRef Fletcher CV. Pharmacologic considerations for therapeutic success with antiretroviral agents. Ann Pharmacother 1999; 33: 989–95PubMedCrossRef
55.
Zurück zum Zitat Peter K, Gambertoglio JG. Intracellular phosphorylation of zidovudine (ZDV) and other nucleoside reverse transcriptase inhibitors (RTI) used for human immunodeficiency virus (HIV) infection. Pharm Res 1998; 15: 819–25PubMedCrossRef Peter K, Gambertoglio JG. Intracellular phosphorylation of zidovudine (ZDV) and other nucleoside reverse transcriptase inhibitors (RTI) used for human immunodeficiency virus (HIV) infection. Pharm Res 1998; 15: 819–25PubMedCrossRef
56.
Zurück zum Zitat De Lange ECM, Danhof M, De Boer AG, et al. Methodological considerations of intracerebral microdialysis in pharmacokinetic studies on blood-brain barrier transport of drugs. Brain Res Brain Res Rev 1997; 25: 27–49PubMedCrossRef De Lange ECM, Danhof M, De Boer AG, et al. Methodological considerations of intracerebral microdialysis in pharmacokinetic studies on blood-brain barrier transport of drugs. Brain Res Brain Res Rev 1997; 25: 27–49PubMedCrossRef
57.
Zurück zum Zitat Muller M. Microdialysis in clinical drug delivery studies. Adv Drug Deliv Rev 2000; 45: 255–69PubMedCrossRef Muller M. Microdialysis in clinical drug delivery studies. Adv Drug Deliv Rev 2000; 45: 255–69PubMedCrossRef
58.
Zurück zum Zitat De Lange EC, de Bock G, Schinkel AH, et al. BBB transport and P-glycoprotein functionality using MDR1A (-/-) and wild-type mice. Total brain versus microdialysis concentration profiles of rhodamine-123. Pharm Res 1998; 15: 1657–65PubMedCrossRef De Lange EC, de Bock G, Schinkel AH, et al. BBB transport and P-glycoprotein functionality using MDR1A (-/-) and wild-type mice. Total brain versus microdialysis concentration profiles of rhodamine-123. Pharm Res 1998; 15: 1657–65PubMedCrossRef
59.
Zurück zum Zitat Hammarlund-Udenaes M, Paalzow LN, De Lange ECM. Drug equilibration across the blood-brain barrier-pharmacokinetic considerations based on the microdialysis method. Pharm Res 1997; 14: 128–34PubMedCrossRef Hammarlund-Udenaes M, Paalzow LN, De Lange ECM. Drug equilibration across the blood-brain barrier-pharmacokinetic considerations based on the microdialysis method. Pharm Res 1997; 14: 128–34PubMedCrossRef
60.
Zurück zum Zitat Hammarlund-Udenaes M. The use of microdialysis in CNS drug delivery studies. Pharmacokinetic perspectives and results with analgesics and antiepileptics. Adv Drug Deliv Rev 2000; 45: 283–94PubMedCrossRef Hammarlund-Udenaes M. The use of microdialysis in CNS drug delivery studies. Pharmacokinetic perspectives and results with analgesics and antiepileptics. Adv Drug Deliv Rev 2000; 45: 283–94PubMedCrossRef
61.
Zurück zum Zitat Sawchuk RJ, Elmquist WF. Microdialysis in the study of drug transporters in the CNS. Adv Drug Deliv Rev 2000; 45: 295–306PubMedCrossRef Sawchuk RJ, Elmquist WF. Microdialysis in the study of drug transporters in the CNS. Adv Drug Deliv Rev 2000; 45: 295–306PubMedCrossRef
62.
Zurück zum Zitat Wang YF, Welty DF. The simultaneous estimation of the influx and efflux blood-brain barrier permeabilities of gabapentin using a microdialysis-pharmacokinetic approach. Pharm Res 1996; 13: 398–403PubMedCrossRef Wang YF, Welty DF. The simultaneous estimation of the influx and efflux blood-brain barrier permeabilities of gabapentin using a microdialysis-pharmacokinetic approach. Pharm Res 1996; 13: 398–403PubMedCrossRef
63.
Zurück zum Zitat Xie R, Hammarlund-Udenaes M, de Boer AG, et al. The role of P-glycoprotein in blood-brain barrier transport of morphine: transcortical microdialysis studies in mdr1a (-/-) and mdr1a (+/+) mice. Br J Pharmacol 1999; 128: 563–8PubMedCrossRef Xie R, Hammarlund-Udenaes M, de Boer AG, et al. The role of P-glycoprotein in blood-brain barrier transport of morphine: transcortical microdialysis studies in mdr1a (-/-) and mdr1a (+/+) mice. Br J Pharmacol 1999; 128: 563–8PubMedCrossRef
64.
Zurück zum Zitat Kerr IG, Zimm S, Collins JM, et al. Effect of intravenous dose and schedule on cerebrospinal fluid pharmacokinetics of 5-fluorouracil in the monkey. Cancer Res 1984; 44: 4929–32PubMed Kerr IG, Zimm S, Collins JM, et al. Effect of intravenous dose and schedule on cerebrospinal fluid pharmacokinetics of 5-fluorouracil in the monkey. Cancer Res 1984; 44: 4929–32PubMed
65.
Zurück zum Zitat Ghersi-Egea JF, Minn A, Siest G. A new aspect of the protective functions of the blood-brain barrier; activities of four drug metabolizing enzymes in isolated brain microvessels. Life Sci 1998; 42: 2515–23CrossRef Ghersi-Egea JF, Minn A, Siest G. A new aspect of the protective functions of the blood-brain barrier; activities of four drug metabolizing enzymes in isolated brain microvessels. Life Sci 1998; 42: 2515–23CrossRef
66.
Zurück zum Zitat Ghersi-Egea JF, Leininger-Muller B, Suleman G, et al. Localization of drug-metabolizing enzyme activities to blood-brain interfaces and circumventricular organs. J Neurochem 1994; 62: 1089–96PubMedCrossRef Ghersi-Egea JF, Leininger-Muller B, Suleman G, et al. Localization of drug-metabolizing enzyme activities to blood-brain interfaces and circumventricular organs. J Neurochem 1994; 62: 1089–96PubMedCrossRef
67.
Zurück zum Zitat Ghersi-Egea JF, Strazielle N. Brain drug delivery, drug metabolism, and multidrug resistance at the choroid plexus. Microsc Res Tech 2001; 52: 83–8PubMedCrossRef Ghersi-Egea JF, Strazielle N. Brain drug delivery, drug metabolism, and multidrug resistance at the choroid plexus. Microsc Res Tech 2001; 52: 83–8PubMedCrossRef
68.
Zurück zum Zitat Johnson JA, Barbary A, Kornguth SE, et al. Glutathion S-transferase isoenzymes in rat brain neurons and glia. J Neurosci 1993; 13: 2013–23PubMed Johnson JA, Barbary A, Kornguth SE, et al. Glutathion S-transferase isoenzymes in rat brain neurons and glia. J Neurosci 1993; 13: 2013–23PubMed
69.
Zurück zum Zitat Tayarani I, Cloez I, Clement M, et al. Antioxidant enzymes and related trace elements in aging brain capillaries and choroid plexus. J Neurochem 1989; 53: 817–24PubMedCrossRef Tayarani I, Cloez I, Clement M, et al. Antioxidant enzymes and related trace elements in aging brain capillaries and choroid plexus. J Neurochem 1989; 53: 817–24PubMedCrossRef
70.
Zurück zum Zitat Volk B, Hettmansperger U, Papp TH, et al. Mapping of phenytoin-inducible cytochrome P450 immunoreactivity in the mouse central nervous system. Neuroscience 1991; 42: 215–35PubMedCrossRef Volk B, Hettmansperger U, Papp TH, et al. Mapping of phenytoin-inducible cytochrome P450 immunoreactivity in the mouse central nervous system. Neuroscience 1991; 42: 215–35PubMedCrossRef
71.
Zurück zum Zitat Kurata N, Inagaki M, Iwase M, et al. Pharmacokinetic study of trimethadione and its metabolite in blood, liver and brain by microdialysis in conscious, unrestrained rats. Res Commun Mol Pathol Pharmacol 1995; 89: 45–56PubMed Kurata N, Inagaki M, Iwase M, et al. Pharmacokinetic study of trimethadione and its metabolite in blood, liver and brain by microdialysis in conscious, unrestrained rats. Res Commun Mol Pathol Pharmacol 1995; 89: 45–56PubMed
72.
Zurück zum Zitat Banks WA. Physiology and pathology of the blood-brain barrier: implications for microbial pathogenesis, drug delivery and neurodegenerative disorders. J Neurovirol 1999; 5: 538–55PubMedCrossRef Banks WA. Physiology and pathology of the blood-brain barrier: implications for microbial pathogenesis, drug delivery and neurodegenerative disorders. J Neurovirol 1999; 5: 538–55PubMedCrossRef
73.
Zurück zum Zitat De Vries HE, Kuiper J, de Boer AG, et al. The role of the blood-brain barrier in neuro-inflammatory diseases. Pharmacol Rev 1997; 49: 143–56PubMed De Vries HE, Kuiper J, de Boer AG, et al. The role of the blood-brain barrier in neuro-inflammatory diseases. Pharmacol Rev 1997; 49: 143–56PubMed
74.
Zurück zum Zitat Kramer K, Kushner B, Heller G, et al. Neuroblastoma metastatic to the central nervous system: The Memorial Sloan-Kettering Cancer Center experience and a literature review. Cancer 2001; 91: 1510–9PubMedCrossRef Kramer K, Kushner B, Heller G, et al. Neuroblastoma metastatic to the central nervous system: The Memorial Sloan-Kettering Cancer Center experience and a literature review. Cancer 2001; 91: 1510–9PubMedCrossRef
75.
Zurück zum Zitat Brosman CF, Claudio L. Brain microvasculature in multiple sclerosis. In: Pardridge WM, editor. Introduction to the blood-brain barrier; methodology, biology and pathology. Cambridge: Cambridge University Press, 1998: 386–400CrossRef Brosman CF, Claudio L. Brain microvasculature in multiple sclerosis. In: Pardridge WM, editor. Introduction to the blood-brain barrier; methodology, biology and pathology. Cambridge: Cambridge University Press, 1998: 386–400CrossRef
76.
Zurück zum Zitat Filippi M, Rovaris M. Magnetisation transfer imaging in multiple sclerosis. J Neurovirol 2000; 6: S115–20PubMed Filippi M, Rovaris M. Magnetisation transfer imaging in multiple sclerosis. J Neurovirol 2000; 6: S115–20PubMed
77.
Zurück zum Zitat Johansson BB. Hypertension. In: Pardridge WM, editor. Introduction to the blood-brain barrier; methodology, biology and pathology. Cambridge: Cambridge University Press, 1998: 427–33CrossRef Johansson BB. Hypertension. In: Pardridge WM, editor. Introduction to the blood-brain barrier; methodology, biology and pathology. Cambridge: Cambridge University Press, 1998: 427–33CrossRef
78.
Zurück zum Zitat Nottet HSLM. Interactions between macrophages and brain microvascular endothelial cells: role in pathogenesis of HIV-1 infection and blood-brain barrier function. J Neurovirol 1999; 5: 659–69PubMedCrossRef Nottet HSLM. Interactions between macrophages and brain microvascular endothelial cells: role in pathogenesis of HIV-1 infection and blood-brain barrier function. J Neurovirol 1999; 5: 659–69PubMedCrossRef
79.
Zurück zum Zitat Petito CK. HIV infection and the blood-brain barrier. In: Pardridge WM, editor. Introduction to the blood-brain barrier: methodology, biology and pathology. Cambridge: Cambridge University Press, 1998: 419–26CrossRef Petito CK. HIV infection and the blood-brain barrier. In: Pardridge WM, editor. Introduction to the blood-brain barrier: methodology, biology and pathology. Cambridge: Cambridge University Press, 1998: 419–26CrossRef
80.
Zurück zum Zitat Povlishock JT. The pathophysiology of blood-brain barrier dysfunction due to traumatic brain injury. In: Pardridge WM, editor. Introduction to the blood-brain barrier; methodology, biology and pathology. Cambridge: Cambridge University Press, 1998: 441–53CrossRef Povlishock JT. The pathophysiology of blood-brain barrier dysfunction due to traumatic brain injury. In: Pardridge WM, editor. Introduction to the blood-brain barrier; methodology, biology and pathology. Cambridge: Cambridge University Press, 1998: 441–53CrossRef
81.
Zurück zum Zitat De Lange ECM, De Vries JD, Zurcher C, et al. The use of intracerebral microdialysis for the determination of pharmacokinetic profiles of anticancer drugs in tumor-bearing rat brain. Pharm Res 1995; 12: 1924–31PubMedCrossRef De Lange ECM, De Vries JD, Zurcher C, et al. The use of intracerebral microdialysis for the determination of pharmacokinetic profiles of anticancer drugs in tumor-bearing rat brain. Pharm Res 1995; 12: 1924–31PubMedCrossRef
82.
Zurück zum Zitat Shapiro WR, Shapiro JR. Principles of brain tumor chemotherapy. Semin Oncol 1986; 13: 56–69PubMed Shapiro WR, Shapiro JR. Principles of brain tumor chemotherapy. Semin Oncol 1986; 13: 56–69PubMed
83.
Zurück zum Zitat Suzuki H, Terasaki T, Sugiyama Y. Role of efflux transport across the blood-brain barrier and blood-cerebrospinal fluid barrier on the disposition of xenobiotics in the central nervous system. Adv Drug Deliv Rev 1997; 25: 257–85CrossRef Suzuki H, Terasaki T, Sugiyama Y. Role of efflux transport across the blood-brain barrier and blood-cerebrospinal fluid barrier on the disposition of xenobiotics in the central nervous system. Adv Drug Deliv Rev 1997; 25: 257–85CrossRef
84.
Zurück zum Zitat Vajkoczy P, Menger MD. Vascular microenvironment in gliomas. J Neuro-Oncol 2000; 50: 99–108CrossRef Vajkoczy P, Menger MD. Vascular microenvironment in gliomas. J Neuro-Oncol 2000; 50: 99–108CrossRef
85.
Zurück zum Zitat Steward PA, Mikulis D. The blood-brain barrier in brain tumours. In: Pardridge WM, editor. Introduction to the blood-brain barrier; methodology, biology and pathology. Cambridge: Cambridge University Press, 1998: 434–40CrossRef Steward PA, Mikulis D. The blood-brain barrier in brain tumours. In: Pardridge WM, editor. Introduction to the blood-brain barrier; methodology, biology and pathology. Cambridge: Cambridge University Press, 1998: 434–40CrossRef
86.
Zurück zum Zitat Turner G. Cerebral malaria and brain microvasculature. In: Pardridge WM, editor. Introduction to the blood-brain barrier; methodology, biology and pathology. Cambridge: Cambridge University Press, 1998: 454–61CrossRef Turner G. Cerebral malaria and brain microvasculature. In: Pardridge WM, editor. Introduction to the blood-brain barrier; methodology, biology and pathology. Cambridge: Cambridge University Press, 1998: 454–61CrossRef
87.
Zurück zum Zitat Bolwig TG, Hertz MM, Paulson OB, et al. The permeability of the blood-brain barrier during electrically induced seizures in man. Eur J Clin Invest 1977; 7: 87–93PubMedCrossRef Bolwig TG, Hertz MM, Paulson OB, et al. The permeability of the blood-brain barrier during electrically induced seizures in man. Eur J Clin Invest 1977; 7: 87–93PubMedCrossRef
88.
Zurück zum Zitat Nitsch C, Klatzo I. Regional patterns of blood-brain barrier breakdown during epileptiform seizures induced by various convulsive agents. J Neurol Sci 1983; 59: 305–22PubMedCrossRef Nitsch C, Klatzo I. Regional patterns of blood-brain barrier breakdown during epileptiform seizures induced by various convulsive agents. J Neurol Sci 1983; 59: 305–22PubMedCrossRef
89.
Zurück zum Zitat Petito CK, Schaefer JA, Plum F. Ultrastructural characteristics of the brain and blood-brain barrier in experimental seizures. Brain Res 1977; 127: 251–67PubMedCrossRef Petito CK, Schaefer JA, Plum F. Ultrastructural characteristics of the brain and blood-brain barrier in experimental seizures. Brain Res 1977; 127: 251–67PubMedCrossRef
90.
Zurück zum Zitat Mayhan WG. Regulation of blood-brain barrier permeability. Microcirculation 2001; 8: 89–104PubMed Mayhan WG. Regulation of blood-brain barrier permeability. Microcirculation 2001; 8: 89–104PubMed
91.
Zurück zum Zitat Modai J. Diffusion of 3-quaternary ammonium cephem antibiotics into cerebrospinal fluid of patients with bacterial meningitis. J Chemother 1996; 8: 83–90PubMed Modai J. Diffusion of 3-quaternary ammonium cephem antibiotics into cerebrospinal fluid of patients with bacterial meningitis. J Chemother 1996; 8: 83–90PubMed
92.
Zurück zum Zitat Spellerberg B, Tuomanen EI. The pathophysiology of pneumococcal meningitis. Ann Med 1994; 26: 411–8PubMedCrossRef Spellerberg B, Tuomanen EI. The pathophysiology of pneumococcal meningitis. Ann Med 1994; 26: 411–8PubMedCrossRef
93.
Zurück zum Zitat Bouw R, Ederoth P, Lundberg J, et al. Increased blood-brain barrier permeability of morphine in a patient with severe brain lesions as determined by microdialysis. Acta Anaesthesiol Scand 2001; 45: 390–2PubMedCrossRef Bouw R, Ederoth P, Lundberg J, et al. Increased blood-brain barrier permeability of morphine in a patient with severe brain lesions as determined by microdialysis. Acta Anaesthesiol Scand 2001; 45: 390–2PubMedCrossRef
94.
Zurück zum Zitat Angeletti RH, Novikoff PM, Juvvadi SR, et al. The choroid plexus epithelium is the site of the organic anion transport protein in the brain. Proc Natl Acad Sci U S A 1997; 94: 283–6PubMedCrossRef Angeletti RH, Novikoff PM, Juvvadi SR, et al. The choroid plexus epithelium is the site of the organic anion transport protein in the brain. Proc Natl Acad Sci U S A 1997; 94: 283–6PubMedCrossRef
95.
Zurück zum Zitat Cordon-Cardo B, O’Brien JP, Casals D, et al. Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc Natl Acad Sci USA 1989; 86: 689–95CrossRef Cordon-Cardo B, O’Brien JP, Casals D, et al. Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc Natl Acad Sci USA 1989; 86: 689–95CrossRef
96.
Zurück zum Zitat Gao B, Meier PJ. Organic anion transport across the choroid plexus. Microsc Res Tech 2001; 52: 60–4PubMedCrossRef Gao B, Meier PJ. Organic anion transport across the choroid plexus. Microsc Res Tech 2001; 52: 60–4PubMedCrossRef
97.
Zurück zum Zitat Nishino J. Transepithelial transport of organic anions across the choroid plexus: possible involvement of organic anion transporter and multidrug resistance-associated protein. J Pharmacol Exp Ther 1999; 290: 289–94PubMed Nishino J. Transepithelial transport of organic anions across the choroid plexus: possible involvement of organic anion transporter and multidrug resistance-associated protein. J Pharmacol Exp Ther 1999; 290: 289–94PubMed
98.
Zurück zum Zitat Ogawa M, Suzuki H, Sawada Y, et al. Kinetics of active efflux via choroid plexus of beta-lactam antibiotics from the CSF into the circulation. Am J Physiol 1994; 266: R392–9PubMed Ogawa M, Suzuki H, Sawada Y, et al. Kinetics of active efflux via choroid plexus of beta-lactam antibiotics from the CSF into the circulation. Am J Physiol 1994; 266: R392–9PubMed
99.
Zurück zum Zitat Ooie T, Suzuki H, Terasaki T, et al. Kinetic evidence for active efflux transport across the blood-brain barrier of quinolone antibiotics. J Pharmacol ExpTher 1997; 283: 293–304 Ooie T, Suzuki H, Terasaki T, et al. Kinetic evidence for active efflux transport across the blood-brain barrier of quinolone antibiotics. J Pharmacol ExpTher 1997; 283: 293–304
100.
Zurück zum Zitat Rao VV, Dahlheimer JL, Bardgett ME, et al. Choroid plexus epithelial expression of MDR1 P glycoprotein and multi-drug resistance-associated protein contribute to the blood-cerebrospinal-fluid drug-permeability barrier. Proc Natl Acad Sei U S A 1999; 96: 3900–5CrossRef Rao VV, Dahlheimer JL, Bardgett ME, et al. Choroid plexus epithelial expression of MDR1 P glycoprotein and multi-drug resistance-associated protein contribute to the blood-cerebrospinal-fluid drug-permeability barrier. Proc Natl Acad Sei U S A 1999; 96: 3900–5CrossRef
101.
Zurück zum Zitat Schinkel AH, Smit JJM, Van Tellingen O, et al. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 1994; 77: 491–502PubMedCrossRef Schinkel AH, Smit JJM, Van Tellingen O, et al. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 1994; 77: 491–502PubMedCrossRef
102.
Zurück zum Zitat Wijnholds J, de Lange ECM, Scheffer GL, et al. Multidrug resistance protein 1 protects the choroid plexus epithelium and contributes to the blood-cerebrospinal fluid barrier. Clin Investig 2000; 105: 279–85CrossRef Wijnholds J, de Lange ECM, Scheffer GL, et al. Multidrug resistance protein 1 protects the choroid plexus epithelium and contributes to the blood-cerebrospinal fluid barrier. Clin Investig 2000; 105: 279–85CrossRef
103.
Zurück zum Zitat Deguchi Y, Nowaza K, Yamada S, et al. Quantitative evaluation of brain distribution and blood-brain barrier efflux transport of probenecid in rats by microdialysis. Possible involvement of the monocarboxylic acid transport system. J Pharmacol Exp Ther 1997; 280: 551–60PubMed Deguchi Y, Nowaza K, Yamada S, et al. Quantitative evaluation of brain distribution and blood-brain barrier efflux transport of probenecid in rats by microdialysis. Possible involvement of the monocarboxylic acid transport system. J Pharmacol Exp Ther 1997; 280: 551–60PubMed
104.
Zurück zum Zitat Scism JL, Powers KM, Artru AA, et al. Effects of probenecid on brain-cerebrospinal fluid-blood distribution kinetics of E-Delta(2)-valproic acid in rabbits. Drug Metab Dispos 1997; 25: 1337–46PubMed Scism JL, Powers KM, Artru AA, et al. Effects of probenecid on brain-cerebrospinal fluid-blood distribution kinetics of E-Delta(2)-valproic acid in rabbits. Drug Metab Dispos 1997; 25: 1337–46PubMed
105.
Zurück zum Zitat Thomas S, Cass L, Prince W, et al. Brain and CSF entry of the novel non-nucleoside reverse transcriptase inhibitor GW420-867X. Neuropharmacol Neurotoxicol 2000; 11: 3811–5 Thomas S, Cass L, Prince W, et al. Brain and CSF entry of the novel non-nucleoside reverse transcriptase inhibitor GW420-867X. Neuropharmacol Neurotoxicol 2000; 11: 3811–5
106.
Zurück zum Zitat Van Amsterdam C, Lemaire M. Pharmacokinetic profile of SDZ EAA 494 in blood, brain, and CSF using microdialysis. Eur J Pharm Sci 1997; 5: 109–16CrossRef Van Amsterdam C, Lemaire M. Pharmacokinetic profile of SDZ EAA 494 in blood, brain, and CSF using microdialysis. Eur J Pharm Sci 1997; 5: 109–16CrossRef
107.
Zurück zum Zitat Walker MC, Tong X, Perry H, et al. Comparison of serum, cerebrospinal fluid and brain extracellular fluid pharmacokinetics of lamotrigine. Br J Pharmacol 2000; 130: 242–8PubMedCrossRef Walker MC, Tong X, Perry H, et al. Comparison of serum, cerebrospinal fluid and brain extracellular fluid pharmacokinetics of lamotrigine. Br J Pharmacol 2000; 130: 242–8PubMedCrossRef
108.
Zurück zum Zitat Tsuji A, Tamai I. Carrier-mediated or specialized transport of drugs across the blood-brain barrier. Adv Drug Deliv Rev 1999; 36: 277–90PubMedCrossRef Tsuji A, Tamai I. Carrier-mediated or specialized transport of drugs across the blood-brain barrier. Adv Drug Deliv Rev 1999; 36: 277–90PubMedCrossRef
109.
Zurück zum Zitat Greig NH, Momma S, Sweeney DJ, et al. Facilitated transport of melphalan at the rat blood-brain barrier by the large neutral amino acid carrier system. Cancer Res 1987; 47: 1571–6PubMed Greig NH, Momma S, Sweeney DJ, et al. Facilitated transport of melphalan at the rat blood-brain barrier by the large neutral amino acid carrier system. Cancer Res 1987; 47: 1571–6PubMed
110.
Zurück zum Zitat Tatsua T, Naito M, Mikami K, et al. Enhanced expression by the brain matrix of P-glycoprotein in brain capillary endothelial cells. Cell Growth Differ 1994; 5: 1145–52 Tatsua T, Naito M, Mikami K, et al. Enhanced expression by the brain matrix of P-glycoprotein in brain capillary endothelial cells. Cell Growth Differ 1994; 5: 1145–52
111.
Zurück zum Zitat Seelig A. A general pattern for substrate recognition by P-glycoprotein. Eur J Biochem 1998; 251: 252–61PubMedCrossRef Seelig A. A general pattern for substrate recognition by P-glycoprotein. Eur J Biochem 1998; 251: 252–61PubMedCrossRef
112.
Zurück zum Zitat De Lange ECM, Marchand S, van den Berg DJ, et al. In vitro and in vivo investigations on fluoroquinolones; effects of the P-glycoprotein efflux transporter on brain distribution of sparfloxacin. Eur J Pharm Sci 2000; 12: 85–93PubMedCrossRef De Lange ECM, Marchand S, van den Berg DJ, et al. In vitro and in vivo investigations on fluoroquinolones; effects of the P-glycoprotein efflux transporter on brain distribution of sparfloxacin. Eur J Pharm Sci 2000; 12: 85–93PubMedCrossRef
113.
Zurück zum Zitat Desrayaud S, de Lange ECM, Lemaire M, et al. Effect of mdr1a P-glycoprotein disruption on the tissue distribution of SDZ PSC 833, a multidrug resistance reversing agent, in mice. J Pharmacol Exp Ther 1998; 285: 438–43PubMed Desrayaud S, de Lange ECM, Lemaire M, et al. Effect of mdr1a P-glycoprotein disruption on the tissue distribution of SDZ PSC 833, a multidrug resistance reversing agent, in mice. J Pharmacol Exp Ther 1998; 285: 438–43PubMed
114.
Zurück zum Zitat Kim RB, Fromm MF, Wandel C, et al. The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV1 protease inhibitors. J Clin Invest 1998; 101: 289–94PubMedCrossRef Kim RB, Fromm MF, Wandel C, et al. The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV1 protease inhibitors. J Clin Invest 1998; 101: 289–94PubMedCrossRef
115.
Zurück zum Zitat Mayer U, Wagenaar E, Dorobek B, et al. Full blockade of intestinal P-glycoprotein and extensive inhibition of blood-brain barrier P-glycoprotein by oral treatment of mice with PSC833. J Clin Invest 1997; 100: 2430–6PubMedCrossRef Mayer U, Wagenaar E, Dorobek B, et al. Full blockade of intestinal P-glycoprotein and extensive inhibition of blood-brain barrier P-glycoprotein by oral treatment of mice with PSC833. J Clin Invest 1997; 100: 2430–6PubMedCrossRef
116.
Zurück zum Zitat Meijer OC, de Lange ECM, Breimer DD, et al. Penetration of dexamethasone into brain glucocorticoid targets is enhanced in mdrla P-glycoprotein knockout mice. Endocrinology 1998; 139: 1789–93PubMedCrossRef Meijer OC, de Lange ECM, Breimer DD, et al. Penetration of dexamethasone into brain glucocorticoid targets is enhanced in mdrla P-glycoprotein knockout mice. Endocrinology 1998; 139: 1789–93PubMedCrossRef
117.
Zurück zum Zitat Schinkel AH, Wagenaar E, Mol CAAM, et al. P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J Clin Invest 1996; 97: 2517–24PubMedCrossRef Schinkel AH, Wagenaar E, Mol CAAM, et al. P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J Clin Invest 1996; 97: 2517–24PubMedCrossRef
118.
Zurück zum Zitat Schinkel AH, Wagenaar E, Van Deemter L, et al. Absence of the mdr1a p-glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J Clin Invest 1995; 96: 1698–705PubMedCrossRef Schinkel AH, Wagenaar E, Van Deemter L, et al. Absence of the mdr1a p-glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J Clin Invest 1995; 96: 1698–705PubMedCrossRef
119.
Zurück zum Zitat Uhr M, Steckler T, Yassouridis A, et al. Penetration of amitriptyline, but not of fluoxetine, into brain is enhanced in mice with blood-brain barrier deficiency due to Mdr1a P-glycoprotein gene disruption. Neuropsychopharmacology 2000; 22: 380–7PubMedCrossRef Uhr M, Steckler T, Yassouridis A, et al. Penetration of amitriptyline, but not of fluoxetine, into brain is enhanced in mice with blood-brain barrier deficiency due to Mdr1a P-glycoprotein gene disruption. Neuropsychopharmacology 2000; 22: 380–7PubMedCrossRef
120.
Zurück zum Zitat Klopman G, Leming MS, Avner R. Quantitative structure-activity relationship of multidrug resistance reversal agents. Mol Pharmacol 1997; 52: 323–34PubMed Klopman G, Leming MS, Avner R. Quantitative structure-activity relationship of multidrug resistance reversal agents. Mol Pharmacol 1997; 52: 323–34PubMed
121.
Zurück zum Zitat Groothuis DR, Levy RM. Entry of antiviral and antiretroviral drugs into the central nervous system. J Neurovirol 1997; 3: 387–400PubMedCrossRef Groothuis DR, Levy RM. Entry of antiviral and antiretroviral drugs into the central nervous system. J Neurovirol 1997; 3: 387–400PubMedCrossRef
122.
Zurück zum Zitat Takasawa K, Terasaki T, Suzuki H, et al. In vivo evidence for carrier-mediated efflux transport of 3′-azido-3′-deoxythymidine and 2′,3′-dideoxyinosine across the blood-brain barrier via a probenecid-sensitive transport system. J Pharmacol Exp Ther 1997; 281: 369–75PubMed Takasawa K, Terasaki T, Suzuki H, et al. In vivo evidence for carrier-mediated efflux transport of 3′-azido-3′-deoxythymidine and 2′,3′-dideoxyinosine across the blood-brain barrier via a probenecid-sensitive transport system. J Pharmacol Exp Ther 1997; 281: 369–75PubMed
123.
Zurück zum Zitat Wong SL, Van Belle K, Sawchuk RJ. Distributional transport kinetics of zidovudine between plasma and brain extracellular fluid and cerebrospinal fluid blood-barriers in the rabbit: investigation on the inhibitory effect of probenecid utilizing microdialysis. J Pharmacol Exp Ther 1993; 265: R1205–11 Wong SL, Van Belle K, Sawchuk RJ. Distributional transport kinetics of zidovudine between plasma and brain extracellular fluid and cerebrospinal fluid blood-barriers in the rabbit: investigation on the inhibitory effect of probenecid utilizing microdialysis. J Pharmacol Exp Ther 1993; 265: R1205–11
124.
Zurück zum Zitat Vladic A, Strikic N, Jurcic D, et al. Homeostatic role of the active transport in elimination of [H-3]benzylpenicillin out of the cerebrospinal fluid system. Life Sci 2000; 67: 2375–85PubMedCrossRef Vladic A, Strikic N, Jurcic D, et al. Homeostatic role of the active transport in elimination of [H-3]benzylpenicillin out of the cerebrospinal fluid system. Life Sci 2000; 67: 2375–85PubMedCrossRef
125.
Zurück zum Zitat Dacey RG, Sande MA. Effect of probenecid on cerebrospinal fluid concentrations of penicilline and cephalosporin derivatives. Antimicrob Agents Chemother 1974; 6: 437–41PubMedCrossRef Dacey RG, Sande MA. Effect of probenecid on cerebrospinal fluid concentrations of penicilline and cephalosporin derivatives. Antimicrob Agents Chemother 1974; 6: 437–41PubMedCrossRef
126.
Zurück zum Zitat Spector R. Advances in understanding the pharmacology of agents used to treat bacterial meningitis. Pharmacology 1990; 41: 113–8PubMedCrossRef Spector R. Advances in understanding the pharmacology of agents used to treat bacterial meningitis. Pharmacology 1990; 41: 113–8PubMedCrossRef
127.
Zurück zum Zitat Spector R. Ceftriaxone pharmacokinetics in the central nervous system. J Pharmacol Exp Ther 1986; 236: 380–3PubMed Spector R. Ceftriaxone pharmacokinetics in the central nervous system. J Pharmacol Exp Ther 1986; 236: 380–3PubMed
128.
Zurück zum Zitat Hesselink MB, Smolders H, Eilbacher B, et al. The role of probenecid-sensitive organic acid transport in the pharmacokinetics of N-methyl-D-aspartate receptor antagonists acting at the glycine(B)-site: microdialysis and maximum electroshock seizures studies. J Pharmacol Exp Ther 1999; 290: 543–50PubMed Hesselink MB, Smolders H, Eilbacher B, et al. The role of probenecid-sensitive organic acid transport in the pharmacokinetics of N-methyl-D-aspartate receptor antagonists acting at the glycine(B)-site: microdialysis and maximum electroshock seizures studies. J Pharmacol Exp Ther 1999; 290: 543–50PubMed
129.
Zurück zum Zitat Sawchuk RJ, Yang Z. Investigation of distribution, transport and uptake of anti-HIV drugs to the central nervous system. Adv Drug Deliv Rev 1999; 39: 5–31PubMedCrossRef Sawchuk RJ, Yang Z. Investigation of distribution, transport and uptake of anti-HIV drugs to the central nervous system. Adv Drug Deliv Rev 1999; 39: 5–31PubMedCrossRef
130.
Zurück zum Zitat Jedlitschky G, Leier I, Buchholz U, et al. Transport of glutathion, and sulfur conjugates by the MRP gene-encoded conjugate export pump. Cancer Res 1996; 56: 988–94PubMed Jedlitschky G, Leier I, Buchholz U, et al. Transport of glutathion, and sulfur conjugates by the MRP gene-encoded conjugate export pump. Cancer Res 1996; 56: 988–94PubMed
131.
Zurück zum Zitat Wang LP, Schmidt JF. Central nervous side effects after lumbar puncture — a review of the possible pathogenesis of the syndrome of postdural puncture headache and associated symptoms. Dan Med Bull 1997; 44: 79–81PubMed Wang LP, Schmidt JF. Central nervous side effects after lumbar puncture — a review of the possible pathogenesis of the syndrome of postdural puncture headache and associated symptoms. Dan Med Bull 1997; 44: 79–81PubMed
132.
Zurück zum Zitat Deuschle M, Hartter S, Hiemke C, et al. Doxepin and its metabolites in plasma and cerebrospinal fluid in depressed patients. Psychopharmacology 1997; 131: 19–22PubMedCrossRef Deuschle M, Hartter S, Hiemke C, et al. Doxepin and its metabolites in plasma and cerebrospinal fluid in depressed patients. Psychopharmacology 1997; 131: 19–22PubMedCrossRef
133.
Zurück zum Zitat Agon P, Goethals P, van Haver DK, et al. Permeability of BBB for atenolol studies by PET. J Pharm Pharmacol 1991; 43: 597–600PubMedCrossRef Agon P, Goethals P, van Haver DK, et al. Permeability of BBB for atenolol studies by PET. J Pharm Pharmacol 1991; 43: 597–600PubMedCrossRef
134.
Zurück zum Zitat Yu D-W, Gatley SJ, Wolf AP, et al. Synthesis of carbon-11 labeled ionidated cocaine derivatives and their distribution in baboon brain measured using positron emission tomography. J Med Chem 1992; 35: 2178–83PubMedCrossRef Yu D-W, Gatley SJ, Wolf AP, et al. Synthesis of carbon-11 labeled ionidated cocaine derivatives and their distribution in baboon brain measured using positron emission tomography. J Med Chem 1992; 35: 2178–83PubMedCrossRef
135.
Zurück zum Zitat Bartels M, Gunther U, Albert K, et al. 19F nuclear magnetic resonance spectroscopy of neuroleptics: the first in vivo pharmacokinetics of trifluoperazine in the rat brain and the first in vivo spectrum of fluphenazine in the human brain. Biol Psychol 1991; 30: 656–62CrossRef Bartels M, Gunther U, Albert K, et al. 19F nuclear magnetic resonance spectroscopy of neuroleptics: the first in vivo pharmacokinetics of trifluoperazine in the rat brain and the first in vivo spectrum of fluphenazine in the human brain. Biol Psychol 1991; 30: 656–62CrossRef
Metadaten
Titel
Considerations in the Use of Cerebrospinal Fluid Pharmacokinetics to Predict Brain Target Concentrations in the Clinical Setting
Implications of the Barriers Between Blood and Brain
verfasst von
Dr Elizabeth C.M. de Lange
Meindert Danhof
Publikationsdatum
01.08.2002
Verlag
Springer International Publishing
Erschienen in
Clinical Pharmacokinetics / Ausgabe 10/2002
Print ISSN: 0312-5963
Elektronische ISSN: 1179-1926
DOI
https://doi.org/10.2165/00003088-200241100-00001

Weitere Artikel der Ausgabe 10/2002

Clinical Pharmacokinetics 10/2002 Zur Ausgabe