Skip to main content
Erschienen in: Clinical Pharmacokinetics 14/2003

01.12.2003 | Review Article

Clinical Pharmacokinetics of Drugs Used to Treat Urge Incontinence

verfasst von: Dr David R. P. Guay

Erschienen in: Clinical Pharmacokinetics | Ausgabe 14/2003

Einloggen, um Zugang zu erhalten

Abstract

Urge incontinence (also known as overactive bladder) is a common form of urinary incontinence, occurring alone or as a component of mixed urinary incontinence, frequently together with stress incontinence. Because of the pathophysiology of urge incontinence, anticholinergic/antispasmodic agents form the cornerstone of therapy. Unfortunately, the pharmacological activity of these agents is not limited to the urinary tract, leading to systemic adverse effects that often promote nonadherence. Although the pharmacokinetics of flavoxate, propantheline, scopolamine, imipramine/desipramine, trospium chloride and propiverine are also reviewed here, only for oxybutynin and tolterodine are there adequate efficacy/tolerability data to support their use in urge incontinence.
Oxybutynin is poorly absorbed orally (2–11% for the immediate-release tablet formulation). Controlled-release oral formulations significantly prolong the time to peak plasma concentration and reduce the degree of fluctuation around the average concentration. Significant absorption occurs after intravesical (bladder) and transdermal administration, although concentrations of the active.N-desethyl metabolite are lower after transdermal compared with oral administration, possibly improving tolerability. Food has been found to significantly affect the absorption of one of the controlled-release formulations of oxybutynin, enhancing the rate of drug release. Oxybutynin is extensively metabolised, principally via N-demethylation mediated by the cytochrome P450 (CYP) 3A isozyme.
The pharmacokinetics of tolterodine are dependent in large part on the pharmacogenomics of the CYP2D6 and 3A4 isozymes. In an unselected population, oral bioavailability of tolterodine ranges from 10% to 74% (mean 33%) whereas in CYP2D6 extensive metabolisers and poor metabolisers mean bioavailabilities are 26% and 91%, respectively. Tolterodine is metabolised via CYP2D6 to the active metabolite 5-hydroxymethyl-tolterodine and via CYP3A to N-dealkylated metabolites. Urinary excretion of parent compound plays a minor role in drug disposition. Drug effect is based upon the unbound concentration of the so-called ‘active moiety’ (sum of tolterodine + 5-hydroxymethyl-tolterodine). Terminal disposition half-lives of tolterodine and 5-hydroxymethyl-tolterodine (in CYP2D6 extensive metabolisers) are 2–3 and 3–4 hours, respectively. Coadministration of antacid essentially converts the extended-release formulation into an immediate-release formulation.
Knowledge of the pharmacokinetics of these agents may improve the treatment of urge incontinence by allowing the identification of individuals at high risk for toxicity with ‘usual’ dosages. In addition, the use of alternative formulations (controlled-release oral, transdermal) may also facilitate adherence, not only by reducing the frequency of drug administration but also by enhancing tolerability by altering the proportions of parent compound and active metabolite in the blood.
Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Use of tradenames is for product identification only and does not imply endorsement.
 
Literatur
1.
Zurück zum Zitat Rovner ES, Wyman J, Lackner T, Guay DRP. Urinary incontinence. In: Dipiro JT, Talbert RL, Yee GC, Matzke GR, Wells BG, Posey LM, editors. Pharmacotherapy, a pathophysiologic approach. 5th ed. New York: McGraw Hill, 2002: 1543–56 Rovner ES, Wyman J, Lackner T, Guay DRP. Urinary incontinence. In: Dipiro JT, Talbert RL, Yee GC, Matzke GR, Wells BG, Posey LM, editors. Pharmacotherapy, a pathophysiologic approach. 5th ed. New York: McGraw Hill, 2002: 1543–56
2.
Zurück zum Zitat Blaivas JG, Heritz DM. Classification, diagnostic evaluation and treatment overview. In: Blaivas JG, editor. Topics in clinical urology -evaluation and treatment of urinary incontinence. New York: Igaku-Shoin, 1996: 22–45 Blaivas JG, Heritz DM. Classification, diagnostic evaluation and treatment overview. In: Blaivas JG, editor. Topics in clinical urology -evaluation and treatment of urinary incontinence. New York: Igaku-Shoin, 1996: 22–45
3.
Zurück zum Zitat Tolterodine [data on file]. Kalamazoo (MI): Pharmacia Upjohn, 2002. Tolterodine [data on file]. Kalamazoo (MI): Pharmacia Upjohn, 2002.
4.
Zurück zum Zitat Fantl JA, Newman DK, Colling J, et al. Urinary incontinence in adults: acute and chronic management: clinical practice guideline, No. 2, 1996 update. Rockville (MD): Agency for Health Care Policy and Research, 1996 Fantl JA, Newman DK, Colling J, et al. Urinary incontinence in adults: acute and chronic management: clinical practice guideline, No. 2, 1996 update. Rockville (MD): Agency for Health Care Policy and Research, 1996
5.
Zurück zum Zitat Ouslander JG, Schnelle JF, Uman G, et al. Does oxybutynin add to the effectiveness of prompted voiding for urinary incontinence among nursing home residents? J Am Geriatr Soc 1995; 43: 610–7PubMed Ouslander JG, Schnelle JF, Uman G, et al. Does oxybutynin add to the effectiveness of prompted voiding for urinary incontinence among nursing home residents? J Am Geriatr Soc 1995; 43: 610–7PubMed
6.
Zurück zum Zitat Burgio KL, Locher JL, Goode PS, et al. Behavioral vs drug treatment for urge urinary incontinence in older women: a randomized controlled trial. JAMA 1998; 280: 1995–2000PubMedCrossRef Burgio KL, Locher JL, Goode PS, et al. Behavioral vs drug treatment for urge urinary incontinence in older women: a randomized controlled trial. JAMA 1998; 280: 1995–2000PubMedCrossRef
7.
Zurück zum Zitat Drutz HP, Appell RA, Gleason D, et al. Clinical efficacy and safety of tolterodine compared to oxybutynin and placebo in patients with overactive bladder. Int Urogynecol J Pelvic Floor Dysfunct 1999; 10: 283–9PubMedCrossRef Drutz HP, Appell RA, Gleason D, et al. Clinical efficacy and safety of tolterodine compared to oxybutynin and placebo in patients with overactive bladder. Int Urogynecol J Pelvic Floor Dysfunct 1999; 10: 283–9PubMedCrossRef
8.
Zurück zum Zitat Abrams P, Freeman R, Anderstrom C, et al. Tolterodine, a new antimuscarinic agent: as effective but better tolerated than oxybutynin in patients with an overactive bladder. Br J Urol 1998; 81: 801–10PubMedCrossRef Abrams P, Freeman R, Anderstrom C, et al. Tolterodine, a new antimuscarinic agent: as effective but better tolerated than oxybutynin in patients with an overactive bladder. Br J Urol 1998; 81: 801–10PubMedCrossRef
9.
Zurück zum Zitat Thuroff JW, Bunke B, Ebner A, et al. Randomized, double blind, multicentre trial on treatment of frequency, urgency and incontinence related to detrusor hyperactivity: oxybutynin versus propantheline versus placebo. J Urol 1991; 145: 813–7PubMed Thuroff JW, Bunke B, Ebner A, et al. Randomized, double blind, multicentre trial on treatment of frequency, urgency and incontinence related to detrusor hyperactivity: oxybutynin versus propantheline versus placebo. J Urol 1991; 145: 813–7PubMed
10.
Zurück zum Zitat Schmidt RA, The Oxybutynin XL Study Group. Efficacy of controlled-release, once-a-day oxybutynin chloride for urge urinary incontinence. International Continence Society; 1998 Sep 14–17; Jerusalem: 188 Schmidt RA, The Oxybutynin XL Study Group. Efficacy of controlled-release, once-a-day oxybutynin chloride for urge urinary incontinence. International Continence Society; 1998 Sep 14–17; Jerusalem: 188
11.
Zurück zum Zitat Oxybutynin XL [data on file]. Palo Alto (CA): ALZA, 2002 Oxybutynin XL [data on file]. Palo Alto (CA): ALZA, 2002
12.
Zurück zum Zitat Detrol® LA (tolterodine tartrate extended-release capsules) [prescribing information]. Kalamazoo (MI): Pharmacia & Upjohn, 2002 Detrol® LA (tolterodine tartrate extended-release capsules) [prescribing information]. Kalamazoo (MI): Pharmacia & Upjohn, 2002
13.
Zurück zum Zitat Appell RA. Clinical efficacy and safety of tolterodine in the treatment of overactive bladder: a pooled analysis. Urology 1997; 50 Suppl. 6A: 90–6PubMedCrossRef Appell RA. Clinical efficacy and safety of tolterodine in the treatment of overactive bladder: a pooled analysis. Urology 1997; 50 Suppl. 6A: 90–6PubMedCrossRef
14.
Zurück zum Zitat Chancellor M, Freedman S, Mitcheson HD, et al. Tolterodine, an effective and well tolerated treatment for urge incontinence and other overactive bladder symptoms. Clin Drug Invest 2000; 19: 83–91CrossRef Chancellor M, Freedman S, Mitcheson HD, et al. Tolterodine, an effective and well tolerated treatment for urge incontinence and other overactive bladder symptoms. Clin Drug Invest 2000; 19: 83–91CrossRef
15.
Zurück zum Zitat Rentzhog L, Stanton SL, Cardozo L, et al. Efficacy and safety of tolterodine in patients with detrusor instability: a dose-ranging study. Br J Urol 1998; 81: 42–8PubMedCrossRef Rentzhog L, Stanton SL, Cardozo L, et al. Efficacy and safety of tolterodine in patients with detrusor instability: a dose-ranging study. Br J Urol 1998; 81: 42–8PubMedCrossRef
16.
Zurück zum Zitat Millard R, Tuttle J, Moore K, et al. Clinical efficacy and safety of tolterodine compared to placebo in detrusor overactivity. J Urol 1999; 161: 1551–5PubMedCrossRef Millard R, Tuttle J, Moore K, et al. Clinical efficacy and safety of tolterodine compared to placebo in detrusor overactivity. J Urol 1999; 161: 1551–5PubMedCrossRef
17.
Zurück zum Zitat Appell RA, Sand P, Dmochowski R, et al. Prospective randomized controlled trial of extended-release oxybutynin chloride and tolterodine tartrate in the treatment of overactive bladder: results of the OBJECT study. Mayo Clin Proc 2001; 76: 358–63PubMed Appell RA, Sand P, Dmochowski R, et al. Prospective randomized controlled trial of extended-release oxybutynin chloride and tolterodine tartrate in the treatment of overactive bladder: results of the OBJECT study. Mayo Clin Proc 2001; 76: 358–63PubMed
18.
Zurück zum Zitat Van Kerrebroeck P, Kreder K, Jonas U, et al. Tolterodine once-daily: superior efficacy and tolerability in the treatment of the overactive bladder. Urology 2001; 57: 414–21PubMedCrossRef Van Kerrebroeck P, Kreder K, Jonas U, et al. Tolterodine once-daily: superior efficacy and tolerability in the treatment of the overactive bladder. Urology 2001; 57: 414–21PubMedCrossRef
19.
Zurück zum Zitat Nilsson CG, Lukkari E, Haarala M, et al. Comparison of a 10mg controlled release oxybutynin tablet with a 5mg oxybutynin tablet in urge incontinent patients. Neurourol Urodyn 1997; 16: 533–42PubMedCrossRef Nilsson CG, Lukkari E, Haarala M, et al. Comparison of a 10mg controlled release oxybutynin tablet with a 5mg oxybutynin tablet in urge incontinent patients. Neurourol Urodyn 1997; 16: 533–42PubMedCrossRef
20.
Zurück zum Zitat Birns J, Malone Lee JG, Oxybutynin CR Study Group. Controlled-release oxybutynin maintains efficacy with a 43% reduction in side effects compared with conventional oxybutynin treatment. Neurourol Urodyn 1997; 16: 429–30 Birns J, Malone Lee JG, Oxybutynin CR Study Group. Controlled-release oxybutynin maintains efficacy with a 43% reduction in side effects compared with conventional oxybutynin treatment. Neurourol Urodyn 1997; 16: 429–30
21.
Zurück zum Zitat Anderson RU, Mobley D, Blank B, et al. Once daily controlled versus immediate-release oxybutynin chloride for urge urinary incontinence. OROS Oxybutynin Study Group. J Urol 1999; 161: 1809–12PubMedCrossRef Anderson RU, Mobley D, Blank B, et al. Once daily controlled versus immediate-release oxybutynin chloride for urge urinary incontinence. OROS Oxybutynin Study Group. J Urol 1999; 161: 1809–12PubMedCrossRef
22.
Zurück zum Zitat Katz IR, Sands LP, Bilker E, et al. Identification of medications that cause cognitive impairment in older people: the case of oxybutynin chloride. J Am Geriatr Soc 1998; 46: 8–13PubMed Katz IR, Sands LP, Bilker E, et al. Identification of medications that cause cognitive impairment in older people: the case of oxybutynin chloride. J Am Geriatr Soc 1998; 46: 8–13PubMed
23.
Zurück zum Zitat Ditropan XL® (oxybutynin chloride extended release tablets) [package insert]. Mountain View, CA: ALZA Corp., 2000 Ditropan XL® (oxybutynin chloride extended release tablets) [package insert]. Mountain View, CA: ALZA Corp., 2000
24.
Zurück zum Zitat Gleason DM, Susset J, White C. Evaluation of a new once-daily formulation of oxybutynin for the treatment of urinary urge incontinence. Urology 1999; 54: 420–3PubMedCrossRef Gleason DM, Susset J, White C. Evaluation of a new once-daily formulation of oxybutynin for the treatment of urinary urge incontinence. Urology 1999; 54: 420–3PubMedCrossRef
25.
Zurück zum Zitat Susset JG, Gleason DM, White CF, et al. Open-label safety and dose conversion/determination of once-daily OROS oxybutynin chloride for urge urinary incontinence [abstract]. J Urol 1998; 159 Suppl.: 36 Susset JG, Gleason DM, White CF, et al. Open-label safety and dose conversion/determination of once-daily OROS oxybutynin chloride for urge urinary incontinence [abstract]. J Urol 1998; 159 Suppl.: 36
26.
Zurück zum Zitat Zinner NR. Patient-oriented outcomes with once-daily oxybutynin for urge incontinence [abstract]. Obstet Gynecol 1999; 93 Suppl.: 29CrossRef Zinner NR. Patient-oriented outcomes with once-daily oxybutynin for urge incontinence [abstract]. Obstet Gynecol 1999; 93 Suppl.: 29CrossRef
27.
Zurück zum Zitat Moore KH, Hay DM, Imrie AE, et al. Oxybutynin hydrochloride (3mg) in the treatment of women with idiopathic detrusor instability. Br J Urol 1990; 66: 479–85PubMedCrossRef Moore KH, Hay DM, Imrie AE, et al. Oxybutynin hydrochloride (3mg) in the treatment of women with idiopathic detrusor instability. Br J Urol 1990; 66: 479–85PubMedCrossRef
28.
Zurück zum Zitat Riva D, Casolati E. Oxybutynin chloride in the treatment of female idiopathic bladder instability. Clin Exp Obstet Gynecol 1984; 11: 37–42PubMed Riva D, Casolati E. Oxybutynin chloride in the treatment of female idiopathic bladder instability. Clin Exp Obstet Gynecol 1984; 11: 37–42PubMed
29.
Zurück zum Zitat Davila GW, Daugherty CA, Sanders SW, et al. A short-term, multicenter, randomized, double-blind dose titration study of the efficacy and anticholinergic side effects of transdermal compared to immediate release oral oxybutynin treatment of patients with urge urinary incontinence. J Urol 2001; 166: 140–5PubMedCrossRef Davila GW, Daugherty CA, Sanders SW, et al. A short-term, multicenter, randomized, double-blind dose titration study of the efficacy and anticholinergic side effects of transdermal compared to immediate release oral oxybutynin treatment of patients with urge urinary incontinence. J Urol 2001; 166: 140–5PubMedCrossRef
30.
Zurück zum Zitat Dmochowski RR, Davila GW, Zinner NR, et al. Efficacy and safety of transdermal oxybutynin in patients with urge and mixed urinary incontinence. J Urol 2002; 168: 580–6PubMedCrossRef Dmochowski RR, Davila GW, Zinner NR, et al. Efficacy and safety of transdermal oxybutynin in patients with urge and mixed urinary incontinence. J Urol 2002; 168: 580–6PubMedCrossRef
31.
Zurück zum Zitat Oxytrol® (oxybutynin transdermal system) [prescribing information]. Corona, (CA): Watson Pharma, 2003 Oxytrol® (oxybutynin transdermal system) [prescribing information]. Corona, (CA): Watson Pharma, 2003
32.
Zurück zum Zitat Cova A, Setnikar I. Flavoxate and 3-methylflavone-8-carboxylic acid assay methods in blood and urine, plasma-red cells repartition, and stability. Arzneimittel Forschung 1975; 25: 1707–9PubMed Cova A, Setnikar I. Flavoxate and 3-methylflavone-8-carboxylic acid assay methods in blood and urine, plasma-red cells repartition, and stability. Arzneimittel Forschung 1975; 25: 1707–9PubMed
33.
Zurück zum Zitat Sheu MT, Yeh GC, Ke WT, et al. Development of a high-performance liquid Chromatographic method for bioequivalence study of flavoxate tablets. J Chromatogr 2001; 751: 79–86CrossRef Sheu MT, Yeh GC, Ke WT, et al. Development of a high-performance liquid Chromatographic method for bioequivalence study of flavoxate tablets. J Chromatogr 2001; 751: 79–86CrossRef
34.
Zurück zum Zitat Zhang CX, Sun ZP, Ling DK, et al. Determination of 3-methyl-flavone-8-carboxylic acid, the main metabolite of flavoxate, in human urine by capillary electrophoresis with direct injection. J Chromatogr 1993; 612: 287–94PubMedCrossRef Zhang CX, Sun ZP, Ling DK, et al. Determination of 3-methyl-flavone-8-carboxylic acid, the main metabolite of flavoxate, in human urine by capillary electrophoresis with direct injection. J Chromatogr 1993; 612: 287–94PubMedCrossRef
35.
Zurück zum Zitat Conti M, Setnikar I. Protein binding of flavoxate and of 3-methylflavone-8-carboxylic acid. Arzneimittel Forschung 1975; 25: 1709–12PubMed Conti M, Setnikar I. Protein binding of flavoxate and of 3-methylflavone-8-carboxylic acid. Arzneimittel Forschung 1975; 25: 1709–12PubMed
36.
Zurück zum Zitat Bertoli M, Conti F, Conti M, et al. Pharmacokinetics of flavoxate in man. Pharmacol Res Commun 1976; 8: 417–28PubMedCrossRef Bertoli M, Conti F, Conti M, et al. Pharmacokinetics of flavoxate in man. Pharmacol Res Commun 1976; 8: 417–28PubMedCrossRef
37.
Zurück zum Zitat Saitoh H, Kobayashi Y, Miyazaki K, et al. A highly sensitive HPLC method for the assay of propantheline used to measure its uptake by rat intestinal brush border membrane vesicles. J Pharm Pharmacol 1987; 39: 9–12PubMedCrossRef Saitoh H, Kobayashi Y, Miyazaki K, et al. A highly sensitive HPLC method for the assay of propantheline used to measure its uptake by rat intestinal brush border membrane vesicles. J Pharm Pharmacol 1987; 39: 9–12PubMedCrossRef
38.
Zurück zum Zitat Charles BG, Ravenscroft PJ, Jacobsen NW. Analysis of propantheline bromide in serum by high-performance liquid chromatography. J Chromatogr 1984; 306: 424–8PubMedCrossRef Charles BG, Ravenscroft PJ, Jacobsen NW. Analysis of propantheline bromide in serum by high-performance liquid chromatography. J Chromatogr 1984; 306: 424–8PubMedCrossRef
39.
Zurück zum Zitat Charles BG, Ravenscroft PJ. A new method for assaying propantheline and its degradation product, xanthene-9-carboxylic acid using high-performance liquid chromatography. J Pharm Sci 1983; 72: 96–8PubMedCrossRef Charles BG, Ravenscroft PJ. A new method for assaying propantheline and its degradation product, xanthene-9-carboxylic acid using high-performance liquid chromatography. J Pharm Sci 1983; 72: 96–8PubMedCrossRef
40.
Zurück zum Zitat Ford GC, Grigson SJ, Haskins NJ, et al. The measurements of propantheline ion in biological fluids after administering propantheline bromide to man. Biomed Mass Spectrom 1977; 4: 94–7PubMedCrossRef Ford GC, Grigson SJ, Haskins NJ, et al. The measurements of propantheline ion in biological fluids after administering propantheline bromide to man. Biomed Mass Spectrom 1977; 4: 94–7PubMedCrossRef
41.
Zurück zum Zitat Westerlund D, Karset KH. Fluorimetric determination of propantheline in human blood plasma by an ion-pair extraction method. Anal Chim Acta 1973; 67: 99–106PubMedCrossRef Westerlund D, Karset KH. Fluorimetric determination of propantheline in human blood plasma by an ion-pair extraction method. Anal Chim Acta 1973; 67: 99–106PubMedCrossRef
42.
Zurück zum Zitat Vose CW, Stevens PM, Haskins NJ, et al. Plasma levels and urinary excretion of orally administered propantheline bromide in man. Eur J Drug Metab Pharmacokinet 1980; 5: 29–34PubMedCrossRef Vose CW, Stevens PM, Haskins NJ, et al. Plasma levels and urinary excretion of orally administered propantheline bromide in man. Eur J Drug Metab Pharmacokinet 1980; 5: 29–34PubMedCrossRef
43.
Zurück zum Zitat Rigby GV, Vose CW, Haskins NJ, et al. Propantheline bromide plasma levels, urinary excretion and pharmacological data in a comparison of the bioavailability of three oral formulations of Pro-Banthine. Eur J Drug Metab Pharmacokinet 1983; 8: 219–24PubMedCrossRef Rigby GV, Vose CW, Haskins NJ, et al. Propantheline bromide plasma levels, urinary excretion and pharmacological data in a comparison of the bioavailability of three oral formulations of Pro-Banthine. Eur J Drug Metab Pharmacokinet 1983; 8: 219–24PubMedCrossRef
44.
Zurück zum Zitat Vose CW, Ford GC, Grigson SJW, et al. Pharmacokinetics of propantheline bromide in normal man. Br J Clin Pharmacol 1979; 7: 89–93PubMedCrossRef Vose CW, Ford GC, Grigson SJW, et al. Pharmacokinetics of propantheline bromide in normal man. Br J Clin Pharmacol 1979; 7: 89–93PubMedCrossRef
45.
Zurück zum Zitat Moses DK, Charles BG, Ravenscroft PJ, et al. Food reduces the oral bioavailability of propantheline bromide in healthy subjects [letter]. Br J Clin Pharmacol 1983; 16: 758–9PubMedCrossRef Moses DK, Charles BG, Ravenscroft PJ, et al. Food reduces the oral bioavailability of propantheline bromide in healthy subjects [letter]. Br J Clin Pharmacol 1983; 16: 758–9PubMedCrossRef
46.
Zurück zum Zitat Gibaldi M, Grundhofer B. Biopharmaceutic influences on the anticholinergic effects of propantheline. Clin Pharmacol Ther 1975; 18: 457–61PubMed Gibaldi M, Grundhofer B. Biopharmaceutic influences on the anticholinergic effects of propantheline. Clin Pharmacol Ther 1975; 18: 457–61PubMed
47.
Zurück zum Zitat Beermann B, Hellstrom K, Rosen A. On the metabolism of propantheline in man. Clin Pharmacol Ther 1972; 13: 212–20PubMed Beermann B, Hellstrom K, Rosen A. On the metabolism of propantheline in man. Clin Pharmacol Ther 1972; 13: 212–20PubMed
48.
Zurück zum Zitat Vose CW, Prout M, Haskins NJ, et al. Identification of some urinary metabolites of propantheline bromide in man. Xenobiotica 1978; 8: 745–52PubMedCrossRef Vose CW, Prout M, Haskins NJ, et al. Identification of some urinary metabolites of propantheline bromide in man. Xenobiotica 1978; 8: 745–52PubMedCrossRef
49.
Zurück zum Zitat Pfeffer M, Schor JM, Bolton S, et al. Human urinary excretion of the quaternary ammonium compounds anisotropine methyl-bromide and propantheline bromide. J Pharm Sci 1968; 57: 1375–9PubMedCrossRef Pfeffer M, Schor JM, Bolton S, et al. Human urinary excretion of the quaternary ammonium compounds anisotropine methyl-bromide and propantheline bromide. J Pharm Sci 1968; 57: 1375–9PubMedCrossRef
50.
Zurück zum Zitat Manninen V, Apajalahti A, Melin J, et al. Altered absorption of digoxin in patients given propantheline or metoclopramide. Lancet 1973; I: 398–400CrossRef Manninen V, Apajalahti A, Melin J, et al. Altered absorption of digoxin in patients given propantheline or metoclopramide. Lancet 1973; I: 398–400CrossRef
51.
Zurück zum Zitat Kanto J, Allonen H, Jalonen H, et al. The effect of metoclopramide and propantheline on the gastrointestinal absorption of Cimetidine [letter]. Br J Clin Pharmacol 1981; 11: 629–31PubMedCrossRef Kanto J, Allonen H, Jalonen H, et al. The effect of metoclopramide and propantheline on the gastrointestinal absorption of Cimetidine [letter]. Br J Clin Pharmacol 1981; 11: 629–31PubMedCrossRef
52.
Zurück zum Zitat Knadler MP, Bergstrom RF, Callaghan JT, et al. Absorption studies of the H2-blocker nizatidine. Clin Pharmacol Ther 1987; 42: 514–20PubMedCrossRef Knadler MP, Bergstrom RF, Callaghan JT, et al. Absorption studies of the H2-blocker nizatidine. Clin Pharmacol Ther 1987; 42: 514–20PubMedCrossRef
53.
Zurück zum Zitat Gibbons DO, Lant AF. Effects of intravenous and oral propantheline and metoclopramide on ethanol absorption. Clin Pharmacol Ther 1975; 17: 578–84PubMed Gibbons DO, Lant AF. Effects of intravenous and oral propantheline and metoclopramide on ethanol absorption. Clin Pharmacol Ther 1975; 17: 578–84PubMed
54.
Zurück zum Zitat Nimmo J, Heading RC, Tothill P, et al. Pharmacological modification of gastric emptying: effects of propantheline and metoclopramide on paracetamol absorption. BMJ 1973; 1: 587–9PubMedCrossRef Nimmo J, Heading RC, Tothill P, et al. Pharmacological modification of gastric emptying: effects of propantheline and metoclopramide on paracetamol absorption. BMJ 1973; 1: 587–9PubMedCrossRef
55.
Zurück zum Zitat Chaput de Saintonge DM, Herxheimer A. Activated charcoal impairs propantheline absorption. Eur J Clin Pharmacol 1971; 4: 52–3PubMedCrossRef Chaput de Saintonge DM, Herxheimer A. Activated charcoal impairs propantheline absorption. Eur J Clin Pharmacol 1971; 4: 52–3PubMedCrossRef
56.
Zurück zum Zitat Oertel R, Richter K, Ebert U, et al. Determination of scopolamine in human serum and microdialysis samples by liquid chromatography: tandem mass spectrometry. J Chromatogr 2001; 750: 121–8CrossRef Oertel R, Richter K, Ebert U, et al. Determination of scopolamine in human serum and microdialysis samples by liquid chromatography: tandem mass spectrometry. J Chromatogr 2001; 750: 121–8CrossRef
57.
Zurück zum Zitat Whelpton R, Hurst PR, Metcalfe RF, et al. Liquid Chromatographie determination of hyoscine (scopolamine) in urine using solid phase extraction. Biomed Chromatogr 1992; 6: 198–204PubMedCrossRef Whelpton R, Hurst PR, Metcalfe RF, et al. Liquid Chromatographie determination of hyoscine (scopolamine) in urine using solid phase extraction. Biomed Chromatogr 1992; 6: 198–204PubMedCrossRef
58.
Zurück zum Zitat Oertel R, Richter K, Ebert U, et al. Determination of scopolamine in human serum by gas chromatography: ion trap tandem mass spectrometry. J Chromatogr 1996; 682: 259–64CrossRef Oertel R, Richter K, Ebert U, et al. Determination of scopolamine in human serum by gas chromatography: ion trap tandem mass spectrometry. J Chromatogr 1996; 682: 259–64CrossRef
59.
Zurück zum Zitat Vargas G, Havel J, Babackova L, et al. Determination of drugs used as anti-Parkinson’s disease drugs in urine and serum by capillary electrophoresis. J Capillary Electrophor 1998; 5: 153–8PubMed Vargas G, Havel J, Babackova L, et al. Determination of drugs used as anti-Parkinson’s disease drugs in urine and serum by capillary electrophoresis. J Capillary Electrophor 1998; 5: 153–8PubMed
60.
Zurück zum Zitat Hagemann K, Pick K, Stockigt J, et al. Monoclonal antibody-based enzyme immunoassay for the quantitative determination of the tropane alkaloid, scopolamine. Planta Med 1992; 58: 68–72PubMedCrossRef Hagemann K, Pick K, Stockigt J, et al. Monoclonal antibody-based enzyme immunoassay for the quantitative determination of the tropane alkaloid, scopolamine. Planta Med 1992; 58: 68–72PubMedCrossRef
61.
Zurück zum Zitat Stoll L, Fleckenstein P, Riemann D, et al. A simple but highly sensitive radioreceptor assay for the determination of scopolamine and biperiden in human plasma. Res Commun Chem Pathol Pharmacol 1989; 64: 59–68PubMed Stoll L, Fleckenstein P, Riemann D, et al. A simple but highly sensitive radioreceptor assay for the determination of scopolamine and biperiden in human plasma. Res Commun Chem Pathol Pharmacol 1989; 64: 59–68PubMed
62.
Zurück zum Zitat Ensing K, in’t Hout WG, Halma P, et al. Development and application of a radioreceptor assay for scopolamine. Arzneimittel Forschung 1988; 38: 106–11PubMed Ensing K, in’t Hout WG, Halma P, et al. Development and application of a radioreceptor assay for scopolamine. Arzneimittel Forschung 1988; 38: 106–11PubMed
63.
Zurück zum Zitat Cintron NM, Chen YM. A sensitive radioreceptor assay for determining scopolamine concentrations in plasma and urine. J Pharm Sci 1987; 76: 328–32PubMedCrossRef Cintron NM, Chen YM. A sensitive radioreceptor assay for determining scopolamine concentrations in plasma and urine. J Pharm Sci 1987; 76: 328–32PubMedCrossRef
64.
Zurück zum Zitat Bayne WF, Tao FT, Crisologo N. Submicrogram assay for scopolamine in plasma and urine. J Pharm Sci 1975; 64: 288–91PubMedCrossRef Bayne WF, Tao FT, Crisologo N. Submicrogram assay for scopolamine in plasma and urine. J Pharm Sci 1975; 64: 288–91PubMedCrossRef
65.
Zurück zum Zitat Scheurlen M, Bittiger H, Ammann B. A simple radioligand binding assay for the determination of urinary scopolamine. J Pharm Sci 1984; 73: 561–3PubMedCrossRef Scheurlen M, Bittiger H, Ammann B. A simple radioligand binding assay for the determination of urinary scopolamine. J Pharm Sci 1984; 73: 561–3PubMedCrossRef
66.
Zurück zum Zitat Putcha L, Tietze KJ, Bourne DWA, et al. Bioavailability of intranasal scopolamine in normal subjects. J Pharm Sci 1996; 85: 899–902PubMedCrossRef Putcha L, Tietze KJ, Bourne DWA, et al. Bioavailability of intranasal scopolamine in normal subjects. J Pharm Sci 1996; 85: 899–902PubMedCrossRef
67.
Zurück zum Zitat Putcha L, Cintron NM, Tsui J, et al. Pharmacokinetics and oral bioavailability of scopolamine in normal subjects. Pharm Res 1989; 6: 481–5PubMedCrossRef Putcha L, Cintron NM, Tsui J, et al. Pharmacokinetics and oral bioavailability of scopolamine in normal subjects. Pharm Res 1989; 6: 481–5PubMedCrossRef
68.
Zurück zum Zitat Golding JF, Gosden E, Gerrell J. Scopolamine blood levels following buccal versus ingested tablets. Aviat Space Environ Med 1991; 62: 521–6PubMed Golding JF, Gosden E, Gerrell J. Scopolamine blood levels following buccal versus ingested tablets. Aviat Space Environ Med 1991; 62: 521–6PubMed
69.
Zurück zum Zitat Ebert U, Oertel R, Kirch W. Influence of grapefruit juice on scopolamine pharmacokinetics and pharmacodynamics in healthy male and female subjects. Int J Clin Pharmacol Ther 2000; 38: 523–31PubMed Ebert U, Oertel R, Kirch W. Influence of grapefruit juice on scopolamine pharmacokinetics and pharmacodynamics in healthy male and female subjects. Int J Clin Pharmacol Ther 2000; 38: 523–31PubMed
70.
Zurück zum Zitat Pihlajamaki KK, Kanto JH, Oksman-Caldenty K-M. Pharmacokinetics and clinical effects of scopolamine in caesarian section patients. Acta Pharmacol Toxicol 1986; 59: 259–62CrossRef Pihlajamaki KK, Kanto JH, Oksman-Caldenty K-M. Pharmacokinetics and clinical effects of scopolamine in caesarian section patients. Acta Pharmacol Toxicol 1986; 59: 259–62CrossRef
71.
Zurück zum Zitat Ebert U, Siepmann M, Oertel R, et al. Pharmacokinetics and pharmacodynamics of scopolamine after subcutaneous administration. J Clin Pharmacol 1998; 38: 720–6PubMed Ebert U, Siepmann M, Oertel R, et al. Pharmacokinetics and pharmacodynamics of scopolamine after subcutaneous administration. J Clin Pharmacol 1998; 38: 720–6PubMed
72.
Zurück zum Zitat Kentala E, Scheinin H, Kaila T, et al. Pharmacokinetics and clinical effects of intramuscular scopolamine plus morphine. Acta Anaesthesiol Scand 1998; 42: 323–8PubMedCrossRef Kentala E, Scheinin H, Kaila T, et al. Pharmacokinetics and clinical effects of intramuscular scopolamine plus morphine. Acta Anaesthesiol Scand 1998; 42: 323–8PubMedCrossRef
73.
Zurück zum Zitat Kentala E, Kaila T, Arola M, et al. Pharmacokinetics and clinical response of hyoscine plus morphine premedication in connection with cardiopulmonary bypass surgery. Eur J Anaesthesiol 1991; 8: 135–40PubMed Kentala E, Kaila T, Arola M, et al. Pharmacokinetics and clinical response of hyoscine plus morphine premedication in connection with cardiopulmonary bypass surgery. Eur J Anaesthesiol 1991; 8: 135–40PubMed
74.
Zurück zum Zitat Kanto J, Kentala E, Kaila T, et al. Pharmacokinetics of scopolamine during caesarian section: relationship between serum concentration and effect. Acta Anaesthesiol Scand 1989; 33: 482–6PubMedCrossRef Kanto J, Kentala E, Kaila T, et al. Pharmacokinetics of scopolamine during caesarian section: relationship between serum concentration and effect. Acta Anaesthesiol Scand 1989; 33: 482–6PubMedCrossRef
75.
Zurück zum Zitat Learned-Coughlin SM, Putcha L, Ramanathan R, et al. Pharmacokinetics (PK) of intravenous scopolamine (SCP) in healthy young male and female volunteers [abstract PIII-93]. Clin Pharmacol Ther 1998; 63: 230 Learned-Coughlin SM, Putcha L, Ramanathan R, et al. Pharmacokinetics (PK) of intravenous scopolamine (SCP) in healthy young male and female volunteers [abstract PIII-93]. Clin Pharmacol Ther 1998; 63: 230
76.
Zurück zum Zitat Scheinin H, Helminen A, Huhtala S, et al. Spectral analysis of heart rate variability is a quantitative measure of parasympatholytic effect: integrated pharmacokinetics and pharmacodynamics of three anticholinergic drugs. Ther Drug Monit 1999; 21: 141–51PubMedCrossRef Scheinin H, Helminen A, Huhtala S, et al. Spectral analysis of heart rate variability is a quantitative measure of parasympatholytic effect: integrated pharmacokinetics and pharmacodynamics of three anticholinergic drugs. Ther Drug Monit 1999; 21: 141–51PubMedCrossRef
77.
Zurück zum Zitat Lahdes K, Huupponen R, Kaila T, et al. Systemic absorption of ocular scopolamine in patients. J Ocular Pharmacol 1990; 6: 61–6CrossRef Lahdes K, Huupponen R, Kaila T, et al. Systemic absorption of ocular scopolamine in patients. J Ocular Pharmacol 1990; 6: 61–6CrossRef
78.
Zurück zum Zitat Kentala E, Kaila T, Ali-Melkkila T, et al. β-Glucuronide and sulfate conjugation of scopolamine and glycopyrrolate. Int J Clin Pharmacol Ther Toxicol 1990; 28: 487–9PubMed Kentala E, Kaila T, Ali-Melkkila T, et al. β-Glucuronide and sulfate conjugation of scopolamine and glycopyrrolate. Int J Clin Pharmacol Ther Toxicol 1990; 28: 487–9PubMed
79.
Zurück zum Zitat Gleiter CH, Antonin K-H, Schoenleber W, et al. Interaction of alcohol and transdermally administered scopolamine. J Clin Pharmacol 1988; 28: 1123–7PubMed Gleiter CH, Antonin K-H, Schoenleber W, et al. Interaction of alcohol and transdermally administered scopolamine. J Clin Pharmacol 1988; 28: 1123–7PubMed
80.
Zurück zum Zitat Massoud R, Federici G, Casciani S, et al. Extraction and determination of oxybutynin in human bladder samples by reversed-phase high-performance liquid chromatography. J Chromatogr 1999; 734: 163–7CrossRef Massoud R, Federici G, Casciani S, et al. Extraction and determination of oxybutynin in human bladder samples by reversed-phase high-performance liquid chromatography. J Chromatogr 1999; 734: 163–7CrossRef
81.
Zurück zum Zitat DeSchutter JA, DeMoerloose P. Determination of oxybutynin chloride in pharmaceuticals by reversed-phase ion-pair liquid chromatography with two counter-ions in the eluent. J Chromatogr 1988; 450: 337–42CrossRef DeSchutter JA, DeMoerloose P. Determination of oxybutynin chloride in pharmaceuticals by reversed-phase ion-pair liquid chromatography with two counter-ions in the eluent. J Chromatogr 1988; 450: 337–42CrossRef
82.
Zurück zum Zitat Hughes KM, Lang JCT, Lazare R, et al. Measurement of oxybutynin and its N-desethyl metabolite in plasma, and its application to pharmacokinetic studies in young, elderly and frail elderly volunteers. Xenobiotica 1992; 22: 859–69PubMedCrossRef Hughes KM, Lang JCT, Lazare R, et al. Measurement of oxybutynin and its N-desethyl metabolite in plasma, and its application to pharmacokinetic studies in young, elderly and frail elderly volunteers. Xenobiotica 1992; 22: 859–69PubMedCrossRef
83.
Zurück zum Zitat Buyse G, Waldeck K, Verpoorten C, et al. Intravesical oxybutynin for neurogenic bladder dysfunction: less systemic side effects due to reduced first pass metabolism. J Urology 1998; 160: 892–6CrossRef Buyse G, Waldeck K, Verpoorten C, et al. Intravesical oxybutynin for neurogenic bladder dysfunction: less systemic side effects due to reduced first pass metabolism. J Urology 1998; 160: 892–6CrossRef
84.
Zurück zum Zitat Shibukawa A, Ishizawa N, Kimura T, et al. Plasma protein binding study of oxybutynin by high performance frontal analysis. J Chromatogr 2002; 768: 177–88CrossRef Shibukawa A, Ishizawa N, Kimura T, et al. Plasma protein binding study of oxybutynin by high performance frontal analysis. J Chromatogr 2002; 768: 177–88CrossRef
85.
Zurück zum Zitat Shibukawa A, Yoshikawa Y, Kimura T, et al. Binding study of desethyloxybutynin using high performance frontal analysis method. J Chromatogr 2002; 768: 189–97CrossRef Shibukawa A, Yoshikawa Y, Kimura T, et al. Binding study of desethyloxybutynin using high performance frontal analysis method. J Chromatogr 2002; 768: 189–97CrossRef
86.
Zurück zum Zitat Patrick KS, Markowitz JS, Jarvi EJ, et al. Gas chromatographic-mass spectrometric analysis of plasma oxybutynin using a deuterated internal standard. J Chromatogr 1989; 487: 91–8PubMedCrossRef Patrick KS, Markowitz JS, Jarvi EJ, et al. Gas chromatographic-mass spectrometric analysis of plasma oxybutynin using a deuterated internal standard. J Chromatogr 1989; 487: 91–8PubMedCrossRef
87.
Zurück zum Zitat Lindeke B, Hallstrom G, Johansson C, et al. Metabolism of oxybutynin: establishment of desethyloxybutynin and oxybutynin N-oxide formation in rat liver preparation using deuterium substitution and gas Chromatographie mass spectrometric analysis. Biomed Mass Spectrom 1981; 8: 506–13PubMedCrossRef Lindeke B, Hallstrom G, Johansson C, et al. Metabolism of oxybutynin: establishment of desethyloxybutynin and oxybutynin N-oxide formation in rat liver preparation using deuterium substitution and gas Chromatographie mass spectrometric analysis. Biomed Mass Spectrom 1981; 8: 506–13PubMedCrossRef
88.
Zurück zum Zitat Lindeke B, Brotell H, Karlen B, et al. Determination of oxybutynin (4-diethylaminobut-2-ynyl 2-cyclohexyl-2-phenylg-lycolate) in serum and urine by gas chromatography/mass spectrometry with single ion detection. Acta Pharm Suec 1981; 18: 25–34PubMed Lindeke B, Brotell H, Karlen B, et al. Determination of oxybutynin (4-diethylaminobut-2-ynyl 2-cyclohexyl-2-phenylg-lycolate) in serum and urine by gas chromatography/mass spectrometry with single ion detection. Acta Pharm Suec 1981; 18: 25–34PubMed
89.
Zurück zum Zitat Aaltonen L, Allonen H, Iisalo E, et al. Antimuscarinic activity of oxybutynin in the human plasma quantitated by a radioreceptor assay. Acta Pharmacol Toxicol 1984; 55: 100–3CrossRef Aaltonen L, Allonen H, Iisalo E, et al. Antimuscarinic activity of oxybutynin in the human plasma quantitated by a radioreceptor assay. Acta Pharmacol Toxicol 1984; 55: 100–3CrossRef
90.
Zurück zum Zitat Douchamps J, Derenne F, Stockis A, et al. The pharmacokinetics of oxybutynin in man. Eur J Clin Pharmacol 1988; 35: 515–20PubMedCrossRef Douchamps J, Derenne F, Stockis A, et al. The pharmacokinetics of oxybutynin in man. Eur J Clin Pharmacol 1988; 35: 515–20PubMedCrossRef
91.
Zurück zum Zitat Zobrist RH, Thomas H, Sanders SW. Pharmacokinetics and metabolism of transdermally administered oxybutynin [abstract WPIII-69]. Clin Pharmacol Ther 2002; 71: P94 Zobrist RH, Thomas H, Sanders SW. Pharmacokinetics and metabolism of transdermally administered oxybutynin [abstract WPIII-69]. Clin Pharmacol Ther 2002; 71: P94
92.
Zurück zum Zitat Gupta SK, Sathyan G. Pharmacokinetics of an oral once-a-day controlled-release oxybutynin formulation compared with immediate-release oxybutynin. J Clin Pharmacol 1999; 39: 289–96PubMed Gupta SK, Sathyan G. Pharmacokinetics of an oral once-a-day controlled-release oxybutynin formulation compared with immediate-release oxybutynin. J Clin Pharmacol 1999; 39: 289–96PubMed
93.
Zurück zum Zitat Madersbacher H, Knoll M. Intravesical application of oxybutynine: mode of action in controlling detrusor hyperreflexia. Eur Urol 1995; 28: 340–4PubMed Madersbacher H, Knoll M. Intravesical application of oxybutynine: mode of action in controlling detrusor hyperreflexia. Eur Urol 1995; 28: 340–4PubMed
94.
Zurück zum Zitat Lukkari E, Castren-Kortekangas P, Juhakoski A, et al. Effect of food on the bioavailability of oxybutynin from a controlled release tablet. Eur J Clin Pharmacol 1996; 50: 221–3PubMedCrossRef Lukkari E, Castren-Kortekangas P, Juhakoski A, et al. Effect of food on the bioavailability of oxybutynin from a controlled release tablet. Eur J Clin Pharmacol 1996; 50: 221–3PubMedCrossRef
95.
Zurück zum Zitat Lukkari E, Aranko K, Juhakoski A, et al. Effects of time interval between food and drug ingestion on the absorption of oxybutynin from controlled-release tablet. Pharmacol Toxicol 1997; 81: 31–4PubMedCrossRef Lukkari E, Aranko K, Juhakoski A, et al. Effects of time interval between food and drug ingestion on the absorption of oxybutynin from controlled-release tablet. Pharmacol Toxicol 1997; 81: 31–4PubMedCrossRef
96.
Zurück zum Zitat Lehtoranta K, Tainio H, Lukkari-Lax E, et al. Pharmacokinetics, efficacy, and safety of intravesical formulation of oxybutynin in patients with detrusor overactivity. Scand J Urol Nephrol 2002; 36: 18–24PubMedCrossRef Lehtoranta K, Tainio H, Lukkari-Lax E, et al. Pharmacokinetics, efficacy, and safety of intravesical formulation of oxybutynin in patients with detrusor overactivity. Scand J Urol Nephrol 2002; 36: 18–24PubMedCrossRef
97.
Zurück zum Zitat Madersbacker H. Control of detrusor hyperreflexia by the intravesical instillation of oxybutynine hydrochloride. Paraplegia 1991; 29: 84–90CrossRef Madersbacker H. Control of detrusor hyperreflexia by the intravesical instillation of oxybutynine hydrochloride. Paraplegia 1991; 29: 84–90CrossRef
98.
Zurück zum Zitat Koch P, McCullough JR, Blum PS, et al. Pharmacokinetics and safety of (S)-oxybutynin in normal healthy volunteers [abstract 825]. FASEB J 1998; 12: A142 Koch P, McCullough JR, Blum PS, et al. Pharmacokinetics and safety of (S)-oxybutynin in normal healthy volunteers [abstract 825]. FASEB J 1998; 12: A142
99.
Zurück zum Zitat Sathyan G, Hu W, Gupta SK. Lack of effect of food on the pharmacokinetics of an extended-release oxybutynin formulation. J Clin Pharmacol 2001; 41: 187–92PubMedCrossRef Sathyan G, Hu W, Gupta SK. Lack of effect of food on the pharmacokinetics of an extended-release oxybutynin formulation. J Clin Pharmacol 2001; 41: 187–92PubMedCrossRef
100.
Zurück zum Zitat Lukkari E, Taavitsainen P, Juhakoski A, et al. Cytochrome P450 specificity of metabolism and interactions of oxybutynin in human liver microsomes. Pharmacol Toxicol 1998; 82: 161–6PubMedCrossRef Lukkari E, Taavitsainen P, Juhakoski A, et al. Cytochrome P450 specificity of metabolism and interactions of oxybutynin in human liver microsomes. Pharmacol Toxicol 1998; 82: 161–6PubMedCrossRef
101.
Zurück zum Zitat Yaich M, Popon M, Medard Y, et al. In-vitro cytochrome P450 dependent metabolism of oxybutynin to N-deethyloxybutynin in humans. Pharmacogenetics 1998; 8: 449–51PubMedCrossRef Yaich M, Popon M, Medard Y, et al. In-vitro cytochrome P450 dependent metabolism of oxybutynin to N-deethyloxybutynin in humans. Pharmacogenetics 1998; 8: 449–51PubMedCrossRef
102.
Zurück zum Zitat Sanders SW, Thomas H, Zobrist RH. Population pharmaco-kinetics of transdermally administered oxybutynin [abstract MPI-109]. Clin Pharmacol Ther 2002; 71: P34 Sanders SW, Thomas H, Zobrist RH. Population pharmaco-kinetics of transdermally administered oxybutynin [abstract MPI-109]. Clin Pharmacol Ther 2002; 71: P34
103.
Zurück zum Zitat Springate JE. Oxybutynin does not affect cyclosporin blood levels. Ther Drug Monit 2001; 23: 155–6PubMedCrossRef Springate JE. Oxybutynin does not affect cyclosporin blood levels. Ther Drug Monit 2001; 23: 155–6PubMedCrossRef
104.
Zurück zum Zitat Lukkari E, Hakonen T, Neuvonen PJ. The pharmacokinetics of oxybutynin is unaffected by gender and contraceptive steroids. Eur J Clin Pharmacol 1998; 53: 351–4PubMedCrossRef Lukkari E, Hakonen T, Neuvonen PJ. The pharmacokinetics of oxybutynin is unaffected by gender and contraceptive steroids. Eur J Clin Pharmacol 1998; 53: 351–4PubMedCrossRef
105.
Zurück zum Zitat Grozinger M, Hartter S, Hiemke C, et al. Oxybutynin enhances the metabolism of clomipramine and dextrorphan possibly by induction of a cytochrome P450 isoenzyme [letter]. J Clin Psychopharmacol 1999; 19: 287–9PubMedCrossRef Grozinger M, Hartter S, Hiemke C, et al. Oxybutynin enhances the metabolism of clomipramine and dextrorphan possibly by induction of a cytochrome P450 isoenzyme [letter]. J Clin Psychopharmacol 1999; 19: 287–9PubMedCrossRef
106.
Zurück zum Zitat Lukkari E, Juhakoski A, Aranko K, et al. Itraconazole moderately increases serum concentrations of oxybutynin but does not affect those of the active metabolite. Eur J Clin Pharmacol 1997; 52: 403–6PubMedCrossRef Lukkari E, Juhakoski A, Aranko K, et al. Itraconazole moderately increases serum concentrations of oxybutynin but does not affect those of the active metabolite. Eur J Clin Pharmacol 1997; 52: 403–6PubMedCrossRef
107.
Zurück zum Zitat Dmochowski R, Sathyan G, Ye C, et al. In vivo study of the effect of antacid on extended-release formulations of oxybutynin and tolterodine [abstract P75]. J Am Geriatr Soc 2002; 50: S39 Dmochowski R, Sathyan G, Ye C, et al. In vivo study of the effect of antacid on extended-release formulations of oxybutynin and tolterodine [abstract P75]. J Am Geriatr Soc 2002; 50: S39
108.
Zurück zum Zitat Autret E, Jonville AP, Dutertre JP, et al. Plasma levels of oxybutynin chloride in children. Eur J Clin Pharmacol 1994; 46: 83–5PubMed Autret E, Jonville AP, Dutertre JP, et al. Plasma levels of oxybutynin chloride in children. Eur J Clin Pharmacol 1994; 46: 83–5PubMed
109.
Zurück zum Zitat Massad CA, Kogan BA, Trigo-Rocha FE. The pharmacokinetics of intravesical and oral oxybutynin chloride. J Urol 1992; 148: 595–7PubMed Massad CA, Kogan BA, Trigo-Rocha FE. The pharmacokinetics of intravesical and oral oxybutynin chloride. J Urol 1992; 148: 595–7PubMed
110.
Zurück zum Zitat Amark P, Eksborg S, Juneskans O, et al. Pharmacokinetics and effects of intravesical oxybutynin on the paediatric neurogenic bladder. Br J Urol 1998; 82: 859–64PubMedCrossRef Amark P, Eksborg S, Juneskans O, et al. Pharmacokinetics and effects of intravesical oxybutynin on the paediatric neurogenic bladder. Br J Urol 1998; 82: 859–64PubMedCrossRef
111.
Zurück zum Zitat Swart R, Koivisto P, Markides KE. Capillary solid-phase extraction-tandem mass spectrometry for fast quantification of free concentrations of tolterodine and two metabolites in ultrafiltered plasma samples. J Chromatogr 1999; 736: 247–53CrossRef Swart R, Koivisto P, Markides KE. Capillary solid-phase extraction-tandem mass spectrometry for fast quantification of free concentrations of tolterodine and two metabolites in ultrafiltered plasma samples. J Chromatogr 1999; 736: 247–53CrossRef
112.
Zurück zum Zitat Swart R, Koivisto P, Markides KE. Column switching in capillary liquid chromatography-tandem mass spectrometry for the quantitation of ng/L concentrations of the free basic drug tolterodine and its active 5-hydroxymethyl metabolite in microliter volumes of plasma. J Chromatogr 1998; 828: 209–18CrossRef Swart R, Koivisto P, Markides KE. Column switching in capillary liquid chromatography-tandem mass spectrometry for the quantitation of ng/L concentrations of the free basic drug tolterodine and its active 5-hydroxymethyl metabolite in microliter volumes of plasma. J Chromatogr 1998; 828: 209–18CrossRef
113.
Zurück zum Zitat Palmer L, Andersson L, Andersson T, et al. Determination of tolterodine and the 5-hydroxymethyl metabolite in plasma, serum, and urine using gas chromatography-mass spectrometry. J Pharm Biomed Anal 1997; 16: 155–65PubMedCrossRef Palmer L, Andersson L, Andersson T, et al. Determination of tolterodine and the 5-hydroxymethyl metabolite in plasma, serum, and urine using gas chromatography-mass spectrometry. J Pharm Biomed Anal 1997; 16: 155–65PubMedCrossRef
114.
Zurück zum Zitat Olsson B, Szamosi J. Multiple dose pharmacokinetics of a new once daily extended release tolterodine formulation versus immediate release tolterodine. Clin Pharmacokinet 2001; 40: 227–35PubMedCrossRef Olsson B, Szamosi J. Multiple dose pharmacokinetics of a new once daily extended release tolterodine formulation versus immediate release tolterodine. Clin Pharmacokinet 2001; 40: 227–35PubMedCrossRef
115.
Zurück zum Zitat Brynne N, Dalen P, Alvan G, et al. Influence of CYP2D6 polymorphism on the pharmacokinetics and pharmaco-dynamics of tolterodine. Clin Pharmacol Ther 1998; 63: 529–39PubMedCrossRef Brynne N, Dalen P, Alvan G, et al. Influence of CYP2D6 polymorphism on the pharmacokinetics and pharmaco-dynamics of tolterodine. Clin Pharmacol Ther 1998; 63: 529–39PubMedCrossRef
116.
Zurück zum Zitat Brynne N, Stahl MMS, Hallen B, et al. Pharmacokinetics and pharmacodynamics of tolterodine in man. Int J Clin Pharmacol Ther 1997; 35: 287–95PubMed Brynne N, Stahl MMS, Hallen B, et al. Pharmacokinetics and pharmacodynamics of tolterodine in man. Int J Clin Pharmacol Ther 1997; 35: 287–95PubMed
117.
Zurück zum Zitat Olsson B, Brynne N, Johansson C, et al. Food increases the bioavailability of tolterodine but not effective exposure. J Clin Pharmacol 2001; 41: 298–304PubMedCrossRef Olsson B, Brynne N, Johansson C, et al. Food increases the bioavailability of tolterodine but not effective exposure. J Clin Pharmacol 2001; 41: 298–304PubMedCrossRef
118.
Zurück zum Zitat Brynne N, Svanstrom C, Aberg-Wistedt A, et al. Fluoxetine inhibits the metabolism of tolterodine-pharmacokinetic implications and proposed clinical relevance. Br J Clin Pharmacol 1999; 48: 553–63PubMedCrossRef Brynne N, Svanstrom C, Aberg-Wistedt A, et al. Fluoxetine inhibits the metabolism of tolterodine-pharmacokinetic implications and proposed clinical relevance. Br J Clin Pharmacol 1999; 48: 553–63PubMedCrossRef
119.
Zurück zum Zitat Brynne N, Forslund C, Hallen B, et al. Ketoconazole inhibits the metabolism of tolterodine in subjects with deficient CYP2D6 activity. Br J Clin Pharmacol 1999; 48: 564–72PubMedCrossRef Brynne N, Forslund C, Hallen B, et al. Ketoconazole inhibits the metabolism of tolterodine in subjects with deficient CYP2D6 activity. Br J Clin Pharmacol 1999; 48: 564–72PubMedCrossRef
120.
Zurück zum Zitat Olsson B, Szamosi J. Food does not influence the pharmacokinetics of a new extended release formulation of tolterodine for once daily treatment of patients with overactive bladder. Clin Pharmacokinet 2001; 40: 135–43PubMedCrossRef Olsson B, Szamosi J. Food does not influence the pharmacokinetics of a new extended release formulation of tolterodine for once daily treatment of patients with overactive bladder. Clin Pharmacokinet 2001; 40: 135–43PubMedCrossRef
121.
Zurück zum Zitat Pahlman I, Gozzi P. Serum protein binding of tolterodine and its major metabolites in humans and several animal species. Biopharm Drug Dispos 1999; 20: 91–9PubMedCrossRef Pahlman I, Gozzi P. Serum protein binding of tolterodine and its major metabolites in humans and several animal species. Biopharm Drug Dispos 1999; 20: 91–9PubMedCrossRef
122.
Zurück zum Zitat Andersson SHG, Lindgren A, Postlind H. Biotransformation of tolterodine, a new muscarinic receptor antagonist, in mice, rats, and dogs. Drug Metab Dispos 1998; 26: 528–35PubMed Andersson SHG, Lindgren A, Postlind H. Biotransformation of tolterodine, a new muscarinic receptor antagonist, in mice, rats, and dogs. Drug Metab Dispos 1998; 26: 528–35PubMed
123.
Zurück zum Zitat Postlind H, Danielson A, Lindgren A, et al. Tolterodine, a new muscarinic receptor antagonist, is metabolized by cytochromes P450 2D6 and 3A in human liver microsomes. Drug Metab Dispos 1998; 26: 289–93PubMed Postlind H, Danielson A, Lindgren A, et al. Tolterodine, a new muscarinic receptor antagonist, is metabolized by cytochromes P450 2D6 and 3A in human liver microsomes. Drug Metab Dispos 1998; 26: 289–93PubMed
124.
Zurück zum Zitat Colucci VJ, Rivey MP. Tolterodine-warfarin drug interaction. Ann Pharmacother 1999; 33: 1173–6PubMedCrossRef Colucci VJ, Rivey MP. Tolterodine-warfarin drug interaction. Ann Pharmacother 1999; 33: 1173–6PubMedCrossRef
125.
Zurück zum Zitat Rahimy M, Hallen B, Narang P. Effect of tolterodine on the anticoagulant actions and pharmacokinetics of single-dose warfarin in healthy volunteers. Arzneim Forsch 2002; 52: 890–5 Rahimy M, Hallen B, Narang P. Effect of tolterodine on the anticoagulant actions and pharmacokinetics of single-dose warfarin in healthy volunteers. Arzneim Forsch 2002; 52: 890–5
126.
Zurück zum Zitat Brynne N, Bottiger Y, Hallen B, et al. Tolterodine does not affect the human in vivo metabolism of the probe drugs caffeine, debrisoquine and omeprazole. Br J Clin Pharmacol 1999; 47: 145–50PubMedCrossRef Brynne N, Bottiger Y, Hallen B, et al. Tolterodine does not affect the human in vivo metabolism of the probe drugs caffeine, debrisoquine and omeprazole. Br J Clin Pharmacol 1999; 47: 145–50PubMedCrossRef
127.
Zurück zum Zitat Deng Y, Zhang H, Henion J. Chip-based capillary electrophoresis/mass spectrometry determination of drugs in human plasma. Anal Chem 2001; 73: 1432–9PubMedCrossRef Deng Y, Zhang H, Henion J. Chip-based capillary electrophoresis/mass spectrometry determination of drugs in human plasma. Anal Chem 2001; 73: 1432–9PubMedCrossRef
128.
Zurück zum Zitat Jinno K, Kawazoe M, Saito Y, et al. Sample preparation with fiber-in-tube solid-phase microextraction for capillary electro-phoretic separation of tricyclic antidepressant drugs in human urine. Electrophoresis 2001; 22: 3785–90PubMedCrossRef Jinno K, Kawazoe M, Saito Y, et al. Sample preparation with fiber-in-tube solid-phase microextraction for capillary electro-phoretic separation of tricyclic antidepressant drugs in human urine. Electrophoresis 2001; 22: 3785–90PubMedCrossRef
129.
Zurück zum Zitat Heck HA, Flynn NW, Buttrill Jr SE, et al. Determination of imipramine in plasma by high pressure liquid chromatography and field ionization mass spectrometry: increased sensitivity in comparison with gas chromatography mass spectrometry. Biomed Mass Spectrometry 1978; 5: 250–7CrossRef Heck HA, Flynn NW, Buttrill Jr SE, et al. Determination of imipramine in plasma by high pressure liquid chromatography and field ionization mass spectrometry: increased sensitivity in comparison with gas chromatography mass spectrometry. Biomed Mass Spectrometry 1978; 5: 250–7CrossRef
130.
Zurück zum Zitat Aymard G, Livi P, Pham YT, et al. Sensitive and rapid method for the simultaneous quantification of five antidepressants with their respective metabolites in plasma using high-performance liquid chromatography with diode-array detection. J Chromatogr 1997; 700: 183–9CrossRef Aymard G, Livi P, Pham YT, et al. Sensitive and rapid method for the simultaneous quantification of five antidepressants with their respective metabolites in plasma using high-performance liquid chromatography with diode-array detection. J Chromatogr 1997; 700: 183–9CrossRef
131.
Zurück zum Zitat Chen AG, Wing YK, Chiu H, et al. Simultaneous determination of imipramine, desipramine, and their 2- and 10-hydroxylated metabolites in human plasma and urine by high-performance liquid chromatography. J Chromatogr 1997; 693: 153–8CrossRef Chen AG, Wing YK, Chiu H, et al. Simultaneous determination of imipramine, desipramine, and their 2- and 10-hydroxylated metabolites in human plasma and urine by high-performance liquid chromatography. J Chromatogr 1997; 693: 153–8CrossRef
132.
Zurück zum Zitat el-Yazigi A, Raines DA. Concurrent liquid Chromatographic measurement of fluoxetine, amitriptyline, imipramine, and their active metabolites norfluoxetine, nortriptyline, and desipramine in plasma. Ther Drug Monit 1993; 15: 305–9PubMedCrossRef el-Yazigi A, Raines DA. Concurrent liquid Chromatographic measurement of fluoxetine, amitriptyline, imipramine, and their active metabolites norfluoxetine, nortriptyline, and desipramine in plasma. Ther Drug Monit 1993; 15: 305–9PubMedCrossRef
133.
Zurück zum Zitat Nielsen KK, Brosen K. High-performance liquid chromatography of imipramine and six metabolites in human plasma and urine. J Chromatogr 1993; 612: 87–94PubMedCrossRef Nielsen KK, Brosen K. High-performance liquid chromatography of imipramine and six metabolites in human plasma and urine. J Chromatogr 1993; 612: 87–94PubMedCrossRef
134.
Zurück zum Zitat Koyama E, Kikuchi Y, Echizen H, et al. Simultaneous high-performance liquid chromatography-electrochemical detection determination of imipramine, desipramine, their 2-hydroxyl-ated metabolites, and imipramine N-oxide in human plasma and urine: preliminary application to oxidation pharmacogenetics. Ther Drug Monit 1993; 15: 224–35PubMedCrossRef Koyama E, Kikuchi Y, Echizen H, et al. Simultaneous high-performance liquid chromatography-electrochemical detection determination of imipramine, desipramine, their 2-hydroxyl-ated metabolites, and imipramine N-oxide in human plasma and urine: preliminary application to oxidation pharmacogenetics. Ther Drug Monit 1993; 15: 224–35PubMedCrossRef
135.
Zurück zum Zitat Foglia JP, Sorisio D, Perel JM. Determination of imipramine, desipramine and their hydroxy metabolites by reversed-phase chromatography with ultraviolet and coulometric detection. J Chromatogr 1991; 572: 247–58PubMedCrossRef Foglia JP, Sorisio D, Perel JM. Determination of imipramine, desipramine and their hydroxy metabolites by reversed-phase chromatography with ultraviolet and coulometric detection. J Chromatogr 1991; 572: 247–58PubMedCrossRef
136.
Zurück zum Zitat Zeugin TB, Brosen K, Meyer UA. Determination of imipramine and seven of its metabolites in human liver microsomes by a high-performance liquid Chromatographic method. Anal Biochem 1990; 189: 99–102PubMedCrossRef Zeugin TB, Brosen K, Meyer UA. Determination of imipramine and seven of its metabolites in human liver microsomes by a high-performance liquid Chromatographic method. Anal Biochem 1990; 189: 99–102PubMedCrossRef
137.
Zurück zum Zitat Pok Phak R, Conquy T, Gouezo F, et al. Determination of metapramine, imipramine, trimipramine and their metabolites in plasma by reversed-phase column liquid chromatography. J Chromatogr 1986; 375: 339–47PubMedCrossRef Pok Phak R, Conquy T, Gouezo F, et al. Determination of metapramine, imipramine, trimipramine and their metabolites in plasma by reversed-phase column liquid chromatography. J Chromatogr 1986; 375: 339–47PubMedCrossRef
138.
Zurück zum Zitat Messiha FS. Determination of carbamazepine by HPLC electrochemical detection and application for estimation of imipramine, desipramine, doxepin and nordoxepin. Alcohol 1986; 3: 135–8PubMedCrossRef Messiha FS. Determination of carbamazepine by HPLC electrochemical detection and application for estimation of imipramine, desipramine, doxepin and nordoxepin. Alcohol 1986; 3: 135–8PubMedCrossRef
139.
Zurück zum Zitat Yufu N, Itoh M, Notomi A, et al. Simultaneous measurement of various antidepressants in the plasma of depressed patients by high performance liquid chromatography. Folia Psychiatr Neural Jpn 1984; 38: 57–64 Yufu N, Itoh M, Notomi A, et al. Simultaneous measurement of various antidepressants in the plasma of depressed patients by high performance liquid chromatography. Folia Psychiatr Neural Jpn 1984; 38: 57–64
140.
Zurück zum Zitat Kobayashi A, Sugita S, Nakazawa K. High-performance liquid Chromatographic determination of imipramine and desipramine in human serum. J Chromatogr 1984; 336: 410–4PubMedCrossRef Kobayashi A, Sugita S, Nakazawa K. High-performance liquid Chromatographic determination of imipramine and desipramine in human serum. J Chromatogr 1984; 336: 410–4PubMedCrossRef
141.
Zurück zum Zitat Breutzmann DA, Bowers LD. Reversed-phase liquid chromatography and gas chromatography/mass spectrometry compared for determination of tricyclic antidepressant drugs. Clin Chem 1981; 27: 1907–11PubMed Breutzmann DA, Bowers LD. Reversed-phase liquid chromatography and gas chromatography/mass spectrometry compared for determination of tricyclic antidepressant drugs. Clin Chem 1981; 27: 1907–11PubMed
142.
Zurück zum Zitat Bannister SJ, van der Wal S, Dolan JW, et al. Liquid-chromato-graphic analysis for common tricyclic antidepressant drugs and their metabolites in serum or plasma with the Technicon FAST-LC system. Clin Chem 1981; 27: 849–55PubMed Bannister SJ, van der Wal S, Dolan JW, et al. Liquid-chromato-graphic analysis for common tricyclic antidepressant drugs and their metabolites in serum or plasma with the Technicon FAST-LC system. Clin Chem 1981; 27: 849–55PubMed
143.
Zurück zum Zitat Kabra PM, Mar NA, Marton LJ. Simultaneous liquid Chromatographie analysis of amitriptyline, nortriptyline, imipramine, desipramine, doxepin, and nordoxepin. Clin Chim Acta 1981; 111: 123–32PubMedCrossRef Kabra PM, Mar NA, Marton LJ. Simultaneous liquid Chromatographie analysis of amitriptyline, nortriptyline, imipramine, desipramine, doxepin, and nordoxepin. Clin Chim Acta 1981; 111: 123–32PubMedCrossRef
144.
Zurück zum Zitat Fekete J, del Castilho P, Kraak JC. Reversed-phase liquid chromatography for the separation of chlorpromazine, imipramine and some of their metabolites. J Chromatogr 1981; 204: 319–27PubMedCrossRef Fekete J, del Castilho P, Kraak JC. Reversed-phase liquid chromatography for the separation of chlorpromazine, imipramine and some of their metabolites. J Chromatogr 1981; 204: 319–27PubMedCrossRef
145.
Zurück zum Zitat Godbillon J, Gauron S. Determination of clomipramine or imipramine and their mono-demethylated metabolites in human blood or plasma by high-performance liquid chromatography. J Chromatogr 1981; 204: 303–11PubMedCrossRef Godbillon J, Gauron S. Determination of clomipramine or imipramine and their mono-demethylated metabolites in human blood or plasma by high-performance liquid chromatography. J Chromatogr 1981; 204: 303–11PubMedCrossRef
146.
Zurück zum Zitat Dixon R, Marin D. Tricyclic antidepressants: a simplified approach for the routine clinical monitoring of parent drug and metabolites in plasma using HPLC. Res Commun Chem Pathol Pharmacol 1981; 33: 537–45PubMed Dixon R, Marin D. Tricyclic antidepressants: a simplified approach for the routine clinical monitoring of parent drug and metabolites in plasma using HPLC. Res Commun Chem Pathol Pharmacol 1981; 33: 537–45PubMed
147.
Zurück zum Zitat Suckow RF, Cooper TB. Simultaneous determination of imipramine, desipramine, and their 2-hydroxy metabolites in plasma by ion-pair reversed-phase high-performance liquid chromatography with amperometric detection. J Pharm Sci 1981; 70: 257–61PubMedCrossRef Suckow RF, Cooper TB. Simultaneous determination of imipramine, desipramine, and their 2-hydroxy metabolites in plasma by ion-pair reversed-phase high-performance liquid chromatography with amperometric detection. J Pharm Sci 1981; 70: 257–61PubMedCrossRef
148.
Zurück zum Zitat Streator JT, Eichmeier LS, Caplis ME. Determination of tricyclic antidepressants in serum by high pressure liquid chromatography on a silica column. J Anal Toxicol 1980; 4: 58–62PubMed Streator JT, Eichmeier LS, Caplis ME. Determination of tricyclic antidepressants in serum by high pressure liquid chromatography on a silica column. J Anal Toxicol 1980; 4: 58–62PubMed
149.
Zurück zum Zitat Reece PA, Zacest R, Barrow CG. Quantification of imipramine and desipramine in plasma by high-performance liquid chromatography and fluorescence detection. J Chromatogr 1979; 163: 310–4PubMedCrossRef Reece PA, Zacest R, Barrow CG. Quantification of imipramine and desipramine in plasma by high-performance liquid chromatography and fluorescence detection. J Chromatogr 1979; 163: 310–4PubMedCrossRef
150.
Zurück zum Zitat Sutfin TA, Jusko WJ. High-performance liquid Chromatographie assay for imipramine, desipramine, and their 2-hydroxylated metabolites. J Pharm Sci 1979; 68: 703–5PubMedCrossRef Sutfin TA, Jusko WJ. High-performance liquid Chromatographie assay for imipramine, desipramine, and their 2-hydroxylated metabolites. J Pharm Sci 1979; 68: 703–5PubMedCrossRef
151.
Zurück zum Zitat Proelss HF, Lohmann HJ, Miles DG. High-performance liquid-chromatographic simultaneous determination of commonly used tricyclic antidepressants. Clin Chem 1978; 24: 1948–53PubMed Proelss HF, Lohmann HJ, Miles DG. High-performance liquid-chromatographic simultaneous determination of commonly used tricyclic antidepressants. Clin Chem 1978; 24: 1948–53PubMed
152.
Zurück zum Zitat Vandemark FL, Adams RF, Schmidt GJ. Liquid-chromatographic procedure for tricyclic drugs and their metabolites in plasma. Clin Chem 1978; 24: 87–91PubMed Vandemark FL, Adams RF, Schmidt GJ. Liquid-chromatographic procedure for tricyclic drugs and their metabolites in plasma. Clin Chem 1978; 24: 87–91PubMed
153.
Zurück zum Zitat Adamczyk M, Fishpaugh JR, Harrington CA, et al. Immunoassay reagents for psychoactive drugs: pt 5. quantitative determination of imipramine and desipramine by fluorescence polarization immunoassay. Ther Drug Monit 1994; 16: 577–87PubMedCrossRef Adamczyk M, Fishpaugh JR, Harrington CA, et al. Immunoassay reagents for psychoactive drugs: pt 5. quantitative determination of imipramine and desipramine by fluorescence polarization immunoassay. Ther Drug Monit 1994; 16: 577–87PubMedCrossRef
154.
Zurück zum Zitat Karpinska J, Starczewska B. Simultaneous LC determination of some antidepressants combined with neuroleptics. J Pharm Biomed Anal 2002; 29: 519–25PubMedCrossRef Karpinska J, Starczewska B. Simultaneous LC determination of some antidepressants combined with neuroleptics. J Pharm Biomed Anal 2002; 29: 519–25PubMedCrossRef
155.
Zurück zum Zitat De la Torre R, Ortuno J, Pascual JA, et al. Quantitative determination of tricyclic antidepressants and their metabolites in plasma by solid-phase extraction (Bond-Elut TCA) and separation by capillary gas chromatography with nitrogen-phosphorous detection. Ther Drug Monit 1998; 20: 340–6PubMedCrossRef De la Torre R, Ortuno J, Pascual JA, et al. Quantitative determination of tricyclic antidepressants and their metabolites in plasma by solid-phase extraction (Bond-Elut TCA) and separation by capillary gas chromatography with nitrogen-phosphorous detection. Ther Drug Monit 1998; 20: 340–6PubMedCrossRef
156.
Zurück zum Zitat Pommier F, Sioufi A, Godbillon J. Simultaneous determination of imipramine and its metabolite desipramine in human plasma by capillary gas chromatrography with mass-sensitive detection. J Chromatogr 1997; 703: 147–58CrossRef Pommier F, Sioufi A, Godbillon J. Simultaneous determination of imipramine and its metabolite desipramine in human plasma by capillary gas chromatrography with mass-sensitive detection. J Chromatogr 1997; 703: 147–58CrossRef
157.
Zurück zum Zitat Lee XP, Kumazawa T, Sato K, et al. Detection of tricyclic antidepressants in whole blood by headspace solid-phase microextraction and capillary gas chromatography. J Chromatogr Sci 1997; 35: 302–8PubMed Lee XP, Kumazawa T, Sato K, et al. Detection of tricyclic antidepressants in whole blood by headspace solid-phase microextraction and capillary gas chromatography. J Chromatogr Sci 1997; 35: 302–8PubMed
158.
Zurück zum Zitat Fujii T, Kurihara Y, Arimoto H, et al. Surface ionization organic mass spectrometry of imipramine, desipramine, clomipramine, and lidocaine. Anal Chem 1994; 66: 1884–9PubMedCrossRef Fujii T, Kurihara Y, Arimoto H, et al. Surface ionization organic mass spectrometry of imipramine, desipramine, clomipramine, and lidocaine. Anal Chem 1994; 66: 1884–9PubMedCrossRef
159.
Zurück zum Zitat Sasaki Y, Baba S. Simultaneous determination of imipramine, desipramine and their deuterium-labelled analogues in biological fluids by capillary gas chromatography-mass spectrometry. J Chromatogr 1988; 426: 93–101PubMedCrossRef Sasaki Y, Baba S. Simultaneous determination of imipramine, desipramine and their deuterium-labelled analogues in biological fluids by capillary gas chromatography-mass spectrometry. J Chromatogr 1988; 426: 93–101PubMedCrossRef
160.
Zurück zum Zitat Craig JC, Gruenke LD, Nguyen TL. Simultaneous analysis of imipramine and its metabolite desipramine in biological fluids. J Chromatogr 1982; 239: 81–6PubMedCrossRef Craig JC, Gruenke LD, Nguyen TL. Simultaneous analysis of imipramine and its metabolite desipramine in biological fluids. J Chromatogr 1982; 239: 81–6PubMedCrossRef
161.
Zurück zum Zitat Narasimhachari N, Saady J, Friedel RO. Quantitative mapping of metabolites of imipramine and desipramine in plasma samples by gas chromatography-mass spectrometry. Biol Psychiatry 1981; 16: 937–44PubMed Narasimhachari N, Saady J, Friedel RO. Quantitative mapping of metabolites of imipramine and desipramine in plasma samples by gas chromatography-mass spectrometry. Biol Psychiatry 1981; 16: 937–44PubMed
162.
Zurück zum Zitat Chinn DM, Jennison TA, Crouch DJ, et al. Quantitative analysis for tricyclic antidepressant drugs in plasma or serum by gas chromatography-chemical-ionization mass spectrometry. Clin Chem 1980; 26: 1201–4PubMed Chinn DM, Jennison TA, Crouch DJ, et al. Quantitative analysis for tricyclic antidepressant drugs in plasma or serum by gas chromatography-chemical-ionization mass spectrometry. Clin Chem 1980; 26: 1201–4PubMed
163.
Zurück zum Zitat Midha KK, Charette C, Cooper JK, et al. Comparison of a new GLC-AFID method with a GLC-MS selected ion monitoring technique and a radioimmunoassay for the determination of plasma concentrations of imipramine and desipramine. J Anal Toxicol 1980; 4: 237–43PubMed Midha KK, Charette C, Cooper JK, et al. Comparison of a new GLC-AFID method with a GLC-MS selected ion monitoring technique and a radioimmunoassay for the determination of plasma concentrations of imipramine and desipramine. J Anal Toxicol 1980; 4: 237–43PubMed
164.
Zurück zum Zitat Alkalay D, Volk J, Carlsen S. A sensitive method for the simultaneous determination in biological fluids of imipramine and desipramine or clomipramine and N-desmethyl-clomipramine by gas chromatography mass spectrometry. Biomed Mass Spectrom 1979; 6: 200–4PubMedCrossRef Alkalay D, Volk J, Carlsen S. A sensitive method for the simultaneous determination in biological fluids of imipramine and desipramine or clomipramine and N-desmethyl-clomipramine by gas chromatography mass spectrometry. Biomed Mass Spectrom 1979; 6: 200–4PubMedCrossRef
165.
Zurück zum Zitat Bertrand M, Dupuis C, Gagnon MA, et al. Nanogram-range determination of plasma imipramine by gas-liquid chromatography using a selective nitrogen/phosphorus detector. Clin Biochem 1978; 11: 117–20PubMedCrossRef Bertrand M, Dupuis C, Gagnon MA, et al. Nanogram-range determination of plasma imipramine by gas-liquid chromatography using a selective nitrogen/phosphorus detector. Clin Biochem 1978; 11: 117–20PubMedCrossRef
166.
Zurück zum Zitat Bailey DN, Jatlow PI. Gas-chromatographic analysis for therapeutic concentration of imipramine and desipramine in plasma, with use of a nitrogen detector. Clin Chem 1976; 22: 1697–701PubMed Bailey DN, Jatlow PI. Gas-chromatographic analysis for therapeutic concentration of imipramine and desipramine in plasma, with use of a nitrogen detector. Clin Chem 1976; 22: 1697–701PubMed
167.
Zurück zum Zitat Dubois JP, Kung W, Theobald W, et al. Measurement of clomipramine, N-desmethyl-clomipramine, imipramine, and dehydroimipramine in biological fluids by selective ion monitaring, and pharmacokinetics of clomipramine. Clin Chem 1976; 22: 892–7PubMed Dubois JP, Kung W, Theobald W, et al. Measurement of clomipramine, N-desmethyl-clomipramine, imipramine, and dehydroimipramine in biological fluids by selective ion monitaring, and pharmacokinetics of clomipramine. Clin Chem 1976; 22: 892–7PubMed
168.
Zurück zum Zitat Cooper TB, Allen D, Simpson GM. A sensitive GLC method for the determination of imipramine and desmethylimipramine using a nitrogen detector. Psychopharmacol Commun 1975; 1: 445–54PubMed Cooper TB, Allen D, Simpson GM. A sensitive GLC method for the determination of imipramine and desmethylimipramine using a nitrogen detector. Psychopharmacol Commun 1975; 1: 445–54PubMed
169.
Zurück zum Zitat Belvedere G, Burti L, Frigerio A, et al. Gas Chromatographicmass fragmentographic determination of ‘teady-state’ plasma levels of imipramine and desipramine in chronically treated patients. J Chromatogr 1975; 111: 313–21PubMedCrossRef Belvedere G, Burti L, Frigerio A, et al. Gas Chromatographicmass fragmentographic determination of ‘teady-state’ plasma levels of imipramine and desipramine in chronically treated patients. J Chromatogr 1975; 111: 313–21PubMedCrossRef
170.
Zurück zum Zitat Gifford LA, Turner P, Pare CM. Sensitive method for the routine determination of tricyclic antidepressants in plasma using a specific nitrogen detector. J Chromatogr 1975; 105: 107–13PubMedCrossRef Gifford LA, Turner P, Pare CM. Sensitive method for the routine determination of tricyclic antidepressants in plasma using a specific nitrogen detector. J Chromatogr 1975; 105: 107–13PubMedCrossRef
171.
Zurück zum Zitat Pantarott C, Belvedere G, Frigerio A. Quantitative determination of imipramine and desmethylimipramine in human plasma by mass fragmentography. Z Klin Chem Klin Biochem 1974; 12: 224–5PubMed Pantarott C, Belvedere G, Frigerio A. Quantitative determination of imipramine and desmethylimipramine in human plasma by mass fragmentography. Z Klin Chem Klin Biochem 1974; 12: 224–5PubMed
172.
Zurück zum Zitat Frigerio A, Belvedere G, DeNadai F, et al. A method for the determination of imipramine in human plasma by gas-liquid chromatography-mass fragmentography. J Chromatogr 1972; 74: 201–8PubMedCrossRef Frigerio A, Belvedere G, DeNadai F, et al. A method for the determination of imipramine in human plasma by gas-liquid chromatography-mass fragmentography. J Chromatogr 1972; 74: 201–8PubMedCrossRef
173.
Zurück zum Zitat Rovei V, Sanjuan M, Hrdina PD. Analysis of tricyclic antidepressant drugs by gas chromatography using nitrogen-selective detection with packed and capillary columns. J Chromatogr 1980; 182: 349–57PubMedCrossRef Rovei V, Sanjuan M, Hrdina PD. Analysis of tricyclic antidepressant drugs by gas chromatography using nitrogen-selective detection with packed and capillary columns. J Chromatogr 1980; 182: 349–57PubMedCrossRef
174.
Zurück zum Zitat Misztal G, Hopkala H, Slawik T. Chromatographic analysis (TLC) of fluoxetine, doxepine, imipramine and opipranol in human plasma. Acta Pol Pharm 1997; 54: 257–9PubMed Misztal G, Hopkala H, Slawik T. Chromatographic analysis (TLC) of fluoxetine, doxepine, imipramine and opipranol in human plasma. Acta Pol Pharm 1997; 54: 257–9PubMed
175.
Zurück zum Zitat Baltova EJ, Shishkova A. Separation and identification of the antidepressants imipramine, amitriptyline and nomifensine by thin layer chromatography. Folia Med (Plovdiv) 1983; 25: 36–41 Baltova EJ, Shishkova A. Separation and identification of the antidepressants imipramine, amitriptyline and nomifensine by thin layer chromatography. Folia Med (Plovdiv) 1983; 25: 36–41
176.
Zurück zum Zitat Sistovaris N, Dagrosa EE, Keller A. Thin-layer Chromatographic determination of imipramine and desipramine in human plasma and urine at single-dose levels. J Chromatogr 1983; 277: 273–81PubMedCrossRef Sistovaris N, Dagrosa EE, Keller A. Thin-layer Chromatographic determination of imipramine and desipramine in human plasma and urine at single-dose levels. J Chromatogr 1983; 277: 273–81PubMedCrossRef
177.
Zurück zum Zitat Howarth AT. A simple method for the determination of therapeutic levels of clomipramine, imipramine, and desipramine. Postgrad Med J 1977; 53 Suppl. 4: 131–5PubMed Howarth AT. A simple method for the determination of therapeutic levels of clomipramine, imipramine, and desipramine. Postgrad Med J 1977; 53 Suppl. 4: 131–5PubMed
178.
Zurück zum Zitat Fenimore DC, Meyer CJ, Davis CM, et al. High-performance thin-layer Chromatographie determination of psychopharmacological agents in blood serum. J Chromatogr 1977; 142: 399–409PubMedCrossRef Fenimore DC, Meyer CJ, Davis CM, et al. High-performance thin-layer Chromatographie determination of psychopharmacological agents in blood serum. J Chromatogr 1977; 142: 399–409PubMedCrossRef
179.
Zurück zum Zitat Fenimore DC, Davis CM, Meyer CJ. Determination of drugs in plasma by high-performance thin layer chromatography. Clin Chem 1978; 24: 1386–92PubMed Fenimore DC, Davis CM, Meyer CJ. Determination of drugs in plasma by high-performance thin layer chromatography. Clin Chem 1978; 24: 1386–92PubMed
180.
Zurück zum Zitat Pankey S, Collins C, Jaklitsch A, et al. Quantitative homogenous enzyme immunoassays for amitriptyline, nortriptyline, imipramine, and desipramine. Clin Chem 1986; 32: 768–72PubMed Pankey S, Collins C, Jaklitsch A, et al. Quantitative homogenous enzyme immunoassays for amitriptyline, nortriptyline, imipramine, and desipramine. Clin Chem 1986; 32: 768–72PubMed
181.
Zurück zum Zitat el-Yazbi FA, Koramy MA, Bedair M. A sensitive colorimetric method for the determination of imipramine hydrochloride and desipramine hydrochloride. J Clin Hosp Pharm 1985; 10: 373–7PubMed el-Yazbi FA, Koramy MA, Bedair M. A sensitive colorimetric method for the determination of imipramine hydrochloride and desipramine hydrochloride. J Clin Hosp Pharm 1985; 10: 373–7PubMed
182.
Zurück zum Zitat Wallace JE, Biggs JD. Colorimetric determination of imipramine in biologic specimens. J Forensic Sci 1969; 14: 528–37PubMed Wallace JE, Biggs JD. Colorimetric determination of imipramine in biologic specimens. J Forensic Sci 1969; 14: 528–37PubMed
183.
Zurück zum Zitat Brunswick DJ, Needelman B, Mendels J. Radioimmunoassay of imipramine and desmethylimipramine. Life Sci 1978; 22: 137–46PubMedCrossRef Brunswick DJ, Needelman B, Mendels J. Radioimmunoassay of imipramine and desmethylimipramine. Life Sci 1978; 22: 137–46PubMedCrossRef
184.
Zurück zum Zitat Moody JP, Tait AC, Todrick A. Plasma levels of imipramine and desmethylimipramine during therapy. Br J Psychiatry 1967; 113: 183–93PubMedCrossRef Moody JP, Tait AC, Todrick A. Plasma levels of imipramine and desmethylimipramine during therapy. Br J Psychiatry 1967; 113: 183–93PubMedCrossRef
185.
Zurück zum Zitat Garcia Fraga JM, Jiminez Abizanda AI, Jiminez Moreno F, et al. Simultaneous determination of imipramine and amitriptyline by derivative spectrophotometry. J Pharm Biomed Anal 1991; 9: 109–15PubMedCrossRef Garcia Fraga JM, Jiminez Abizanda AI, Jiminez Moreno F, et al. Simultaneous determination of imipramine and amitriptyline by derivative spectrophotometry. J Pharm Biomed Anal 1991; 9: 109–15PubMedCrossRef
186.
Zurück zum Zitat Baltova E, Shishkov A. Extractional-spectrophotometric determination of microquantities of the antidepressant imipramine with picric acid. Folia Med (Plovdiv) 1984; 26: 53–8 Baltova E, Shishkov A. Extractional-spectrophotometric determination of microquantities of the antidepressant imipramine with picric acid. Folia Med (Plovdiv) 1984; 26: 53–8
187.
Zurück zum Zitat Schneider M, Giardina EG. Interference by flexeril, a tricylic muscle relaxant, with liquid-chromatographic determination of imipramine [letter]. Clin Chem 1986; 32: 1599PubMed Schneider M, Giardina EG. Interference by flexeril, a tricylic muscle relaxant, with liquid-chromatographic determination of imipramine [letter]. Clin Chem 1986; 32: 1599PubMed
188.
Zurück zum Zitat Wertz PG, Street TL. Thioridazine interference in Chromatographie and enzyme immunoassays for imipramine in serum [letter]. Clin Chem 1983; 29: 724–5PubMed Wertz PG, Street TL. Thioridazine interference in Chromatographie and enzyme immunoassays for imipramine in serum [letter]. Clin Chem 1983; 29: 724–5PubMed
189.
Zurück zum Zitat Maynard GL, Soni P. Thioridazine interferences with imipramine metabolism and measurement. Ther Drug Monit 1996; 18: 729–31PubMedCrossRef Maynard GL, Soni P. Thioridazine interferences with imipramine metabolism and measurement. Ther Drug Monit 1996; 18: 729–31PubMedCrossRef
190.
Zurück zum Zitat Al-Mateen CS, Wolf II CE. Falsely elevated imipramine levels in a patient taking quetiapine [letter]. J Am Acad Child Adolesc Psychiatry 2002; 41: 5–6PubMedCrossRef Al-Mateen CS, Wolf II CE. Falsely elevated imipramine levels in a patient taking quetiapine [letter]. J Am Acad Child Adolesc Psychiatry 2002; 41: 5–6PubMedCrossRef
191.
Zurück zum Zitat Abernethy DR, Greenblatt DJ, Shader RI. Imipramine-cimetidine interaction: impairment of clearance and enhanced absolute bioavailability. J Pharmacol Exp Ther 1984; 229: 702–5PubMed Abernethy DR, Greenblatt DJ, Shader RI. Imipramine-cimetidine interaction: impairment of clearance and enhanced absolute bioavailability. J Pharmacol Exp Ther 1984; 229: 702–5PubMed
192.
Zurück zum Zitat Abernethy DR, Greenblatt DJ, Shader RI. Imipramine and desipramine disposition in the elderly. J Pharmacol Exp Ther 1985; 232: 183–8PubMed Abernethy DR, Greenblatt DJ, Shader RI. Imipramine and desipramine disposition in the elderly. J Pharmacol Exp Ther 1985; 232: 183–8PubMed
193.
Zurück zum Zitat Abernethy DR, Divoll M, Greenblatt DJ, et al. Absolute bioavailability of imipramine: influence of food. Psychopharmacology 1984; 83: 104–6CrossRef Abernethy DR, Divoll M, Greenblatt DJ, et al. Absolute bioavailability of imipramine: influence of food. Psychopharmacology 1984; 83: 104–6CrossRef
194.
Zurück zum Zitat Goldberg MJ, Park GD, Spector R, et al. Lack of effect of oral activated charcoal on imipramine clearance. Clin Pharmacol Ther 1985; 38: 350–3PubMedCrossRef Goldberg MJ, Park GD, Spector R, et al. Lack of effect of oral activated charcoal on imipramine clearance. Clin Pharmacol Ther 1985; 38: 350–3PubMedCrossRef
195.
Zurück zum Zitat Nagy A, Johansson R. Plasma levels of imipramine and desipramine in man after different routes of administration. Naunyn Schmiedebergs Arch Pharmacol 1975; 290: 145–60PubMedCrossRef Nagy A, Johansson R. Plasma levels of imipramine and desipramine in man after different routes of administration. Naunyn Schmiedebergs Arch Pharmacol 1975; 290: 145–60PubMedCrossRef
196.
Zurück zum Zitat Gram LF, Andreasen PB, Overo KF, et al. Comparison of single dose kinetics of imipramine, nortriptyline, and antipyrine in man. Psychopharmacology 1976; 50: 21–7PubMedCrossRef Gram LF, Andreasen PB, Overo KF, et al. Comparison of single dose kinetics of imipramine, nortriptyline, and antipyrine in man. Psychopharmacology 1976; 50: 21–7PubMedCrossRef
197.
Zurück zum Zitat Ciraulo DA, Barnhill JG, Jaffe JH. Clinical pharmacokinetics of imipramine and desipramine in alcoholics and normal volunteers. Clin Pharmacol Ther 1988; 43: 509–18PubMedCrossRef Ciraulo DA, Barnhill JG, Jaffe JH. Clinical pharmacokinetics of imipramine and desipramine in alcoholics and normal volunteers. Clin Pharmacol Ther 1988; 43: 509–18PubMedCrossRef
198.
Zurück zum Zitat Ciraulo DA, Barnhill J, Boxenbaum H. Pharmacokinetic interaction of disulfiram and antidepressants. Am J Psychiatry 1985; 142: 1373–4PubMed Ciraulo DA, Barnhill J, Boxenbaum H. Pharmacokinetic interaction of disulfiram and antidepressants. Am J Psychiatry 1985; 142: 1373–4PubMed
199.
Zurück zum Zitat Benetello P, Furlanut M, Zara G, et al. Imipramine pharmacokinetics in depressed geriatric patients. Int J Clin Pharmacol Res 1990; 10: 191–5PubMed Benetello P, Furlanut M, Zara G, et al. Imipramine pharmacokinetics in depressed geriatric patients. Int J Clin Pharmacol Res 1990; 10: 191–5PubMed
200.
Zurück zum Zitat Sutfin TA, DeVane CL, Jusko WJ. The analysis and disposition of imipramine and its active metabolites in man. Psychopharmacology 1984; 82: 310–7PubMedCrossRef Sutfin TA, DeVane CL, Jusko WJ. The analysis and disposition of imipramine and its active metabolites in man. Psychopharmacology 1984; 82: 310–7PubMedCrossRef
201.
Zurück zum Zitat Gram LF, Hansen MGJ, Sindrup SH, et al. Citalopram: interaction studies with levomepromazine, imipramine, and lithium. Ther Drug Monit 1993; 15: 18–24PubMedCrossRef Gram LF, Hansen MGJ, Sindrup SH, et al. Citalopram: interaction studies with levomepromazine, imipramine, and lithium. Ther Drug Monit 1993; 15: 18–24PubMedCrossRef
202.
Zurück zum Zitat Onyeji CO, Toriola TA, Ogunbona FA. Lack of pharmacokinetic interaction between chloroquine and imipramine. Ther Drug Monit 1993; 15: 43–6PubMedCrossRef Onyeji CO, Toriola TA, Ogunbona FA. Lack of pharmacokinetic interaction between chloroquine and imipramine. Ther Drug Monit 1993; 15: 43–6PubMedCrossRef
203.
Zurück zum Zitat Spina E, Pollicino MA, Avenoso A, et al. Effect of fluvoxamine on the pharmacokinetics of imipramine and desipramine in healthy subjects. Ther Drug Monit 1993; 15: 243–6PubMedCrossRef Spina E, Pollicino MA, Avenoso A, et al. Effect of fluvoxamine on the pharmacokinetics of imipramine and desipramine in healthy subjects. Ther Drug Monit 1993; 15: 243–6PubMedCrossRef
204.
Zurück zum Zitat Potter WZ, Zavadil III AP, Kopin IJ, et al. Single-dose kinetics predict steady-state concentrations of imipramine and desipramine. Arch Gen Psychiatry 1980; 37: 314–20PubMedCrossRef Potter WZ, Zavadil III AP, Kopin IJ, et al. Single-dose kinetics predict steady-state concentrations of imipramine and desipramine. Arch Gen Psychiatry 1980; 37: 314–20PubMedCrossRef
205.
Zurück zum Zitat Spina E, Avenoso A, Campo GM, et al. Effect of ketoconazole on the pharmacokinetics of imipramine and desipramine in healthy subjects. Br J Clin Pharmacol 1997; 43: 315–8PubMedCrossRef Spina E, Avenoso A, Campo GM, et al. Effect of ketoconazole on the pharmacokinetics of imipramine and desipramine in healthy subjects. Br J Clin Pharmacol 1997; 43: 315–8PubMedCrossRef
206.
Zurück zum Zitat Wang J-S, Wang W, Xie H-G, et al. Effect of troleandomycin on the pharmacokinetics of imipramine in Chinese: the role of CYP3A. Br J Clin Pharmacol 1997; 44: 195–8PubMedCrossRef Wang J-S, Wang W, Xie H-G, et al. Effect of troleandomycin on the pharmacokinetics of imipramine in Chinese: the role of CYP3A. Br J Clin Pharmacol 1997; 44: 195–8PubMedCrossRef
207.
Zurück zum Zitat Grasela Jr TH, Antal EJ, Ereshefsky L, et al. An evaluation of population pharmacokinetics in therapeutic trials: pt II. detection of a drug-drug interaction. Clin Pharmacol Ther 1987; 42: 433–41PubMedCrossRef Grasela Jr TH, Antal EJ, Ereshefsky L, et al. An evaluation of population pharmacokinetics in therapeutic trials: pt II. detection of a drug-drug interaction. Clin Pharmacol Ther 1987; 42: 433–41PubMedCrossRef
208.
Zurück zum Zitat Giardina E-G, Louie M, Bigger Jr JT, et al. Antiarrhythmic plasma-concentration range of imipramine against ventricular premature contractions. Clin Pharmacol Ther 1983; 34: 284–9PubMedCrossRef Giardina E-G, Louie M, Bigger Jr JT, et al. Antiarrhythmic plasma-concentration range of imipramine against ventricular premature contractions. Clin Pharmacol Ther 1983; 34: 284–9PubMedCrossRef
209.
Zurück zum Zitat Henauer SA, Hollister LE. Cimetidine interaction with imipramine and nortriptyline. Clin Pharmacol Ther 1984; 35: 183–7PubMedCrossRef Henauer SA, Hollister LE. Cimetidine interaction with imipramine and nortriptyline. Clin Pharmacol Ther 1984; 35: 183–7PubMedCrossRef
210.
Zurück zum Zitat Gagnon M-A, Dupuis C, Bertrand MJ, et al. Comparative biopharmaceutic performance of imipramine formulations in man. J Clin Pharmacol 1980; 20: 151–8PubMed Gagnon M-A, Dupuis C, Bertrand MJ, et al. Comparative biopharmaceutic performance of imipramine formulations in man. J Clin Pharmacol 1980; 20: 151–8PubMed
211.
Zurück zum Zitat Hrdina PD, Rovei V, Henry JF, et al. Comparison of single-dose pharmacokinetics of imipramine and maprotiline in the elderly. Psychopharmacology 1980; 70: 29–34PubMedCrossRef Hrdina PD, Rovei V, Henry JF, et al. Comparison of single-dose pharmacokinetics of imipramine and maprotiline in the elderly. Psychopharmacology 1980; 70: 29–34PubMedCrossRef
212.
Zurück zum Zitat Sallee F, Stiller R, Perel J, et al. Targeting imipramine dose in children with depression. Clin Pharmacol Ther 1986; 40: 8–13PubMedCrossRef Sallee F, Stiller R, Perel J, et al. Targeting imipramine dose in children with depression. Clin Pharmacol Ther 1986; 40: 8–13PubMedCrossRef
213.
Zurück zum Zitat Hermann DJ, Krol TF, Dukes GE, et al. Comparison of Verapamil, diltiazem, and labetalol on the bioavailability and metabolism of imipramine. J Clin Pharmacol 1992; 32:176–83PubMed Hermann DJ, Krol TF, Dukes GE, et al. Comparison of Verapamil, diltiazem, and labetalol on the bioavailability and metabolism of imipramine. J Clin Pharmacol 1992; 32:176–83PubMed
214.
Zurück zum Zitat Albers LJ, Reist C, Vu RL, et al. Effect of venlafaxine on imipramine metabolism. Psychiatry Res 2000; 96: 235–43PubMedCrossRef Albers LJ, Reist C, Vu RL, et al. Effect of venlafaxine on imipramine metabolism. Psychiatry Res 2000; 96: 235–43PubMedCrossRef
215.
Zurück zum Zitat Albers LT, Reist C, Helmeste D, et al. Paroxetine shifts imipramine metabolism. Psychiatry Res 1996; 59: 189–96PubMedCrossRef Albers LT, Reist C, Helmeste D, et al. Paroxetine shifts imipramine metabolism. Psychiatry Res 1996; 59: 189–96PubMedCrossRef
216.
Zurück zum Zitat Callaghan JT, Cerimele BJ, Kassahum KJ, et al. Olanzapine: interaction study with imipramine. J Clin Pharmacol 1997; 37: 971–8PubMed Callaghan JT, Cerimele BJ, Kassahum KJ, et al. Olanzapine: interaction study with imipramine. J Clin Pharmacol 1997; 37: 971–8PubMed
217.
Zurück zum Zitat Ullmann U, Lehnfeld R, Bliesath H, et al. Relative bioavailability of imipramine (Tofranil) coated tablets in healthy volunteers. Int J Clin Pharmacol Ther 2001; 39: 271–6PubMed Ullmann U, Lehnfeld R, Bliesath H, et al. Relative bioavailability of imipramine (Tofranil) coated tablets in healthy volunteers. Int J Clin Pharmacol Ther 2001; 39: 271–6PubMed
218.
Zurück zum Zitat Wells BG, Pieper JA, Self IH, et al. The effect of ranitidine and Cimetidine on imipramine disposition. Eur J Clin Pharmacol 1986; 31: 285–90PubMedCrossRef Wells BG, Pieper JA, Self IH, et al. The effect of ranitidine and Cimetidine on imipramine disposition. Eur J Clin Pharmacol 1986; 31: 285–90PubMedCrossRef
219.
Zurück zum Zitat Bergstrom RF, Peyton AL, Lemberger L. Quantification and mechanism of the fluoxetine and tricyclic antidepressant interaction. Clin Pharmacol Ther 1992; 51: 239–48PubMedCrossRef Bergstrom RF, Peyton AL, Lemberger L. Quantification and mechanism of the fluoxetine and tricyclic antidepressant interaction. Clin Pharmacol Ther 1992; 51: 239–48PubMedCrossRef
220.
Zurück zum Zitat Hitzenberger G, Schmid R, Braun W, et al. Vinpocetine therapy does not change imipramine pharmacokinetics in man. Int J Clin Pharmacol Ther Toxicol 1990; 28: 99–104PubMed Hitzenberger G, Schmid R, Braun W, et al. Vinpocetine therapy does not change imipramine pharmacokinetics in man. Int J Clin Pharmacol Ther Toxicol 1990; 28: 99–104PubMed
221.
Zurück zum Zitat Dell RB, Hein K, Ramakrishnan R, et al. Model for the kinetics of imipramine and its metabolites in adolescents. Ther Drug Monit 1990; 12: 450–9PubMedCrossRef Dell RB, Hein K, Ramakrishnan R, et al. Model for the kinetics of imipramine and its metabolites in adolescents. Ther Drug Monit 1990; 12: 450–9PubMedCrossRef
222.
Zurück zum Zitat Spina E, Avenoso A, Campo GM, et al. The effect of carbamazepine on the 2-hydroxylation of desipramine. Psychopharmacology 1995; 117: 413–6PubMedCrossRef Spina E, Avenoso A, Campo GM, et al. The effect of carbamazepine on the 2-hydroxylation of desipramine. Psychopharmacology 1995; 117: 413–6PubMedCrossRef
223.
Zurück zum Zitat Preskorn SH, Alderman J, Chung M, et al. Pharmacokinetics of desipramine coadministered with sertraline or fluoxetine. J Clin Psychopharmacol 1994; 14: 90–8PubMed Preskorn SH, Alderman J, Chung M, et al. Pharmacokinetics of desipramine coadministered with sertraline or fluoxetine. J Clin Psychopharmacol 1994; 14: 90–8PubMed
224.
Zurück zum Zitat Alexanderson B. Pharmacokinetics of desmethylimipramine and nortriptyline in man after single and multiple oral dose. Eur J Clin Pharmacol 1972; 5: 1–10CrossRef Alexanderson B. Pharmacokinetics of desmethylimipramine and nortriptyline in man after single and multiple oral dose. Eur J Clin Pharmacol 1972; 5: 1–10CrossRef
225.
Zurück zum Zitat Dencker H, Dencker SJ, Green A, et al. Intestinal absorption, demethylation, and enterohepatic circulation of imipramine. Clin Pharmacol Ther 1976; 19: 584–6PubMed Dencker H, Dencker SJ, Green A, et al. Intestinal absorption, demethylation, and enterohepatic circulation of imipramine. Clin Pharmacol Ther 1976; 19: 584–6PubMed
226.
Zurück zum Zitat Gram LF, Christiansen J. First-pass metabolism of imipramine in man. Clin Pharmacol Ther 1975; 17: 555–63PubMed Gram LF, Christiansen J. First-pass metabolism of imipramine in man. Clin Pharmacol Ther 1975; 17: 555–63PubMed
227.
Zurück zum Zitat Borga O, Azarnoff DL, Forshell GP, et al. Plasma protein binding of tricyclic antidepressants in man. Biochem Pharmacol 1969; 18: 2135–43PubMedCrossRef Borga O, Azarnoff DL, Forshell GP, et al. Plasma protein binding of tricyclic antidepressants in man. Biochem Pharmacol 1969; 18: 2135–43PubMedCrossRef
228.
Zurück zum Zitat Abernethy DR, Kerzner L. Age effects on alpha-1-acid glycoprotein concentration and imipramine plasma protein binding. J Am Geriatr Soc 1984; 32: 705–8PubMed Abernethy DR, Kerzner L. Age effects on alpha-1-acid glycoprotein concentration and imipramine plasma protein binding. J Am Geriatr Soc 1984; 32: 705–8PubMed
229.
Zurück zum Zitat Piafsky KM, Borga O. Plasma protein binding of basic drugs. Clin Pharmacol Ther 1977; 22: 545–9PubMed Piafsky KM, Borga O. Plasma protein binding of basic drugs. Clin Pharmacol Ther 1977; 22: 545–9PubMed
230.
Zurück zum Zitat Kristensen CB. Imipramine serum protein binding in healthy adults. Clin Pharmacol Ther 1983; 34: 689–94PubMedCrossRef Kristensen CB. Imipramine serum protein binding in healthy adults. Clin Pharmacol Ther 1983; 34: 689–94PubMedCrossRef
231.
Zurück zum Zitat Winsberg BG, Perel JM, Hurwic MJ, et al. Imipramine protein binding and pharmacokinetics in children. Adv Biochem Psychopharmacol 1974; 9: 425–31PubMed Winsberg BG, Perel JM, Hurwic MJ, et al. Imipramine protein binding and pharmacokinetics in children. Adv Biochem Psychopharmacol 1974; 9: 425–31PubMed
232.
Zurück zum Zitat Javaid JI, Hendricks K, Coulson L, et al. Binding of imipramine to plasma in alcoholic patients [abstract 7516]. Fed Proc 1982; 41: 1556 Javaid JI, Hendricks K, Coulson L, et al. Binding of imipramine to plasma in alcoholic patients [abstract 7516]. Fed Proc 1982; 41: 1556
233.
Zurück zum Zitat Torres I, Suarez E, Rodriguez-Sasiain JM, et al. Differential effect of cancer on the serum protein binding of mianserin and imipramine. Eur J Drug Metab Pharmacokinet 1995; 20: 107–11PubMedCrossRef Torres I, Suarez E, Rodriguez-Sasiain JM, et al. Differential effect of cancer on the serum protein binding of mianserin and imipramine. Eur J Drug Metab Pharmacokinet 1995; 20: 107–11PubMedCrossRef
234.
Zurück zum Zitat Kehoe WA, Kwentus JA, Sheffel WB, et al. Increased alpha-1-acid glycoprotein in depression lowers free fraction of imipramine. Biol Psychiatry 1991; 29: 489–93PubMedCrossRef Kehoe WA, Kwentus JA, Sheffel WB, et al. Increased alpha-1-acid glycoprotein in depression lowers free fraction of imipramine. Biol Psychiatry 1991; 29: 489–93PubMedCrossRef
235.
Zurück zum Zitat Glassman AH, Hurwic MJ, Perel JM. Plasma binding of imipramine and clinical outcome. Am J Psychiatry 1973; 130: 1367–9PubMed Glassman AH, Hurwic MJ, Perel JM. Plasma binding of imipramine and clinical outcome. Am J Psychiatry 1973; 130: 1367–9PubMed
236.
Zurück zum Zitat Pruitt AW, Dayton PG. A comparison of the binding of drugs to adult and cord plasma. Eur J Clin Pharmacol 1971; 4: 59–62PubMedCrossRef Pruitt AW, Dayton PG. A comparison of the binding of drugs to adult and cord plasma. Eur J Clin Pharmacol 1971; 4: 59–62PubMedCrossRef
237.
Zurück zum Zitat Bloedow DC, Hansbrough JF, Hardin T, et al. Postburn serum drug binding and serum protein concentrations. J Clin Pharmacol 1986; 26: 147–51PubMed Bloedow DC, Hansbrough JF, Hardin T, et al. Postburn serum drug binding and serum protein concentrations. J Clin Pharmacol 1986; 26: 147–51PubMed
238.
Zurück zum Zitat Martyn JAJ, Abernethy DR, Greenblatt DJ. Plasma protein binding of drugs after severe burn injury. Clin Pharmacol Ther 1984; 35: 535–9PubMedCrossRef Martyn JAJ, Abernethy DR, Greenblatt DJ. Plasma protein binding of drugs after severe burn injury. Clin Pharmacol Ther 1984; 35: 535–9PubMedCrossRef
239.
Zurück zum Zitat Kristensen CB. Plasma protein binding of imipramine in patients with rheumatoid arthritis. Eur J Clin Pharmacol 1985; 28: 693–6PubMedCrossRef Kristensen CB. Plasma protein binding of imipramine in patients with rheumatoid arthritis. Eur J Clin Pharmacol 1985; 28: 693–6PubMedCrossRef
240.
Zurück zum Zitat Danon A, Chen Z. Binding of imipramine to plasma proteins: effect of hyperlipidemia. Clin Pharmacol Ther 1979; 25: 316–21PubMed Danon A, Chen Z. Binding of imipramine to plasma proteins: effect of hyperlipidemia. Clin Pharmacol Ther 1979; 25: 316–21PubMed
241.
Zurück zum Zitat Freilich DI, Giardina E-G V. Imipramine binding to alpha-1-acid glycoprotein in normal subjects and cardiac patients. Clin Pharmacol Ther 1984; 35: 670–4PubMedCrossRef Freilich DI, Giardina E-G V. Imipramine binding to alpha-1-acid glycoprotein in normal subjects and cardiac patients. Clin Pharmacol Ther 1984; 35: 670–4PubMedCrossRef
242.
Zurück zum Zitat Javaid JI, Hendricks K, Davis JM. α1-Acid glycoprotein involvement in high affinity binding of tricyclic antidepressants to human plasma. Biochem Pharmacol 1983; 32: 1149–53PubMedCrossRef Javaid JI, Hendricks K, Davis JM. α1-Acid glycoprotein involvement in high affinity binding of tricyclic antidepressants to human plasma. Biochem Pharmacol 1983; 32: 1149–53PubMedCrossRef
243.
Zurück zum Zitat Abernethy DR, Greenblatt DJ, Shader RI. Imipramine disposition in users of oral contraceptive steroids. Clin Pharmacol Ther 1984; 35: 792–7PubMedCrossRef Abernethy DR, Greenblatt DJ, Shader RI. Imipramine disposition in users of oral contraceptive steroids. Clin Pharmacol Ther 1984; 35: 792–7PubMedCrossRef
244.
Zurück zum Zitat Szymura-Oleksiak J, Wyska E, Wasieczko A. Pharmacokinetic interaction between imipramine and carbamazepine in patients with major depression. Psychopharmacology 2001; 154: 38–42PubMedCrossRef Szymura-Oleksiak J, Wyska E, Wasieczko A. Pharmacokinetic interaction between imipramine and carbamazepine in patients with major depression. Psychopharmacology 2001; 154: 38–42PubMedCrossRef
245.
Zurück zum Zitat Sovner R, Orsulak PJ. Excretion of imipramine and desipramine in human breast milk. Am J Psychiatry 1979; 136: 451–2PubMed Sovner R, Orsulak PJ. Excretion of imipramine and desipramine in human breast milk. Am J Psychiatry 1979; 136: 451–2PubMed
246.
Zurück zum Zitat Lemoine A, Gautier JC, Azoulay D, et al. Major pathway of imipramine metabolism is catalyzed by cytochromes P-450 1A2 and P-450 3A4 in human liver. Mol Pharmacol 1993; 43: 827–32PubMed Lemoine A, Gautier JC, Azoulay D, et al. Major pathway of imipramine metabolism is catalyzed by cytochromes P-450 1A2 and P-450 3A4 in human liver. Mol Pharmacol 1993; 43: 827–32PubMed
247.
Zurück zum Zitat Chiba K, Saitoh A, Koyama E, et al. The role of S-mephenytoin 4′-hydoxylase in imipramine metabolism by human liver microsomes: a two-enzyme kinetic analysis of N-demethylation and 2-hydroxylation. Br J Clin Pharmacol 1994; 37: 237–42PubMedCrossRef Chiba K, Saitoh A, Koyama E, et al. The role of S-mephenytoin 4′-hydoxylase in imipramine metabolism by human liver microsomes: a two-enzyme kinetic analysis of N-demethylation and 2-hydroxylation. Br J Clin Pharmacol 1994; 37: 237–42PubMedCrossRef
248.
Zurück zum Zitat Koyama E, Chiba K, Tani M, et al. Reappraisal of human CYP isoforms involved in imipramine N-demethylation and 2-hydroxylation: a study using microsomes obtained from putative extensive and poor metabolizers of S-mephenytoin and eleven recombinant human CYPs. J Pharmacol Exp Ther 1997; 281: 1199–210PubMed Koyama E, Chiba K, Tani M, et al. Reappraisal of human CYP isoforms involved in imipramine N-demethylation and 2-hydroxylation: a study using microsomes obtained from putative extensive and poor metabolizers of S-mephenytoin and eleven recombinant human CYPs. J Pharmacol Exp Ther 1997; 281: 1199–210PubMed
249.
Zurück zum Zitat Spina E, Birgersson C, von Bahr C, et al. Phenotypic consistency in hydroxylation of desmethylimipramine and debrisoquine in healthy subjects and in human liver microsomes. Clin Pharmacol Ther 1984; 36: 677–82PubMedCrossRef Spina E, Birgersson C, von Bahr C, et al. Phenotypic consistency in hydroxylation of desmethylimipramine and debrisoquine in healthy subjects and in human liver microsomes. Clin Pharmacol Ther 1984; 36: 677–82PubMedCrossRef
250.
Zurück zum Zitat Brosen K, Zeugin T, Meyer UA. Role of P450IID6, the target of the sparteine-debrisoquin oxidation polymorphism, in the metabolism of imipramine. Clin Pharmacol Ther 1991; 49: 609–17PubMedCrossRef Brosen K, Zeugin T, Meyer UA. Role of P450IID6, the target of the sparteine-debrisoquin oxidation polymorphism, in the metabolism of imipramine. Clin Pharmacol Ther 1991; 49: 609–17PubMedCrossRef
251.
Zurück zum Zitat Skjelbo E, Brosen K. Inhibitors of imipramine metabolism by human liver microsomes. Br J Clin Pharmacol 1992; 34: 256–61PubMedCrossRef Skjelbo E, Brosen K. Inhibitors of imipramine metabolism by human liver microsomes. Br J Clin Pharmacol 1992; 34: 256–61PubMedCrossRef
252.
Zurück zum Zitat Ohmori S, Takeda S, Rikihisa T, et al. Studies on cytochrome P450 responsible for oxidative metabolism of imipramine in human liver microsomes. Biol Pharm Bull 1993; 16: 571–5PubMedCrossRef Ohmori S, Takeda S, Rikihisa T, et al. Studies on cytochrome P450 responsible for oxidative metabolism of imipramine in human liver microsomes. Biol Pharm Bull 1993; 16: 571–5PubMedCrossRef
253.
Zurück zum Zitat Yang TJ, Krausz KW, Sai Y, et al. Eight inhibiting monoclonal antibodies define the role of individual P-450s in human liver microsomal diazepam, 7-ethoxycoumarin, and imipramine metabolism. Drug Metab Dispos 1999; 27: 102–9PubMed Yang TJ, Krausz KW, Sai Y, et al. Eight inhibiting monoclonal antibodies define the role of individual P-450s in human liver microsomal diazepam, 7-ethoxycoumarin, and imipramine metabolism. Drug Metab Dispos 1999; 27: 102–9PubMed
254.
Zurück zum Zitat Brosen K, Klysner R, Gram LF, et al. Steady-state concentrations of imipramine and its metabolites in relation to the sparteine/debrisoquine polymorphism. Eur J Clin Pharmacol 1986; 30: 679–84PubMedCrossRef Brosen K, Klysner R, Gram LF, et al. Steady-state concentrations of imipramine and its metabolites in relation to the sparteine/debrisoquine polymorphism. Eur J Clin Pharmacol 1986; 30: 679–84PubMedCrossRef
255.
Zurück zum Zitat Koyama E, Tanaka T, Chiba K, et al. Steady-state plasma concentrations of imipramine and desipramine in relation to S-mephenytoin 4′-hydroxylation status in Japanese depressive patients. J Clin Psychopharmacol 1996; 16: 286–93PubMedCrossRef Koyama E, Tanaka T, Chiba K, et al. Steady-state plasma concentrations of imipramine and desipramine in relation to S-mephenytoin 4′-hydroxylation status in Japanese depressive patients. J Clin Psychopharmacol 1996; 16: 286–93PubMedCrossRef
256.
Zurück zum Zitat Steiner E, Dumont E, Spina E, et al. Inhibition of desipramine 2-hydroxylation by quinidine and quinine. Clin Pharmacol Ther 1987; 43: 577–81CrossRef Steiner E, Dumont E, Spina E, et al. Inhibition of desipramine 2-hydroxylation by quinidine and quinine. Clin Pharmacol Ther 1987; 43: 577–81CrossRef
257.
Zurück zum Zitat Morinobu S, Tanaka T, Kawakatsu S, et al. Effects of genetic defects in the CYP2C19 gene on the N-demethylation of imipramine, and clinical outcome of imipramine therapy. Psychiatry Clin Neurosci 1997; 51: 253–7PubMedCrossRef Morinobu S, Tanaka T, Kawakatsu S, et al. Effects of genetic defects in the CYP2C19 gene on the N-demethylation of imipramine, and clinical outcome of imipramine therapy. Psychiatry Clin Neurosci 1997; 51: 253–7PubMedCrossRef
258.
Zurück zum Zitat Brosen K, Gram LF. First-pass metabolism of imipramine and desipramine: impact of the sparteine oxidation phenotype. Clin Pharmacol Ther 1988; 43: 400–6PubMedCrossRef Brosen K, Gram LF. First-pass metabolism of imipramine and desipramine: impact of the sparteine oxidation phenotype. Clin Pharmacol Ther 1988; 43: 400–6PubMedCrossRef
259.
Zurück zum Zitat Brosen K, Otton SV, Gram LF. Imipramine demethylation and hydroxylation: impact of sparteine oxidation phenotype. Clin Pharmacol Ther 1986; 40: 543–9PubMedCrossRef Brosen K, Otton SV, Gram LF. Imipramine demethylation and hydroxylation: impact of sparteine oxidation phenotype. Clin Pharmacol Ther 1986; 40: 543–9PubMedCrossRef
260.
Zurück zum Zitat Koyama E, Sohn D-R, Shin S-G, et al. Metabolic disposition of imipramine in Oriental subjects: relation to metoprolol α-hydroxylation and S-mephenytoin 4′-hydroxylation phenotypes. J Pharmacol Exp Ther 1994; 271: 860–7PubMed Koyama E, Sohn D-R, Shin S-G, et al. Metabolic disposition of imipramine in Oriental subjects: relation to metoprolol α-hydroxylation and S-mephenytoin 4′-hydroxylation phenotypes. J Pharmacol Exp Ther 1994; 271: 860–7PubMed
261.
Zurück zum Zitat Skjelbo E, Brosen K, Hallas J, et al. The mephenytoin oxidation polymorphism is partially responsible for the N-demethylation of imipramine. Clin Pharmacol Ther 1991; 49: 18–23PubMedCrossRef Skjelbo E, Brosen K, Hallas J, et al. The mephenytoin oxidation polymorphism is partially responsible for the N-demethylation of imipramine. Clin Pharmacol Ther 1991; 49: 18–23PubMedCrossRef
262.
Zurück zum Zitat Skjelbo E, Gram LF, Brosen K. The N-demethylation of imipramine correlates with the oxidation of S-mephenytoin (S/R ratio). Br J Clin Pharmacol 1993; 35: 331–4PubMed Skjelbo E, Gram LF, Brosen K. The N-demethylation of imipramine correlates with the oxidation of S-mephenytoin (S/R ratio). Br J Clin Pharmacol 1993; 35: 331–4PubMed
263.
Zurück zum Zitat Brosen K, Gram LF, Klysner R, et al. Steady-state levels of imipramine and its metabolites: significance of dose-dependent kinetics. Eur J Clin Pharmacol 1986; 30: 43–9PubMedCrossRef Brosen K, Gram LF, Klysner R, et al. Steady-state levels of imipramine and its metabolites: significance of dose-dependent kinetics. Eur J Clin Pharmacol 1986; 30: 43–9PubMedCrossRef
264.
Zurück zum Zitat Sindrup SH, Brosen K, Gram LF. Nonlinear kinetics of imipramine in low and medium plasma level ranges. Ther Drug Monit 1990; 12: 445–9PubMedCrossRef Sindrup SH, Brosen K, Gram LF. Nonlinear kinetics of imipramine in low and medium plasma level ranges. Ther Drug Monit 1990; 12: 445–9PubMedCrossRef
265.
Zurück zum Zitat Nagy A, Johansson R. The demethylation of imipramine and clomipramine as apparent from their plasma kinetics. Psychopharmacology 1977; 54: 125–31PubMedCrossRef Nagy A, Johansson R. The demethylation of imipramine and clomipramine as apparent from their plasma kinetics. Psychopharmacology 1977; 54: 125–31PubMedCrossRef
266.
Zurück zum Zitat Gram LF, Sondergaard IB, Christiansen J, et al. Steady-state kinetics of imipramine in patients. Psychopharmacology 1977; 54: 255–61PubMedCrossRef Gram LF, Sondergaard IB, Christiansen J, et al. Steady-state kinetics of imipramine in patients. Psychopharmacology 1977; 54: 255–61PubMedCrossRef
267.
Zurück zum Zitat Potter WZ, Calil HM, Sutfin TA, et al. Active metabolites of imipramine and desipramine in man. Clin Pharmacol Ther 1982; 31: 393–401PubMedCrossRef Potter WZ, Calil HM, Sutfin TA, et al. Active metabolites of imipramine and desipramine in man. Clin Pharmacol Ther 1982; 31: 393–401PubMedCrossRef
268.
Zurück zum Zitat Sutfin TA, Perini Gl, Molnar G, et al. Multiple-dose pharmacokinetics of imipramine and its major active and conjugated metabolites in depressed patients. J Clin Psychopharmacol 1988; 8: 48–53PubMedCrossRef Sutfin TA, Perini Gl, Molnar G, et al. Multiple-dose pharmacokinetics of imipramine and its major active and conjugated metabolites in depressed patients. J Clin Psychopharmacol 1988; 8: 48–53PubMedCrossRef
269.
Zurück zum Zitat DeVane CL, Jusko WJ. Plasma concentration monitoring of hydroxylated metabolites of imipramine and desipramine. Drug Intell Clin Pharm 1981; 15: 263–6PubMed DeVane CL, Jusko WJ. Plasma concentration monitoring of hydroxylated metabolites of imipramine and desipramine. Drug Intell Clin Pharm 1981; 15: 263–6PubMed
270.
Zurück zum Zitat Christiansen J, Gram LF, Kofod B, et al. Imipramine metabolism in man. Psychopharmacology 1967; 11: 255–64CrossRef Christiansen J, Gram LF, Kofod B, et al. Imipramine metabolism in man. Psychopharmacology 1967; 11: 255–64CrossRef
271.
Zurück zum Zitat Crammer JL, Scott B, Rolfe B. Metabolism of14C-imipramine: II. urinary metabolites in man. Psychopharmacology 1969; 15: 207–25 Crammer JL, Scott B, Rolfe B. Metabolism of14C-imipramine: II. urinary metabolites in man. Psychopharmacology 1969; 15: 207–25
272.
Zurück zum Zitat Gram LF, Kofod B, Christiansen J, et al. Imipramine metabolism: pH-dependent distribution and urinary excretion. Clin Pharmacol Ther 1971; 12: 239–44PubMed Gram LF, Kofod B, Christiansen J, et al. Imipramine metabolism: pH-dependent distribution and urinary excretion. Clin Pharmacol Ther 1971; 12: 239–44PubMed
273.
Zurück zum Zitat Rosenstein DL, Takeshita J, Nelson JC. Fluoxetine-induced elevation and prolongation of tricyclic levels in overdose [letter]. Am J Psychiatry 1991; 148: 807PubMed Rosenstein DL, Takeshita J, Nelson JC. Fluoxetine-induced elevation and prolongation of tricyclic levels in overdose [letter]. Am J Psychiatry 1991; 148: 807PubMed
274.
Zurück zum Zitat Preskorn SH, Beber JH, Faul JC, et al. Serious adverse effects of combining fluoxetine and tricyclic antidepressants [letter]. Am J Psychiatry 1990; 147: 532PubMed Preskorn SH, Beber JH, Faul JC, et al. Serious adverse effects of combining fluoxetine and tricyclic antidepressants [letter]. Am J Psychiatry 1990; 147: 532PubMed
275.
Zurück zum Zitat Vandel S, Bertschy G, Bonin B, et al. Tricyclic antidepressant plasma levels after fluoxetine addition. Neuropsychobiology 1992; 25: 202–7PubMedCrossRef Vandel S, Bertschy G, Bonin B, et al. Tricyclic antidepressant plasma levels after fluoxetine addition. Neuropsychobiology 1992; 25: 202–7PubMedCrossRef
276.
Zurück zum Zitat Spina E, Campo GM, Avenoso A, et al. Interaction between fluvoxamine and imipramine/desipramine in four patients. Ther Drug Monit 1992; 14: 194–6PubMedCrossRef Spina E, Campo GM, Avenoso A, et al. Interaction between fluvoxamine and imipramine/desipramine in four patients. Ther Drug Monit 1992; 14: 194–6PubMedCrossRef
277.
Zurück zum Zitat Leroi I, Walentynowicz MA. Fluoxetine-imipramine interaction [letter]. Can J Psychiatry 1996; 41: 318–9PubMed Leroi I, Walentynowicz MA. Fluoxetine-imipramine interaction [letter]. Can J Psychiatry 1996; 41: 318–9PubMed
278.
Zurück zum Zitat Lydiard RB, Anton RF, Cunningham T. Interactions between sertraline and tricyclic antidepressants [letter]. Am J Psychiatry 1993; 150: 1125–6PubMed Lydiard RB, Anton RF, Cunningham T. Interactions between sertraline and tricyclic antidepressants [letter]. Am J Psychiatry 1993; 150: 1125–6PubMed
279.
Zurück zum Zitat Maskall DD, Lam RW. Increased plasma concentration of imipramine following augmentation with fluvoxamine [letter]. Am J Psychiatry 1993; 150: 1566PubMed Maskall DD, Lam RW. Increased plasma concentration of imipramine following augmentation with fluvoxamine [letter]. Am J Psychiatry 1993; 150: 1566PubMed
280.
Zurück zum Zitat Ball SE, Ahern D, Scatina J, et al. Venlafaxine: in vitro inhibition of CYP2D6 dependent imipramine and desipramine metabolism; comparative studies with selected SSRIs, and effects on human hepatic CYP3A4, CYP2C9 and CYP1A2. Br J Clin Pharmacol 1997; 43: 619–26PubMedCrossRef Ball SE, Ahern D, Scatina J, et al. Venlafaxine: in vitro inhibition of CYP2D6 dependent imipramine and desipramine metabolism; comparative studies with selected SSRIs, and effects on human hepatic CYP3A4, CYP2C9 and CYP1A2. Br J Clin Pharmacol 1997; 43: 619–26PubMedCrossRef
281.
Zurück zum Zitat Von Moltke LL, Greenblatt DJ, Cotreau-Bibbo MM, et al. Inhibition of desipramine hydroxylation in vitro by serotonin-reuptake inhibitor antidepressants, and by quinidine and ketoconazole: a model system to predict drug interactions in vivo. J Pharmacol Exp Ther 1994; 268: 1278–83 Von Moltke LL, Greenblatt DJ, Cotreau-Bibbo MM, et al. Inhibition of desipramine hydroxylation in vitro by serotonin-reuptake inhibitor antidepressants, and by quinidine and ketoconazole: a model system to predict drug interactions in vivo. J Pharmacol Exp Ther 1994; 268: 1278–83
282.
Zurück zum Zitat Brosen K, Skjelbo E. Fluoxetine and norfluoxetine are potent inhibitors of P450IID6: the source of the sparteine/debrisoquin oxidation polymorphism [letter]. Br J Clin Pharmacol 1991; 32: 136–7PubMedCrossRef Brosen K, Skjelbo E. Fluoxetine and norfluoxetine are potent inhibitors of P450IID6: the source of the sparteine/debrisoquin oxidation polymorphism [letter]. Br J Clin Pharmacol 1991; 32: 136–7PubMedCrossRef
283.
Zurück zum Zitat Brosen K, Hansen JG, Nielsen KK, et al. Inhibition by paroxetine of desipramine metabolism in extensive but not in poor metabolizers of sparteine. Eur J Clin Pharmacol 1993; 44: 349–55PubMedCrossRef Brosen K, Hansen JG, Nielsen KK, et al. Inhibition by paroxetine of desipramine metabolism in extensive but not in poor metabolizers of sparteine. Eur J Clin Pharmacol 1993; 44: 349–55PubMedCrossRef
284.
Zurück zum Zitat Spina E, Pollicino AM, Avenoso A, et al. Fluvoxamine-induced alterations in plasma concentrations of imipramine and desipramine in depressed patients. Int J Clin Pharmacol Res 1993; 13: 167–71PubMed Spina E, Pollicino AM, Avenoso A, et al. Fluvoxamine-induced alterations in plasma concentrations of imipramine and desipramine in depressed patients. Int J Clin Pharmacol Res 1993; 13: 167–71PubMed
285.
Zurück zum Zitat Spina E, Koike Y. Differential effects of Cimetidine and ranitidine on imipramine demethylation and desmethylimipramine hydroxylation by human liver microsomes. Eur J Clin Pharmacol 1986; 30: 239–42PubMedCrossRef Spina E, Koike Y. Differential effects of Cimetidine and ranitidine on imipramine demethylation and desmethylimipramine hydroxylation by human liver microsomes. Eur J Clin Pharmacol 1986; 30: 239–42PubMedCrossRef
286.
Zurück zum Zitat Brosen K, Gram LF. Quinidine inhibits the 2-hydroxylation of imipramine and desipramine but not the demethylation of imipramine. Eur J Clin Pharmacol 1989; 37: 155–60PubMedCrossRef Brosen K, Gram LF. Quinidine inhibits the 2-hydroxylation of imipramine and desipramine but not the demethylation of imipramine. Eur J Clin Pharmacol 1989; 37: 155–60PubMedCrossRef
287.
Zurück zum Zitat O’Reardon JP, Hetznecker JM, Rynn MA, et al. Desipramine toxicity with terbinafine [letter]. Am J Psychiatr 2002; 159: 492PubMedCrossRef O’Reardon JP, Hetznecker JM, Rynn MA, et al. Desipramine toxicity with terbinafine [letter]. Am J Psychiatr 2002; 159: 492PubMedCrossRef
288.
Zurück zum Zitat Teitelbaum ML, Pearson VE. Imipramine toxicity and terbinafine [letter]. Am J Psychiatr 2001; 158: 2086PubMedCrossRef Teitelbaum ML, Pearson VE. Imipramine toxicity and terbinafine [letter]. Am J Psychiatr 2001; 158: 2086PubMedCrossRef
289.
Zurück zum Zitat Madani S, Barilla D, Cramer J, et al. Effect of terbinafine on the pharmacokinetics and pharmacodynamics of desipramine in healthy volunteers identified as cytochrome P450 2D6 (CYP 2D6) extensive metabolizers. J Clin Pharmacol 2002; 42: 1211–8PubMedCrossRef Madani S, Barilla D, Cramer J, et al. Effect of terbinafine on the pharmacokinetics and pharmacodynamics of desipramine in healthy volunteers identified as cytochrome P450 2D6 (CYP 2D6) extensive metabolizers. J Clin Pharmacol 2002; 42: 1211–8PubMedCrossRef
290.
Zurück zum Zitat Hewick DS, Sparks RG, Stevenson IH, et al. Induction of imipramine metabolism following barbiturate administration [abstract]. Br J Clin Pharmacol 1977; 4: 399PPubMedCrossRef Hewick DS, Sparks RG, Stevenson IH, et al. Induction of imipramine metabolism following barbiturate administration [abstract]. Br J Clin Pharmacol 1977; 4: 399PPubMedCrossRef
291.
Zurück zum Zitat Spina E, Avenoso A, Campo GM, et al. Phenobarbital induces the 2-hydroxylation of desipramine. Ther Drug Monit 1996; 18: 60–4PubMedCrossRef Spina E, Avenoso A, Campo GM, et al. Phenobarbital induces the 2-hydroxylation of desipramine. Ther Drug Monit 1996; 18: 60–4PubMedCrossRef
292.
Zurück zum Zitat Brown CS, Wells BG, Cold JA, et al. Possible influence of carbamazepine on plasma imipramine concentrations in children with attention deficit hyperactivity disorder. J Clin Psychopharmacol 1990; 10: 359–62PubMed Brown CS, Wells BG, Cold JA, et al. Possible influence of carbamazepine on plasma imipramine concentrations in children with attention deficit hyperactivity disorder. J Clin Psychopharmacol 1990; 10: 359–62PubMed
293.
Zurück zum Zitat Garbutt J, Malekpour B, Brunswick D, et al. Effects of triiodothyronine on drug levels and cardiac function in depressed patients treated with imipramine. Am J Psychiatry 1979; 136: 980–2PubMed Garbutt J, Malekpour B, Brunswick D, et al. Effects of triiodothyronine on drug levels and cardiac function in depressed patients treated with imipramine. Am J Psychiatry 1979; 136: 980–2PubMed
294.
Zurück zum Zitat Potkin SG, Thyrum PT, Alva G, et al. Effect of fluoxetine and imipramine on the pharmacokinetics and tolerability of the antipsychotic quetiapine. J Clin Psychopharmacol 2002; 22: 174–82PubMedCrossRef Potkin SG, Thyrum PT, Alva G, et al. Effect of fluoxetine and imipramine on the pharmacokinetics and tolerability of the antipsychotic quetiapine. J Clin Psychopharmacol 2002; 22: 174–82PubMedCrossRef
295.
Zurück zum Zitat Gillette DW, Tannery LP. Beta blocker inhibits tricyclic metabolism. J Am Acad Child Adolesc Psychiatry 1994; 33: 223–4PubMedCrossRef Gillette DW, Tannery LP. Beta blocker inhibits tricyclic metabolism. J Am Acad Child Adolesc Psychiatry 1994; 33: 223–4PubMedCrossRef
296.
Zurück zum Zitat Cook PE, Dermer SW, Cardamone J. Imipramine: flupenthixol decanoate interaction. Can J Psychiatry 1986; 31: 235–7PubMed Cook PE, Dermer SW, Cardamone J. Imipramine: flupenthixol decanoate interaction. Can J Psychiatry 1986; 31: 235–7PubMed
297.
Zurück zum Zitat Siris SG, Cooper TB, Rifkin AE, et al. Plasma imipramine concentrations in patients receiving concomitant fluphenazine decanoate. Am J Psychiatry 1982; 139: 104–6PubMed Siris SG, Cooper TB, Rifkin AE, et al. Plasma imipramine concentrations in patients receiving concomitant fluphenazine decanoate. Am J Psychiatry 1982; 139: 104–6PubMed
298.
Zurück zum Zitat Gram LF, Fredricson Overo K. Drug interaction: inhibitory effect of neuroleptics on metabolism of tricyclic antidepressants in man. BMJ 1972; 1: 463–5PubMedCrossRef Gram LF, Fredricson Overo K. Drug interaction: inhibitory effect of neuroleptics on metabolism of tricyclic antidepressants in man. BMJ 1972; 1: 463–5PubMedCrossRef
299.
Zurück zum Zitat Bjerre M, Gram LF, Kragh-Sorensen P, et al. Dose-dependent kinetics of imipramine in elderly patients. Psychopharmacology 1981;75:354–7PubMedCrossRef Bjerre M, Gram LF, Kragh-Sorensen P, et al. Dose-dependent kinetics of imipramine in elderly patients. Psychopharmacology 1981;75:354–7PubMedCrossRef
300.
Zurück zum Zitat Shad MU, Preskorn SH. A possible bupropion and imipramine interaction [letter]. J Clin Psychopharmacol 1997; 17: 118–9PubMedCrossRef Shad MU, Preskorn SH. A possible bupropion and imipramine interaction [letter]. J Clin Psychopharmacol 1997; 17: 118–9PubMedCrossRef
301.
Zurück zum Zitat Benet LZ, Hoener B-A. Changes in plasma protein binding have little clinical relevance. Clin Pharmacol Ther 2002; 71:115–21PubMedCrossRef Benet LZ, Hoener B-A. Changes in plasma protein binding have little clinical relevance. Clin Pharmacol Ther 2002; 71:115–21PubMedCrossRef
302.
Zurück zum Zitat Rapoport JL, Mikkelsen EJ, Zavadil A, et al. Childhood enuresis. Arch Gen Psychiatry 1980; 37: 1146–52PubMedCrossRef Rapoport JL, Mikkelsen EJ, Zavadil A, et al. Childhood enuresis. Arch Gen Psychiatry 1980; 37: 1146–52PubMedCrossRef
303.
Zurück zum Zitat Jorgensen OS, Lober M, Christiansen J, et al. Plasma concentration and clinical effect in imipramine treatment of childhood enuresis. Clin Pharmacokinet 1980; 5: 386–93PubMedCrossRef Jorgensen OS, Lober M, Christiansen J, et al. Plasma concentration and clinical effect in imipramine treatment of childhood enuresis. Clin Pharmacokinet 1980; 5: 386–93PubMedCrossRef
304.
Zurück zum Zitat Furlanut M, Montanari G, Benetello P, et al. Steady-state serum concentrations of imipramine, its main metabolites and clinical results in primary enuresis. Pharmacol Res 1989; 21: 561–6PubMedCrossRef Furlanut M, Montanari G, Benetello P, et al. Steady-state serum concentrations of imipramine, its main metabolites and clinical results in primary enuresis. Pharmacol Res 1989; 21: 561–6PubMedCrossRef
305.
Zurück zum Zitat Fernandez de Gatta M, Garcia MJ, Acosta A, et al. Monitoring of serum levels of imipramine and desipramine and individualization of dose in enuretic children. Ther Drug Monit 1984; 6: 438–43CrossRef Fernandez de Gatta M, Garcia MJ, Acosta A, et al. Monitoring of serum levels of imipramine and desipramine and individualization of dose in enuretic children. Ther Drug Monit 1984; 6: 438–43CrossRef
306.
Zurück zum Zitat Manglick MP, Buchanan N. Imipramine in primary nocturnal enuresis and the value of blood level measurement [letter]. Med J Aust 1992; 156: 68–9PubMed Manglick MP, Buchanan N. Imipramine in primary nocturnal enuresis and the value of blood level measurement [letter]. Med J Aust 1992; 156: 68–9PubMed
307.
Zurück zum Zitat DeVane CL, Walker III RD, Sawyer WP, et al. Concentrations of imipramine and its metabolites during enuresis therapy. Pediatr Pharmacol (New York) 1984; 4: 245–51 DeVane CL, Walker III RD, Sawyer WP, et al. Concentrations of imipramine and its metabolites during enuresis therapy. Pediatr Pharmacol (New York) 1984; 4: 245–51
308.
Zurück zum Zitat Lieberman JA, Cooper TB, Suckow RF, et al. Tricyclic antidepressant and metabolite levels in chronic renal failure. Clin Pharmacol Ther 1985; 37: 301–7PubMedCrossRef Lieberman JA, Cooper TB, Suckow RF, et al. Tricyclic antidepressant and metabolite levels in chronic renal failure. Clin Pharmacol Ther 1985; 37: 301–7PubMedCrossRef
309.
Zurück zum Zitat Nies A, Robinson DS, Freidman MJ, et al. Relationship between age and tricyclic antidepressant plasma levels. Am J Psychiatry 1977; 134: 790–3PubMed Nies A, Robinson DS, Freidman MJ, et al. Relationship between age and tricyclic antidepressant plasma levels. Am J Psychiatry 1977; 134: 790–3PubMed
310.
Zurück zum Zitat Weiler EB, Weller RA, Preskorn SH, et al. Steady-state plasma imipramine levels in prepubertal depressed children. Am J Psychiatry 1982; 139: 506–8 Weiler EB, Weller RA, Preskorn SH, et al. Steady-state plasma imipramine levels in prepubertal depressed children. Am J Psychiatry 1982; 139: 506–8
311.
Zurück zum Zitat Tamayo M, Fernandez de Gatta MM, Garcia MJ, et al. Population pharmacokinetics of imipramine in children. Eur J Clin Pharmacol 1992; 43: 89–92PubMedCrossRef Tamayo M, Fernandez de Gatta MM, Garcia MJ, et al. Population pharmacokinetics of imipramine in children. Eur J Clin Pharmacol 1992; 43: 89–92PubMedCrossRef
312.
Zurück zum Zitat Preskorn SH, Weiler EB, Weller RA, et al. Plasma levels of imipramine and adverse effects in children. Am J Psychiatry 1983; 140: 1332–5PubMed Preskorn SH, Weiler EB, Weller RA, et al. Plasma levels of imipramine and adverse effects in children. Am J Psychiatry 1983; 140: 1332–5PubMed
313.
Zurück zum Zitat Preskorn SH, Bupp SJ, Weller EB, et al. Plasma levels of imipramine and metabolites in 68 hospitalized children. J Am Acad Child Adolesc Psychiatry 1989; 28: 373–5PubMedCrossRef Preskorn SH, Bupp SJ, Weller EB, et al. Plasma levels of imipramine and metabolites in 68 hospitalized children. J Am Acad Child Adolesc Psychiatry 1989; 28: 373–5PubMedCrossRef
314.
Zurück zum Zitat Langguth P, Spahn H, Mutschler E, et al. An approach to reduce the number of skin samples in testing the transdermal permeation of drugs. J Pharm Pharmacol 1986; 38: 726–30PubMedCrossRef Langguth P, Spahn H, Mutschler E, et al. An approach to reduce the number of skin samples in testing the transdermal permeation of drugs. J Pharm Pharmacol 1986; 38: 726–30PubMedCrossRef
315.
Zurück zum Zitat Schladitz-Kiel G, Spahn H, Mutschler E. Fluorimetric determination of the quaternary compound trospium and its metabolite in biological material after derivatization with benoxaprofen chloride. J Chromatogr 1985; 345: 99–110CrossRef Schladitz-Kiel G, Spahn H, Mutschler E. Fluorimetric determination of the quaternary compound trospium and its metabolite in biological material after derivatization with benoxaprofen chloride. J Chromatogr 1985; 345: 99–110CrossRef
316.
Zurück zum Zitat Schladitz-Kiel G, Spahn H, Mutschier E. Determination of the bioavailability of the quaternary compound trospium chloride in man from urinary excretion data. Arzneimittel Forschung 1986; 36: 984–7 Schladitz-Kiel G, Spahn H, Mutschier E. Determination of the bioavailability of the quaternary compound trospium chloride in man from urinary excretion data. Arzneimittel Forschung 1986; 36: 984–7
317.
Zurück zum Zitat Zerres K, Zaigler M, Rietbrock S, et al. Pharmacokinetics of single and multiple dose trospium chloride in elderly volunteers using a replicative design [abstract 687]. Naunyn Schmiedebergs Arch Pharmacol 1998; 357 Suppl.: R175 Zerres K, Zaigler M, Rietbrock S, et al. Pharmacokinetics of single and multiple dose trospium chloride in elderly volunteers using a replicative design [abstract 687]. Naunyn Schmiedebergs Arch Pharmacol 1998; 357 Suppl.: R175
318.
Zurück zum Zitat Hofner K, Oelke M, Machtens S, et al. Trospium chloride: an effective drug in the treatment of overactive bladder and detrusor hyperreflexia. World J Urol 2001; 19: 336–43PubMedCrossRef Hofner K, Oelke M, Machtens S, et al. Trospium chloride: an effective drug in the treatment of overactive bladder and detrusor hyperreflexia. World J Urol 2001; 19: 336–43PubMedCrossRef
319.
Zurück zum Zitat Walter P, Grosse J, Bihr AM, et al. Bioavailability of trospium chloride after intravesical instillation in patients with neurogenic lower urinary tract dysfunction. Neurourol Urodyn 1999; 18: 447–53PubMedCrossRef Walter P, Grosse J, Bihr AM, et al. Bioavailability of trospium chloride after intravesical instillation in patients with neurogenic lower urinary tract dysfunction. Neurourol Urodyn 1999; 18: 447–53PubMedCrossRef
320.
Zurück zum Zitat Haustein K-O, Huiler G. On the pharmacokinetics and metabolism of propiverine in man. Eur J Drug Metab Pharmacokinet 1988; 13: 81–90PubMedCrossRef Haustein K-O, Huiler G. On the pharmacokinetics and metabolism of propiverine in man. Eur J Drug Metab Pharmacokinet 1988; 13: 81–90PubMedCrossRef
321.
Zurück zum Zitat Siepmann M, Nokhodian A, Thummler D, et al. Pharmacokinetics and safety of propiverine in patients with fatty liver disease. Eur J Clin Pharmacol 1998; 54: 767–71PubMedCrossRef Siepmann M, Nokhodian A, Thummler D, et al. Pharmacokinetics and safety of propiverine in patients with fatty liver disease. Eur J Clin Pharmacol 1998; 54: 767–71PubMedCrossRef
322.
Zurück zum Zitat Fusgen I, Hauri D. Trospium chloride: an effective option for medical treatment of bladder overactivity. Int J Clin Pharmacol Ther 2000; 38: 223–34PubMed Fusgen I, Hauri D. Trospium chloride: an effective option for medical treatment of bladder overactivity. Int J Clin Pharmacol Ther 2000; 38: 223–34PubMed
323.
Zurück zum Zitat Beckmann-Knopp S, Rietbrock S, Weyhenmeyer R, et al. Inhibitory effects of trospium chloride on cytochrome P450 enzymes in human liver microsomes. Pharmacol Toxicol 1999; 85: 299–304PubMedCrossRef Beckmann-Knopp S, Rietbrock S, Weyhenmeyer R, et al. Inhibitory effects of trospium chloride on cytochrome P450 enzymes in human liver microsomes. Pharmacol Toxicol 1999; 85: 299–304PubMedCrossRef
324.
Zurück zum Zitat Richter K, Scheithauer S, Thummler D. High-performance liquid Chromatographic determination of propiverine and its N-oxide in human serum. J Chromatogr 1998; 708: 325–9CrossRef Richter K, Scheithauer S, Thummler D. High-performance liquid Chromatographic determination of propiverine and its N-oxide in human serum. J Chromatogr 1998; 708: 325–9CrossRef
325.
Zurück zum Zitat Marunaka T, Umeno Y, Minami Y, et al. Gas chromatographicmass fragmentographic determination of propiverine and its metabolites in plasma and urine. J Chromatogr 1987; 420: 43–52PubMedCrossRef Marunaka T, Umeno Y, Minami Y, et al. Gas chromatographicmass fragmentographic determination of propiverine and its metabolites in plasma and urine. J Chromatogr 1987; 420: 43–52PubMedCrossRef
326.
Zurück zum Zitat Meisel P, Langner S, Siegmund W. In vitro binding of propiverine hydrochloride and some of its metabolites to serum albumin in man. J Pharm Pharmacol 1997; 49: 270–2PubMedCrossRef Meisel P, Langner S, Siegmund W. In vitro binding of propiverine hydrochloride and some of its metabolites to serum albumin in man. J Pharm Pharmacol 1997; 49: 270–2PubMedCrossRef
327.
Zurück zum Zitat Huiler G, Haustein KO, Scheithauer S. Studies on the metabolic pattern of propiverine in urine after single administration. Pharmazie 1988; 43: 91–5 Huiler G, Haustein KO, Scheithauer S. Studies on the metabolic pattern of propiverine in urine after single administration. Pharmazie 1988; 43: 91–5
328.
Zurück zum Zitat Muller C, Siegmund W, Huupponen R, et al. Kinetics of propiverine as assessed by radioreceptor assay in poor and extensive metabolizers of debrisoquine. Eur J Drug Metab Pharmacokinet 1993; 18: 265–72PubMedCrossRef Muller C, Siegmund W, Huupponen R, et al. Kinetics of propiverine as assessed by radioreceptor assay in poor and extensive metabolizers of debrisoquine. Eur J Drug Metab Pharmacokinet 1993; 18: 265–72PubMedCrossRef
Metadaten
Titel
Clinical Pharmacokinetics of Drugs Used to Treat Urge Incontinence
verfasst von
Dr David R. P. Guay
Publikationsdatum
01.12.2003
Verlag
Springer International Publishing
Erschienen in
Clinical Pharmacokinetics / Ausgabe 14/2003
Print ISSN: 0312-5963
Elektronische ISSN: 1179-1926
DOI
https://doi.org/10.2165/00003088-200342140-00004

Weitere Artikel der Ausgabe 14/2003

Clinical Pharmacokinetics 14/2003 Zur Ausgabe